Merge master.kernel.org:/pub/scm/linux/kernel/git/lethal/sh-2.6
[deliverable/linux.git] / drivers / net / skge.c
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 #include <linux/in.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/delay.h>
38 #include <linux/crc32.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/mii.h>
41 #include <asm/irq.h>
42
43 #include "skge.h"
44
45 #define DRV_NAME "skge"
46 #define DRV_VERSION "1.9"
47 #define PFX DRV_NAME " "
48
49 #define DEFAULT_TX_RING_SIZE 128
50 #define DEFAULT_RX_RING_SIZE 512
51 #define MAX_TX_RING_SIZE 1024
52 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
53 #define MAX_RX_RING_SIZE 4096
54 #define RX_COPY_THRESHOLD 128
55 #define RX_BUF_SIZE 1536
56 #define PHY_RETRIES 1000
57 #define ETH_JUMBO_MTU 9000
58 #define TX_WATCHDOG (5 * HZ)
59 #define NAPI_WEIGHT 64
60 #define BLINK_MS 250
61 #define LINK_HZ (HZ/2)
62
63 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
64 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
65 MODULE_LICENSE("GPL");
66 MODULE_VERSION(DRV_VERSION);
67
68 static const u32 default_msg
69 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
70 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
71
72 static int debug = -1; /* defaults above */
73 module_param(debug, int, 0);
74 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
75
76 static const struct pci_device_id skge_id_table[] = {
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
78 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
80 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
82 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
84 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
85 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
86 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
87 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
88 { 0 }
89 };
90 MODULE_DEVICE_TABLE(pci, skge_id_table);
91
92 static int skge_up(struct net_device *dev);
93 static int skge_down(struct net_device *dev);
94 static void skge_phy_reset(struct skge_port *skge);
95 static void skge_tx_clean(struct net_device *dev);
96 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
98 static void genesis_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_get_stats(struct skge_port *skge, u64 *data);
100 static void yukon_init(struct skge_hw *hw, int port);
101 static void genesis_mac_init(struct skge_hw *hw, int port);
102 static void genesis_link_up(struct skge_port *skge);
103
104 /* Avoid conditionals by using array */
105 static const int txqaddr[] = { Q_XA1, Q_XA2 };
106 static const int rxqaddr[] = { Q_R1, Q_R2 };
107 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
108 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
109 static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
110
111 static int skge_get_regs_len(struct net_device *dev)
112 {
113 return 0x4000;
114 }
115
116 /*
117 * Returns copy of whole control register region
118 * Note: skip RAM address register because accessing it will
119 * cause bus hangs!
120 */
121 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
122 void *p)
123 {
124 const struct skge_port *skge = netdev_priv(dev);
125 const void __iomem *io = skge->hw->regs;
126
127 regs->version = 1;
128 memset(p, 0, regs->len);
129 memcpy_fromio(p, io, B3_RAM_ADDR);
130
131 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
132 regs->len - B3_RI_WTO_R1);
133 }
134
135 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
136 static int wol_supported(const struct skge_hw *hw)
137 {
138 return !((hw->chip_id == CHIP_ID_GENESIS ||
139 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
140 }
141
142 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
143 {
144 struct skge_port *skge = netdev_priv(dev);
145
146 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
147 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
148 }
149
150 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
151 {
152 struct skge_port *skge = netdev_priv(dev);
153 struct skge_hw *hw = skge->hw;
154
155 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
156 return -EOPNOTSUPP;
157
158 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
159 return -EOPNOTSUPP;
160
161 skge->wol = wol->wolopts == WAKE_MAGIC;
162
163 if (skge->wol) {
164 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
165
166 skge_write16(hw, WOL_CTRL_STAT,
167 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
168 WOL_CTL_ENA_MAGIC_PKT_UNIT);
169 } else
170 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
171
172 return 0;
173 }
174
175 /* Determine supported/advertised modes based on hardware.
176 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
177 */
178 static u32 skge_supported_modes(const struct skge_hw *hw)
179 {
180 u32 supported;
181
182 if (hw->copper) {
183 supported = SUPPORTED_10baseT_Half
184 | SUPPORTED_10baseT_Full
185 | SUPPORTED_100baseT_Half
186 | SUPPORTED_100baseT_Full
187 | SUPPORTED_1000baseT_Half
188 | SUPPORTED_1000baseT_Full
189 | SUPPORTED_Autoneg| SUPPORTED_TP;
190
191 if (hw->chip_id == CHIP_ID_GENESIS)
192 supported &= ~(SUPPORTED_10baseT_Half
193 | SUPPORTED_10baseT_Full
194 | SUPPORTED_100baseT_Half
195 | SUPPORTED_100baseT_Full);
196
197 else if (hw->chip_id == CHIP_ID_YUKON)
198 supported &= ~SUPPORTED_1000baseT_Half;
199 } else
200 supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
201 | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
202
203 return supported;
204 }
205
206 static int skge_get_settings(struct net_device *dev,
207 struct ethtool_cmd *ecmd)
208 {
209 struct skge_port *skge = netdev_priv(dev);
210 struct skge_hw *hw = skge->hw;
211
212 ecmd->transceiver = XCVR_INTERNAL;
213 ecmd->supported = skge_supported_modes(hw);
214
215 if (hw->copper) {
216 ecmd->port = PORT_TP;
217 ecmd->phy_address = hw->phy_addr;
218 } else
219 ecmd->port = PORT_FIBRE;
220
221 ecmd->advertising = skge->advertising;
222 ecmd->autoneg = skge->autoneg;
223 ecmd->speed = skge->speed;
224 ecmd->duplex = skge->duplex;
225 return 0;
226 }
227
228 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
229 {
230 struct skge_port *skge = netdev_priv(dev);
231 const struct skge_hw *hw = skge->hw;
232 u32 supported = skge_supported_modes(hw);
233
234 if (ecmd->autoneg == AUTONEG_ENABLE) {
235 ecmd->advertising = supported;
236 skge->duplex = -1;
237 skge->speed = -1;
238 } else {
239 u32 setting;
240
241 switch (ecmd->speed) {
242 case SPEED_1000:
243 if (ecmd->duplex == DUPLEX_FULL)
244 setting = SUPPORTED_1000baseT_Full;
245 else if (ecmd->duplex == DUPLEX_HALF)
246 setting = SUPPORTED_1000baseT_Half;
247 else
248 return -EINVAL;
249 break;
250 case SPEED_100:
251 if (ecmd->duplex == DUPLEX_FULL)
252 setting = SUPPORTED_100baseT_Full;
253 else if (ecmd->duplex == DUPLEX_HALF)
254 setting = SUPPORTED_100baseT_Half;
255 else
256 return -EINVAL;
257 break;
258
259 case SPEED_10:
260 if (ecmd->duplex == DUPLEX_FULL)
261 setting = SUPPORTED_10baseT_Full;
262 else if (ecmd->duplex == DUPLEX_HALF)
263 setting = SUPPORTED_10baseT_Half;
264 else
265 return -EINVAL;
266 break;
267 default:
268 return -EINVAL;
269 }
270
271 if ((setting & supported) == 0)
272 return -EINVAL;
273
274 skge->speed = ecmd->speed;
275 skge->duplex = ecmd->duplex;
276 }
277
278 skge->autoneg = ecmd->autoneg;
279 skge->advertising = ecmd->advertising;
280
281 if (netif_running(dev))
282 skge_phy_reset(skge);
283
284 return (0);
285 }
286
287 static void skge_get_drvinfo(struct net_device *dev,
288 struct ethtool_drvinfo *info)
289 {
290 struct skge_port *skge = netdev_priv(dev);
291
292 strcpy(info->driver, DRV_NAME);
293 strcpy(info->version, DRV_VERSION);
294 strcpy(info->fw_version, "N/A");
295 strcpy(info->bus_info, pci_name(skge->hw->pdev));
296 }
297
298 static const struct skge_stat {
299 char name[ETH_GSTRING_LEN];
300 u16 xmac_offset;
301 u16 gma_offset;
302 } skge_stats[] = {
303 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
304 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
305
306 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
307 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
308 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
309 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
310 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
311 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
312 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
313 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
314
315 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
316 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
317 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
318 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
319 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
320 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
321
322 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
323 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
324 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
325 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
326 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
327 };
328
329 static int skge_get_stats_count(struct net_device *dev)
330 {
331 return ARRAY_SIZE(skge_stats);
332 }
333
334 static void skge_get_ethtool_stats(struct net_device *dev,
335 struct ethtool_stats *stats, u64 *data)
336 {
337 struct skge_port *skge = netdev_priv(dev);
338
339 if (skge->hw->chip_id == CHIP_ID_GENESIS)
340 genesis_get_stats(skge, data);
341 else
342 yukon_get_stats(skge, data);
343 }
344
345 /* Use hardware MIB variables for critical path statistics and
346 * transmit feedback not reported at interrupt.
347 * Other errors are accounted for in interrupt handler.
348 */
349 static struct net_device_stats *skge_get_stats(struct net_device *dev)
350 {
351 struct skge_port *skge = netdev_priv(dev);
352 u64 data[ARRAY_SIZE(skge_stats)];
353
354 if (skge->hw->chip_id == CHIP_ID_GENESIS)
355 genesis_get_stats(skge, data);
356 else
357 yukon_get_stats(skge, data);
358
359 skge->net_stats.tx_bytes = data[0];
360 skge->net_stats.rx_bytes = data[1];
361 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
362 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
363 skge->net_stats.multicast = data[3] + data[5];
364 skge->net_stats.collisions = data[10];
365 skge->net_stats.tx_aborted_errors = data[12];
366
367 return &skge->net_stats;
368 }
369
370 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
371 {
372 int i;
373
374 switch (stringset) {
375 case ETH_SS_STATS:
376 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
377 memcpy(data + i * ETH_GSTRING_LEN,
378 skge_stats[i].name, ETH_GSTRING_LEN);
379 break;
380 }
381 }
382
383 static void skge_get_ring_param(struct net_device *dev,
384 struct ethtool_ringparam *p)
385 {
386 struct skge_port *skge = netdev_priv(dev);
387
388 p->rx_max_pending = MAX_RX_RING_SIZE;
389 p->tx_max_pending = MAX_TX_RING_SIZE;
390 p->rx_mini_max_pending = 0;
391 p->rx_jumbo_max_pending = 0;
392
393 p->rx_pending = skge->rx_ring.count;
394 p->tx_pending = skge->tx_ring.count;
395 p->rx_mini_pending = 0;
396 p->rx_jumbo_pending = 0;
397 }
398
399 static int skge_set_ring_param(struct net_device *dev,
400 struct ethtool_ringparam *p)
401 {
402 struct skge_port *skge = netdev_priv(dev);
403 int err;
404
405 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
406 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
407 return -EINVAL;
408
409 skge->rx_ring.count = p->rx_pending;
410 skge->tx_ring.count = p->tx_pending;
411
412 if (netif_running(dev)) {
413 skge_down(dev);
414 err = skge_up(dev);
415 if (err)
416 dev_close(dev);
417 }
418
419 return 0;
420 }
421
422 static u32 skge_get_msglevel(struct net_device *netdev)
423 {
424 struct skge_port *skge = netdev_priv(netdev);
425 return skge->msg_enable;
426 }
427
428 static void skge_set_msglevel(struct net_device *netdev, u32 value)
429 {
430 struct skge_port *skge = netdev_priv(netdev);
431 skge->msg_enable = value;
432 }
433
434 static int skge_nway_reset(struct net_device *dev)
435 {
436 struct skge_port *skge = netdev_priv(dev);
437
438 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
439 return -EINVAL;
440
441 skge_phy_reset(skge);
442 return 0;
443 }
444
445 static int skge_set_sg(struct net_device *dev, u32 data)
446 {
447 struct skge_port *skge = netdev_priv(dev);
448 struct skge_hw *hw = skge->hw;
449
450 if (hw->chip_id == CHIP_ID_GENESIS && data)
451 return -EOPNOTSUPP;
452 return ethtool_op_set_sg(dev, data);
453 }
454
455 static int skge_set_tx_csum(struct net_device *dev, u32 data)
456 {
457 struct skge_port *skge = netdev_priv(dev);
458 struct skge_hw *hw = skge->hw;
459
460 if (hw->chip_id == CHIP_ID_GENESIS && data)
461 return -EOPNOTSUPP;
462
463 return ethtool_op_set_tx_csum(dev, data);
464 }
465
466 static u32 skge_get_rx_csum(struct net_device *dev)
467 {
468 struct skge_port *skge = netdev_priv(dev);
469
470 return skge->rx_csum;
471 }
472
473 /* Only Yukon supports checksum offload. */
474 static int skge_set_rx_csum(struct net_device *dev, u32 data)
475 {
476 struct skge_port *skge = netdev_priv(dev);
477
478 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
479 return -EOPNOTSUPP;
480
481 skge->rx_csum = data;
482 return 0;
483 }
484
485 static void skge_get_pauseparam(struct net_device *dev,
486 struct ethtool_pauseparam *ecmd)
487 {
488 struct skge_port *skge = netdev_priv(dev);
489
490 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
491 || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
492 ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
493
494 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
495 }
496
497 static int skge_set_pauseparam(struct net_device *dev,
498 struct ethtool_pauseparam *ecmd)
499 {
500 struct skge_port *skge = netdev_priv(dev);
501 struct ethtool_pauseparam old;
502
503 skge_get_pauseparam(dev, &old);
504
505 if (ecmd->autoneg != old.autoneg)
506 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
507 else {
508 if (ecmd->rx_pause && ecmd->tx_pause)
509 skge->flow_control = FLOW_MODE_SYMMETRIC;
510 else if (ecmd->rx_pause && !ecmd->tx_pause)
511 skge->flow_control = FLOW_MODE_SYM_OR_REM;
512 else if (!ecmd->rx_pause && ecmd->tx_pause)
513 skge->flow_control = FLOW_MODE_LOC_SEND;
514 else
515 skge->flow_control = FLOW_MODE_NONE;
516 }
517
518 if (netif_running(dev))
519 skge_phy_reset(skge);
520
521 return 0;
522 }
523
524 /* Chip internal frequency for clock calculations */
525 static inline u32 hwkhz(const struct skge_hw *hw)
526 {
527 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
528 }
529
530 /* Chip HZ to microseconds */
531 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
532 {
533 return (ticks * 1000) / hwkhz(hw);
534 }
535
536 /* Microseconds to chip HZ */
537 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
538 {
539 return hwkhz(hw) * usec / 1000;
540 }
541
542 static int skge_get_coalesce(struct net_device *dev,
543 struct ethtool_coalesce *ecmd)
544 {
545 struct skge_port *skge = netdev_priv(dev);
546 struct skge_hw *hw = skge->hw;
547 int port = skge->port;
548
549 ecmd->rx_coalesce_usecs = 0;
550 ecmd->tx_coalesce_usecs = 0;
551
552 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
553 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
554 u32 msk = skge_read32(hw, B2_IRQM_MSK);
555
556 if (msk & rxirqmask[port])
557 ecmd->rx_coalesce_usecs = delay;
558 if (msk & txirqmask[port])
559 ecmd->tx_coalesce_usecs = delay;
560 }
561
562 return 0;
563 }
564
565 /* Note: interrupt timer is per board, but can turn on/off per port */
566 static int skge_set_coalesce(struct net_device *dev,
567 struct ethtool_coalesce *ecmd)
568 {
569 struct skge_port *skge = netdev_priv(dev);
570 struct skge_hw *hw = skge->hw;
571 int port = skge->port;
572 u32 msk = skge_read32(hw, B2_IRQM_MSK);
573 u32 delay = 25;
574
575 if (ecmd->rx_coalesce_usecs == 0)
576 msk &= ~rxirqmask[port];
577 else if (ecmd->rx_coalesce_usecs < 25 ||
578 ecmd->rx_coalesce_usecs > 33333)
579 return -EINVAL;
580 else {
581 msk |= rxirqmask[port];
582 delay = ecmd->rx_coalesce_usecs;
583 }
584
585 if (ecmd->tx_coalesce_usecs == 0)
586 msk &= ~txirqmask[port];
587 else if (ecmd->tx_coalesce_usecs < 25 ||
588 ecmd->tx_coalesce_usecs > 33333)
589 return -EINVAL;
590 else {
591 msk |= txirqmask[port];
592 delay = min(delay, ecmd->rx_coalesce_usecs);
593 }
594
595 skge_write32(hw, B2_IRQM_MSK, msk);
596 if (msk == 0)
597 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
598 else {
599 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
600 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
601 }
602 return 0;
603 }
604
605 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
606 static void skge_led(struct skge_port *skge, enum led_mode mode)
607 {
608 struct skge_hw *hw = skge->hw;
609 int port = skge->port;
610
611 mutex_lock(&hw->phy_mutex);
612 if (hw->chip_id == CHIP_ID_GENESIS) {
613 switch (mode) {
614 case LED_MODE_OFF:
615 if (hw->phy_type == SK_PHY_BCOM)
616 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
617 else {
618 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
619 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
620 }
621 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
622 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
623 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
624 break;
625
626 case LED_MODE_ON:
627 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
628 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
629
630 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
631 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
632
633 break;
634
635 case LED_MODE_TST:
636 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
637 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
638 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
639
640 if (hw->phy_type == SK_PHY_BCOM)
641 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
642 else {
643 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
644 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
645 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
646 }
647
648 }
649 } else {
650 switch (mode) {
651 case LED_MODE_OFF:
652 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
653 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
654 PHY_M_LED_MO_DUP(MO_LED_OFF) |
655 PHY_M_LED_MO_10(MO_LED_OFF) |
656 PHY_M_LED_MO_100(MO_LED_OFF) |
657 PHY_M_LED_MO_1000(MO_LED_OFF) |
658 PHY_M_LED_MO_RX(MO_LED_OFF));
659 break;
660 case LED_MODE_ON:
661 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
662 PHY_M_LED_PULS_DUR(PULS_170MS) |
663 PHY_M_LED_BLINK_RT(BLINK_84MS) |
664 PHY_M_LEDC_TX_CTRL |
665 PHY_M_LEDC_DP_CTRL);
666
667 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
668 PHY_M_LED_MO_RX(MO_LED_OFF) |
669 (skge->speed == SPEED_100 ?
670 PHY_M_LED_MO_100(MO_LED_ON) : 0));
671 break;
672 case LED_MODE_TST:
673 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
674 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
675 PHY_M_LED_MO_DUP(MO_LED_ON) |
676 PHY_M_LED_MO_10(MO_LED_ON) |
677 PHY_M_LED_MO_100(MO_LED_ON) |
678 PHY_M_LED_MO_1000(MO_LED_ON) |
679 PHY_M_LED_MO_RX(MO_LED_ON));
680 }
681 }
682 mutex_unlock(&hw->phy_mutex);
683 }
684
685 /* blink LED's for finding board */
686 static int skge_phys_id(struct net_device *dev, u32 data)
687 {
688 struct skge_port *skge = netdev_priv(dev);
689 unsigned long ms;
690 enum led_mode mode = LED_MODE_TST;
691
692 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
693 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
694 else
695 ms = data * 1000;
696
697 while (ms > 0) {
698 skge_led(skge, mode);
699 mode ^= LED_MODE_TST;
700
701 if (msleep_interruptible(BLINK_MS))
702 break;
703 ms -= BLINK_MS;
704 }
705
706 /* back to regular LED state */
707 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
708
709 return 0;
710 }
711
712 static const struct ethtool_ops skge_ethtool_ops = {
713 .get_settings = skge_get_settings,
714 .set_settings = skge_set_settings,
715 .get_drvinfo = skge_get_drvinfo,
716 .get_regs_len = skge_get_regs_len,
717 .get_regs = skge_get_regs,
718 .get_wol = skge_get_wol,
719 .set_wol = skge_set_wol,
720 .get_msglevel = skge_get_msglevel,
721 .set_msglevel = skge_set_msglevel,
722 .nway_reset = skge_nway_reset,
723 .get_link = ethtool_op_get_link,
724 .get_ringparam = skge_get_ring_param,
725 .set_ringparam = skge_set_ring_param,
726 .get_pauseparam = skge_get_pauseparam,
727 .set_pauseparam = skge_set_pauseparam,
728 .get_coalesce = skge_get_coalesce,
729 .set_coalesce = skge_set_coalesce,
730 .get_sg = ethtool_op_get_sg,
731 .set_sg = skge_set_sg,
732 .get_tx_csum = ethtool_op_get_tx_csum,
733 .set_tx_csum = skge_set_tx_csum,
734 .get_rx_csum = skge_get_rx_csum,
735 .set_rx_csum = skge_set_rx_csum,
736 .get_strings = skge_get_strings,
737 .phys_id = skge_phys_id,
738 .get_stats_count = skge_get_stats_count,
739 .get_ethtool_stats = skge_get_ethtool_stats,
740 .get_perm_addr = ethtool_op_get_perm_addr,
741 };
742
743 /*
744 * Allocate ring elements and chain them together
745 * One-to-one association of board descriptors with ring elements
746 */
747 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
748 {
749 struct skge_tx_desc *d;
750 struct skge_element *e;
751 int i;
752
753 ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
754 if (!ring->start)
755 return -ENOMEM;
756
757 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
758 e->desc = d;
759 if (i == ring->count - 1) {
760 e->next = ring->start;
761 d->next_offset = base;
762 } else {
763 e->next = e + 1;
764 d->next_offset = base + (i+1) * sizeof(*d);
765 }
766 }
767 ring->to_use = ring->to_clean = ring->start;
768
769 return 0;
770 }
771
772 /* Allocate and setup a new buffer for receiving */
773 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
774 struct sk_buff *skb, unsigned int bufsize)
775 {
776 struct skge_rx_desc *rd = e->desc;
777 u64 map;
778
779 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
780 PCI_DMA_FROMDEVICE);
781
782 rd->dma_lo = map;
783 rd->dma_hi = map >> 32;
784 e->skb = skb;
785 rd->csum1_start = ETH_HLEN;
786 rd->csum2_start = ETH_HLEN;
787 rd->csum1 = 0;
788 rd->csum2 = 0;
789
790 wmb();
791
792 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
793 pci_unmap_addr_set(e, mapaddr, map);
794 pci_unmap_len_set(e, maplen, bufsize);
795 }
796
797 /* Resume receiving using existing skb,
798 * Note: DMA address is not changed by chip.
799 * MTU not changed while receiver active.
800 */
801 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
802 {
803 struct skge_rx_desc *rd = e->desc;
804
805 rd->csum2 = 0;
806 rd->csum2_start = ETH_HLEN;
807
808 wmb();
809
810 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
811 }
812
813
814 /* Free all buffers in receive ring, assumes receiver stopped */
815 static void skge_rx_clean(struct skge_port *skge)
816 {
817 struct skge_hw *hw = skge->hw;
818 struct skge_ring *ring = &skge->rx_ring;
819 struct skge_element *e;
820
821 e = ring->start;
822 do {
823 struct skge_rx_desc *rd = e->desc;
824 rd->control = 0;
825 if (e->skb) {
826 pci_unmap_single(hw->pdev,
827 pci_unmap_addr(e, mapaddr),
828 pci_unmap_len(e, maplen),
829 PCI_DMA_FROMDEVICE);
830 dev_kfree_skb(e->skb);
831 e->skb = NULL;
832 }
833 } while ((e = e->next) != ring->start);
834 }
835
836
837 /* Allocate buffers for receive ring
838 * For receive: to_clean is next received frame.
839 */
840 static int skge_rx_fill(struct net_device *dev)
841 {
842 struct skge_port *skge = netdev_priv(dev);
843 struct skge_ring *ring = &skge->rx_ring;
844 struct skge_element *e;
845
846 e = ring->start;
847 do {
848 struct sk_buff *skb;
849
850 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
851 GFP_KERNEL);
852 if (!skb)
853 return -ENOMEM;
854
855 skb_reserve(skb, NET_IP_ALIGN);
856 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
857 } while ( (e = e->next) != ring->start);
858
859 ring->to_clean = ring->start;
860 return 0;
861 }
862
863 static const char *skge_pause(enum pause_status status)
864 {
865 switch(status) {
866 case FLOW_STAT_NONE:
867 return "none";
868 case FLOW_STAT_REM_SEND:
869 return "rx only";
870 case FLOW_STAT_LOC_SEND:
871 return "tx_only";
872 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
873 return "both";
874 default:
875 return "indeterminated";
876 }
877 }
878
879
880 static void skge_link_up(struct skge_port *skge)
881 {
882 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
883 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
884
885 netif_carrier_on(skge->netdev);
886 netif_wake_queue(skge->netdev);
887
888 if (netif_msg_link(skge)) {
889 printk(KERN_INFO PFX
890 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
891 skge->netdev->name, skge->speed,
892 skge->duplex == DUPLEX_FULL ? "full" : "half",
893 skge_pause(skge->flow_status));
894 }
895 }
896
897 static void skge_link_down(struct skge_port *skge)
898 {
899 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
900 netif_carrier_off(skge->netdev);
901 netif_stop_queue(skge->netdev);
902
903 if (netif_msg_link(skge))
904 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
905 }
906
907
908 static void xm_link_down(struct skge_hw *hw, int port)
909 {
910 struct net_device *dev = hw->dev[port];
911 struct skge_port *skge = netdev_priv(dev);
912 u16 cmd, msk;
913
914 if (hw->phy_type == SK_PHY_XMAC) {
915 msk = xm_read16(hw, port, XM_IMSK);
916 msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
917 xm_write16(hw, port, XM_IMSK, msk);
918 }
919
920 cmd = xm_read16(hw, port, XM_MMU_CMD);
921 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
922 xm_write16(hw, port, XM_MMU_CMD, cmd);
923 /* dummy read to ensure writing */
924 (void) xm_read16(hw, port, XM_MMU_CMD);
925
926 if (netif_carrier_ok(dev))
927 skge_link_down(skge);
928 }
929
930 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
931 {
932 int i;
933
934 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
935 *val = xm_read16(hw, port, XM_PHY_DATA);
936
937 if (hw->phy_type == SK_PHY_XMAC)
938 goto ready;
939
940 for (i = 0; i < PHY_RETRIES; i++) {
941 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
942 goto ready;
943 udelay(1);
944 }
945
946 return -ETIMEDOUT;
947 ready:
948 *val = xm_read16(hw, port, XM_PHY_DATA);
949
950 return 0;
951 }
952
953 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
954 {
955 u16 v = 0;
956 if (__xm_phy_read(hw, port, reg, &v))
957 printk(KERN_WARNING PFX "%s: phy read timed out\n",
958 hw->dev[port]->name);
959 return v;
960 }
961
962 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
963 {
964 int i;
965
966 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
967 for (i = 0; i < PHY_RETRIES; i++) {
968 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
969 goto ready;
970 udelay(1);
971 }
972 return -EIO;
973
974 ready:
975 xm_write16(hw, port, XM_PHY_DATA, val);
976 for (i = 0; i < PHY_RETRIES; i++) {
977 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
978 return 0;
979 udelay(1);
980 }
981 return -ETIMEDOUT;
982 }
983
984 static void genesis_init(struct skge_hw *hw)
985 {
986 /* set blink source counter */
987 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
988 skge_write8(hw, B2_BSC_CTRL, BSC_START);
989
990 /* configure mac arbiter */
991 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
992
993 /* configure mac arbiter timeout values */
994 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
995 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
996 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
997 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
998
999 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1000 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1001 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1002 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1003
1004 /* configure packet arbiter timeout */
1005 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1006 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1007 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1008 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1009 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1010 }
1011
1012 static void genesis_reset(struct skge_hw *hw, int port)
1013 {
1014 const u8 zero[8] = { 0 };
1015
1016 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1017
1018 /* reset the statistics module */
1019 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1020 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
1021 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1022 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1023 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1024
1025 /* disable Broadcom PHY IRQ */
1026 if (hw->phy_type == SK_PHY_BCOM)
1027 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1028
1029 xm_outhash(hw, port, XM_HSM, zero);
1030 }
1031
1032
1033 /* Convert mode to MII values */
1034 static const u16 phy_pause_map[] = {
1035 [FLOW_MODE_NONE] = 0,
1036 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1037 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1038 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1039 };
1040
1041 /* special defines for FIBER (88E1011S only) */
1042 static const u16 fiber_pause_map[] = {
1043 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1044 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1045 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1046 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1047 };
1048
1049
1050 /* Check status of Broadcom phy link */
1051 static void bcom_check_link(struct skge_hw *hw, int port)
1052 {
1053 struct net_device *dev = hw->dev[port];
1054 struct skge_port *skge = netdev_priv(dev);
1055 u16 status;
1056
1057 /* read twice because of latch */
1058 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
1059 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1060
1061 if ((status & PHY_ST_LSYNC) == 0) {
1062 xm_link_down(hw, port);
1063 return;
1064 }
1065
1066 if (skge->autoneg == AUTONEG_ENABLE) {
1067 u16 lpa, aux;
1068
1069 if (!(status & PHY_ST_AN_OVER))
1070 return;
1071
1072 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1073 if (lpa & PHY_B_AN_RF) {
1074 printk(KERN_NOTICE PFX "%s: remote fault\n",
1075 dev->name);
1076 return;
1077 }
1078
1079 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1080
1081 /* Check Duplex mismatch */
1082 switch (aux & PHY_B_AS_AN_RES_MSK) {
1083 case PHY_B_RES_1000FD:
1084 skge->duplex = DUPLEX_FULL;
1085 break;
1086 case PHY_B_RES_1000HD:
1087 skge->duplex = DUPLEX_HALF;
1088 break;
1089 default:
1090 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1091 dev->name);
1092 return;
1093 }
1094
1095 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1096 switch (aux & PHY_B_AS_PAUSE_MSK) {
1097 case PHY_B_AS_PAUSE_MSK:
1098 skge->flow_status = FLOW_STAT_SYMMETRIC;
1099 break;
1100 case PHY_B_AS_PRR:
1101 skge->flow_status = FLOW_STAT_REM_SEND;
1102 break;
1103 case PHY_B_AS_PRT:
1104 skge->flow_status = FLOW_STAT_LOC_SEND;
1105 break;
1106 default:
1107 skge->flow_status = FLOW_STAT_NONE;
1108 }
1109 skge->speed = SPEED_1000;
1110 }
1111
1112 if (!netif_carrier_ok(dev))
1113 genesis_link_up(skge);
1114 }
1115
1116 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1117 * Phy on for 100 or 10Mbit operation
1118 */
1119 static void bcom_phy_init(struct skge_port *skge)
1120 {
1121 struct skge_hw *hw = skge->hw;
1122 int port = skge->port;
1123 int i;
1124 u16 id1, r, ext, ctl;
1125
1126 /* magic workaround patterns for Broadcom */
1127 static const struct {
1128 u16 reg;
1129 u16 val;
1130 } A1hack[] = {
1131 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1132 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1133 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1134 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1135 }, C0hack[] = {
1136 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1137 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1138 };
1139
1140 /* read Id from external PHY (all have the same address) */
1141 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1142
1143 /* Optimize MDIO transfer by suppressing preamble. */
1144 r = xm_read16(hw, port, XM_MMU_CMD);
1145 r |= XM_MMU_NO_PRE;
1146 xm_write16(hw, port, XM_MMU_CMD,r);
1147
1148 switch (id1) {
1149 case PHY_BCOM_ID1_C0:
1150 /*
1151 * Workaround BCOM Errata for the C0 type.
1152 * Write magic patterns to reserved registers.
1153 */
1154 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1155 xm_phy_write(hw, port,
1156 C0hack[i].reg, C0hack[i].val);
1157
1158 break;
1159 case PHY_BCOM_ID1_A1:
1160 /*
1161 * Workaround BCOM Errata for the A1 type.
1162 * Write magic patterns to reserved registers.
1163 */
1164 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1165 xm_phy_write(hw, port,
1166 A1hack[i].reg, A1hack[i].val);
1167 break;
1168 }
1169
1170 /*
1171 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1172 * Disable Power Management after reset.
1173 */
1174 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1175 r |= PHY_B_AC_DIS_PM;
1176 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1177
1178 /* Dummy read */
1179 xm_read16(hw, port, XM_ISRC);
1180
1181 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1182 ctl = PHY_CT_SP1000; /* always 1000mbit */
1183
1184 if (skge->autoneg == AUTONEG_ENABLE) {
1185 /*
1186 * Workaround BCOM Errata #1 for the C5 type.
1187 * 1000Base-T Link Acquisition Failure in Slave Mode
1188 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1189 */
1190 u16 adv = PHY_B_1000C_RD;
1191 if (skge->advertising & ADVERTISED_1000baseT_Half)
1192 adv |= PHY_B_1000C_AHD;
1193 if (skge->advertising & ADVERTISED_1000baseT_Full)
1194 adv |= PHY_B_1000C_AFD;
1195 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1196
1197 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1198 } else {
1199 if (skge->duplex == DUPLEX_FULL)
1200 ctl |= PHY_CT_DUP_MD;
1201 /* Force to slave */
1202 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1203 }
1204
1205 /* Set autonegotiation pause parameters */
1206 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1207 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1208
1209 /* Handle Jumbo frames */
1210 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1211 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1212 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1213
1214 ext |= PHY_B_PEC_HIGH_LA;
1215
1216 }
1217
1218 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1219 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1220
1221 /* Use link status change interrupt */
1222 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1223 }
1224
1225 static void xm_phy_init(struct skge_port *skge)
1226 {
1227 struct skge_hw *hw = skge->hw;
1228 int port = skge->port;
1229 u16 ctrl = 0;
1230
1231 if (skge->autoneg == AUTONEG_ENABLE) {
1232 if (skge->advertising & ADVERTISED_1000baseT_Half)
1233 ctrl |= PHY_X_AN_HD;
1234 if (skge->advertising & ADVERTISED_1000baseT_Full)
1235 ctrl |= PHY_X_AN_FD;
1236
1237 ctrl |= fiber_pause_map[skge->flow_control];
1238
1239 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1240
1241 /* Restart Auto-negotiation */
1242 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1243 } else {
1244 /* Set DuplexMode in Config register */
1245 if (skge->duplex == DUPLEX_FULL)
1246 ctrl |= PHY_CT_DUP_MD;
1247 /*
1248 * Do NOT enable Auto-negotiation here. This would hold
1249 * the link down because no IDLEs are transmitted
1250 */
1251 }
1252
1253 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1254
1255 /* Poll PHY for status changes */
1256 schedule_delayed_work(&skge->link_thread, LINK_HZ);
1257 }
1258
1259 static void xm_check_link(struct net_device *dev)
1260 {
1261 struct skge_port *skge = netdev_priv(dev);
1262 struct skge_hw *hw = skge->hw;
1263 int port = skge->port;
1264 u16 status;
1265
1266 /* read twice because of latch */
1267 (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
1268 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1269
1270 if ((status & PHY_ST_LSYNC) == 0) {
1271 xm_link_down(hw, port);
1272 return;
1273 }
1274
1275 if (skge->autoneg == AUTONEG_ENABLE) {
1276 u16 lpa, res;
1277
1278 if (!(status & PHY_ST_AN_OVER))
1279 return;
1280
1281 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1282 if (lpa & PHY_B_AN_RF) {
1283 printk(KERN_NOTICE PFX "%s: remote fault\n",
1284 dev->name);
1285 return;
1286 }
1287
1288 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1289
1290 /* Check Duplex mismatch */
1291 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1292 case PHY_X_RS_FD:
1293 skge->duplex = DUPLEX_FULL;
1294 break;
1295 case PHY_X_RS_HD:
1296 skge->duplex = DUPLEX_HALF;
1297 break;
1298 default:
1299 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1300 dev->name);
1301 return;
1302 }
1303
1304 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1305 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1306 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1307 (lpa & PHY_X_P_SYM_MD))
1308 skge->flow_status = FLOW_STAT_SYMMETRIC;
1309 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1310 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1311 /* Enable PAUSE receive, disable PAUSE transmit */
1312 skge->flow_status = FLOW_STAT_REM_SEND;
1313 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1314 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1315 /* Disable PAUSE receive, enable PAUSE transmit */
1316 skge->flow_status = FLOW_STAT_LOC_SEND;
1317 else
1318 skge->flow_status = FLOW_STAT_NONE;
1319
1320 skge->speed = SPEED_1000;
1321 }
1322
1323 if (!netif_carrier_ok(dev))
1324 genesis_link_up(skge);
1325 }
1326
1327 /* Poll to check for link coming up.
1328 * Since internal PHY is wired to a level triggered pin, can't
1329 * get an interrupt when carrier is detected.
1330 */
1331 static void xm_link_timer(void *arg)
1332 {
1333 struct net_device *dev = arg;
1334 struct skge_port *skge = netdev_priv(arg);
1335 struct skge_hw *hw = skge->hw;
1336 int port = skge->port;
1337
1338 if (!netif_running(dev))
1339 return;
1340
1341 if (netif_carrier_ok(dev)) {
1342 xm_read16(hw, port, XM_ISRC);
1343 if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
1344 goto nochange;
1345 } else {
1346 if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1347 goto nochange;
1348 xm_read16(hw, port, XM_ISRC);
1349 if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
1350 goto nochange;
1351 }
1352
1353 mutex_lock(&hw->phy_mutex);
1354 xm_check_link(dev);
1355 mutex_unlock(&hw->phy_mutex);
1356
1357 nochange:
1358 schedule_delayed_work(&skge->link_thread, LINK_HZ);
1359 }
1360
1361 static void genesis_mac_init(struct skge_hw *hw, int port)
1362 {
1363 struct net_device *dev = hw->dev[port];
1364 struct skge_port *skge = netdev_priv(dev);
1365 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1366 int i;
1367 u32 r;
1368 const u8 zero[6] = { 0 };
1369
1370 for (i = 0; i < 10; i++) {
1371 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1372 MFF_SET_MAC_RST);
1373 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1374 goto reset_ok;
1375 udelay(1);
1376 }
1377
1378 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1379
1380 reset_ok:
1381 /* Unreset the XMAC. */
1382 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1383
1384 /*
1385 * Perform additional initialization for external PHYs,
1386 * namely for the 1000baseTX cards that use the XMAC's
1387 * GMII mode.
1388 */
1389 if (hw->phy_type != SK_PHY_XMAC) {
1390 /* Take external Phy out of reset */
1391 r = skge_read32(hw, B2_GP_IO);
1392 if (port == 0)
1393 r |= GP_DIR_0|GP_IO_0;
1394 else
1395 r |= GP_DIR_2|GP_IO_2;
1396
1397 skge_write32(hw, B2_GP_IO, r);
1398
1399 /* Enable GMII interface */
1400 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1401 }
1402
1403
1404 switch(hw->phy_type) {
1405 case SK_PHY_XMAC:
1406 xm_phy_init(skge);
1407 break;
1408 case SK_PHY_BCOM:
1409 bcom_phy_init(skge);
1410 bcom_check_link(hw, port);
1411 }
1412
1413 /* Set Station Address */
1414 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1415
1416 /* We don't use match addresses so clear */
1417 for (i = 1; i < 16; i++)
1418 xm_outaddr(hw, port, XM_EXM(i), zero);
1419
1420 /* Clear MIB counters */
1421 xm_write16(hw, port, XM_STAT_CMD,
1422 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1423 /* Clear two times according to Errata #3 */
1424 xm_write16(hw, port, XM_STAT_CMD,
1425 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1426
1427 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1428 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1429
1430 /* We don't need the FCS appended to the packet. */
1431 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1432 if (jumbo)
1433 r |= XM_RX_BIG_PK_OK;
1434
1435 if (skge->duplex == DUPLEX_HALF) {
1436 /*
1437 * If in manual half duplex mode the other side might be in
1438 * full duplex mode, so ignore if a carrier extension is not seen
1439 * on frames received
1440 */
1441 r |= XM_RX_DIS_CEXT;
1442 }
1443 xm_write16(hw, port, XM_RX_CMD, r);
1444
1445
1446 /* We want short frames padded to 60 bytes. */
1447 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1448
1449 /*
1450 * Bump up the transmit threshold. This helps hold off transmit
1451 * underruns when we're blasting traffic from both ports at once.
1452 */
1453 xm_write16(hw, port, XM_TX_THR, 512);
1454
1455 /*
1456 * Enable the reception of all error frames. This is is
1457 * a necessary evil due to the design of the XMAC. The
1458 * XMAC's receive FIFO is only 8K in size, however jumbo
1459 * frames can be up to 9000 bytes in length. When bad
1460 * frame filtering is enabled, the XMAC's RX FIFO operates
1461 * in 'store and forward' mode. For this to work, the
1462 * entire frame has to fit into the FIFO, but that means
1463 * that jumbo frames larger than 8192 bytes will be
1464 * truncated. Disabling all bad frame filtering causes
1465 * the RX FIFO to operate in streaming mode, in which
1466 * case the XMAC will start transferring frames out of the
1467 * RX FIFO as soon as the FIFO threshold is reached.
1468 */
1469 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1470
1471
1472 /*
1473 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1474 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1475 * and 'Octets Rx OK Hi Cnt Ov'.
1476 */
1477 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1478
1479 /*
1480 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1481 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1482 * and 'Octets Tx OK Hi Cnt Ov'.
1483 */
1484 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1485
1486 /* Configure MAC arbiter */
1487 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1488
1489 /* configure timeout values */
1490 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1491 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1492 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1493 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1494
1495 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1496 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1497 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1498 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1499
1500 /* Configure Rx MAC FIFO */
1501 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1502 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1503 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1504
1505 /* Configure Tx MAC FIFO */
1506 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1507 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1508 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1509
1510 if (jumbo) {
1511 /* Enable frame flushing if jumbo frames used */
1512 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1513 } else {
1514 /* enable timeout timers if normal frames */
1515 skge_write16(hw, B3_PA_CTRL,
1516 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1517 }
1518 }
1519
1520 static void genesis_stop(struct skge_port *skge)
1521 {
1522 struct skge_hw *hw = skge->hw;
1523 int port = skge->port;
1524 u32 reg;
1525
1526 genesis_reset(hw, port);
1527
1528 /* Clear Tx packet arbiter timeout IRQ */
1529 skge_write16(hw, B3_PA_CTRL,
1530 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1531
1532 /*
1533 * If the transfer sticks at the MAC the STOP command will not
1534 * terminate if we don't flush the XMAC's transmit FIFO !
1535 */
1536 xm_write32(hw, port, XM_MODE,
1537 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1538
1539
1540 /* Reset the MAC */
1541 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1542
1543 /* For external PHYs there must be special handling */
1544 if (hw->phy_type != SK_PHY_XMAC) {
1545 reg = skge_read32(hw, B2_GP_IO);
1546 if (port == 0) {
1547 reg |= GP_DIR_0;
1548 reg &= ~GP_IO_0;
1549 } else {
1550 reg |= GP_DIR_2;
1551 reg &= ~GP_IO_2;
1552 }
1553 skge_write32(hw, B2_GP_IO, reg);
1554 skge_read32(hw, B2_GP_IO);
1555 }
1556
1557 xm_write16(hw, port, XM_MMU_CMD,
1558 xm_read16(hw, port, XM_MMU_CMD)
1559 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1560
1561 xm_read16(hw, port, XM_MMU_CMD);
1562 }
1563
1564
1565 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1566 {
1567 struct skge_hw *hw = skge->hw;
1568 int port = skge->port;
1569 int i;
1570 unsigned long timeout = jiffies + HZ;
1571
1572 xm_write16(hw, port,
1573 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1574
1575 /* wait for update to complete */
1576 while (xm_read16(hw, port, XM_STAT_CMD)
1577 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1578 if (time_after(jiffies, timeout))
1579 break;
1580 udelay(10);
1581 }
1582
1583 /* special case for 64 bit octet counter */
1584 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1585 | xm_read32(hw, port, XM_TXO_OK_LO);
1586 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1587 | xm_read32(hw, port, XM_RXO_OK_LO);
1588
1589 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1590 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1591 }
1592
1593 static void genesis_mac_intr(struct skge_hw *hw, int port)
1594 {
1595 struct skge_port *skge = netdev_priv(hw->dev[port]);
1596 u16 status = xm_read16(hw, port, XM_ISRC);
1597
1598 if (netif_msg_intr(skge))
1599 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1600 skge->netdev->name, status);
1601
1602 if (hw->phy_type == SK_PHY_XMAC &&
1603 (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
1604 xm_link_down(hw, port);
1605
1606 if (status & XM_IS_TXF_UR) {
1607 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1608 ++skge->net_stats.tx_fifo_errors;
1609 }
1610 if (status & XM_IS_RXF_OV) {
1611 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1612 ++skge->net_stats.rx_fifo_errors;
1613 }
1614 }
1615
1616 static void genesis_link_up(struct skge_port *skge)
1617 {
1618 struct skge_hw *hw = skge->hw;
1619 int port = skge->port;
1620 u16 cmd, msk;
1621 u32 mode;
1622
1623 cmd = xm_read16(hw, port, XM_MMU_CMD);
1624
1625 /*
1626 * enabling pause frame reception is required for 1000BT
1627 * because the XMAC is not reset if the link is going down
1628 */
1629 if (skge->flow_status == FLOW_STAT_NONE ||
1630 skge->flow_status == FLOW_STAT_LOC_SEND)
1631 /* Disable Pause Frame Reception */
1632 cmd |= XM_MMU_IGN_PF;
1633 else
1634 /* Enable Pause Frame Reception */
1635 cmd &= ~XM_MMU_IGN_PF;
1636
1637 xm_write16(hw, port, XM_MMU_CMD, cmd);
1638
1639 mode = xm_read32(hw, port, XM_MODE);
1640 if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1641 skge->flow_status == FLOW_STAT_LOC_SEND) {
1642 /*
1643 * Configure Pause Frame Generation
1644 * Use internal and external Pause Frame Generation.
1645 * Sending pause frames is edge triggered.
1646 * Send a Pause frame with the maximum pause time if
1647 * internal oder external FIFO full condition occurs.
1648 * Send a zero pause time frame to re-start transmission.
1649 */
1650 /* XM_PAUSE_DA = '010000C28001' (default) */
1651 /* XM_MAC_PTIME = 0xffff (maximum) */
1652 /* remember this value is defined in big endian (!) */
1653 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1654
1655 mode |= XM_PAUSE_MODE;
1656 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1657 } else {
1658 /*
1659 * disable pause frame generation is required for 1000BT
1660 * because the XMAC is not reset if the link is going down
1661 */
1662 /* Disable Pause Mode in Mode Register */
1663 mode &= ~XM_PAUSE_MODE;
1664
1665 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1666 }
1667
1668 xm_write32(hw, port, XM_MODE, mode);
1669 msk = XM_DEF_MSK;
1670 if (hw->phy_type != SK_PHY_XMAC)
1671 msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
1672
1673 xm_write16(hw, port, XM_IMSK, msk);
1674 xm_read16(hw, port, XM_ISRC);
1675
1676 /* get MMU Command Reg. */
1677 cmd = xm_read16(hw, port, XM_MMU_CMD);
1678 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1679 cmd |= XM_MMU_GMII_FD;
1680
1681 /*
1682 * Workaround BCOM Errata (#10523) for all BCom Phys
1683 * Enable Power Management after link up
1684 */
1685 if (hw->phy_type == SK_PHY_BCOM) {
1686 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1687 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1688 & ~PHY_B_AC_DIS_PM);
1689 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1690 }
1691
1692 /* enable Rx/Tx */
1693 xm_write16(hw, port, XM_MMU_CMD,
1694 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1695 skge_link_up(skge);
1696 }
1697
1698
1699 static inline void bcom_phy_intr(struct skge_port *skge)
1700 {
1701 struct skge_hw *hw = skge->hw;
1702 int port = skge->port;
1703 u16 isrc;
1704
1705 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1706 if (netif_msg_intr(skge))
1707 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1708 skge->netdev->name, isrc);
1709
1710 if (isrc & PHY_B_IS_PSE)
1711 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1712 hw->dev[port]->name);
1713
1714 /* Workaround BCom Errata:
1715 * enable and disable loopback mode if "NO HCD" occurs.
1716 */
1717 if (isrc & PHY_B_IS_NO_HDCL) {
1718 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1719 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1720 ctrl | PHY_CT_LOOP);
1721 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1722 ctrl & ~PHY_CT_LOOP);
1723 }
1724
1725 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1726 bcom_check_link(hw, port);
1727
1728 }
1729
1730 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1731 {
1732 int i;
1733
1734 gma_write16(hw, port, GM_SMI_DATA, val);
1735 gma_write16(hw, port, GM_SMI_CTRL,
1736 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1737 for (i = 0; i < PHY_RETRIES; i++) {
1738 udelay(1);
1739
1740 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1741 return 0;
1742 }
1743
1744 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1745 hw->dev[port]->name);
1746 return -EIO;
1747 }
1748
1749 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1750 {
1751 int i;
1752
1753 gma_write16(hw, port, GM_SMI_CTRL,
1754 GM_SMI_CT_PHY_AD(hw->phy_addr)
1755 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1756
1757 for (i = 0; i < PHY_RETRIES; i++) {
1758 udelay(1);
1759 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1760 goto ready;
1761 }
1762
1763 return -ETIMEDOUT;
1764 ready:
1765 *val = gma_read16(hw, port, GM_SMI_DATA);
1766 return 0;
1767 }
1768
1769 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1770 {
1771 u16 v = 0;
1772 if (__gm_phy_read(hw, port, reg, &v))
1773 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1774 hw->dev[port]->name);
1775 return v;
1776 }
1777
1778 /* Marvell Phy Initialization */
1779 static void yukon_init(struct skge_hw *hw, int port)
1780 {
1781 struct skge_port *skge = netdev_priv(hw->dev[port]);
1782 u16 ctrl, ct1000, adv;
1783
1784 if (skge->autoneg == AUTONEG_ENABLE) {
1785 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1786
1787 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1788 PHY_M_EC_MAC_S_MSK);
1789 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1790
1791 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1792
1793 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1794 }
1795
1796 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1797 if (skge->autoneg == AUTONEG_DISABLE)
1798 ctrl &= ~PHY_CT_ANE;
1799
1800 ctrl |= PHY_CT_RESET;
1801 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1802
1803 ctrl = 0;
1804 ct1000 = 0;
1805 adv = PHY_AN_CSMA;
1806
1807 if (skge->autoneg == AUTONEG_ENABLE) {
1808 if (hw->copper) {
1809 if (skge->advertising & ADVERTISED_1000baseT_Full)
1810 ct1000 |= PHY_M_1000C_AFD;
1811 if (skge->advertising & ADVERTISED_1000baseT_Half)
1812 ct1000 |= PHY_M_1000C_AHD;
1813 if (skge->advertising & ADVERTISED_100baseT_Full)
1814 adv |= PHY_M_AN_100_FD;
1815 if (skge->advertising & ADVERTISED_100baseT_Half)
1816 adv |= PHY_M_AN_100_HD;
1817 if (skge->advertising & ADVERTISED_10baseT_Full)
1818 adv |= PHY_M_AN_10_FD;
1819 if (skge->advertising & ADVERTISED_10baseT_Half)
1820 adv |= PHY_M_AN_10_HD;
1821
1822 /* Set Flow-control capabilities */
1823 adv |= phy_pause_map[skge->flow_control];
1824 } else {
1825 if (skge->advertising & ADVERTISED_1000baseT_Full)
1826 adv |= PHY_M_AN_1000X_AFD;
1827 if (skge->advertising & ADVERTISED_1000baseT_Half)
1828 adv |= PHY_M_AN_1000X_AHD;
1829
1830 adv |= fiber_pause_map[skge->flow_control];
1831 }
1832
1833 /* Restart Auto-negotiation */
1834 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1835 } else {
1836 /* forced speed/duplex settings */
1837 ct1000 = PHY_M_1000C_MSE;
1838
1839 if (skge->duplex == DUPLEX_FULL)
1840 ctrl |= PHY_CT_DUP_MD;
1841
1842 switch (skge->speed) {
1843 case SPEED_1000:
1844 ctrl |= PHY_CT_SP1000;
1845 break;
1846 case SPEED_100:
1847 ctrl |= PHY_CT_SP100;
1848 break;
1849 }
1850
1851 ctrl |= PHY_CT_RESET;
1852 }
1853
1854 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1855
1856 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1857 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1858
1859 /* Enable phy interrupt on autonegotiation complete (or link up) */
1860 if (skge->autoneg == AUTONEG_ENABLE)
1861 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1862 else
1863 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1864 }
1865
1866 static void yukon_reset(struct skge_hw *hw, int port)
1867 {
1868 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1869 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1870 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1871 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1872 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1873
1874 gma_write16(hw, port, GM_RX_CTRL,
1875 gma_read16(hw, port, GM_RX_CTRL)
1876 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1877 }
1878
1879 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1880 static int is_yukon_lite_a0(struct skge_hw *hw)
1881 {
1882 u32 reg;
1883 int ret;
1884
1885 if (hw->chip_id != CHIP_ID_YUKON)
1886 return 0;
1887
1888 reg = skge_read32(hw, B2_FAR);
1889 skge_write8(hw, B2_FAR + 3, 0xff);
1890 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1891 skge_write32(hw, B2_FAR, reg);
1892 return ret;
1893 }
1894
1895 static void yukon_mac_init(struct skge_hw *hw, int port)
1896 {
1897 struct skge_port *skge = netdev_priv(hw->dev[port]);
1898 int i;
1899 u32 reg;
1900 const u8 *addr = hw->dev[port]->dev_addr;
1901
1902 /* WA code for COMA mode -- set PHY reset */
1903 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1904 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1905 reg = skge_read32(hw, B2_GP_IO);
1906 reg |= GP_DIR_9 | GP_IO_9;
1907 skge_write32(hw, B2_GP_IO, reg);
1908 }
1909
1910 /* hard reset */
1911 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1912 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1913
1914 /* WA code for COMA mode -- clear PHY reset */
1915 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1916 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1917 reg = skge_read32(hw, B2_GP_IO);
1918 reg |= GP_DIR_9;
1919 reg &= ~GP_IO_9;
1920 skge_write32(hw, B2_GP_IO, reg);
1921 }
1922
1923 /* Set hardware config mode */
1924 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1925 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1926 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1927
1928 /* Clear GMC reset */
1929 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1930 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1931 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1932
1933 if (skge->autoneg == AUTONEG_DISABLE) {
1934 reg = GM_GPCR_AU_ALL_DIS;
1935 gma_write16(hw, port, GM_GP_CTRL,
1936 gma_read16(hw, port, GM_GP_CTRL) | reg);
1937
1938 switch (skge->speed) {
1939 case SPEED_1000:
1940 reg &= ~GM_GPCR_SPEED_100;
1941 reg |= GM_GPCR_SPEED_1000;
1942 break;
1943 case SPEED_100:
1944 reg &= ~GM_GPCR_SPEED_1000;
1945 reg |= GM_GPCR_SPEED_100;
1946 break;
1947 case SPEED_10:
1948 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
1949 break;
1950 }
1951
1952 if (skge->duplex == DUPLEX_FULL)
1953 reg |= GM_GPCR_DUP_FULL;
1954 } else
1955 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1956
1957 switch (skge->flow_control) {
1958 case FLOW_MODE_NONE:
1959 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1960 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1961 break;
1962 case FLOW_MODE_LOC_SEND:
1963 /* disable Rx flow-control */
1964 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1965 break;
1966 case FLOW_MODE_SYMMETRIC:
1967 case FLOW_MODE_SYM_OR_REM:
1968 /* enable Tx & Rx flow-control */
1969 break;
1970 }
1971
1972 gma_write16(hw, port, GM_GP_CTRL, reg);
1973 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1974
1975 yukon_init(hw, port);
1976
1977 /* MIB clear */
1978 reg = gma_read16(hw, port, GM_PHY_ADDR);
1979 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1980
1981 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1982 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1983 gma_write16(hw, port, GM_PHY_ADDR, reg);
1984
1985 /* transmit control */
1986 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1987
1988 /* receive control reg: unicast + multicast + no FCS */
1989 gma_write16(hw, port, GM_RX_CTRL,
1990 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1991
1992 /* transmit flow control */
1993 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1994
1995 /* transmit parameter */
1996 gma_write16(hw, port, GM_TX_PARAM,
1997 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1998 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1999 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2000
2001 /* serial mode register */
2002 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2003 if (hw->dev[port]->mtu > 1500)
2004 reg |= GM_SMOD_JUMBO_ENA;
2005
2006 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2007
2008 /* physical address: used for pause frames */
2009 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2010 /* virtual address for data */
2011 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2012
2013 /* enable interrupt mask for counter overflows */
2014 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2015 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2016 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2017
2018 /* Initialize Mac Fifo */
2019
2020 /* Configure Rx MAC FIFO */
2021 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2022 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2023
2024 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2025 if (is_yukon_lite_a0(hw))
2026 reg &= ~GMF_RX_F_FL_ON;
2027
2028 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2029 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2030 /*
2031 * because Pause Packet Truncation in GMAC is not working
2032 * we have to increase the Flush Threshold to 64 bytes
2033 * in order to flush pause packets in Rx FIFO on Yukon-1
2034 */
2035 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2036
2037 /* Configure Tx MAC FIFO */
2038 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2039 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2040 }
2041
2042 /* Go into power down mode */
2043 static void yukon_suspend(struct skge_hw *hw, int port)
2044 {
2045 u16 ctrl;
2046
2047 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2048 ctrl |= PHY_M_PC_POL_R_DIS;
2049 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2050
2051 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2052 ctrl |= PHY_CT_RESET;
2053 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2054
2055 /* switch IEEE compatible power down mode on */
2056 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2057 ctrl |= PHY_CT_PDOWN;
2058 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2059 }
2060
2061 static void yukon_stop(struct skge_port *skge)
2062 {
2063 struct skge_hw *hw = skge->hw;
2064 int port = skge->port;
2065
2066 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2067 yukon_reset(hw, port);
2068
2069 gma_write16(hw, port, GM_GP_CTRL,
2070 gma_read16(hw, port, GM_GP_CTRL)
2071 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2072 gma_read16(hw, port, GM_GP_CTRL);
2073
2074 yukon_suspend(hw, port);
2075
2076 /* set GPHY Control reset */
2077 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2078 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2079 }
2080
2081 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2082 {
2083 struct skge_hw *hw = skge->hw;
2084 int port = skge->port;
2085 int i;
2086
2087 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2088 | gma_read32(hw, port, GM_TXO_OK_LO);
2089 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2090 | gma_read32(hw, port, GM_RXO_OK_LO);
2091
2092 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2093 data[i] = gma_read32(hw, port,
2094 skge_stats[i].gma_offset);
2095 }
2096
2097 static void yukon_mac_intr(struct skge_hw *hw, int port)
2098 {
2099 struct net_device *dev = hw->dev[port];
2100 struct skge_port *skge = netdev_priv(dev);
2101 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2102
2103 if (netif_msg_intr(skge))
2104 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2105 dev->name, status);
2106
2107 if (status & GM_IS_RX_FF_OR) {
2108 ++skge->net_stats.rx_fifo_errors;
2109 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2110 }
2111
2112 if (status & GM_IS_TX_FF_UR) {
2113 ++skge->net_stats.tx_fifo_errors;
2114 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2115 }
2116
2117 }
2118
2119 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2120 {
2121 switch (aux & PHY_M_PS_SPEED_MSK) {
2122 case PHY_M_PS_SPEED_1000:
2123 return SPEED_1000;
2124 case PHY_M_PS_SPEED_100:
2125 return SPEED_100;
2126 default:
2127 return SPEED_10;
2128 }
2129 }
2130
2131 static void yukon_link_up(struct skge_port *skge)
2132 {
2133 struct skge_hw *hw = skge->hw;
2134 int port = skge->port;
2135 u16 reg;
2136
2137 /* Enable Transmit FIFO Underrun */
2138 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2139
2140 reg = gma_read16(hw, port, GM_GP_CTRL);
2141 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2142 reg |= GM_GPCR_DUP_FULL;
2143
2144 /* enable Rx/Tx */
2145 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2146 gma_write16(hw, port, GM_GP_CTRL, reg);
2147
2148 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2149 skge_link_up(skge);
2150 }
2151
2152 static void yukon_link_down(struct skge_port *skge)
2153 {
2154 struct skge_hw *hw = skge->hw;
2155 int port = skge->port;
2156 u16 ctrl;
2157
2158 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
2159
2160 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2161 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2162 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2163
2164 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2165 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2166 ctrl |= PHY_M_AN_ASP;
2167 /* restore Asymmetric Pause bit */
2168 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2169 }
2170
2171 yukon_reset(hw, port);
2172 skge_link_down(skge);
2173
2174 yukon_init(hw, port);
2175 }
2176
2177 static void yukon_phy_intr(struct skge_port *skge)
2178 {
2179 struct skge_hw *hw = skge->hw;
2180 int port = skge->port;
2181 const char *reason = NULL;
2182 u16 istatus, phystat;
2183
2184 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2185 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2186
2187 if (netif_msg_intr(skge))
2188 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2189 skge->netdev->name, istatus, phystat);
2190
2191 if (istatus & PHY_M_IS_AN_COMPL) {
2192 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2193 & PHY_M_AN_RF) {
2194 reason = "remote fault";
2195 goto failed;
2196 }
2197
2198 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2199 reason = "master/slave fault";
2200 goto failed;
2201 }
2202
2203 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2204 reason = "speed/duplex";
2205 goto failed;
2206 }
2207
2208 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2209 ? DUPLEX_FULL : DUPLEX_HALF;
2210 skge->speed = yukon_speed(hw, phystat);
2211
2212 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2213 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2214 case PHY_M_PS_PAUSE_MSK:
2215 skge->flow_status = FLOW_STAT_SYMMETRIC;
2216 break;
2217 case PHY_M_PS_RX_P_EN:
2218 skge->flow_status = FLOW_STAT_REM_SEND;
2219 break;
2220 case PHY_M_PS_TX_P_EN:
2221 skge->flow_status = FLOW_STAT_LOC_SEND;
2222 break;
2223 default:
2224 skge->flow_status = FLOW_STAT_NONE;
2225 }
2226
2227 if (skge->flow_status == FLOW_STAT_NONE ||
2228 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2229 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2230 else
2231 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2232 yukon_link_up(skge);
2233 return;
2234 }
2235
2236 if (istatus & PHY_M_IS_LSP_CHANGE)
2237 skge->speed = yukon_speed(hw, phystat);
2238
2239 if (istatus & PHY_M_IS_DUP_CHANGE)
2240 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2241 if (istatus & PHY_M_IS_LST_CHANGE) {
2242 if (phystat & PHY_M_PS_LINK_UP)
2243 yukon_link_up(skge);
2244 else
2245 yukon_link_down(skge);
2246 }
2247 return;
2248 failed:
2249 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2250 skge->netdev->name, reason);
2251
2252 /* XXX restart autonegotiation? */
2253 }
2254
2255 static void skge_phy_reset(struct skge_port *skge)
2256 {
2257 struct skge_hw *hw = skge->hw;
2258 int port = skge->port;
2259
2260 netif_stop_queue(skge->netdev);
2261 netif_carrier_off(skge->netdev);
2262
2263 mutex_lock(&hw->phy_mutex);
2264 if (hw->chip_id == CHIP_ID_GENESIS) {
2265 genesis_reset(hw, port);
2266 genesis_mac_init(hw, port);
2267 } else {
2268 yukon_reset(hw, port);
2269 yukon_init(hw, port);
2270 }
2271 mutex_unlock(&hw->phy_mutex);
2272 }
2273
2274 /* Basic MII support */
2275 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2276 {
2277 struct mii_ioctl_data *data = if_mii(ifr);
2278 struct skge_port *skge = netdev_priv(dev);
2279 struct skge_hw *hw = skge->hw;
2280 int err = -EOPNOTSUPP;
2281
2282 if (!netif_running(dev))
2283 return -ENODEV; /* Phy still in reset */
2284
2285 switch(cmd) {
2286 case SIOCGMIIPHY:
2287 data->phy_id = hw->phy_addr;
2288
2289 /* fallthru */
2290 case SIOCGMIIREG: {
2291 u16 val = 0;
2292 mutex_lock(&hw->phy_mutex);
2293 if (hw->chip_id == CHIP_ID_GENESIS)
2294 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2295 else
2296 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2297 mutex_unlock(&hw->phy_mutex);
2298 data->val_out = val;
2299 break;
2300 }
2301
2302 case SIOCSMIIREG:
2303 if (!capable(CAP_NET_ADMIN))
2304 return -EPERM;
2305
2306 mutex_lock(&hw->phy_mutex);
2307 if (hw->chip_id == CHIP_ID_GENESIS)
2308 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2309 data->val_in);
2310 else
2311 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2312 data->val_in);
2313 mutex_unlock(&hw->phy_mutex);
2314 break;
2315 }
2316 return err;
2317 }
2318
2319 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2320 {
2321 u32 end;
2322
2323 start /= 8;
2324 len /= 8;
2325 end = start + len - 1;
2326
2327 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2328 skge_write32(hw, RB_ADDR(q, RB_START), start);
2329 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2330 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2331 skge_write32(hw, RB_ADDR(q, RB_END), end);
2332
2333 if (q == Q_R1 || q == Q_R2) {
2334 /* Set thresholds on receive queue's */
2335 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2336 start + (2*len)/3);
2337 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2338 start + (len/3));
2339 } else {
2340 /* Enable store & forward on Tx queue's because
2341 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2342 */
2343 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2344 }
2345
2346 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2347 }
2348
2349 /* Setup Bus Memory Interface */
2350 static void skge_qset(struct skge_port *skge, u16 q,
2351 const struct skge_element *e)
2352 {
2353 struct skge_hw *hw = skge->hw;
2354 u32 watermark = 0x600;
2355 u64 base = skge->dma + (e->desc - skge->mem);
2356
2357 /* optimization to reduce window on 32bit/33mhz */
2358 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2359 watermark /= 2;
2360
2361 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2362 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2363 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2364 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2365 }
2366
2367 static int skge_up(struct net_device *dev)
2368 {
2369 struct skge_port *skge = netdev_priv(dev);
2370 struct skge_hw *hw = skge->hw;
2371 int port = skge->port;
2372 u32 chunk, ram_addr;
2373 size_t rx_size, tx_size;
2374 int err;
2375
2376 if (netif_msg_ifup(skge))
2377 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2378
2379 if (dev->mtu > RX_BUF_SIZE)
2380 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2381 else
2382 skge->rx_buf_size = RX_BUF_SIZE;
2383
2384
2385 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2386 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2387 skge->mem_size = tx_size + rx_size;
2388 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2389 if (!skge->mem)
2390 return -ENOMEM;
2391
2392 BUG_ON(skge->dma & 7);
2393
2394 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2395 printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
2396 err = -EINVAL;
2397 goto free_pci_mem;
2398 }
2399
2400 memset(skge->mem, 0, skge->mem_size);
2401
2402 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2403 if (err)
2404 goto free_pci_mem;
2405
2406 err = skge_rx_fill(dev);
2407 if (err)
2408 goto free_rx_ring;
2409
2410 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2411 skge->dma + rx_size);
2412 if (err)
2413 goto free_rx_ring;
2414
2415 /* Initialize MAC */
2416 mutex_lock(&hw->phy_mutex);
2417 if (hw->chip_id == CHIP_ID_GENESIS)
2418 genesis_mac_init(hw, port);
2419 else
2420 yukon_mac_init(hw, port);
2421 mutex_unlock(&hw->phy_mutex);
2422
2423 /* Configure RAMbuffers */
2424 chunk = hw->ram_size / ((hw->ports + 1)*2);
2425 ram_addr = hw->ram_offset + 2 * chunk * port;
2426
2427 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2428 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2429
2430 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2431 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2432 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2433
2434 /* Start receiver BMU */
2435 wmb();
2436 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2437 skge_led(skge, LED_MODE_ON);
2438
2439 netif_poll_enable(dev);
2440 return 0;
2441
2442 free_rx_ring:
2443 skge_rx_clean(skge);
2444 kfree(skge->rx_ring.start);
2445 free_pci_mem:
2446 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2447 skge->mem = NULL;
2448
2449 return err;
2450 }
2451
2452 static int skge_down(struct net_device *dev)
2453 {
2454 struct skge_port *skge = netdev_priv(dev);
2455 struct skge_hw *hw = skge->hw;
2456 int port = skge->port;
2457
2458 if (skge->mem == NULL)
2459 return 0;
2460
2461 if (netif_msg_ifdown(skge))
2462 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2463
2464 netif_stop_queue(dev);
2465 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2466 cancel_rearming_delayed_work(&skge->link_thread);
2467
2468 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2469 if (hw->chip_id == CHIP_ID_GENESIS)
2470 genesis_stop(skge);
2471 else
2472 yukon_stop(skge);
2473
2474 /* Stop transmitter */
2475 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2476 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2477 RB_RST_SET|RB_DIS_OP_MD);
2478
2479
2480 /* Disable Force Sync bit and Enable Alloc bit */
2481 skge_write8(hw, SK_REG(port, TXA_CTRL),
2482 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2483
2484 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2485 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2486 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2487
2488 /* Reset PCI FIFO */
2489 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2490 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2491
2492 /* Reset the RAM Buffer async Tx queue */
2493 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2494 /* stop receiver */
2495 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2496 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2497 RB_RST_SET|RB_DIS_OP_MD);
2498 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2499
2500 if (hw->chip_id == CHIP_ID_GENESIS) {
2501 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2502 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2503 } else {
2504 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2505 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2506 }
2507
2508 skge_led(skge, LED_MODE_OFF);
2509
2510 netif_poll_disable(dev);
2511 skge_tx_clean(dev);
2512 skge_rx_clean(skge);
2513
2514 kfree(skge->rx_ring.start);
2515 kfree(skge->tx_ring.start);
2516 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2517 skge->mem = NULL;
2518 return 0;
2519 }
2520
2521 static inline int skge_avail(const struct skge_ring *ring)
2522 {
2523 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2524 + (ring->to_clean - ring->to_use) - 1;
2525 }
2526
2527 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2528 {
2529 struct skge_port *skge = netdev_priv(dev);
2530 struct skge_hw *hw = skge->hw;
2531 struct skge_element *e;
2532 struct skge_tx_desc *td;
2533 int i;
2534 u32 control, len;
2535 u64 map;
2536
2537 if (skb_padto(skb, ETH_ZLEN))
2538 return NETDEV_TX_OK;
2539
2540 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2541 return NETDEV_TX_BUSY;
2542
2543 e = skge->tx_ring.to_use;
2544 td = e->desc;
2545 BUG_ON(td->control & BMU_OWN);
2546 e->skb = skb;
2547 len = skb_headlen(skb);
2548 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2549 pci_unmap_addr_set(e, mapaddr, map);
2550 pci_unmap_len_set(e, maplen, len);
2551
2552 td->dma_lo = map;
2553 td->dma_hi = map >> 32;
2554
2555 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2556 int offset = skb->h.raw - skb->data;
2557
2558 /* This seems backwards, but it is what the sk98lin
2559 * does. Looks like hardware is wrong?
2560 */
2561 if (skb->h.ipiph->protocol == IPPROTO_UDP
2562 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2563 control = BMU_TCP_CHECK;
2564 else
2565 control = BMU_UDP_CHECK;
2566
2567 td->csum_offs = 0;
2568 td->csum_start = offset;
2569 td->csum_write = offset + skb->csum;
2570 } else
2571 control = BMU_CHECK;
2572
2573 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2574 control |= BMU_EOF| BMU_IRQ_EOF;
2575 else {
2576 struct skge_tx_desc *tf = td;
2577
2578 control |= BMU_STFWD;
2579 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2580 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2581
2582 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2583 frag->size, PCI_DMA_TODEVICE);
2584
2585 e = e->next;
2586 e->skb = skb;
2587 tf = e->desc;
2588 BUG_ON(tf->control & BMU_OWN);
2589
2590 tf->dma_lo = map;
2591 tf->dma_hi = (u64) map >> 32;
2592 pci_unmap_addr_set(e, mapaddr, map);
2593 pci_unmap_len_set(e, maplen, frag->size);
2594
2595 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2596 }
2597 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2598 }
2599 /* Make sure all the descriptors written */
2600 wmb();
2601 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2602 wmb();
2603
2604 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2605
2606 if (unlikely(netif_msg_tx_queued(skge)))
2607 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2608 dev->name, e - skge->tx_ring.start, skb->len);
2609
2610 skge->tx_ring.to_use = e->next;
2611 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2612 pr_debug("%s: transmit queue full\n", dev->name);
2613 netif_stop_queue(dev);
2614 }
2615
2616 dev->trans_start = jiffies;
2617
2618 return NETDEV_TX_OK;
2619 }
2620
2621
2622 /* Free resources associated with this reing element */
2623 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2624 u32 control)
2625 {
2626 struct pci_dev *pdev = skge->hw->pdev;
2627
2628 BUG_ON(!e->skb);
2629
2630 /* skb header vs. fragment */
2631 if (control & BMU_STF)
2632 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2633 pci_unmap_len(e, maplen),
2634 PCI_DMA_TODEVICE);
2635 else
2636 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2637 pci_unmap_len(e, maplen),
2638 PCI_DMA_TODEVICE);
2639
2640 if (control & BMU_EOF) {
2641 if (unlikely(netif_msg_tx_done(skge)))
2642 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2643 skge->netdev->name, e - skge->tx_ring.start);
2644
2645 dev_kfree_skb(e->skb);
2646 }
2647 e->skb = NULL;
2648 }
2649
2650 /* Free all buffers in transmit ring */
2651 static void skge_tx_clean(struct net_device *dev)
2652 {
2653 struct skge_port *skge = netdev_priv(dev);
2654 struct skge_element *e;
2655
2656 netif_tx_lock_bh(dev);
2657 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2658 struct skge_tx_desc *td = e->desc;
2659 skge_tx_free(skge, e, td->control);
2660 td->control = 0;
2661 }
2662
2663 skge->tx_ring.to_clean = e;
2664 netif_wake_queue(dev);
2665 netif_tx_unlock_bh(dev);
2666 }
2667
2668 static void skge_tx_timeout(struct net_device *dev)
2669 {
2670 struct skge_port *skge = netdev_priv(dev);
2671
2672 if (netif_msg_timer(skge))
2673 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2674
2675 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2676 skge_tx_clean(dev);
2677 }
2678
2679 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2680 {
2681 int err;
2682
2683 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2684 return -EINVAL;
2685
2686 if (!netif_running(dev)) {
2687 dev->mtu = new_mtu;
2688 return 0;
2689 }
2690
2691 skge_down(dev);
2692
2693 dev->mtu = new_mtu;
2694
2695 err = skge_up(dev);
2696 if (err)
2697 dev_close(dev);
2698
2699 return err;
2700 }
2701
2702 static void genesis_set_multicast(struct net_device *dev)
2703 {
2704 struct skge_port *skge = netdev_priv(dev);
2705 struct skge_hw *hw = skge->hw;
2706 int port = skge->port;
2707 int i, count = dev->mc_count;
2708 struct dev_mc_list *list = dev->mc_list;
2709 u32 mode;
2710 u8 filter[8];
2711
2712 mode = xm_read32(hw, port, XM_MODE);
2713 mode |= XM_MD_ENA_HASH;
2714 if (dev->flags & IFF_PROMISC)
2715 mode |= XM_MD_ENA_PROM;
2716 else
2717 mode &= ~XM_MD_ENA_PROM;
2718
2719 if (dev->flags & IFF_ALLMULTI)
2720 memset(filter, 0xff, sizeof(filter));
2721 else {
2722 memset(filter, 0, sizeof(filter));
2723 for (i = 0; list && i < count; i++, list = list->next) {
2724 u32 crc, bit;
2725 crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
2726 bit = ~crc & 0x3f;
2727 filter[bit/8] |= 1 << (bit%8);
2728 }
2729 }
2730
2731 xm_write32(hw, port, XM_MODE, mode);
2732 xm_outhash(hw, port, XM_HSM, filter);
2733 }
2734
2735 static void yukon_set_multicast(struct net_device *dev)
2736 {
2737 struct skge_port *skge = netdev_priv(dev);
2738 struct skge_hw *hw = skge->hw;
2739 int port = skge->port;
2740 struct dev_mc_list *list = dev->mc_list;
2741 u16 reg;
2742 u8 filter[8];
2743
2744 memset(filter, 0, sizeof(filter));
2745
2746 reg = gma_read16(hw, port, GM_RX_CTRL);
2747 reg |= GM_RXCR_UCF_ENA;
2748
2749 if (dev->flags & IFF_PROMISC) /* promiscuous */
2750 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2751 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2752 memset(filter, 0xff, sizeof(filter));
2753 else if (dev->mc_count == 0) /* no multicast */
2754 reg &= ~GM_RXCR_MCF_ENA;
2755 else {
2756 int i;
2757 reg |= GM_RXCR_MCF_ENA;
2758
2759 for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2760 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2761 filter[bit/8] |= 1 << (bit%8);
2762 }
2763 }
2764
2765
2766 gma_write16(hw, port, GM_MC_ADDR_H1,
2767 (u16)filter[0] | ((u16)filter[1] << 8));
2768 gma_write16(hw, port, GM_MC_ADDR_H2,
2769 (u16)filter[2] | ((u16)filter[3] << 8));
2770 gma_write16(hw, port, GM_MC_ADDR_H3,
2771 (u16)filter[4] | ((u16)filter[5] << 8));
2772 gma_write16(hw, port, GM_MC_ADDR_H4,
2773 (u16)filter[6] | ((u16)filter[7] << 8));
2774
2775 gma_write16(hw, port, GM_RX_CTRL, reg);
2776 }
2777
2778 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2779 {
2780 if (hw->chip_id == CHIP_ID_GENESIS)
2781 return status >> XMR_FS_LEN_SHIFT;
2782 else
2783 return status >> GMR_FS_LEN_SHIFT;
2784 }
2785
2786 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2787 {
2788 if (hw->chip_id == CHIP_ID_GENESIS)
2789 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2790 else
2791 return (status & GMR_FS_ANY_ERR) ||
2792 (status & GMR_FS_RX_OK) == 0;
2793 }
2794
2795
2796 /* Get receive buffer from descriptor.
2797 * Handles copy of small buffers and reallocation failures
2798 */
2799 static struct sk_buff *skge_rx_get(struct net_device *dev,
2800 struct skge_element *e,
2801 u32 control, u32 status, u16 csum)
2802 {
2803 struct skge_port *skge = netdev_priv(dev);
2804 struct sk_buff *skb;
2805 u16 len = control & BMU_BBC;
2806
2807 if (unlikely(netif_msg_rx_status(skge)))
2808 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2809 dev->name, e - skge->rx_ring.start,
2810 status, len);
2811
2812 if (len > skge->rx_buf_size)
2813 goto error;
2814
2815 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2816 goto error;
2817
2818 if (bad_phy_status(skge->hw, status))
2819 goto error;
2820
2821 if (phy_length(skge->hw, status) != len)
2822 goto error;
2823
2824 if (len < RX_COPY_THRESHOLD) {
2825 skb = netdev_alloc_skb(dev, len + 2);
2826 if (!skb)
2827 goto resubmit;
2828
2829 skb_reserve(skb, 2);
2830 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2831 pci_unmap_addr(e, mapaddr),
2832 len, PCI_DMA_FROMDEVICE);
2833 memcpy(skb->data, e->skb->data, len);
2834 pci_dma_sync_single_for_device(skge->hw->pdev,
2835 pci_unmap_addr(e, mapaddr),
2836 len, PCI_DMA_FROMDEVICE);
2837 skge_rx_reuse(e, skge->rx_buf_size);
2838 } else {
2839 struct sk_buff *nskb;
2840 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
2841 if (!nskb)
2842 goto resubmit;
2843
2844 skb_reserve(nskb, NET_IP_ALIGN);
2845 pci_unmap_single(skge->hw->pdev,
2846 pci_unmap_addr(e, mapaddr),
2847 pci_unmap_len(e, maplen),
2848 PCI_DMA_FROMDEVICE);
2849 skb = e->skb;
2850 prefetch(skb->data);
2851 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2852 }
2853
2854 skb_put(skb, len);
2855 if (skge->rx_csum) {
2856 skb->csum = csum;
2857 skb->ip_summed = CHECKSUM_COMPLETE;
2858 }
2859
2860 skb->protocol = eth_type_trans(skb, dev);
2861
2862 return skb;
2863 error:
2864
2865 if (netif_msg_rx_err(skge))
2866 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2867 dev->name, e - skge->rx_ring.start,
2868 control, status);
2869
2870 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2871 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2872 skge->net_stats.rx_length_errors++;
2873 if (status & XMR_FS_FRA_ERR)
2874 skge->net_stats.rx_frame_errors++;
2875 if (status & XMR_FS_FCS_ERR)
2876 skge->net_stats.rx_crc_errors++;
2877 } else {
2878 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2879 skge->net_stats.rx_length_errors++;
2880 if (status & GMR_FS_FRAGMENT)
2881 skge->net_stats.rx_frame_errors++;
2882 if (status & GMR_FS_CRC_ERR)
2883 skge->net_stats.rx_crc_errors++;
2884 }
2885
2886 resubmit:
2887 skge_rx_reuse(e, skge->rx_buf_size);
2888 return NULL;
2889 }
2890
2891 /* Free all buffers in Tx ring which are no longer owned by device */
2892 static void skge_tx_done(struct net_device *dev)
2893 {
2894 struct skge_port *skge = netdev_priv(dev);
2895 struct skge_ring *ring = &skge->tx_ring;
2896 struct skge_element *e;
2897
2898 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2899
2900 netif_tx_lock(dev);
2901 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2902 struct skge_tx_desc *td = e->desc;
2903
2904 if (td->control & BMU_OWN)
2905 break;
2906
2907 skge_tx_free(skge, e, td->control);
2908 }
2909 skge->tx_ring.to_clean = e;
2910
2911 if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
2912 netif_wake_queue(dev);
2913
2914 netif_tx_unlock(dev);
2915 }
2916
2917 static int skge_poll(struct net_device *dev, int *budget)
2918 {
2919 struct skge_port *skge = netdev_priv(dev);
2920 struct skge_hw *hw = skge->hw;
2921 struct skge_ring *ring = &skge->rx_ring;
2922 struct skge_element *e;
2923 int to_do = min(dev->quota, *budget);
2924 int work_done = 0;
2925
2926 skge_tx_done(dev);
2927
2928 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2929
2930 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2931 struct skge_rx_desc *rd = e->desc;
2932 struct sk_buff *skb;
2933 u32 control;
2934
2935 rmb();
2936 control = rd->control;
2937 if (control & BMU_OWN)
2938 break;
2939
2940 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
2941 if (likely(skb)) {
2942 dev->last_rx = jiffies;
2943 netif_receive_skb(skb);
2944
2945 ++work_done;
2946 }
2947 }
2948 ring->to_clean = e;
2949
2950 /* restart receiver */
2951 wmb();
2952 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2953
2954 *budget -= work_done;
2955 dev->quota -= work_done;
2956
2957 if (work_done >= to_do)
2958 return 1; /* not done */
2959
2960 spin_lock_irq(&hw->hw_lock);
2961 __netif_rx_complete(dev);
2962 hw->intr_mask |= irqmask[skge->port];
2963 skge_write32(hw, B0_IMSK, hw->intr_mask);
2964 skge_read32(hw, B0_IMSK);
2965 spin_unlock_irq(&hw->hw_lock);
2966
2967 return 0;
2968 }
2969
2970 /* Parity errors seem to happen when Genesis is connected to a switch
2971 * with no other ports present. Heartbeat error??
2972 */
2973 static void skge_mac_parity(struct skge_hw *hw, int port)
2974 {
2975 struct net_device *dev = hw->dev[port];
2976
2977 if (dev) {
2978 struct skge_port *skge = netdev_priv(dev);
2979 ++skge->net_stats.tx_heartbeat_errors;
2980 }
2981
2982 if (hw->chip_id == CHIP_ID_GENESIS)
2983 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2984 MFF_CLR_PERR);
2985 else
2986 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2987 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2988 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2989 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2990 }
2991
2992 static void skge_mac_intr(struct skge_hw *hw, int port)
2993 {
2994 if (hw->chip_id == CHIP_ID_GENESIS)
2995 genesis_mac_intr(hw, port);
2996 else
2997 yukon_mac_intr(hw, port);
2998 }
2999
3000 /* Handle device specific framing and timeout interrupts */
3001 static void skge_error_irq(struct skge_hw *hw)
3002 {
3003 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3004
3005 if (hw->chip_id == CHIP_ID_GENESIS) {
3006 /* clear xmac errors */
3007 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3008 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3009 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3010 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3011 } else {
3012 /* Timestamp (unused) overflow */
3013 if (hwstatus & IS_IRQ_TIST_OV)
3014 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3015 }
3016
3017 if (hwstatus & IS_RAM_RD_PAR) {
3018 printk(KERN_ERR PFX "Ram read data parity error\n");
3019 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3020 }
3021
3022 if (hwstatus & IS_RAM_WR_PAR) {
3023 printk(KERN_ERR PFX "Ram write data parity error\n");
3024 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3025 }
3026
3027 if (hwstatus & IS_M1_PAR_ERR)
3028 skge_mac_parity(hw, 0);
3029
3030 if (hwstatus & IS_M2_PAR_ERR)
3031 skge_mac_parity(hw, 1);
3032
3033 if (hwstatus & IS_R1_PAR_ERR) {
3034 printk(KERN_ERR PFX "%s: receive queue parity error\n",
3035 hw->dev[0]->name);
3036 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3037 }
3038
3039 if (hwstatus & IS_R2_PAR_ERR) {
3040 printk(KERN_ERR PFX "%s: receive queue parity error\n",
3041 hw->dev[1]->name);
3042 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3043 }
3044
3045 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3046 u16 pci_status, pci_cmd;
3047
3048 pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
3049 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3050
3051 printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
3052 pci_name(hw->pdev), pci_cmd, pci_status);
3053
3054 /* Write the error bits back to clear them. */
3055 pci_status &= PCI_STATUS_ERROR_BITS;
3056 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3057 pci_write_config_word(hw->pdev, PCI_COMMAND,
3058 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3059 pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
3060 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3061
3062 /* if error still set then just ignore it */
3063 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3064 if (hwstatus & IS_IRQ_STAT) {
3065 printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
3066 hw->intr_mask &= ~IS_HW_ERR;
3067 }
3068 }
3069 }
3070
3071 /*
3072 * Interrupt from PHY are handled in work queue
3073 * because accessing phy registers requires spin wait which might
3074 * cause excess interrupt latency.
3075 */
3076 static void skge_extirq(void *arg)
3077 {
3078 struct skge_hw *hw = arg;
3079 int port;
3080
3081 mutex_lock(&hw->phy_mutex);
3082 for (port = 0; port < hw->ports; port++) {
3083 struct net_device *dev = hw->dev[port];
3084 struct skge_port *skge = netdev_priv(dev);
3085
3086 if (netif_running(dev)) {
3087 if (hw->chip_id != CHIP_ID_GENESIS)
3088 yukon_phy_intr(skge);
3089 else if (hw->phy_type == SK_PHY_BCOM)
3090 bcom_phy_intr(skge);
3091 }
3092 }
3093 mutex_unlock(&hw->phy_mutex);
3094
3095 spin_lock_irq(&hw->hw_lock);
3096 hw->intr_mask |= IS_EXT_REG;
3097 skge_write32(hw, B0_IMSK, hw->intr_mask);
3098 skge_read32(hw, B0_IMSK);
3099 spin_unlock_irq(&hw->hw_lock);
3100 }
3101
3102 static irqreturn_t skge_intr(int irq, void *dev_id)
3103 {
3104 struct skge_hw *hw = dev_id;
3105 u32 status;
3106 int handled = 0;
3107
3108 spin_lock(&hw->hw_lock);
3109 /* Reading this register masks IRQ */
3110 status = skge_read32(hw, B0_SP_ISRC);
3111 if (status == 0 || status == ~0)
3112 goto out;
3113
3114 handled = 1;
3115 status &= hw->intr_mask;
3116 if (status & IS_EXT_REG) {
3117 hw->intr_mask &= ~IS_EXT_REG;
3118 schedule_work(&hw->phy_work);
3119 }
3120
3121 if (status & (IS_XA1_F|IS_R1_F)) {
3122 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3123 netif_rx_schedule(hw->dev[0]);
3124 }
3125
3126 if (status & IS_PA_TO_TX1)
3127 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3128
3129 if (status & IS_PA_TO_RX1) {
3130 struct skge_port *skge = netdev_priv(hw->dev[0]);
3131
3132 ++skge->net_stats.rx_over_errors;
3133 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3134 }
3135
3136
3137 if (status & IS_MAC1)
3138 skge_mac_intr(hw, 0);
3139
3140 if (hw->dev[1]) {
3141 if (status & (IS_XA2_F|IS_R2_F)) {
3142 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3143 netif_rx_schedule(hw->dev[1]);
3144 }
3145
3146 if (status & IS_PA_TO_RX2) {
3147 struct skge_port *skge = netdev_priv(hw->dev[1]);
3148 ++skge->net_stats.rx_over_errors;
3149 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3150 }
3151
3152 if (status & IS_PA_TO_TX2)
3153 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3154
3155 if (status & IS_MAC2)
3156 skge_mac_intr(hw, 1);
3157 }
3158
3159 if (status & IS_HW_ERR)
3160 skge_error_irq(hw);
3161
3162 skge_write32(hw, B0_IMSK, hw->intr_mask);
3163 skge_read32(hw, B0_IMSK);
3164 out:
3165 spin_unlock(&hw->hw_lock);
3166
3167 return IRQ_RETVAL(handled);
3168 }
3169
3170 #ifdef CONFIG_NET_POLL_CONTROLLER
3171 static void skge_netpoll(struct net_device *dev)
3172 {
3173 struct skge_port *skge = netdev_priv(dev);
3174
3175 disable_irq(dev->irq);
3176 skge_intr(dev->irq, skge->hw);
3177 enable_irq(dev->irq);
3178 }
3179 #endif
3180
3181 static int skge_set_mac_address(struct net_device *dev, void *p)
3182 {
3183 struct skge_port *skge = netdev_priv(dev);
3184 struct skge_hw *hw = skge->hw;
3185 unsigned port = skge->port;
3186 const struct sockaddr *addr = p;
3187
3188 if (!is_valid_ether_addr(addr->sa_data))
3189 return -EADDRNOTAVAIL;
3190
3191 mutex_lock(&hw->phy_mutex);
3192 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3193 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
3194 dev->dev_addr, ETH_ALEN);
3195 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
3196 dev->dev_addr, ETH_ALEN);
3197
3198 if (hw->chip_id == CHIP_ID_GENESIS)
3199 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3200 else {
3201 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3202 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3203 }
3204 mutex_unlock(&hw->phy_mutex);
3205
3206 return 0;
3207 }
3208
3209 static const struct {
3210 u8 id;
3211 const char *name;
3212 } skge_chips[] = {
3213 { CHIP_ID_GENESIS, "Genesis" },
3214 { CHIP_ID_YUKON, "Yukon" },
3215 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3216 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3217 };
3218
3219 static const char *skge_board_name(const struct skge_hw *hw)
3220 {
3221 int i;
3222 static char buf[16];
3223
3224 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3225 if (skge_chips[i].id == hw->chip_id)
3226 return skge_chips[i].name;
3227
3228 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3229 return buf;
3230 }
3231
3232
3233 /*
3234 * Setup the board data structure, but don't bring up
3235 * the port(s)
3236 */
3237 static int skge_reset(struct skge_hw *hw)
3238 {
3239 u32 reg;
3240 u16 ctst, pci_status;
3241 u8 t8, mac_cfg, pmd_type;
3242 int i;
3243
3244 ctst = skge_read16(hw, B0_CTST);
3245
3246 /* do a SW reset */
3247 skge_write8(hw, B0_CTST, CS_RST_SET);
3248 skge_write8(hw, B0_CTST, CS_RST_CLR);
3249
3250 /* clear PCI errors, if any */
3251 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3252 skge_write8(hw, B2_TST_CTRL2, 0);
3253
3254 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3255 pci_write_config_word(hw->pdev, PCI_STATUS,
3256 pci_status | PCI_STATUS_ERROR_BITS);
3257 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3258 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3259
3260 /* restore CLK_RUN bits (for Yukon-Lite) */
3261 skge_write16(hw, B0_CTST,
3262 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3263
3264 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3265 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3266 pmd_type = skge_read8(hw, B2_PMD_TYP);
3267 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3268
3269 switch (hw->chip_id) {
3270 case CHIP_ID_GENESIS:
3271 switch (hw->phy_type) {
3272 case SK_PHY_XMAC:
3273 hw->phy_addr = PHY_ADDR_XMAC;
3274 break;
3275 case SK_PHY_BCOM:
3276 hw->phy_addr = PHY_ADDR_BCOM;
3277 break;
3278 default:
3279 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3280 pci_name(hw->pdev), hw->phy_type);
3281 return -EOPNOTSUPP;
3282 }
3283 break;
3284
3285 case CHIP_ID_YUKON:
3286 case CHIP_ID_YUKON_LITE:
3287 case CHIP_ID_YUKON_LP:
3288 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3289 hw->copper = 1;
3290
3291 hw->phy_addr = PHY_ADDR_MARV;
3292 break;
3293
3294 default:
3295 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
3296 pci_name(hw->pdev), hw->chip_id);
3297 return -EOPNOTSUPP;
3298 }
3299
3300 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3301 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3302 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3303
3304 /* read the adapters RAM size */
3305 t8 = skge_read8(hw, B2_E_0);
3306 if (hw->chip_id == CHIP_ID_GENESIS) {
3307 if (t8 == 3) {
3308 /* special case: 4 x 64k x 36, offset = 0x80000 */
3309 hw->ram_size = 0x100000;
3310 hw->ram_offset = 0x80000;
3311 } else
3312 hw->ram_size = t8 * 512;
3313 }
3314 else if (t8 == 0)
3315 hw->ram_size = 0x20000;
3316 else
3317 hw->ram_size = t8 * 4096;
3318
3319 hw->intr_mask = IS_HW_ERR | IS_PORT_1;
3320 if (hw->ports > 1)
3321 hw->intr_mask |= IS_PORT_2;
3322
3323 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3324 hw->intr_mask |= IS_EXT_REG;
3325
3326 if (hw->chip_id == CHIP_ID_GENESIS)
3327 genesis_init(hw);
3328 else {
3329 /* switch power to VCC (WA for VAUX problem) */
3330 skge_write8(hw, B0_POWER_CTRL,
3331 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3332
3333 /* avoid boards with stuck Hardware error bits */
3334 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3335 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3336 printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
3337 hw->intr_mask &= ~IS_HW_ERR;
3338 }
3339
3340 /* Clear PHY COMA */
3341 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3342 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3343 reg &= ~PCI_PHY_COMA;
3344 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3345 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3346
3347
3348 for (i = 0; i < hw->ports; i++) {
3349 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3350 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3351 }
3352 }
3353
3354 /* turn off hardware timer (unused) */
3355 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3356 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3357 skge_write8(hw, B0_LED, LED_STAT_ON);
3358
3359 /* enable the Tx Arbiters */
3360 for (i = 0; i < hw->ports; i++)
3361 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3362
3363 /* Initialize ram interface */
3364 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3365
3366 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3367 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3368 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3369 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3370 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3371 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3372 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3373 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3374 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3375 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3376 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3377 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3378
3379 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3380
3381 /* Set interrupt moderation for Transmit only
3382 * Receive interrupts avoided by NAPI
3383 */
3384 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3385 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3386 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3387
3388 skge_write32(hw, B0_IMSK, hw->intr_mask);
3389
3390 mutex_lock(&hw->phy_mutex);
3391 for (i = 0; i < hw->ports; i++) {
3392 if (hw->chip_id == CHIP_ID_GENESIS)
3393 genesis_reset(hw, i);
3394 else
3395 yukon_reset(hw, i);
3396 }
3397 mutex_unlock(&hw->phy_mutex);
3398
3399 return 0;
3400 }
3401
3402 /* Initialize network device */
3403 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3404 int highmem)
3405 {
3406 struct skge_port *skge;
3407 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3408
3409 if (!dev) {
3410 printk(KERN_ERR "skge etherdev alloc failed");
3411 return NULL;
3412 }
3413
3414 SET_MODULE_OWNER(dev);
3415 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3416 dev->open = skge_up;
3417 dev->stop = skge_down;
3418 dev->do_ioctl = skge_ioctl;
3419 dev->hard_start_xmit = skge_xmit_frame;
3420 dev->get_stats = skge_get_stats;
3421 if (hw->chip_id == CHIP_ID_GENESIS)
3422 dev->set_multicast_list = genesis_set_multicast;
3423 else
3424 dev->set_multicast_list = yukon_set_multicast;
3425
3426 dev->set_mac_address = skge_set_mac_address;
3427 dev->change_mtu = skge_change_mtu;
3428 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3429 dev->tx_timeout = skge_tx_timeout;
3430 dev->watchdog_timeo = TX_WATCHDOG;
3431 dev->poll = skge_poll;
3432 dev->weight = NAPI_WEIGHT;
3433 #ifdef CONFIG_NET_POLL_CONTROLLER
3434 dev->poll_controller = skge_netpoll;
3435 #endif
3436 dev->irq = hw->pdev->irq;
3437
3438 if (highmem)
3439 dev->features |= NETIF_F_HIGHDMA;
3440
3441 skge = netdev_priv(dev);
3442 skge->netdev = dev;
3443 skge->hw = hw;
3444 skge->msg_enable = netif_msg_init(debug, default_msg);
3445 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3446 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3447
3448 /* Auto speed and flow control */
3449 skge->autoneg = AUTONEG_ENABLE;
3450 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3451 skge->duplex = -1;
3452 skge->speed = -1;
3453 skge->advertising = skge_supported_modes(hw);
3454
3455 hw->dev[port] = dev;
3456
3457 skge->port = port;
3458
3459 /* Only used for Genesis XMAC */
3460 INIT_WORK(&skge->link_thread, xm_link_timer, dev);
3461
3462 if (hw->chip_id != CHIP_ID_GENESIS) {
3463 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3464 skge->rx_csum = 1;
3465 }
3466
3467 /* read the mac address */
3468 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3469 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3470
3471 /* device is off until link detection */
3472 netif_carrier_off(dev);
3473 netif_stop_queue(dev);
3474
3475 return dev;
3476 }
3477
3478 static void __devinit skge_show_addr(struct net_device *dev)
3479 {
3480 const struct skge_port *skge = netdev_priv(dev);
3481
3482 if (netif_msg_probe(skge))
3483 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3484 dev->name,
3485 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3486 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3487 }
3488
3489 static int __devinit skge_probe(struct pci_dev *pdev,
3490 const struct pci_device_id *ent)
3491 {
3492 struct net_device *dev, *dev1;
3493 struct skge_hw *hw;
3494 int err, using_dac = 0;
3495
3496 err = pci_enable_device(pdev);
3497 if (err) {
3498 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3499 pci_name(pdev));
3500 goto err_out;
3501 }
3502
3503 err = pci_request_regions(pdev, DRV_NAME);
3504 if (err) {
3505 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3506 pci_name(pdev));
3507 goto err_out_disable_pdev;
3508 }
3509
3510 pci_set_master(pdev);
3511
3512 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3513 using_dac = 1;
3514 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3515 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3516 using_dac = 0;
3517 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3518 }
3519
3520 if (err) {
3521 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3522 pci_name(pdev));
3523 goto err_out_free_regions;
3524 }
3525
3526 #ifdef __BIG_ENDIAN
3527 /* byte swap descriptors in hardware */
3528 {
3529 u32 reg;
3530
3531 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3532 reg |= PCI_REV_DESC;
3533 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3534 }
3535 #endif
3536
3537 err = -ENOMEM;
3538 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3539 if (!hw) {
3540 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3541 pci_name(pdev));
3542 goto err_out_free_regions;
3543 }
3544
3545 hw->pdev = pdev;
3546 mutex_init(&hw->phy_mutex);
3547 INIT_WORK(&hw->phy_work, skge_extirq, hw);
3548 spin_lock_init(&hw->hw_lock);
3549
3550 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3551 if (!hw->regs) {
3552 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3553 pci_name(pdev));
3554 goto err_out_free_hw;
3555 }
3556
3557 err = skge_reset(hw);
3558 if (err)
3559 goto err_out_iounmap;
3560
3561 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3562 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3563 skge_board_name(hw), hw->chip_rev);
3564
3565 dev = skge_devinit(hw, 0, using_dac);
3566 if (!dev)
3567 goto err_out_led_off;
3568
3569 if (!is_valid_ether_addr(dev->dev_addr)) {
3570 printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
3571 pci_name(pdev));
3572 err = -EIO;
3573 goto err_out_free_netdev;
3574 }
3575
3576 err = register_netdev(dev);
3577 if (err) {
3578 printk(KERN_ERR PFX "%s: cannot register net device\n",
3579 pci_name(pdev));
3580 goto err_out_free_netdev;
3581 }
3582
3583 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3584 if (err) {
3585 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3586 dev->name, pdev->irq);
3587 goto err_out_unregister;
3588 }
3589 skge_show_addr(dev);
3590
3591 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3592 if (register_netdev(dev1) == 0)
3593 skge_show_addr(dev1);
3594 else {
3595 /* Failure to register second port need not be fatal */
3596 printk(KERN_WARNING PFX "register of second port failed\n");
3597 hw->dev[1] = NULL;
3598 free_netdev(dev1);
3599 }
3600 }
3601 pci_set_drvdata(pdev, hw);
3602
3603 return 0;
3604
3605 err_out_unregister:
3606 unregister_netdev(dev);
3607 err_out_free_netdev:
3608 free_netdev(dev);
3609 err_out_led_off:
3610 skge_write16(hw, B0_LED, LED_STAT_OFF);
3611 err_out_iounmap:
3612 iounmap(hw->regs);
3613 err_out_free_hw:
3614 kfree(hw);
3615 err_out_free_regions:
3616 pci_release_regions(pdev);
3617 err_out_disable_pdev:
3618 pci_disable_device(pdev);
3619 pci_set_drvdata(pdev, NULL);
3620 err_out:
3621 return err;
3622 }
3623
3624 static void __devexit skge_remove(struct pci_dev *pdev)
3625 {
3626 struct skge_hw *hw = pci_get_drvdata(pdev);
3627 struct net_device *dev0, *dev1;
3628
3629 if (!hw)
3630 return;
3631
3632 if ((dev1 = hw->dev[1]))
3633 unregister_netdev(dev1);
3634 dev0 = hw->dev[0];
3635 unregister_netdev(dev0);
3636
3637 spin_lock_irq(&hw->hw_lock);
3638 hw->intr_mask = 0;
3639 skge_write32(hw, B0_IMSK, 0);
3640 skge_read32(hw, B0_IMSK);
3641 spin_unlock_irq(&hw->hw_lock);
3642
3643 skge_write16(hw, B0_LED, LED_STAT_OFF);
3644 skge_write8(hw, B0_CTST, CS_RST_SET);
3645
3646 flush_scheduled_work();
3647
3648 free_irq(pdev->irq, hw);
3649 pci_release_regions(pdev);
3650 pci_disable_device(pdev);
3651 if (dev1)
3652 free_netdev(dev1);
3653 free_netdev(dev0);
3654
3655 iounmap(hw->regs);
3656 kfree(hw);
3657 pci_set_drvdata(pdev, NULL);
3658 }
3659
3660 #ifdef CONFIG_PM
3661 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3662 {
3663 struct skge_hw *hw = pci_get_drvdata(pdev);
3664 int i, wol = 0;
3665
3666 pci_save_state(pdev);
3667 for (i = 0; i < hw->ports; i++) {
3668 struct net_device *dev = hw->dev[i];
3669
3670 if (netif_running(dev)) {
3671 struct skge_port *skge = netdev_priv(dev);
3672
3673 netif_carrier_off(dev);
3674 if (skge->wol)
3675 netif_stop_queue(dev);
3676 else
3677 skge_down(dev);
3678 wol |= skge->wol;
3679 }
3680 netif_device_detach(dev);
3681 }
3682
3683 skge_write32(hw, B0_IMSK, 0);
3684 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3685 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3686
3687 return 0;
3688 }
3689
3690 static int skge_resume(struct pci_dev *pdev)
3691 {
3692 struct skge_hw *hw = pci_get_drvdata(pdev);
3693 int i, err;
3694
3695 pci_set_power_state(pdev, PCI_D0);
3696 pci_restore_state(pdev);
3697 pci_enable_wake(pdev, PCI_D0, 0);
3698
3699 err = skge_reset(hw);
3700 if (err)
3701 goto out;
3702
3703 for (i = 0; i < hw->ports; i++) {
3704 struct net_device *dev = hw->dev[i];
3705
3706 netif_device_attach(dev);
3707 if (netif_running(dev)) {
3708 err = skge_up(dev);
3709
3710 if (err) {
3711 printk(KERN_ERR PFX "%s: could not up: %d\n",
3712 dev->name, err);
3713 dev_close(dev);
3714 goto out;
3715 }
3716 }
3717 }
3718 out:
3719 return err;
3720 }
3721 #endif
3722
3723 static struct pci_driver skge_driver = {
3724 .name = DRV_NAME,
3725 .id_table = skge_id_table,
3726 .probe = skge_probe,
3727 .remove = __devexit_p(skge_remove),
3728 #ifdef CONFIG_PM
3729 .suspend = skge_suspend,
3730 .resume = skge_resume,
3731 #endif
3732 };
3733
3734 static int __init skge_init_module(void)
3735 {
3736 return pci_register_driver(&skge_driver);
3737 }
3738
3739 static void __exit skge_cleanup_module(void)
3740 {
3741 pci_unregister_driver(&skge_driver);
3742 }
3743
3744 module_init(skge_init_module);
3745 module_exit(skge_cleanup_module);
This page took 0.10546 seconds and 6 git commands to generate.