Merge branch 'master'
[deliverable/linux.git] / drivers / net / smc91x.c
1 /*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4 *
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 *
25 * Arguments:
26 * io = for the base address
27 * irq = for the IRQ
28 * nowait = 0 for normal wait states, 1 eliminates additional wait states
29 *
30 * original author:
31 * Erik Stahlman <erik@vt.edu>
32 *
33 * hardware multicast code:
34 * Peter Cammaert <pc@denkart.be>
35 *
36 * contributors:
37 * Daris A Nevil <dnevil@snmc.com>
38 * Nicolas Pitre <nico@cam.org>
39 * Russell King <rmk@arm.linux.org.uk>
40 *
41 * History:
42 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
43 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
44 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
45 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
46 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
47 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
48 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
49 * more bus abstraction, big cleanup, etc.
50 * 29/09/03 Russell King - add driver model support
51 * - ethtool support
52 * - convert to use generic MII interface
53 * - add link up/down notification
54 * - don't try to handle full negotiation in
55 * smc_phy_configure
56 * - clean up (and fix stack overrun) in PHY
57 * MII read/write functions
58 * 22/09/04 Nicolas Pitre big update (see commit log for details)
59 */
60 static const char version[] =
61 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@cam.org>\n";
62
63 /* Debugging level */
64 #ifndef SMC_DEBUG
65 #define SMC_DEBUG 0
66 #endif
67
68
69 #include <linux/config.h>
70 #include <linux/init.h>
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/interrupt.h>
77 #include <linux/errno.h>
78 #include <linux/ioport.h>
79 #include <linux/crc32.h>
80 #include <linux/platform_device.h>
81 #include <linux/spinlock.h>
82 #include <linux/ethtool.h>
83 #include <linux/mii.h>
84 #include <linux/workqueue.h>
85
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89
90 #include <asm/io.h>
91 #include <asm/irq.h>
92
93 #include "smc91x.h"
94
95 #ifdef CONFIG_ISA
96 /*
97 * the LAN91C111 can be at any of the following port addresses. To change,
98 * for a slightly different card, you can add it to the array. Keep in
99 * mind that the array must end in zero.
100 */
101 static unsigned int smc_portlist[] __initdata = {
102 0x200, 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x2E0,
103 0x300, 0x320, 0x340, 0x360, 0x380, 0x3A0, 0x3C0, 0x3E0, 0
104 };
105
106 #ifndef SMC_IOADDR
107 # define SMC_IOADDR -1
108 #endif
109 static unsigned long io = SMC_IOADDR;
110 module_param(io, ulong, 0400);
111 MODULE_PARM_DESC(io, "I/O base address");
112
113 #ifndef SMC_IRQ
114 # define SMC_IRQ -1
115 #endif
116 static int irq = SMC_IRQ;
117 module_param(irq, int, 0400);
118 MODULE_PARM_DESC(irq, "IRQ number");
119
120 #endif /* CONFIG_ISA */
121
122 #ifndef SMC_NOWAIT
123 # define SMC_NOWAIT 0
124 #endif
125 static int nowait = SMC_NOWAIT;
126 module_param(nowait, int, 0400);
127 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
128
129 /*
130 * Transmit timeout, default 5 seconds.
131 */
132 static int watchdog = 1000;
133 module_param(watchdog, int, 0400);
134 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
135
136 MODULE_LICENSE("GPL");
137
138 /*
139 * The internal workings of the driver. If you are changing anything
140 * here with the SMC stuff, you should have the datasheet and know
141 * what you are doing.
142 */
143 #define CARDNAME "smc91x"
144
145 /*
146 * Use power-down feature of the chip
147 */
148 #define POWER_DOWN 1
149
150 /*
151 * Wait time for memory to be free. This probably shouldn't be
152 * tuned that much, as waiting for this means nothing else happens
153 * in the system
154 */
155 #define MEMORY_WAIT_TIME 16
156
157 /*
158 * The maximum number of processing loops allowed for each call to the
159 * IRQ handler.
160 */
161 #define MAX_IRQ_LOOPS 8
162
163 /*
164 * This selects whether TX packets are sent one by one to the SMC91x internal
165 * memory and throttled until transmission completes. This may prevent
166 * RX overruns a litle by keeping much of the memory free for RX packets
167 * but to the expense of reduced TX throughput and increased IRQ overhead.
168 * Note this is not a cure for a too slow data bus or too high IRQ latency.
169 */
170 #define THROTTLE_TX_PKTS 0
171
172 /*
173 * The MII clock high/low times. 2x this number gives the MII clock period
174 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
175 */
176 #define MII_DELAY 1
177
178 /* store this information for the driver.. */
179 struct smc_local {
180 /*
181 * If I have to wait until memory is available to send a
182 * packet, I will store the skbuff here, until I get the
183 * desired memory. Then, I'll send it out and free it.
184 */
185 struct sk_buff *pending_tx_skb;
186 struct tasklet_struct tx_task;
187
188 /*
189 * these are things that the kernel wants me to keep, so users
190 * can find out semi-useless statistics of how well the card is
191 * performing
192 */
193 struct net_device_stats stats;
194
195 /* version/revision of the SMC91x chip */
196 int version;
197
198 /* Contains the current active transmission mode */
199 int tcr_cur_mode;
200
201 /* Contains the current active receive mode */
202 int rcr_cur_mode;
203
204 /* Contains the current active receive/phy mode */
205 int rpc_cur_mode;
206 int ctl_rfduplx;
207 int ctl_rspeed;
208
209 u32 msg_enable;
210 u32 phy_type;
211 struct mii_if_info mii;
212
213 /* work queue */
214 struct work_struct phy_configure;
215 int work_pending;
216
217 spinlock_t lock;
218
219 #ifdef SMC_CAN_USE_DATACS
220 u32 __iomem *datacs;
221 #endif
222
223 #ifdef SMC_USE_PXA_DMA
224 /* DMA needs the physical address of the chip */
225 u_long physaddr;
226 #endif
227 void __iomem *base;
228 };
229
230 #if SMC_DEBUG > 0
231 #define DBG(n, args...) \
232 do { \
233 if (SMC_DEBUG >= (n)) \
234 printk(args); \
235 } while (0)
236
237 #define PRINTK(args...) printk(args)
238 #else
239 #define DBG(n, args...) do { } while(0)
240 #define PRINTK(args...) printk(KERN_DEBUG args)
241 #endif
242
243 #if SMC_DEBUG > 3
244 static void PRINT_PKT(u_char *buf, int length)
245 {
246 int i;
247 int remainder;
248 int lines;
249
250 lines = length / 16;
251 remainder = length % 16;
252
253 for (i = 0; i < lines ; i ++) {
254 int cur;
255 for (cur = 0; cur < 8; cur++) {
256 u_char a, b;
257 a = *buf++;
258 b = *buf++;
259 printk("%02x%02x ", a, b);
260 }
261 printk("\n");
262 }
263 for (i = 0; i < remainder/2 ; i++) {
264 u_char a, b;
265 a = *buf++;
266 b = *buf++;
267 printk("%02x%02x ", a, b);
268 }
269 printk("\n");
270 }
271 #else
272 #define PRINT_PKT(x...) do { } while(0)
273 #endif
274
275
276 /* this enables an interrupt in the interrupt mask register */
277 #define SMC_ENABLE_INT(x) do { \
278 unsigned char mask; \
279 spin_lock_irq(&lp->lock); \
280 mask = SMC_GET_INT_MASK(); \
281 mask |= (x); \
282 SMC_SET_INT_MASK(mask); \
283 spin_unlock_irq(&lp->lock); \
284 } while (0)
285
286 /* this disables an interrupt from the interrupt mask register */
287 #define SMC_DISABLE_INT(x) do { \
288 unsigned char mask; \
289 spin_lock_irq(&lp->lock); \
290 mask = SMC_GET_INT_MASK(); \
291 mask &= ~(x); \
292 SMC_SET_INT_MASK(mask); \
293 spin_unlock_irq(&lp->lock); \
294 } while (0)
295
296 /*
297 * Wait while MMU is busy. This is usually in the order of a few nanosecs
298 * if at all, but let's avoid deadlocking the system if the hardware
299 * decides to go south.
300 */
301 #define SMC_WAIT_MMU_BUSY() do { \
302 if (unlikely(SMC_GET_MMU_CMD() & MC_BUSY)) { \
303 unsigned long timeout = jiffies + 2; \
304 while (SMC_GET_MMU_CMD() & MC_BUSY) { \
305 if (time_after(jiffies, timeout)) { \
306 printk("%s: timeout %s line %d\n", \
307 dev->name, __FILE__, __LINE__); \
308 break; \
309 } \
310 cpu_relax(); \
311 } \
312 } \
313 } while (0)
314
315
316 /*
317 * this does a soft reset on the device
318 */
319 static void smc_reset(struct net_device *dev)
320 {
321 struct smc_local *lp = netdev_priv(dev);
322 void __iomem *ioaddr = lp->base;
323 unsigned int ctl, cfg;
324 struct sk_buff *pending_skb;
325
326 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
327
328 /* Disable all interrupts, block TX tasklet */
329 spin_lock(&lp->lock);
330 SMC_SELECT_BANK(2);
331 SMC_SET_INT_MASK(0);
332 pending_skb = lp->pending_tx_skb;
333 lp->pending_tx_skb = NULL;
334 spin_unlock(&lp->lock);
335
336 /* free any pending tx skb */
337 if (pending_skb) {
338 dev_kfree_skb(pending_skb);
339 lp->stats.tx_errors++;
340 lp->stats.tx_aborted_errors++;
341 }
342
343 /*
344 * This resets the registers mostly to defaults, but doesn't
345 * affect EEPROM. That seems unnecessary
346 */
347 SMC_SELECT_BANK(0);
348 SMC_SET_RCR(RCR_SOFTRST);
349
350 /*
351 * Setup the Configuration Register
352 * This is necessary because the CONFIG_REG is not affected
353 * by a soft reset
354 */
355 SMC_SELECT_BANK(1);
356
357 cfg = CONFIG_DEFAULT;
358
359 /*
360 * Setup for fast accesses if requested. If the card/system
361 * can't handle it then there will be no recovery except for
362 * a hard reset or power cycle
363 */
364 if (nowait)
365 cfg |= CONFIG_NO_WAIT;
366
367 /*
368 * Release from possible power-down state
369 * Configuration register is not affected by Soft Reset
370 */
371 cfg |= CONFIG_EPH_POWER_EN;
372
373 SMC_SET_CONFIG(cfg);
374
375 /* this should pause enough for the chip to be happy */
376 /*
377 * elaborate? What does the chip _need_? --jgarzik
378 *
379 * This seems to be undocumented, but something the original
380 * driver(s) have always done. Suspect undocumented timing
381 * info/determined empirically. --rmk
382 */
383 udelay(1);
384
385 /* Disable transmit and receive functionality */
386 SMC_SELECT_BANK(0);
387 SMC_SET_RCR(RCR_CLEAR);
388 SMC_SET_TCR(TCR_CLEAR);
389
390 SMC_SELECT_BANK(1);
391 ctl = SMC_GET_CTL() | CTL_LE_ENABLE;
392
393 /*
394 * Set the control register to automatically release successfully
395 * transmitted packets, to make the best use out of our limited
396 * memory
397 */
398 if(!THROTTLE_TX_PKTS)
399 ctl |= CTL_AUTO_RELEASE;
400 else
401 ctl &= ~CTL_AUTO_RELEASE;
402 SMC_SET_CTL(ctl);
403
404 /* Reset the MMU */
405 SMC_SELECT_BANK(2);
406 SMC_SET_MMU_CMD(MC_RESET);
407 SMC_WAIT_MMU_BUSY();
408 }
409
410 /*
411 * Enable Interrupts, Receive, and Transmit
412 */
413 static void smc_enable(struct net_device *dev)
414 {
415 struct smc_local *lp = netdev_priv(dev);
416 void __iomem *ioaddr = lp->base;
417 int mask;
418
419 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
420
421 /* see the header file for options in TCR/RCR DEFAULT */
422 SMC_SELECT_BANK(0);
423 SMC_SET_TCR(lp->tcr_cur_mode);
424 SMC_SET_RCR(lp->rcr_cur_mode);
425
426 SMC_SELECT_BANK(1);
427 SMC_SET_MAC_ADDR(dev->dev_addr);
428
429 /* now, enable interrupts */
430 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
431 if (lp->version >= (CHIP_91100 << 4))
432 mask |= IM_MDINT;
433 SMC_SELECT_BANK(2);
434 SMC_SET_INT_MASK(mask);
435
436 /*
437 * From this point the register bank must _NOT_ be switched away
438 * to something else than bank 2 without proper locking against
439 * races with any tasklet or interrupt handlers until smc_shutdown()
440 * or smc_reset() is called.
441 */
442 }
443
444 /*
445 * this puts the device in an inactive state
446 */
447 static void smc_shutdown(struct net_device *dev)
448 {
449 struct smc_local *lp = netdev_priv(dev);
450 void __iomem *ioaddr = lp->base;
451 struct sk_buff *pending_skb;
452
453 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
454
455 /* no more interrupts for me */
456 spin_lock(&lp->lock);
457 SMC_SELECT_BANK(2);
458 SMC_SET_INT_MASK(0);
459 pending_skb = lp->pending_tx_skb;
460 lp->pending_tx_skb = NULL;
461 spin_unlock(&lp->lock);
462 if (pending_skb)
463 dev_kfree_skb(pending_skb);
464
465 /* and tell the card to stay away from that nasty outside world */
466 SMC_SELECT_BANK(0);
467 SMC_SET_RCR(RCR_CLEAR);
468 SMC_SET_TCR(TCR_CLEAR);
469
470 #ifdef POWER_DOWN
471 /* finally, shut the chip down */
472 SMC_SELECT_BANK(1);
473 SMC_SET_CONFIG(SMC_GET_CONFIG() & ~CONFIG_EPH_POWER_EN);
474 #endif
475 }
476
477 /*
478 * This is the procedure to handle the receipt of a packet.
479 */
480 static inline void smc_rcv(struct net_device *dev)
481 {
482 struct smc_local *lp = netdev_priv(dev);
483 void __iomem *ioaddr = lp->base;
484 unsigned int packet_number, status, packet_len;
485
486 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
487
488 packet_number = SMC_GET_RXFIFO();
489 if (unlikely(packet_number & RXFIFO_REMPTY)) {
490 PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
491 return;
492 }
493
494 /* read from start of packet */
495 SMC_SET_PTR(PTR_READ | PTR_RCV | PTR_AUTOINC);
496
497 /* First two words are status and packet length */
498 SMC_GET_PKT_HDR(status, packet_len);
499 packet_len &= 0x07ff; /* mask off top bits */
500 DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
501 dev->name, packet_number, status,
502 packet_len, packet_len);
503
504 back:
505 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
506 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
507 /* accept VLAN packets */
508 status &= ~RS_TOOLONG;
509 goto back;
510 }
511 if (packet_len < 6) {
512 /* bloody hardware */
513 printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
514 dev->name, packet_len, status);
515 status |= RS_TOOSHORT;
516 }
517 SMC_WAIT_MMU_BUSY();
518 SMC_SET_MMU_CMD(MC_RELEASE);
519 lp->stats.rx_errors++;
520 if (status & RS_ALGNERR)
521 lp->stats.rx_frame_errors++;
522 if (status & (RS_TOOSHORT | RS_TOOLONG))
523 lp->stats.rx_length_errors++;
524 if (status & RS_BADCRC)
525 lp->stats.rx_crc_errors++;
526 } else {
527 struct sk_buff *skb;
528 unsigned char *data;
529 unsigned int data_len;
530
531 /* set multicast stats */
532 if (status & RS_MULTICAST)
533 lp->stats.multicast++;
534
535 /*
536 * Actual payload is packet_len - 6 (or 5 if odd byte).
537 * We want skb_reserve(2) and the final ctrl word
538 * (2 bytes, possibly containing the payload odd byte).
539 * Furthermore, we add 2 bytes to allow rounding up to
540 * multiple of 4 bytes on 32 bit buses.
541 * Hence packet_len - 6 + 2 + 2 + 2.
542 */
543 skb = dev_alloc_skb(packet_len);
544 if (unlikely(skb == NULL)) {
545 printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
546 dev->name);
547 SMC_WAIT_MMU_BUSY();
548 SMC_SET_MMU_CMD(MC_RELEASE);
549 lp->stats.rx_dropped++;
550 return;
551 }
552
553 /* Align IP header to 32 bits */
554 skb_reserve(skb, 2);
555
556 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
557 if (lp->version == 0x90)
558 status |= RS_ODDFRAME;
559
560 /*
561 * If odd length: packet_len - 5,
562 * otherwise packet_len - 6.
563 * With the trailing ctrl byte it's packet_len - 4.
564 */
565 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
566 data = skb_put(skb, data_len);
567 SMC_PULL_DATA(data, packet_len - 4);
568
569 SMC_WAIT_MMU_BUSY();
570 SMC_SET_MMU_CMD(MC_RELEASE);
571
572 PRINT_PKT(data, packet_len - 4);
573
574 dev->last_rx = jiffies;
575 skb->dev = dev;
576 skb->protocol = eth_type_trans(skb, dev);
577 netif_rx(skb);
578 lp->stats.rx_packets++;
579 lp->stats.rx_bytes += data_len;
580 }
581 }
582
583 #ifdef CONFIG_SMP
584 /*
585 * On SMP we have the following problem:
586 *
587 * A = smc_hardware_send_pkt()
588 * B = smc_hard_start_xmit()
589 * C = smc_interrupt()
590 *
591 * A and B can never be executed simultaneously. However, at least on UP,
592 * it is possible (and even desirable) for C to interrupt execution of
593 * A or B in order to have better RX reliability and avoid overruns.
594 * C, just like A and B, must have exclusive access to the chip and
595 * each of them must lock against any other concurrent access.
596 * Unfortunately this is not possible to have C suspend execution of A or
597 * B taking place on another CPU. On UP this is no an issue since A and B
598 * are run from softirq context and C from hard IRQ context, and there is
599 * no other CPU where concurrent access can happen.
600 * If ever there is a way to force at least B and C to always be executed
601 * on the same CPU then we could use read/write locks to protect against
602 * any other concurrent access and C would always interrupt B. But life
603 * isn't that easy in a SMP world...
604 */
605 #define smc_special_trylock(lock) \
606 ({ \
607 int __ret; \
608 local_irq_disable(); \
609 __ret = spin_trylock(lock); \
610 if (!__ret) \
611 local_irq_enable(); \
612 __ret; \
613 })
614 #define smc_special_lock(lock) spin_lock_irq(lock)
615 #define smc_special_unlock(lock) spin_unlock_irq(lock)
616 #else
617 #define smc_special_trylock(lock) (1)
618 #define smc_special_lock(lock) do { } while (0)
619 #define smc_special_unlock(lock) do { } while (0)
620 #endif
621
622 /*
623 * This is called to actually send a packet to the chip.
624 */
625 static void smc_hardware_send_pkt(unsigned long data)
626 {
627 struct net_device *dev = (struct net_device *)data;
628 struct smc_local *lp = netdev_priv(dev);
629 void __iomem *ioaddr = lp->base;
630 struct sk_buff *skb;
631 unsigned int packet_no, len;
632 unsigned char *buf;
633
634 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
635
636 if (!smc_special_trylock(&lp->lock)) {
637 netif_stop_queue(dev);
638 tasklet_schedule(&lp->tx_task);
639 return;
640 }
641
642 skb = lp->pending_tx_skb;
643 if (unlikely(!skb)) {
644 smc_special_unlock(&lp->lock);
645 return;
646 }
647 lp->pending_tx_skb = NULL;
648
649 packet_no = SMC_GET_AR();
650 if (unlikely(packet_no & AR_FAILED)) {
651 printk("%s: Memory allocation failed.\n", dev->name);
652 lp->stats.tx_errors++;
653 lp->stats.tx_fifo_errors++;
654 smc_special_unlock(&lp->lock);
655 goto done;
656 }
657
658 /* point to the beginning of the packet */
659 SMC_SET_PN(packet_no);
660 SMC_SET_PTR(PTR_AUTOINC);
661
662 buf = skb->data;
663 len = skb->len;
664 DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
665 dev->name, packet_no, len, len, buf);
666 PRINT_PKT(buf, len);
667
668 /*
669 * Send the packet length (+6 for status words, length, and ctl.
670 * The card will pad to 64 bytes with zeroes if packet is too small.
671 */
672 SMC_PUT_PKT_HDR(0, len + 6);
673
674 /* send the actual data */
675 SMC_PUSH_DATA(buf, len & ~1);
676
677 /* Send final ctl word with the last byte if there is one */
678 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG);
679
680 /*
681 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
682 * have the effect of having at most one packet queued for TX
683 * in the chip's memory at all time.
684 *
685 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
686 * when memory allocation (MC_ALLOC) does not succeed right away.
687 */
688 if (THROTTLE_TX_PKTS)
689 netif_stop_queue(dev);
690
691 /* queue the packet for TX */
692 SMC_SET_MMU_CMD(MC_ENQUEUE);
693 smc_special_unlock(&lp->lock);
694
695 dev->trans_start = jiffies;
696 lp->stats.tx_packets++;
697 lp->stats.tx_bytes += len;
698
699 SMC_ENABLE_INT(IM_TX_INT | IM_TX_EMPTY_INT);
700
701 done: if (!THROTTLE_TX_PKTS)
702 netif_wake_queue(dev);
703
704 dev_kfree_skb(skb);
705 }
706
707 /*
708 * Since I am not sure if I will have enough room in the chip's ram
709 * to store the packet, I call this routine which either sends it
710 * now, or set the card to generates an interrupt when ready
711 * for the packet.
712 */
713 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
714 {
715 struct smc_local *lp = netdev_priv(dev);
716 void __iomem *ioaddr = lp->base;
717 unsigned int numPages, poll_count, status;
718
719 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
720
721 BUG_ON(lp->pending_tx_skb != NULL);
722
723 /*
724 * The MMU wants the number of pages to be the number of 256 bytes
725 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
726 *
727 * The 91C111 ignores the size bits, but earlier models don't.
728 *
729 * Pkt size for allocating is data length +6 (for additional status
730 * words, length and ctl)
731 *
732 * If odd size then last byte is included in ctl word.
733 */
734 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
735 if (unlikely(numPages > 7)) {
736 printk("%s: Far too big packet error.\n", dev->name);
737 lp->stats.tx_errors++;
738 lp->stats.tx_dropped++;
739 dev_kfree_skb(skb);
740 return 0;
741 }
742
743 smc_special_lock(&lp->lock);
744
745 /* now, try to allocate the memory */
746 SMC_SET_MMU_CMD(MC_ALLOC | numPages);
747
748 /*
749 * Poll the chip for a short amount of time in case the
750 * allocation succeeds quickly.
751 */
752 poll_count = MEMORY_WAIT_TIME;
753 do {
754 status = SMC_GET_INT();
755 if (status & IM_ALLOC_INT) {
756 SMC_ACK_INT(IM_ALLOC_INT);
757 break;
758 }
759 } while (--poll_count);
760
761 smc_special_unlock(&lp->lock);
762
763 lp->pending_tx_skb = skb;
764 if (!poll_count) {
765 /* oh well, wait until the chip finds memory later */
766 netif_stop_queue(dev);
767 DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
768 SMC_ENABLE_INT(IM_ALLOC_INT);
769 } else {
770 /*
771 * Allocation succeeded: push packet to the chip's own memory
772 * immediately.
773 */
774 smc_hardware_send_pkt((unsigned long)dev);
775 }
776
777 return 0;
778 }
779
780 /*
781 * This handles a TX interrupt, which is only called when:
782 * - a TX error occurred, or
783 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
784 */
785 static void smc_tx(struct net_device *dev)
786 {
787 struct smc_local *lp = netdev_priv(dev);
788 void __iomem *ioaddr = lp->base;
789 unsigned int saved_packet, packet_no, tx_status, pkt_len;
790
791 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
792
793 /* If the TX FIFO is empty then nothing to do */
794 packet_no = SMC_GET_TXFIFO();
795 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
796 PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
797 return;
798 }
799
800 /* select packet to read from */
801 saved_packet = SMC_GET_PN();
802 SMC_SET_PN(packet_no);
803
804 /* read the first word (status word) from this packet */
805 SMC_SET_PTR(PTR_AUTOINC | PTR_READ);
806 SMC_GET_PKT_HDR(tx_status, pkt_len);
807 DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
808 dev->name, tx_status, packet_no);
809
810 if (!(tx_status & ES_TX_SUC))
811 lp->stats.tx_errors++;
812
813 if (tx_status & ES_LOSTCARR)
814 lp->stats.tx_carrier_errors++;
815
816 if (tx_status & (ES_LATCOL | ES_16COL)) {
817 PRINTK("%s: %s occurred on last xmit\n", dev->name,
818 (tx_status & ES_LATCOL) ?
819 "late collision" : "too many collisions");
820 lp->stats.tx_window_errors++;
821 if (!(lp->stats.tx_window_errors & 63) && net_ratelimit()) {
822 printk(KERN_INFO "%s: unexpectedly large number of "
823 "bad collisions. Please check duplex "
824 "setting.\n", dev->name);
825 }
826 }
827
828 /* kill the packet */
829 SMC_WAIT_MMU_BUSY();
830 SMC_SET_MMU_CMD(MC_FREEPKT);
831
832 /* Don't restore Packet Number Reg until busy bit is cleared */
833 SMC_WAIT_MMU_BUSY();
834 SMC_SET_PN(saved_packet);
835
836 /* re-enable transmit */
837 SMC_SELECT_BANK(0);
838 SMC_SET_TCR(lp->tcr_cur_mode);
839 SMC_SELECT_BANK(2);
840 }
841
842
843 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
844
845 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
846 {
847 struct smc_local *lp = netdev_priv(dev);
848 void __iomem *ioaddr = lp->base;
849 unsigned int mii_reg, mask;
850
851 mii_reg = SMC_GET_MII() & ~(MII_MCLK | MII_MDOE | MII_MDO);
852 mii_reg |= MII_MDOE;
853
854 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
855 if (val & mask)
856 mii_reg |= MII_MDO;
857 else
858 mii_reg &= ~MII_MDO;
859
860 SMC_SET_MII(mii_reg);
861 udelay(MII_DELAY);
862 SMC_SET_MII(mii_reg | MII_MCLK);
863 udelay(MII_DELAY);
864 }
865 }
866
867 static unsigned int smc_mii_in(struct net_device *dev, int bits)
868 {
869 struct smc_local *lp = netdev_priv(dev);
870 void __iomem *ioaddr = lp->base;
871 unsigned int mii_reg, mask, val;
872
873 mii_reg = SMC_GET_MII() & ~(MII_MCLK | MII_MDOE | MII_MDO);
874 SMC_SET_MII(mii_reg);
875
876 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
877 if (SMC_GET_MII() & MII_MDI)
878 val |= mask;
879
880 SMC_SET_MII(mii_reg);
881 udelay(MII_DELAY);
882 SMC_SET_MII(mii_reg | MII_MCLK);
883 udelay(MII_DELAY);
884 }
885
886 return val;
887 }
888
889 /*
890 * Reads a register from the MII Management serial interface
891 */
892 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
893 {
894 struct smc_local *lp = netdev_priv(dev);
895 void __iomem *ioaddr = lp->base;
896 unsigned int phydata;
897
898 SMC_SELECT_BANK(3);
899
900 /* Idle - 32 ones */
901 smc_mii_out(dev, 0xffffffff, 32);
902
903 /* Start code (01) + read (10) + phyaddr + phyreg */
904 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
905
906 /* Turnaround (2bits) + phydata */
907 phydata = smc_mii_in(dev, 18);
908
909 /* Return to idle state */
910 SMC_SET_MII(SMC_GET_MII() & ~(MII_MCLK|MII_MDOE|MII_MDO));
911
912 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
913 __FUNCTION__, phyaddr, phyreg, phydata);
914
915 SMC_SELECT_BANK(2);
916 return phydata;
917 }
918
919 /*
920 * Writes a register to the MII Management serial interface
921 */
922 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
923 int phydata)
924 {
925 struct smc_local *lp = netdev_priv(dev);
926 void __iomem *ioaddr = lp->base;
927
928 SMC_SELECT_BANK(3);
929
930 /* Idle - 32 ones */
931 smc_mii_out(dev, 0xffffffff, 32);
932
933 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
934 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
935
936 /* Return to idle state */
937 SMC_SET_MII(SMC_GET_MII() & ~(MII_MCLK|MII_MDOE|MII_MDO));
938
939 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
940 __FUNCTION__, phyaddr, phyreg, phydata);
941
942 SMC_SELECT_BANK(2);
943 }
944
945 /*
946 * Finds and reports the PHY address
947 */
948 static void smc_phy_detect(struct net_device *dev)
949 {
950 struct smc_local *lp = netdev_priv(dev);
951 int phyaddr;
952
953 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
954
955 lp->phy_type = 0;
956
957 /*
958 * Scan all 32 PHY addresses if necessary, starting at
959 * PHY#1 to PHY#31, and then PHY#0 last.
960 */
961 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
962 unsigned int id1, id2;
963
964 /* Read the PHY identifiers */
965 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
966 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
967
968 DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
969 dev->name, id1, id2);
970
971 /* Make sure it is a valid identifier */
972 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
973 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
974 /* Save the PHY's address */
975 lp->mii.phy_id = phyaddr & 31;
976 lp->phy_type = id1 << 16 | id2;
977 break;
978 }
979 }
980 }
981
982 /*
983 * Sets the PHY to a configuration as determined by the user
984 */
985 static int smc_phy_fixed(struct net_device *dev)
986 {
987 struct smc_local *lp = netdev_priv(dev);
988 void __iomem *ioaddr = lp->base;
989 int phyaddr = lp->mii.phy_id;
990 int bmcr, cfg1;
991
992 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
993
994 /* Enter Link Disable state */
995 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
996 cfg1 |= PHY_CFG1_LNKDIS;
997 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
998
999 /*
1000 * Set our fixed capabilities
1001 * Disable auto-negotiation
1002 */
1003 bmcr = 0;
1004
1005 if (lp->ctl_rfduplx)
1006 bmcr |= BMCR_FULLDPLX;
1007
1008 if (lp->ctl_rspeed == 100)
1009 bmcr |= BMCR_SPEED100;
1010
1011 /* Write our capabilities to the phy control register */
1012 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
1013
1014 /* Re-Configure the Receive/Phy Control register */
1015 SMC_SELECT_BANK(0);
1016 SMC_SET_RPC(lp->rpc_cur_mode);
1017 SMC_SELECT_BANK(2);
1018
1019 return 1;
1020 }
1021
1022 /*
1023 * smc_phy_reset - reset the phy
1024 * @dev: net device
1025 * @phy: phy address
1026 *
1027 * Issue a software reset for the specified PHY and
1028 * wait up to 100ms for the reset to complete. We should
1029 * not access the PHY for 50ms after issuing the reset.
1030 *
1031 * The time to wait appears to be dependent on the PHY.
1032 *
1033 * Must be called with lp->lock locked.
1034 */
1035 static int smc_phy_reset(struct net_device *dev, int phy)
1036 {
1037 struct smc_local *lp = netdev_priv(dev);
1038 unsigned int bmcr;
1039 int timeout;
1040
1041 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
1042
1043 for (timeout = 2; timeout; timeout--) {
1044 spin_unlock_irq(&lp->lock);
1045 msleep(50);
1046 spin_lock_irq(&lp->lock);
1047
1048 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1049 if (!(bmcr & BMCR_RESET))
1050 break;
1051 }
1052
1053 return bmcr & BMCR_RESET;
1054 }
1055
1056 /*
1057 * smc_phy_powerdown - powerdown phy
1058 * @dev: net device
1059 *
1060 * Power down the specified PHY
1061 */
1062 static void smc_phy_powerdown(struct net_device *dev)
1063 {
1064 struct smc_local *lp = netdev_priv(dev);
1065 unsigned int bmcr;
1066 int phy = lp->mii.phy_id;
1067
1068 if (lp->phy_type == 0)
1069 return;
1070
1071 /* We need to ensure that no calls to smc_phy_configure are
1072 pending.
1073
1074 flush_scheduled_work() cannot be called because we are
1075 running with the netlink semaphore held (from
1076 devinet_ioctl()) and the pending work queue contains
1077 linkwatch_event() (scheduled by netif_carrier_off()
1078 above). linkwatch_event() also wants the netlink semaphore.
1079 */
1080 while(lp->work_pending)
1081 yield();
1082
1083 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1084 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1085 }
1086
1087 /*
1088 * smc_phy_check_media - check the media status and adjust TCR
1089 * @dev: net device
1090 * @init: set true for initialisation
1091 *
1092 * Select duplex mode depending on negotiation state. This
1093 * also updates our carrier state.
1094 */
1095 static void smc_phy_check_media(struct net_device *dev, int init)
1096 {
1097 struct smc_local *lp = netdev_priv(dev);
1098 void __iomem *ioaddr = lp->base;
1099
1100 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1101 /* duplex state has changed */
1102 if (lp->mii.full_duplex) {
1103 lp->tcr_cur_mode |= TCR_SWFDUP;
1104 } else {
1105 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1106 }
1107
1108 SMC_SELECT_BANK(0);
1109 SMC_SET_TCR(lp->tcr_cur_mode);
1110 }
1111 }
1112
1113 /*
1114 * Configures the specified PHY through the MII management interface
1115 * using Autonegotiation.
1116 * Calls smc_phy_fixed() if the user has requested a certain config.
1117 * If RPC ANEG bit is set, the media selection is dependent purely on
1118 * the selection by the MII (either in the MII BMCR reg or the result
1119 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1120 * is controlled by the RPC SPEED and RPC DPLX bits.
1121 */
1122 static void smc_phy_configure(void *data)
1123 {
1124 struct net_device *dev = data;
1125 struct smc_local *lp = netdev_priv(dev);
1126 void __iomem *ioaddr = lp->base;
1127 int phyaddr = lp->mii.phy_id;
1128 int my_phy_caps; /* My PHY capabilities */
1129 int my_ad_caps; /* My Advertised capabilities */
1130 int status;
1131
1132 DBG(3, "%s:smc_program_phy()\n", dev->name);
1133
1134 spin_lock_irq(&lp->lock);
1135
1136 /*
1137 * We should not be called if phy_type is zero.
1138 */
1139 if (lp->phy_type == 0)
1140 goto smc_phy_configure_exit;
1141
1142 if (smc_phy_reset(dev, phyaddr)) {
1143 printk("%s: PHY reset timed out\n", dev->name);
1144 goto smc_phy_configure_exit;
1145 }
1146
1147 /*
1148 * Enable PHY Interrupts (for register 18)
1149 * Interrupts listed here are disabled
1150 */
1151 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1152 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1153 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1154 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1155
1156 /* Configure the Receive/Phy Control register */
1157 SMC_SELECT_BANK(0);
1158 SMC_SET_RPC(lp->rpc_cur_mode);
1159
1160 /* If the user requested no auto neg, then go set his request */
1161 if (lp->mii.force_media) {
1162 smc_phy_fixed(dev);
1163 goto smc_phy_configure_exit;
1164 }
1165
1166 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1167 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1168
1169 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1170 printk(KERN_INFO "Auto negotiation NOT supported\n");
1171 smc_phy_fixed(dev);
1172 goto smc_phy_configure_exit;
1173 }
1174
1175 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1176
1177 if (my_phy_caps & BMSR_100BASE4)
1178 my_ad_caps |= ADVERTISE_100BASE4;
1179 if (my_phy_caps & BMSR_100FULL)
1180 my_ad_caps |= ADVERTISE_100FULL;
1181 if (my_phy_caps & BMSR_100HALF)
1182 my_ad_caps |= ADVERTISE_100HALF;
1183 if (my_phy_caps & BMSR_10FULL)
1184 my_ad_caps |= ADVERTISE_10FULL;
1185 if (my_phy_caps & BMSR_10HALF)
1186 my_ad_caps |= ADVERTISE_10HALF;
1187
1188 /* Disable capabilities not selected by our user */
1189 if (lp->ctl_rspeed != 100)
1190 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1191
1192 if (!lp->ctl_rfduplx)
1193 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1194
1195 /* Update our Auto-Neg Advertisement Register */
1196 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1197 lp->mii.advertising = my_ad_caps;
1198
1199 /*
1200 * Read the register back. Without this, it appears that when
1201 * auto-negotiation is restarted, sometimes it isn't ready and
1202 * the link does not come up.
1203 */
1204 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1205
1206 DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1207 DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1208
1209 /* Restart auto-negotiation process in order to advertise my caps */
1210 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1211
1212 smc_phy_check_media(dev, 1);
1213
1214 smc_phy_configure_exit:
1215 SMC_SELECT_BANK(2);
1216 spin_unlock_irq(&lp->lock);
1217 lp->work_pending = 0;
1218 }
1219
1220 /*
1221 * smc_phy_interrupt
1222 *
1223 * Purpose: Handle interrupts relating to PHY register 18. This is
1224 * called from the "hard" interrupt handler under our private spinlock.
1225 */
1226 static void smc_phy_interrupt(struct net_device *dev)
1227 {
1228 struct smc_local *lp = netdev_priv(dev);
1229 int phyaddr = lp->mii.phy_id;
1230 int phy18;
1231
1232 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1233
1234 if (lp->phy_type == 0)
1235 return;
1236
1237 for(;;) {
1238 smc_phy_check_media(dev, 0);
1239
1240 /* Read PHY Register 18, Status Output */
1241 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1242 if ((phy18 & PHY_INT_INT) == 0)
1243 break;
1244 }
1245 }
1246
1247 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1248
1249 static void smc_10bt_check_media(struct net_device *dev, int init)
1250 {
1251 struct smc_local *lp = netdev_priv(dev);
1252 void __iomem *ioaddr = lp->base;
1253 unsigned int old_carrier, new_carrier;
1254
1255 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1256
1257 SMC_SELECT_BANK(0);
1258 new_carrier = (SMC_GET_EPH_STATUS() & ES_LINK_OK) ? 1 : 0;
1259 SMC_SELECT_BANK(2);
1260
1261 if (init || (old_carrier != new_carrier)) {
1262 if (!new_carrier) {
1263 netif_carrier_off(dev);
1264 } else {
1265 netif_carrier_on(dev);
1266 }
1267 if (netif_msg_link(lp))
1268 printk(KERN_INFO "%s: link %s\n", dev->name,
1269 new_carrier ? "up" : "down");
1270 }
1271 }
1272
1273 static void smc_eph_interrupt(struct net_device *dev)
1274 {
1275 struct smc_local *lp = netdev_priv(dev);
1276 void __iomem *ioaddr = lp->base;
1277 unsigned int ctl;
1278
1279 smc_10bt_check_media(dev, 0);
1280
1281 SMC_SELECT_BANK(1);
1282 ctl = SMC_GET_CTL();
1283 SMC_SET_CTL(ctl & ~CTL_LE_ENABLE);
1284 SMC_SET_CTL(ctl);
1285 SMC_SELECT_BANK(2);
1286 }
1287
1288 /*
1289 * This is the main routine of the driver, to handle the device when
1290 * it needs some attention.
1291 */
1292 static irqreturn_t smc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1293 {
1294 struct net_device *dev = dev_id;
1295 struct smc_local *lp = netdev_priv(dev);
1296 void __iomem *ioaddr = lp->base;
1297 int status, mask, timeout, card_stats;
1298 int saved_pointer;
1299
1300 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
1301
1302 spin_lock(&lp->lock);
1303
1304 /* A preamble may be used when there is a potential race
1305 * between the interruptible transmit functions and this
1306 * ISR. */
1307 SMC_INTERRUPT_PREAMBLE;
1308
1309 saved_pointer = SMC_GET_PTR();
1310 mask = SMC_GET_INT_MASK();
1311 SMC_SET_INT_MASK(0);
1312
1313 /* set a timeout value, so I don't stay here forever */
1314 timeout = MAX_IRQ_LOOPS;
1315
1316 do {
1317 status = SMC_GET_INT();
1318
1319 DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1320 dev->name, status, mask,
1321 ({ int meminfo; SMC_SELECT_BANK(0);
1322 meminfo = SMC_GET_MIR();
1323 SMC_SELECT_BANK(2); meminfo; }),
1324 SMC_GET_FIFO());
1325
1326 status &= mask;
1327 if (!status)
1328 break;
1329
1330 if (status & IM_TX_INT) {
1331 /* do this before RX as it will free memory quickly */
1332 DBG(3, "%s: TX int\n", dev->name);
1333 smc_tx(dev);
1334 SMC_ACK_INT(IM_TX_INT);
1335 if (THROTTLE_TX_PKTS)
1336 netif_wake_queue(dev);
1337 } else if (status & IM_RCV_INT) {
1338 DBG(3, "%s: RX irq\n", dev->name);
1339 smc_rcv(dev);
1340 } else if (status & IM_ALLOC_INT) {
1341 DBG(3, "%s: Allocation irq\n", dev->name);
1342 tasklet_hi_schedule(&lp->tx_task);
1343 mask &= ~IM_ALLOC_INT;
1344 } else if (status & IM_TX_EMPTY_INT) {
1345 DBG(3, "%s: TX empty\n", dev->name);
1346 mask &= ~IM_TX_EMPTY_INT;
1347
1348 /* update stats */
1349 SMC_SELECT_BANK(0);
1350 card_stats = SMC_GET_COUNTER();
1351 SMC_SELECT_BANK(2);
1352
1353 /* single collisions */
1354 lp->stats.collisions += card_stats & 0xF;
1355 card_stats >>= 4;
1356
1357 /* multiple collisions */
1358 lp->stats.collisions += card_stats & 0xF;
1359 } else if (status & IM_RX_OVRN_INT) {
1360 DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1361 ({ int eph_st; SMC_SELECT_BANK(0);
1362 eph_st = SMC_GET_EPH_STATUS();
1363 SMC_SELECT_BANK(2); eph_st; }) );
1364 SMC_ACK_INT(IM_RX_OVRN_INT);
1365 lp->stats.rx_errors++;
1366 lp->stats.rx_fifo_errors++;
1367 } else if (status & IM_EPH_INT) {
1368 smc_eph_interrupt(dev);
1369 } else if (status & IM_MDINT) {
1370 SMC_ACK_INT(IM_MDINT);
1371 smc_phy_interrupt(dev);
1372 } else if (status & IM_ERCV_INT) {
1373 SMC_ACK_INT(IM_ERCV_INT);
1374 PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT \n", dev->name);
1375 }
1376 } while (--timeout);
1377
1378 /* restore register states */
1379 SMC_SET_PTR(saved_pointer);
1380 SMC_SET_INT_MASK(mask);
1381 spin_unlock(&lp->lock);
1382
1383 if (timeout == MAX_IRQ_LOOPS)
1384 PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1385 dev->name, mask);
1386 DBG(3, "%s: Interrupt done (%d loops)\n",
1387 dev->name, MAX_IRQ_LOOPS - timeout);
1388
1389 /*
1390 * We return IRQ_HANDLED unconditionally here even if there was
1391 * nothing to do. There is a possibility that a packet might
1392 * get enqueued into the chip right after TX_EMPTY_INT is raised
1393 * but just before the CPU acknowledges the IRQ.
1394 * Better take an unneeded IRQ in some occasions than complexifying
1395 * the code for all cases.
1396 */
1397 return IRQ_HANDLED;
1398 }
1399
1400 #ifdef CONFIG_NET_POLL_CONTROLLER
1401 /*
1402 * Polling receive - used by netconsole and other diagnostic tools
1403 * to allow network i/o with interrupts disabled.
1404 */
1405 static void smc_poll_controller(struct net_device *dev)
1406 {
1407 disable_irq(dev->irq);
1408 smc_interrupt(dev->irq, dev, NULL);
1409 enable_irq(dev->irq);
1410 }
1411 #endif
1412
1413 /* Our watchdog timed out. Called by the networking layer */
1414 static void smc_timeout(struct net_device *dev)
1415 {
1416 struct smc_local *lp = netdev_priv(dev);
1417 void __iomem *ioaddr = lp->base;
1418 int status, mask, eph_st, meminfo, fifo;
1419
1420 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1421
1422 spin_lock_irq(&lp->lock);
1423 status = SMC_GET_INT();
1424 mask = SMC_GET_INT_MASK();
1425 fifo = SMC_GET_FIFO();
1426 SMC_SELECT_BANK(0);
1427 eph_st = SMC_GET_EPH_STATUS();
1428 meminfo = SMC_GET_MIR();
1429 SMC_SELECT_BANK(2);
1430 spin_unlock_irq(&lp->lock);
1431 PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1432 "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1433 dev->name, status, mask, meminfo, fifo, eph_st );
1434
1435 smc_reset(dev);
1436 smc_enable(dev);
1437
1438 /*
1439 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1440 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1441 * which calls schedule(). Hence we use a work queue.
1442 */
1443 if (lp->phy_type != 0) {
1444 if (schedule_work(&lp->phy_configure)) {
1445 lp->work_pending = 1;
1446 }
1447 }
1448
1449 /* We can accept TX packets again */
1450 dev->trans_start = jiffies;
1451 netif_wake_queue(dev);
1452 }
1453
1454 /*
1455 * This routine will, depending on the values passed to it,
1456 * either make it accept multicast packets, go into
1457 * promiscuous mode (for TCPDUMP and cousins) or accept
1458 * a select set of multicast packets
1459 */
1460 static void smc_set_multicast_list(struct net_device *dev)
1461 {
1462 struct smc_local *lp = netdev_priv(dev);
1463 void __iomem *ioaddr = lp->base;
1464 unsigned char multicast_table[8];
1465 int update_multicast = 0;
1466
1467 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1468
1469 if (dev->flags & IFF_PROMISC) {
1470 DBG(2, "%s: RCR_PRMS\n", dev->name);
1471 lp->rcr_cur_mode |= RCR_PRMS;
1472 }
1473
1474 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1475 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1476 when promiscuous mode is turned on.
1477 */
1478
1479 /*
1480 * Here, I am setting this to accept all multicast packets.
1481 * I don't need to zero the multicast table, because the flag is
1482 * checked before the table is
1483 */
1484 else if (dev->flags & IFF_ALLMULTI || dev->mc_count > 16) {
1485 DBG(2, "%s: RCR_ALMUL\n", dev->name);
1486 lp->rcr_cur_mode |= RCR_ALMUL;
1487 }
1488
1489 /*
1490 * This sets the internal hardware table to filter out unwanted
1491 * multicast packets before they take up memory.
1492 *
1493 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1494 * address are the offset into the table. If that bit is 1, then the
1495 * multicast packet is accepted. Otherwise, it's dropped silently.
1496 *
1497 * To use the 6 bits as an offset into the table, the high 3 bits are
1498 * the number of the 8 bit register, while the low 3 bits are the bit
1499 * within that register.
1500 */
1501 else if (dev->mc_count) {
1502 int i;
1503 struct dev_mc_list *cur_addr;
1504
1505 /* table for flipping the order of 3 bits */
1506 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1507
1508 /* start with a table of all zeros: reject all */
1509 memset(multicast_table, 0, sizeof(multicast_table));
1510
1511 cur_addr = dev->mc_list;
1512 for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
1513 int position;
1514
1515 /* do we have a pointer here? */
1516 if (!cur_addr)
1517 break;
1518 /* make sure this is a multicast address -
1519 shouldn't this be a given if we have it here ? */
1520 if (!(*cur_addr->dmi_addr & 1))
1521 continue;
1522
1523 /* only use the low order bits */
1524 position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
1525
1526 /* do some messy swapping to put the bit in the right spot */
1527 multicast_table[invert3[position&7]] |=
1528 (1<<invert3[(position>>3)&7]);
1529 }
1530
1531 /* be sure I get rid of flags I might have set */
1532 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1533
1534 /* now, the table can be loaded into the chipset */
1535 update_multicast = 1;
1536 } else {
1537 DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1538 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1539
1540 /*
1541 * since I'm disabling all multicast entirely, I need to
1542 * clear the multicast list
1543 */
1544 memset(multicast_table, 0, sizeof(multicast_table));
1545 update_multicast = 1;
1546 }
1547
1548 spin_lock_irq(&lp->lock);
1549 SMC_SELECT_BANK(0);
1550 SMC_SET_RCR(lp->rcr_cur_mode);
1551 if (update_multicast) {
1552 SMC_SELECT_BANK(3);
1553 SMC_SET_MCAST(multicast_table);
1554 }
1555 SMC_SELECT_BANK(2);
1556 spin_unlock_irq(&lp->lock);
1557 }
1558
1559
1560 /*
1561 * Open and Initialize the board
1562 *
1563 * Set up everything, reset the card, etc..
1564 */
1565 static int
1566 smc_open(struct net_device *dev)
1567 {
1568 struct smc_local *lp = netdev_priv(dev);
1569
1570 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1571
1572 /*
1573 * Check that the address is valid. If its not, refuse
1574 * to bring the device up. The user must specify an
1575 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1576 */
1577 if (!is_valid_ether_addr(dev->dev_addr)) {
1578 PRINTK("%s: no valid ethernet hw addr\n", __FUNCTION__);
1579 return -EINVAL;
1580 }
1581
1582 /* Setup the default Register Modes */
1583 lp->tcr_cur_mode = TCR_DEFAULT;
1584 lp->rcr_cur_mode = RCR_DEFAULT;
1585 lp->rpc_cur_mode = RPC_DEFAULT;
1586
1587 /*
1588 * If we are not using a MII interface, we need to
1589 * monitor our own carrier signal to detect faults.
1590 */
1591 if (lp->phy_type == 0)
1592 lp->tcr_cur_mode |= TCR_MON_CSN;
1593
1594 /* reset the hardware */
1595 smc_reset(dev);
1596 smc_enable(dev);
1597
1598 /* Configure the PHY, initialize the link state */
1599 if (lp->phy_type != 0)
1600 smc_phy_configure(dev);
1601 else {
1602 spin_lock_irq(&lp->lock);
1603 smc_10bt_check_media(dev, 1);
1604 spin_unlock_irq(&lp->lock);
1605 }
1606
1607 netif_start_queue(dev);
1608 return 0;
1609 }
1610
1611 /*
1612 * smc_close
1613 *
1614 * this makes the board clean up everything that it can
1615 * and not talk to the outside world. Caused by
1616 * an 'ifconfig ethX down'
1617 */
1618 static int smc_close(struct net_device *dev)
1619 {
1620 struct smc_local *lp = netdev_priv(dev);
1621
1622 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1623
1624 netif_stop_queue(dev);
1625 netif_carrier_off(dev);
1626
1627 /* clear everything */
1628 smc_shutdown(dev);
1629 tasklet_kill(&lp->tx_task);
1630 smc_phy_powerdown(dev);
1631 return 0;
1632 }
1633
1634 /*
1635 * Get the current statistics.
1636 * This may be called with the card open or closed.
1637 */
1638 static struct net_device_stats *smc_query_statistics(struct net_device *dev)
1639 {
1640 struct smc_local *lp = netdev_priv(dev);
1641
1642 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1643
1644 return &lp->stats;
1645 }
1646
1647 /*
1648 * Ethtool support
1649 */
1650 static int
1651 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1652 {
1653 struct smc_local *lp = netdev_priv(dev);
1654 int ret;
1655
1656 cmd->maxtxpkt = 1;
1657 cmd->maxrxpkt = 1;
1658
1659 if (lp->phy_type != 0) {
1660 spin_lock_irq(&lp->lock);
1661 ret = mii_ethtool_gset(&lp->mii, cmd);
1662 spin_unlock_irq(&lp->lock);
1663 } else {
1664 cmd->supported = SUPPORTED_10baseT_Half |
1665 SUPPORTED_10baseT_Full |
1666 SUPPORTED_TP | SUPPORTED_AUI;
1667
1668 if (lp->ctl_rspeed == 10)
1669 cmd->speed = SPEED_10;
1670 else if (lp->ctl_rspeed == 100)
1671 cmd->speed = SPEED_100;
1672
1673 cmd->autoneg = AUTONEG_DISABLE;
1674 cmd->transceiver = XCVR_INTERNAL;
1675 cmd->port = 0;
1676 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1677
1678 ret = 0;
1679 }
1680
1681 return ret;
1682 }
1683
1684 static int
1685 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1686 {
1687 struct smc_local *lp = netdev_priv(dev);
1688 int ret;
1689
1690 if (lp->phy_type != 0) {
1691 spin_lock_irq(&lp->lock);
1692 ret = mii_ethtool_sset(&lp->mii, cmd);
1693 spin_unlock_irq(&lp->lock);
1694 } else {
1695 if (cmd->autoneg != AUTONEG_DISABLE ||
1696 cmd->speed != SPEED_10 ||
1697 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1698 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1699 return -EINVAL;
1700
1701 // lp->port = cmd->port;
1702 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1703
1704 // if (netif_running(dev))
1705 // smc_set_port(dev);
1706
1707 ret = 0;
1708 }
1709
1710 return ret;
1711 }
1712
1713 static void
1714 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1715 {
1716 strncpy(info->driver, CARDNAME, sizeof(info->driver));
1717 strncpy(info->version, version, sizeof(info->version));
1718 strncpy(info->bus_info, dev->class_dev.dev->bus_id, sizeof(info->bus_info));
1719 }
1720
1721 static int smc_ethtool_nwayreset(struct net_device *dev)
1722 {
1723 struct smc_local *lp = netdev_priv(dev);
1724 int ret = -EINVAL;
1725
1726 if (lp->phy_type != 0) {
1727 spin_lock_irq(&lp->lock);
1728 ret = mii_nway_restart(&lp->mii);
1729 spin_unlock_irq(&lp->lock);
1730 }
1731
1732 return ret;
1733 }
1734
1735 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1736 {
1737 struct smc_local *lp = netdev_priv(dev);
1738 return lp->msg_enable;
1739 }
1740
1741 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1742 {
1743 struct smc_local *lp = netdev_priv(dev);
1744 lp->msg_enable = level;
1745 }
1746
1747 static struct ethtool_ops smc_ethtool_ops = {
1748 .get_settings = smc_ethtool_getsettings,
1749 .set_settings = smc_ethtool_setsettings,
1750 .get_drvinfo = smc_ethtool_getdrvinfo,
1751
1752 .get_msglevel = smc_ethtool_getmsglevel,
1753 .set_msglevel = smc_ethtool_setmsglevel,
1754 .nway_reset = smc_ethtool_nwayreset,
1755 .get_link = ethtool_op_get_link,
1756 // .get_eeprom = smc_ethtool_geteeprom,
1757 // .set_eeprom = smc_ethtool_seteeprom,
1758 };
1759
1760 /*
1761 * smc_findirq
1762 *
1763 * This routine has a simple purpose -- make the SMC chip generate an
1764 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1765 */
1766 /*
1767 * does this still work?
1768 *
1769 * I just deleted auto_irq.c, since it was never built...
1770 * --jgarzik
1771 */
1772 static int __init smc_findirq(void __iomem *ioaddr)
1773 {
1774 int timeout = 20;
1775 unsigned long cookie;
1776
1777 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
1778
1779 cookie = probe_irq_on();
1780
1781 /*
1782 * What I try to do here is trigger an ALLOC_INT. This is done
1783 * by allocating a small chunk of memory, which will give an interrupt
1784 * when done.
1785 */
1786 /* enable ALLOCation interrupts ONLY */
1787 SMC_SELECT_BANK(2);
1788 SMC_SET_INT_MASK(IM_ALLOC_INT);
1789
1790 /*
1791 * Allocate 512 bytes of memory. Note that the chip was just
1792 * reset so all the memory is available
1793 */
1794 SMC_SET_MMU_CMD(MC_ALLOC | 1);
1795
1796 /*
1797 * Wait until positive that the interrupt has been generated
1798 */
1799 do {
1800 int int_status;
1801 udelay(10);
1802 int_status = SMC_GET_INT();
1803 if (int_status & IM_ALLOC_INT)
1804 break; /* got the interrupt */
1805 } while (--timeout);
1806
1807 /*
1808 * there is really nothing that I can do here if timeout fails,
1809 * as autoirq_report will return a 0 anyway, which is what I
1810 * want in this case. Plus, the clean up is needed in both
1811 * cases.
1812 */
1813
1814 /* and disable all interrupts again */
1815 SMC_SET_INT_MASK(0);
1816
1817 /* and return what I found */
1818 return probe_irq_off(cookie);
1819 }
1820
1821 /*
1822 * Function: smc_probe(unsigned long ioaddr)
1823 *
1824 * Purpose:
1825 * Tests to see if a given ioaddr points to an SMC91x chip.
1826 * Returns a 0 on success
1827 *
1828 * Algorithm:
1829 * (1) see if the high byte of BANK_SELECT is 0x33
1830 * (2) compare the ioaddr with the base register's address
1831 * (3) see if I recognize the chip ID in the appropriate register
1832 *
1833 * Here I do typical initialization tasks.
1834 *
1835 * o Initialize the structure if needed
1836 * o print out my vanity message if not done so already
1837 * o print out what type of hardware is detected
1838 * o print out the ethernet address
1839 * o find the IRQ
1840 * o set up my private data
1841 * o configure the dev structure with my subroutines
1842 * o actually GRAB the irq.
1843 * o GRAB the region
1844 */
1845 static int __init smc_probe(struct net_device *dev, void __iomem *ioaddr)
1846 {
1847 struct smc_local *lp = netdev_priv(dev);
1848 static int version_printed = 0;
1849 int i, retval;
1850 unsigned int val, revision_register;
1851 const char *version_string;
1852
1853 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
1854
1855 /* First, see if the high byte is 0x33 */
1856 val = SMC_CURRENT_BANK();
1857 DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1858 if ((val & 0xFF00) != 0x3300) {
1859 if ((val & 0xFF) == 0x33) {
1860 printk(KERN_WARNING
1861 "%s: Detected possible byte-swapped interface"
1862 " at IOADDR %p\n", CARDNAME, ioaddr);
1863 }
1864 retval = -ENODEV;
1865 goto err_out;
1866 }
1867
1868 /*
1869 * The above MIGHT indicate a device, but I need to write to
1870 * further test this.
1871 */
1872 SMC_SELECT_BANK(0);
1873 val = SMC_CURRENT_BANK();
1874 if ((val & 0xFF00) != 0x3300) {
1875 retval = -ENODEV;
1876 goto err_out;
1877 }
1878
1879 /*
1880 * well, we've already written once, so hopefully another
1881 * time won't hurt. This time, I need to switch the bank
1882 * register to bank 1, so I can access the base address
1883 * register
1884 */
1885 SMC_SELECT_BANK(1);
1886 val = SMC_GET_BASE();
1887 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1888 if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1889 printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1890 CARDNAME, ioaddr, val);
1891 }
1892
1893 /*
1894 * check if the revision register is something that I
1895 * recognize. These might need to be added to later,
1896 * as future revisions could be added.
1897 */
1898 SMC_SELECT_BANK(3);
1899 revision_register = SMC_GET_REV();
1900 DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1901 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1902 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1903 /* I don't recognize this chip, so... */
1904 printk("%s: IO %p: Unrecognized revision register 0x%04x"
1905 ", Contact author.\n", CARDNAME,
1906 ioaddr, revision_register);
1907
1908 retval = -ENODEV;
1909 goto err_out;
1910 }
1911
1912 /* At this point I'll assume that the chip is an SMC91x. */
1913 if (version_printed++ == 0)
1914 printk("%s", version);
1915
1916 /* fill in some of the fields */
1917 dev->base_addr = (unsigned long)ioaddr;
1918 lp->base = ioaddr;
1919 lp->version = revision_register & 0xff;
1920 spin_lock_init(&lp->lock);
1921
1922 /* Get the MAC address */
1923 SMC_SELECT_BANK(1);
1924 SMC_GET_MAC_ADDR(dev->dev_addr);
1925
1926 /* now, reset the chip, and put it into a known state */
1927 smc_reset(dev);
1928
1929 /*
1930 * If dev->irq is 0, then the device has to be banged on to see
1931 * what the IRQ is.
1932 *
1933 * This banging doesn't always detect the IRQ, for unknown reasons.
1934 * a workaround is to reset the chip and try again.
1935 *
1936 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1937 * be what is requested on the command line. I don't do that, mostly
1938 * because the card that I have uses a non-standard method of accessing
1939 * the IRQs, and because this _should_ work in most configurations.
1940 *
1941 * Specifying an IRQ is done with the assumption that the user knows
1942 * what (s)he is doing. No checking is done!!!!
1943 */
1944 if (dev->irq < 1) {
1945 int trials;
1946
1947 trials = 3;
1948 while (trials--) {
1949 dev->irq = smc_findirq(ioaddr);
1950 if (dev->irq)
1951 break;
1952 /* kick the card and try again */
1953 smc_reset(dev);
1954 }
1955 }
1956 if (dev->irq == 0) {
1957 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1958 dev->name);
1959 retval = -ENODEV;
1960 goto err_out;
1961 }
1962 dev->irq = irq_canonicalize(dev->irq);
1963
1964 /* Fill in the fields of the device structure with ethernet values. */
1965 ether_setup(dev);
1966
1967 dev->open = smc_open;
1968 dev->stop = smc_close;
1969 dev->hard_start_xmit = smc_hard_start_xmit;
1970 dev->tx_timeout = smc_timeout;
1971 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1972 dev->get_stats = smc_query_statistics;
1973 dev->set_multicast_list = smc_set_multicast_list;
1974 dev->ethtool_ops = &smc_ethtool_ops;
1975 #ifdef CONFIG_NET_POLL_CONTROLLER
1976 dev->poll_controller = smc_poll_controller;
1977 #endif
1978
1979 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1980 INIT_WORK(&lp->phy_configure, smc_phy_configure, dev);
1981 lp->mii.phy_id_mask = 0x1f;
1982 lp->mii.reg_num_mask = 0x1f;
1983 lp->mii.force_media = 0;
1984 lp->mii.full_duplex = 0;
1985 lp->mii.dev = dev;
1986 lp->mii.mdio_read = smc_phy_read;
1987 lp->mii.mdio_write = smc_phy_write;
1988
1989 /*
1990 * Locate the phy, if any.
1991 */
1992 if (lp->version >= (CHIP_91100 << 4))
1993 smc_phy_detect(dev);
1994
1995 /* then shut everything down to save power */
1996 smc_shutdown(dev);
1997 smc_phy_powerdown(dev);
1998
1999 /* Set default parameters */
2000 lp->msg_enable = NETIF_MSG_LINK;
2001 lp->ctl_rfduplx = 0;
2002 lp->ctl_rspeed = 10;
2003
2004 if (lp->version >= (CHIP_91100 << 4)) {
2005 lp->ctl_rfduplx = 1;
2006 lp->ctl_rspeed = 100;
2007 }
2008
2009 /* Grab the IRQ */
2010 retval = request_irq(dev->irq, &smc_interrupt, 0, dev->name, dev);
2011 if (retval)
2012 goto err_out;
2013
2014 set_irq_type(dev->irq, SMC_IRQ_TRIGGER_TYPE);
2015
2016 #ifdef SMC_USE_PXA_DMA
2017 {
2018 int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2019 smc_pxa_dma_irq, NULL);
2020 if (dma >= 0)
2021 dev->dma = dma;
2022 }
2023 #endif
2024
2025 retval = register_netdev(dev);
2026 if (retval == 0) {
2027 /* now, print out the card info, in a short format.. */
2028 printk("%s: %s (rev %d) at %p IRQ %d",
2029 dev->name, version_string, revision_register & 0x0f,
2030 lp->base, dev->irq);
2031
2032 if (dev->dma != (unsigned char)-1)
2033 printk(" DMA %d", dev->dma);
2034
2035 printk("%s%s\n", nowait ? " [nowait]" : "",
2036 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2037
2038 if (!is_valid_ether_addr(dev->dev_addr)) {
2039 printk("%s: Invalid ethernet MAC address. Please "
2040 "set using ifconfig\n", dev->name);
2041 } else {
2042 /* Print the Ethernet address */
2043 printk("%s: Ethernet addr: ", dev->name);
2044 for (i = 0; i < 5; i++)
2045 printk("%2.2x:", dev->dev_addr[i]);
2046 printk("%2.2x\n", dev->dev_addr[5]);
2047 }
2048
2049 if (lp->phy_type == 0) {
2050 PRINTK("%s: No PHY found\n", dev->name);
2051 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2052 PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2053 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2054 PRINTK("%s: PHY LAN83C180\n", dev->name);
2055 }
2056 }
2057
2058 err_out:
2059 #ifdef SMC_USE_PXA_DMA
2060 if (retval && dev->dma != (unsigned char)-1)
2061 pxa_free_dma(dev->dma);
2062 #endif
2063 return retval;
2064 }
2065
2066 static int smc_enable_device(struct platform_device *pdev)
2067 {
2068 unsigned long flags;
2069 unsigned char ecor, ecsr;
2070 void __iomem *addr;
2071 struct resource * res;
2072
2073 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2074 if (!res)
2075 return 0;
2076
2077 /*
2078 * Map the attribute space. This is overkill, but clean.
2079 */
2080 addr = ioremap(res->start, ATTRIB_SIZE);
2081 if (!addr)
2082 return -ENOMEM;
2083
2084 /*
2085 * Reset the device. We must disable IRQs around this
2086 * since a reset causes the IRQ line become active.
2087 */
2088 local_irq_save(flags);
2089 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2090 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2091 readb(addr + (ECOR << SMC_IO_SHIFT));
2092
2093 /*
2094 * Wait 100us for the chip to reset.
2095 */
2096 udelay(100);
2097
2098 /*
2099 * The device will ignore all writes to the enable bit while
2100 * reset is asserted, even if the reset bit is cleared in the
2101 * same write. Must clear reset first, then enable the device.
2102 */
2103 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2104 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2105
2106 /*
2107 * Set the appropriate byte/word mode.
2108 */
2109 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2110 #ifndef SMC_CAN_USE_16BIT
2111 ecsr |= ECSR_IOIS8;
2112 #endif
2113 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2114 local_irq_restore(flags);
2115
2116 iounmap(addr);
2117
2118 /*
2119 * Wait for the chip to wake up. We could poll the control
2120 * register in the main register space, but that isn't mapped
2121 * yet. We know this is going to take 750us.
2122 */
2123 msleep(1);
2124
2125 return 0;
2126 }
2127
2128 static int smc_request_attrib(struct platform_device *pdev)
2129 {
2130 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2131
2132 if (!res)
2133 return 0;
2134
2135 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2136 return -EBUSY;
2137
2138 return 0;
2139 }
2140
2141 static void smc_release_attrib(struct platform_device *pdev)
2142 {
2143 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2144
2145 if (res)
2146 release_mem_region(res->start, ATTRIB_SIZE);
2147 }
2148
2149 #ifdef SMC_CAN_USE_DATACS
2150 static void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2151 {
2152 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2153 struct smc_local *lp = netdev_priv(ndev);
2154
2155 if (!res)
2156 return;
2157
2158 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2159 printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2160 return;
2161 }
2162
2163 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2164 }
2165
2166 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2167 {
2168 struct smc_local *lp = netdev_priv(ndev);
2169 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2170
2171 if (lp->datacs)
2172 iounmap(lp->datacs);
2173
2174 lp->datacs = NULL;
2175
2176 if (res)
2177 release_mem_region(res->start, SMC_DATA_EXTENT);
2178 }
2179 #else
2180 static void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev) {}
2181 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev) {}
2182 #endif
2183
2184 /*
2185 * smc_init(void)
2186 * Input parameters:
2187 * dev->base_addr == 0, try to find all possible locations
2188 * dev->base_addr > 0x1ff, this is the address to check
2189 * dev->base_addr == <anything else>, return failure code
2190 *
2191 * Output:
2192 * 0 --> there is a device
2193 * anything else, error
2194 */
2195 static int smc_drv_probe(struct platform_device *pdev)
2196 {
2197 struct net_device *ndev;
2198 struct resource *res;
2199 unsigned int __iomem *addr;
2200 int ret;
2201
2202 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2203 if (!res)
2204 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2205 if (!res) {
2206 ret = -ENODEV;
2207 goto out;
2208 }
2209
2210
2211 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2212 ret = -EBUSY;
2213 goto out;
2214 }
2215
2216 ndev = alloc_etherdev(sizeof(struct smc_local));
2217 if (!ndev) {
2218 printk("%s: could not allocate device.\n", CARDNAME);
2219 ret = -ENOMEM;
2220 goto out_release_io;
2221 }
2222 SET_MODULE_OWNER(ndev);
2223 SET_NETDEV_DEV(ndev, &pdev->dev);
2224
2225 ndev->dma = (unsigned char)-1;
2226 ndev->irq = platform_get_irq(pdev, 0);
2227
2228 ret = smc_request_attrib(pdev);
2229 if (ret)
2230 goto out_free_netdev;
2231 #if defined(CONFIG_SA1100_ASSABET)
2232 NCR_0 |= NCR_ENET_OSC_EN;
2233 #endif
2234 ret = smc_enable_device(pdev);
2235 if (ret)
2236 goto out_release_attrib;
2237
2238 addr = ioremap(res->start, SMC_IO_EXTENT);
2239 if (!addr) {
2240 ret = -ENOMEM;
2241 goto out_release_attrib;
2242 }
2243
2244 platform_set_drvdata(pdev, ndev);
2245 ret = smc_probe(ndev, addr);
2246 if (ret != 0)
2247 goto out_iounmap;
2248 #ifdef SMC_USE_PXA_DMA
2249 else {
2250 struct smc_local *lp = netdev_priv(ndev);
2251 lp->physaddr = res->start;
2252 }
2253 #endif
2254
2255 smc_request_datacs(pdev, ndev);
2256
2257 return 0;
2258
2259 out_iounmap:
2260 platform_set_drvdata(pdev, NULL);
2261 iounmap(addr);
2262 out_release_attrib:
2263 smc_release_attrib(pdev);
2264 out_free_netdev:
2265 free_netdev(ndev);
2266 out_release_io:
2267 release_mem_region(res->start, SMC_IO_EXTENT);
2268 out:
2269 printk("%s: not found (%d).\n", CARDNAME, ret);
2270
2271 return ret;
2272 }
2273
2274 static int smc_drv_remove(struct platform_device *pdev)
2275 {
2276 struct net_device *ndev = platform_get_drvdata(pdev);
2277 struct smc_local *lp = netdev_priv(ndev);
2278 struct resource *res;
2279
2280 platform_set_drvdata(pdev, NULL);
2281
2282 unregister_netdev(ndev);
2283
2284 free_irq(ndev->irq, ndev);
2285
2286 #ifdef SMC_USE_PXA_DMA
2287 if (ndev->dma != (unsigned char)-1)
2288 pxa_free_dma(ndev->dma);
2289 #endif
2290 iounmap(lp->base);
2291
2292 smc_release_datacs(pdev,ndev);
2293 smc_release_attrib(pdev);
2294
2295 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2296 if (!res)
2297 platform_get_resource(pdev, IORESOURCE_MEM, 0);
2298 release_mem_region(res->start, SMC_IO_EXTENT);
2299
2300 free_netdev(ndev);
2301
2302 return 0;
2303 }
2304
2305 static int smc_drv_suspend(struct platform_device *dev, pm_message_t state)
2306 {
2307 struct net_device *ndev = platform_get_drvdata(dev);
2308
2309 if (ndev) {
2310 if (netif_running(ndev)) {
2311 netif_device_detach(ndev);
2312 smc_shutdown(ndev);
2313 smc_phy_powerdown(ndev);
2314 }
2315 }
2316 return 0;
2317 }
2318
2319 static int smc_drv_resume(struct platform_device *dev)
2320 {
2321 struct net_device *ndev = platform_get_drvdata(dev);
2322
2323 if (ndev) {
2324 struct smc_local *lp = netdev_priv(ndev);
2325 smc_enable_device(dev);
2326 if (netif_running(ndev)) {
2327 smc_reset(ndev);
2328 smc_enable(ndev);
2329 if (lp->phy_type != 0)
2330 smc_phy_configure(ndev);
2331 netif_device_attach(ndev);
2332 }
2333 }
2334 return 0;
2335 }
2336
2337 static struct platform_driver smc_driver = {
2338 .probe = smc_drv_probe,
2339 .remove = smc_drv_remove,
2340 .suspend = smc_drv_suspend,
2341 .resume = smc_drv_resume,
2342 .driver = {
2343 .name = CARDNAME,
2344 },
2345 };
2346
2347 static int __init smc_init(void)
2348 {
2349 #ifdef MODULE
2350 #ifdef CONFIG_ISA
2351 if (io == -1)
2352 printk(KERN_WARNING
2353 "%s: You shouldn't use auto-probing with insmod!\n",
2354 CARDNAME);
2355 #endif
2356 #endif
2357
2358 return platform_driver_register(&smc_driver);
2359 }
2360
2361 static void __exit smc_cleanup(void)
2362 {
2363 platform_driver_unregister(&smc_driver);
2364 }
2365
2366 module_init(smc_init);
2367 module_exit(smc_cleanup);
This page took 0.110634 seconds and 6 git commands to generate.