viafb: clean up virtual memory handling
[deliverable/linux.git] / drivers / net / via-rhine.c
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
29
30 */
31
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.4.3"
34 #define DRV_RELDATE "2007-03-06"
35
36
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
39
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
42
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
46 || defined(CONFIG_SPARC) || defined(__ia64__) \
47 || defined(__sh__) || defined(__mips__)
48 static int rx_copybreak = 1518;
49 #else
50 static int rx_copybreak;
51 #endif
52
53 /* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55 static int avoid_D3;
56
57 /*
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
60 */
61
62 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64 static const int multicast_filter_limit = 32;
65
66
67 /* Operational parameters that are set at compile time. */
68
69 /* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74 #define TX_RING_SIZE 16
75 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
76 #define RX_RING_SIZE 64
77
78 /* Operational parameters that usually are not changed. */
79
80 /* Time in jiffies before concluding the transmitter is hung. */
81 #define TX_TIMEOUT (2*HZ)
82
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85 #include <linux/module.h>
86 #include <linux/moduleparam.h>
87 #include <linux/kernel.h>
88 #include <linux/string.h>
89 #include <linux/timer.h>
90 #include <linux/errno.h>
91 #include <linux/ioport.h>
92 #include <linux/slab.h>
93 #include <linux/interrupt.h>
94 #include <linux/pci.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/netdevice.h>
97 #include <linux/etherdevice.h>
98 #include <linux/skbuff.h>
99 #include <linux/init.h>
100 #include <linux/delay.h>
101 #include <linux/mii.h>
102 #include <linux/ethtool.h>
103 #include <linux/crc32.h>
104 #include <linux/bitops.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/io.h>
107 #include <asm/irq.h>
108 #include <asm/uaccess.h>
109 #include <linux/dmi.h>
110
111 /* These identify the driver base version and may not be removed. */
112 static const char version[] __devinitconst =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE
114 " Written by Donald Becker\n";
115
116 /* This driver was written to use PCI memory space. Some early versions
117 of the Rhine may only work correctly with I/O space accesses. */
118 #ifdef CONFIG_VIA_RHINE_MMIO
119 #define USE_MMIO
120 #else
121 #endif
122
123 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
124 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
125 MODULE_LICENSE("GPL");
126
127 module_param(max_interrupt_work, int, 0);
128 module_param(debug, int, 0);
129 module_param(rx_copybreak, int, 0);
130 module_param(avoid_D3, bool, 0);
131 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
132 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
133 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
134 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
135
136 /*
137 Theory of Operation
138
139 I. Board Compatibility
140
141 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
142 controller.
143
144 II. Board-specific settings
145
146 Boards with this chip are functional only in a bus-master PCI slot.
147
148 Many operational settings are loaded from the EEPROM to the Config word at
149 offset 0x78. For most of these settings, this driver assumes that they are
150 correct.
151 If this driver is compiled to use PCI memory space operations the EEPROM
152 must be configured to enable memory ops.
153
154 III. Driver operation
155
156 IIIa. Ring buffers
157
158 This driver uses two statically allocated fixed-size descriptor lists
159 formed into rings by a branch from the final descriptor to the beginning of
160 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
161
162 IIIb/c. Transmit/Receive Structure
163
164 This driver attempts to use a zero-copy receive and transmit scheme.
165
166 Alas, all data buffers are required to start on a 32 bit boundary, so
167 the driver must often copy transmit packets into bounce buffers.
168
169 The driver allocates full frame size skbuffs for the Rx ring buffers at
170 open() time and passes the skb->data field to the chip as receive data
171 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
172 a fresh skbuff is allocated and the frame is copied to the new skbuff.
173 When the incoming frame is larger, the skbuff is passed directly up the
174 protocol stack. Buffers consumed this way are replaced by newly allocated
175 skbuffs in the last phase of rhine_rx().
176
177 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
178 using a full-sized skbuff for small frames vs. the copying costs of larger
179 frames. New boards are typically used in generously configured machines
180 and the underfilled buffers have negligible impact compared to the benefit of
181 a single allocation size, so the default value of zero results in never
182 copying packets. When copying is done, the cost is usually mitigated by using
183 a combined copy/checksum routine. Copying also preloads the cache, which is
184 most useful with small frames.
185
186 Since the VIA chips are only able to transfer data to buffers on 32 bit
187 boundaries, the IP header at offset 14 in an ethernet frame isn't
188 longword aligned for further processing. Copying these unaligned buffers
189 has the beneficial effect of 16-byte aligning the IP header.
190
191 IIId. Synchronization
192
193 The driver runs as two independent, single-threaded flows of control. One
194 is the send-packet routine, which enforces single-threaded use by the
195 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
196 which is single threaded by the hardware and interrupt handling software.
197
198 The send packet thread has partial control over the Tx ring. It locks the
199 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
200 the ring is not available it stops the transmit queue by
201 calling netif_stop_queue.
202
203 The interrupt handler has exclusive control over the Rx ring and records stats
204 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
205 empty by incrementing the dirty_tx mark. If at least half of the entries in
206 the Rx ring are available the transmit queue is woken up if it was stopped.
207
208 IV. Notes
209
210 IVb. References
211
212 Preliminary VT86C100A manual from http://www.via.com.tw/
213 http://www.scyld.com/expert/100mbps.html
214 http://www.scyld.com/expert/NWay.html
215 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
216 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
217
218
219 IVc. Errata
220
221 The VT86C100A manual is not reliable information.
222 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
223 in significant performance degradation for bounce buffer copies on transmit
224 and unaligned IP headers on receive.
225 The chip does not pad to minimum transmit length.
226
227 */
228
229
230 /* This table drives the PCI probe routines. It's mostly boilerplate in all
231 of the drivers, and will likely be provided by some future kernel.
232 Note the matching code -- the first table entry matchs all 56** cards but
233 second only the 1234 card.
234 */
235
236 enum rhine_revs {
237 VT86C100A = 0x00,
238 VTunknown0 = 0x20,
239 VT6102 = 0x40,
240 VT8231 = 0x50, /* Integrated MAC */
241 VT8233 = 0x60, /* Integrated MAC */
242 VT8235 = 0x74, /* Integrated MAC */
243 VT8237 = 0x78, /* Integrated MAC */
244 VTunknown1 = 0x7C,
245 VT6105 = 0x80,
246 VT6105_B0 = 0x83,
247 VT6105L = 0x8A,
248 VT6107 = 0x8C,
249 VTunknown2 = 0x8E,
250 VT6105M = 0x90, /* Management adapter */
251 };
252
253 enum rhine_quirks {
254 rqWOL = 0x0001, /* Wake-On-LAN support */
255 rqForceReset = 0x0002,
256 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
257 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
258 rqRhineI = 0x0100, /* See comment below */
259 };
260 /*
261 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
262 * MMIO as well as for the collision counter and the Tx FIFO underflow
263 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
264 */
265
266 /* Beware of PCI posted writes */
267 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
268
269 static const struct pci_device_id rhine_pci_tbl[] = {
270 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
271 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
272 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
273 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
274 { } /* terminate list */
275 };
276 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
277
278
279 /* Offsets to the device registers. */
280 enum register_offsets {
281 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
282 ChipCmd1=0x09,
283 IntrStatus=0x0C, IntrEnable=0x0E,
284 MulticastFilter0=0x10, MulticastFilter1=0x14,
285 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
286 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
287 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
288 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
289 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
290 StickyHW=0x83, IntrStatus2=0x84,
291 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
292 WOLcrClr1=0xA6, WOLcgClr=0xA7,
293 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
294 };
295
296 /* Bits in ConfigD */
297 enum backoff_bits {
298 BackOptional=0x01, BackModify=0x02,
299 BackCaptureEffect=0x04, BackRandom=0x08
300 };
301
302 #ifdef USE_MMIO
303 /* Registers we check that mmio and reg are the same. */
304 static const int mmio_verify_registers[] = {
305 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
306 0
307 };
308 #endif
309
310 /* Bits in the interrupt status/mask registers. */
311 enum intr_status_bits {
312 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
313 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
314 IntrPCIErr=0x0040,
315 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
316 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
317 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
318 IntrRxWakeUp=0x8000,
319 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
320 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
321 IntrTxErrSummary=0x082218,
322 };
323
324 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
325 enum wol_bits {
326 WOLucast = 0x10,
327 WOLmagic = 0x20,
328 WOLbmcast = 0x30,
329 WOLlnkon = 0x40,
330 WOLlnkoff = 0x80,
331 };
332
333 /* The Rx and Tx buffer descriptors. */
334 struct rx_desc {
335 __le32 rx_status;
336 __le32 desc_length; /* Chain flag, Buffer/frame length */
337 __le32 addr;
338 __le32 next_desc;
339 };
340 struct tx_desc {
341 __le32 tx_status;
342 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
343 __le32 addr;
344 __le32 next_desc;
345 };
346
347 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
348 #define TXDESC 0x00e08000
349
350 enum rx_status_bits {
351 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
352 };
353
354 /* Bits in *_desc.*_status */
355 enum desc_status_bits {
356 DescOwn=0x80000000
357 };
358
359 /* Bits in ChipCmd. */
360 enum chip_cmd_bits {
361 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
362 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
363 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
364 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
365 };
366
367 struct rhine_private {
368 /* Descriptor rings */
369 struct rx_desc *rx_ring;
370 struct tx_desc *tx_ring;
371 dma_addr_t rx_ring_dma;
372 dma_addr_t tx_ring_dma;
373
374 /* The addresses of receive-in-place skbuffs. */
375 struct sk_buff *rx_skbuff[RX_RING_SIZE];
376 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
377
378 /* The saved address of a sent-in-place packet/buffer, for later free(). */
379 struct sk_buff *tx_skbuff[TX_RING_SIZE];
380 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
381
382 /* Tx bounce buffers (Rhine-I only) */
383 unsigned char *tx_buf[TX_RING_SIZE];
384 unsigned char *tx_bufs;
385 dma_addr_t tx_bufs_dma;
386
387 struct pci_dev *pdev;
388 long pioaddr;
389 struct net_device *dev;
390 struct napi_struct napi;
391 spinlock_t lock;
392
393 /* Frequently used values: keep some adjacent for cache effect. */
394 u32 quirks;
395 struct rx_desc *rx_head_desc;
396 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
397 unsigned int cur_tx, dirty_tx;
398 unsigned int rx_buf_sz; /* Based on MTU+slack. */
399 u8 wolopts;
400
401 u8 tx_thresh, rx_thresh;
402
403 struct mii_if_info mii_if;
404 void __iomem *base;
405 };
406
407 static int mdio_read(struct net_device *dev, int phy_id, int location);
408 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
409 static int rhine_open(struct net_device *dev);
410 static void rhine_tx_timeout(struct net_device *dev);
411 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
412 struct net_device *dev);
413 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
414 static void rhine_tx(struct net_device *dev);
415 static int rhine_rx(struct net_device *dev, int limit);
416 static void rhine_error(struct net_device *dev, int intr_status);
417 static void rhine_set_rx_mode(struct net_device *dev);
418 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
419 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
420 static const struct ethtool_ops netdev_ethtool_ops;
421 static int rhine_close(struct net_device *dev);
422 static void rhine_shutdown (struct pci_dev *pdev);
423
424 #define RHINE_WAIT_FOR(condition) do { \
425 int i=1024; \
426 while (!(condition) && --i) \
427 ; \
428 if (debug > 1 && i < 512) \
429 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
430 DRV_NAME, 1024-i, __func__, __LINE__); \
431 } while(0)
432
433 static inline u32 get_intr_status(struct net_device *dev)
434 {
435 struct rhine_private *rp = netdev_priv(dev);
436 void __iomem *ioaddr = rp->base;
437 u32 intr_status;
438
439 intr_status = ioread16(ioaddr + IntrStatus);
440 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
441 if (rp->quirks & rqStatusWBRace)
442 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
443 return intr_status;
444 }
445
446 /*
447 * Get power related registers into sane state.
448 * Notify user about past WOL event.
449 */
450 static void rhine_power_init(struct net_device *dev)
451 {
452 struct rhine_private *rp = netdev_priv(dev);
453 void __iomem *ioaddr = rp->base;
454 u16 wolstat;
455
456 if (rp->quirks & rqWOL) {
457 /* Make sure chip is in power state D0 */
458 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
459
460 /* Disable "force PME-enable" */
461 iowrite8(0x80, ioaddr + WOLcgClr);
462
463 /* Clear power-event config bits (WOL) */
464 iowrite8(0xFF, ioaddr + WOLcrClr);
465 /* More recent cards can manage two additional patterns */
466 if (rp->quirks & rq6patterns)
467 iowrite8(0x03, ioaddr + WOLcrClr1);
468
469 /* Save power-event status bits */
470 wolstat = ioread8(ioaddr + PwrcsrSet);
471 if (rp->quirks & rq6patterns)
472 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
473
474 /* Clear power-event status bits */
475 iowrite8(0xFF, ioaddr + PwrcsrClr);
476 if (rp->quirks & rq6patterns)
477 iowrite8(0x03, ioaddr + PwrcsrClr1);
478
479 if (wolstat) {
480 char *reason;
481 switch (wolstat) {
482 case WOLmagic:
483 reason = "Magic packet";
484 break;
485 case WOLlnkon:
486 reason = "Link went up";
487 break;
488 case WOLlnkoff:
489 reason = "Link went down";
490 break;
491 case WOLucast:
492 reason = "Unicast packet";
493 break;
494 case WOLbmcast:
495 reason = "Multicast/broadcast packet";
496 break;
497 default:
498 reason = "Unknown";
499 }
500 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
501 DRV_NAME, reason);
502 }
503 }
504 }
505
506 static void rhine_chip_reset(struct net_device *dev)
507 {
508 struct rhine_private *rp = netdev_priv(dev);
509 void __iomem *ioaddr = rp->base;
510
511 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
512 IOSYNC;
513
514 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
515 printk(KERN_INFO "%s: Reset not complete yet. "
516 "Trying harder.\n", DRV_NAME);
517
518 /* Force reset */
519 if (rp->quirks & rqForceReset)
520 iowrite8(0x40, ioaddr + MiscCmd);
521
522 /* Reset can take somewhat longer (rare) */
523 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
524 }
525
526 if (debug > 1)
527 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
528 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
529 "failed" : "succeeded");
530 }
531
532 #ifdef USE_MMIO
533 static void enable_mmio(long pioaddr, u32 quirks)
534 {
535 int n;
536 if (quirks & rqRhineI) {
537 /* More recent docs say that this bit is reserved ... */
538 n = inb(pioaddr + ConfigA) | 0x20;
539 outb(n, pioaddr + ConfigA);
540 } else {
541 n = inb(pioaddr + ConfigD) | 0x80;
542 outb(n, pioaddr + ConfigD);
543 }
544 }
545 #endif
546
547 /*
548 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
549 * (plus 0x6C for Rhine-I/II)
550 */
551 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
552 {
553 struct rhine_private *rp = netdev_priv(dev);
554 void __iomem *ioaddr = rp->base;
555
556 outb(0x20, pioaddr + MACRegEEcsr);
557 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
558
559 #ifdef USE_MMIO
560 /*
561 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
562 * MMIO. If reloading EEPROM was done first this could be avoided, but
563 * it is not known if that still works with the "win98-reboot" problem.
564 */
565 enable_mmio(pioaddr, rp->quirks);
566 #endif
567
568 /* Turn off EEPROM-controlled wake-up (magic packet) */
569 if (rp->quirks & rqWOL)
570 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
571
572 }
573
574 #ifdef CONFIG_NET_POLL_CONTROLLER
575 static void rhine_poll(struct net_device *dev)
576 {
577 disable_irq(dev->irq);
578 rhine_interrupt(dev->irq, (void *)dev);
579 enable_irq(dev->irq);
580 }
581 #endif
582
583 static int rhine_napipoll(struct napi_struct *napi, int budget)
584 {
585 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
586 struct net_device *dev = rp->dev;
587 void __iomem *ioaddr = rp->base;
588 int work_done;
589
590 work_done = rhine_rx(dev, budget);
591
592 if (work_done < budget) {
593 napi_complete(napi);
594
595 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
596 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
597 IntrTxDone | IntrTxError | IntrTxUnderrun |
598 IntrPCIErr | IntrStatsMax | IntrLinkChange,
599 ioaddr + IntrEnable);
600 }
601 return work_done;
602 }
603
604 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
605 {
606 struct rhine_private *rp = netdev_priv(dev);
607
608 /* Reset the chip to erase previous misconfiguration. */
609 rhine_chip_reset(dev);
610
611 /* Rhine-I needs extra time to recuperate before EEPROM reload */
612 if (rp->quirks & rqRhineI)
613 msleep(5);
614
615 /* Reload EEPROM controlled bytes cleared by soft reset */
616 rhine_reload_eeprom(pioaddr, dev);
617 }
618
619 static const struct net_device_ops rhine_netdev_ops = {
620 .ndo_open = rhine_open,
621 .ndo_stop = rhine_close,
622 .ndo_start_xmit = rhine_start_tx,
623 .ndo_get_stats = rhine_get_stats,
624 .ndo_set_multicast_list = rhine_set_rx_mode,
625 .ndo_change_mtu = eth_change_mtu,
626 .ndo_validate_addr = eth_validate_addr,
627 .ndo_set_mac_address = eth_mac_addr,
628 .ndo_do_ioctl = netdev_ioctl,
629 .ndo_tx_timeout = rhine_tx_timeout,
630 #ifdef CONFIG_NET_POLL_CONTROLLER
631 .ndo_poll_controller = rhine_poll,
632 #endif
633 };
634
635 static int __devinit rhine_init_one(struct pci_dev *pdev,
636 const struct pci_device_id *ent)
637 {
638 struct net_device *dev;
639 struct rhine_private *rp;
640 int i, rc;
641 u32 quirks;
642 long pioaddr;
643 long memaddr;
644 void __iomem *ioaddr;
645 int io_size, phy_id;
646 const char *name;
647 #ifdef USE_MMIO
648 int bar = 1;
649 #else
650 int bar = 0;
651 #endif
652
653 /* when built into the kernel, we only print version if device is found */
654 #ifndef MODULE
655 static int printed_version;
656 if (!printed_version++)
657 printk(version);
658 #endif
659
660 io_size = 256;
661 phy_id = 0;
662 quirks = 0;
663 name = "Rhine";
664 if (pdev->revision < VTunknown0) {
665 quirks = rqRhineI;
666 io_size = 128;
667 }
668 else if (pdev->revision >= VT6102) {
669 quirks = rqWOL | rqForceReset;
670 if (pdev->revision < VT6105) {
671 name = "Rhine II";
672 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
673 }
674 else {
675 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
676 if (pdev->revision >= VT6105_B0)
677 quirks |= rq6patterns;
678 if (pdev->revision < VT6105M)
679 name = "Rhine III";
680 else
681 name = "Rhine III (Management Adapter)";
682 }
683 }
684
685 rc = pci_enable_device(pdev);
686 if (rc)
687 goto err_out;
688
689 /* this should always be supported */
690 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
691 if (rc) {
692 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
693 "the card!?\n");
694 goto err_out;
695 }
696
697 /* sanity check */
698 if ((pci_resource_len(pdev, 0) < io_size) ||
699 (pci_resource_len(pdev, 1) < io_size)) {
700 rc = -EIO;
701 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
702 goto err_out;
703 }
704
705 pioaddr = pci_resource_start(pdev, 0);
706 memaddr = pci_resource_start(pdev, 1);
707
708 pci_set_master(pdev);
709
710 dev = alloc_etherdev(sizeof(struct rhine_private));
711 if (!dev) {
712 rc = -ENOMEM;
713 printk(KERN_ERR "alloc_etherdev failed\n");
714 goto err_out;
715 }
716 SET_NETDEV_DEV(dev, &pdev->dev);
717
718 rp = netdev_priv(dev);
719 rp->dev = dev;
720 rp->quirks = quirks;
721 rp->pioaddr = pioaddr;
722 rp->pdev = pdev;
723
724 rc = pci_request_regions(pdev, DRV_NAME);
725 if (rc)
726 goto err_out_free_netdev;
727
728 ioaddr = pci_iomap(pdev, bar, io_size);
729 if (!ioaddr) {
730 rc = -EIO;
731 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
732 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
733 goto err_out_free_res;
734 }
735
736 #ifdef USE_MMIO
737 enable_mmio(pioaddr, quirks);
738
739 /* Check that selected MMIO registers match the PIO ones */
740 i = 0;
741 while (mmio_verify_registers[i]) {
742 int reg = mmio_verify_registers[i++];
743 unsigned char a = inb(pioaddr+reg);
744 unsigned char b = readb(ioaddr+reg);
745 if (a != b) {
746 rc = -EIO;
747 printk(KERN_ERR "MMIO do not match PIO [%02x] "
748 "(%02x != %02x)\n", reg, a, b);
749 goto err_out_unmap;
750 }
751 }
752 #endif /* USE_MMIO */
753
754 dev->base_addr = (unsigned long)ioaddr;
755 rp->base = ioaddr;
756
757 /* Get chip registers into a sane state */
758 rhine_power_init(dev);
759 rhine_hw_init(dev, pioaddr);
760
761 for (i = 0; i < 6; i++)
762 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
763 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
764
765 if (!is_valid_ether_addr(dev->perm_addr)) {
766 rc = -EIO;
767 printk(KERN_ERR "Invalid MAC address\n");
768 goto err_out_unmap;
769 }
770
771 /* For Rhine-I/II, phy_id is loaded from EEPROM */
772 if (!phy_id)
773 phy_id = ioread8(ioaddr + 0x6C);
774
775 dev->irq = pdev->irq;
776
777 spin_lock_init(&rp->lock);
778 rp->mii_if.dev = dev;
779 rp->mii_if.mdio_read = mdio_read;
780 rp->mii_if.mdio_write = mdio_write;
781 rp->mii_if.phy_id_mask = 0x1f;
782 rp->mii_if.reg_num_mask = 0x1f;
783
784 /* The chip-specific entries in the device structure. */
785 dev->netdev_ops = &rhine_netdev_ops;
786 dev->ethtool_ops = &netdev_ethtool_ops,
787 dev->watchdog_timeo = TX_TIMEOUT;
788
789 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
790
791 if (rp->quirks & rqRhineI)
792 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
793
794 /* dev->name not defined before register_netdev()! */
795 rc = register_netdev(dev);
796 if (rc)
797 goto err_out_unmap;
798
799 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
800 dev->name, name,
801 #ifdef USE_MMIO
802 memaddr,
803 #else
804 (long)ioaddr,
805 #endif
806 dev->dev_addr, pdev->irq);
807
808 pci_set_drvdata(pdev, dev);
809
810 {
811 u16 mii_cmd;
812 int mii_status = mdio_read(dev, phy_id, 1);
813 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
814 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
815 if (mii_status != 0xffff && mii_status != 0x0000) {
816 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
817 printk(KERN_INFO "%s: MII PHY found at address "
818 "%d, status 0x%4.4x advertising %4.4x "
819 "Link %4.4x.\n", dev->name, phy_id,
820 mii_status, rp->mii_if.advertising,
821 mdio_read(dev, phy_id, 5));
822
823 /* set IFF_RUNNING */
824 if (mii_status & BMSR_LSTATUS)
825 netif_carrier_on(dev);
826 else
827 netif_carrier_off(dev);
828
829 }
830 }
831 rp->mii_if.phy_id = phy_id;
832 if (debug > 1 && avoid_D3)
833 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
834 dev->name);
835
836 return 0;
837
838 err_out_unmap:
839 pci_iounmap(pdev, ioaddr);
840 err_out_free_res:
841 pci_release_regions(pdev);
842 err_out_free_netdev:
843 free_netdev(dev);
844 err_out:
845 return rc;
846 }
847
848 static int alloc_ring(struct net_device* dev)
849 {
850 struct rhine_private *rp = netdev_priv(dev);
851 void *ring;
852 dma_addr_t ring_dma;
853
854 ring = pci_alloc_consistent(rp->pdev,
855 RX_RING_SIZE * sizeof(struct rx_desc) +
856 TX_RING_SIZE * sizeof(struct tx_desc),
857 &ring_dma);
858 if (!ring) {
859 printk(KERN_ERR "Could not allocate DMA memory.\n");
860 return -ENOMEM;
861 }
862 if (rp->quirks & rqRhineI) {
863 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
864 PKT_BUF_SZ * TX_RING_SIZE,
865 &rp->tx_bufs_dma);
866 if (rp->tx_bufs == NULL) {
867 pci_free_consistent(rp->pdev,
868 RX_RING_SIZE * sizeof(struct rx_desc) +
869 TX_RING_SIZE * sizeof(struct tx_desc),
870 ring, ring_dma);
871 return -ENOMEM;
872 }
873 }
874
875 rp->rx_ring = ring;
876 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
877 rp->rx_ring_dma = ring_dma;
878 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
879
880 return 0;
881 }
882
883 static void free_ring(struct net_device* dev)
884 {
885 struct rhine_private *rp = netdev_priv(dev);
886
887 pci_free_consistent(rp->pdev,
888 RX_RING_SIZE * sizeof(struct rx_desc) +
889 TX_RING_SIZE * sizeof(struct tx_desc),
890 rp->rx_ring, rp->rx_ring_dma);
891 rp->tx_ring = NULL;
892
893 if (rp->tx_bufs)
894 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
895 rp->tx_bufs, rp->tx_bufs_dma);
896
897 rp->tx_bufs = NULL;
898
899 }
900
901 static void alloc_rbufs(struct net_device *dev)
902 {
903 struct rhine_private *rp = netdev_priv(dev);
904 dma_addr_t next;
905 int i;
906
907 rp->dirty_rx = rp->cur_rx = 0;
908
909 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
910 rp->rx_head_desc = &rp->rx_ring[0];
911 next = rp->rx_ring_dma;
912
913 /* Init the ring entries */
914 for (i = 0; i < RX_RING_SIZE; i++) {
915 rp->rx_ring[i].rx_status = 0;
916 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
917 next += sizeof(struct rx_desc);
918 rp->rx_ring[i].next_desc = cpu_to_le32(next);
919 rp->rx_skbuff[i] = NULL;
920 }
921 /* Mark the last entry as wrapping the ring. */
922 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
923
924 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
925 for (i = 0; i < RX_RING_SIZE; i++) {
926 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
927 rp->rx_skbuff[i] = skb;
928 if (skb == NULL)
929 break;
930 skb->dev = dev; /* Mark as being used by this device. */
931
932 rp->rx_skbuff_dma[i] =
933 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
934 PCI_DMA_FROMDEVICE);
935
936 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
937 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
938 }
939 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
940 }
941
942 static void free_rbufs(struct net_device* dev)
943 {
944 struct rhine_private *rp = netdev_priv(dev);
945 int i;
946
947 /* Free all the skbuffs in the Rx queue. */
948 for (i = 0; i < RX_RING_SIZE; i++) {
949 rp->rx_ring[i].rx_status = 0;
950 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
951 if (rp->rx_skbuff[i]) {
952 pci_unmap_single(rp->pdev,
953 rp->rx_skbuff_dma[i],
954 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
955 dev_kfree_skb(rp->rx_skbuff[i]);
956 }
957 rp->rx_skbuff[i] = NULL;
958 }
959 }
960
961 static void alloc_tbufs(struct net_device* dev)
962 {
963 struct rhine_private *rp = netdev_priv(dev);
964 dma_addr_t next;
965 int i;
966
967 rp->dirty_tx = rp->cur_tx = 0;
968 next = rp->tx_ring_dma;
969 for (i = 0; i < TX_RING_SIZE; i++) {
970 rp->tx_skbuff[i] = NULL;
971 rp->tx_ring[i].tx_status = 0;
972 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
973 next += sizeof(struct tx_desc);
974 rp->tx_ring[i].next_desc = cpu_to_le32(next);
975 if (rp->quirks & rqRhineI)
976 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
977 }
978 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
979
980 }
981
982 static void free_tbufs(struct net_device* dev)
983 {
984 struct rhine_private *rp = netdev_priv(dev);
985 int i;
986
987 for (i = 0; i < TX_RING_SIZE; i++) {
988 rp->tx_ring[i].tx_status = 0;
989 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
990 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
991 if (rp->tx_skbuff[i]) {
992 if (rp->tx_skbuff_dma[i]) {
993 pci_unmap_single(rp->pdev,
994 rp->tx_skbuff_dma[i],
995 rp->tx_skbuff[i]->len,
996 PCI_DMA_TODEVICE);
997 }
998 dev_kfree_skb(rp->tx_skbuff[i]);
999 }
1000 rp->tx_skbuff[i] = NULL;
1001 rp->tx_buf[i] = NULL;
1002 }
1003 }
1004
1005 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1006 {
1007 struct rhine_private *rp = netdev_priv(dev);
1008 void __iomem *ioaddr = rp->base;
1009
1010 mii_check_media(&rp->mii_if, debug, init_media);
1011
1012 if (rp->mii_if.full_duplex)
1013 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1014 ioaddr + ChipCmd1);
1015 else
1016 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1017 ioaddr + ChipCmd1);
1018 if (debug > 1)
1019 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1020 rp->mii_if.force_media, netif_carrier_ok(dev));
1021 }
1022
1023 /* Called after status of force_media possibly changed */
1024 static void rhine_set_carrier(struct mii_if_info *mii)
1025 {
1026 if (mii->force_media) {
1027 /* autoneg is off: Link is always assumed to be up */
1028 if (!netif_carrier_ok(mii->dev))
1029 netif_carrier_on(mii->dev);
1030 }
1031 else /* Let MMI library update carrier status */
1032 rhine_check_media(mii->dev, 0);
1033 if (debug > 1)
1034 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1035 mii->dev->name, mii->force_media,
1036 netif_carrier_ok(mii->dev));
1037 }
1038
1039 static void init_registers(struct net_device *dev)
1040 {
1041 struct rhine_private *rp = netdev_priv(dev);
1042 void __iomem *ioaddr = rp->base;
1043 int i;
1044
1045 for (i = 0; i < 6; i++)
1046 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1047
1048 /* Initialize other registers. */
1049 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1050 /* Configure initial FIFO thresholds. */
1051 iowrite8(0x20, ioaddr + TxConfig);
1052 rp->tx_thresh = 0x20;
1053 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1054
1055 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1056 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1057
1058 rhine_set_rx_mode(dev);
1059
1060 napi_enable(&rp->napi);
1061
1062 /* Enable interrupts by setting the interrupt mask. */
1063 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1064 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1065 IntrTxDone | IntrTxError | IntrTxUnderrun |
1066 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1067 ioaddr + IntrEnable);
1068
1069 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1070 ioaddr + ChipCmd);
1071 rhine_check_media(dev, 1);
1072 }
1073
1074 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1075 static void rhine_enable_linkmon(void __iomem *ioaddr)
1076 {
1077 iowrite8(0, ioaddr + MIICmd);
1078 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1079 iowrite8(0x80, ioaddr + MIICmd);
1080
1081 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1082
1083 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1084 }
1085
1086 /* Disable MII link status auto-polling (required for MDIO access) */
1087 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1088 {
1089 iowrite8(0, ioaddr + MIICmd);
1090
1091 if (quirks & rqRhineI) {
1092 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1093
1094 /* Can be called from ISR. Evil. */
1095 mdelay(1);
1096
1097 /* 0x80 must be set immediately before turning it off */
1098 iowrite8(0x80, ioaddr + MIICmd);
1099
1100 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1101
1102 /* Heh. Now clear 0x80 again. */
1103 iowrite8(0, ioaddr + MIICmd);
1104 }
1105 else
1106 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1107 }
1108
1109 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1110
1111 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1112 {
1113 struct rhine_private *rp = netdev_priv(dev);
1114 void __iomem *ioaddr = rp->base;
1115 int result;
1116
1117 rhine_disable_linkmon(ioaddr, rp->quirks);
1118
1119 /* rhine_disable_linkmon already cleared MIICmd */
1120 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1121 iowrite8(regnum, ioaddr + MIIRegAddr);
1122 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1123 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1124 result = ioread16(ioaddr + MIIData);
1125
1126 rhine_enable_linkmon(ioaddr);
1127 return result;
1128 }
1129
1130 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1131 {
1132 struct rhine_private *rp = netdev_priv(dev);
1133 void __iomem *ioaddr = rp->base;
1134
1135 rhine_disable_linkmon(ioaddr, rp->quirks);
1136
1137 /* rhine_disable_linkmon already cleared MIICmd */
1138 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1139 iowrite8(regnum, ioaddr + MIIRegAddr);
1140 iowrite16(value, ioaddr + MIIData);
1141 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1142 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1143
1144 rhine_enable_linkmon(ioaddr);
1145 }
1146
1147 static int rhine_open(struct net_device *dev)
1148 {
1149 struct rhine_private *rp = netdev_priv(dev);
1150 void __iomem *ioaddr = rp->base;
1151 int rc;
1152
1153 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1154 dev);
1155 if (rc)
1156 return rc;
1157
1158 if (debug > 1)
1159 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1160 dev->name, rp->pdev->irq);
1161
1162 rc = alloc_ring(dev);
1163 if (rc) {
1164 free_irq(rp->pdev->irq, dev);
1165 return rc;
1166 }
1167 alloc_rbufs(dev);
1168 alloc_tbufs(dev);
1169 rhine_chip_reset(dev);
1170 init_registers(dev);
1171 if (debug > 2)
1172 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1173 "MII status: %4.4x.\n",
1174 dev->name, ioread16(ioaddr + ChipCmd),
1175 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1176
1177 netif_start_queue(dev);
1178
1179 return 0;
1180 }
1181
1182 static void rhine_tx_timeout(struct net_device *dev)
1183 {
1184 struct rhine_private *rp = netdev_priv(dev);
1185 void __iomem *ioaddr = rp->base;
1186
1187 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1188 "%4.4x, resetting...\n",
1189 dev->name, ioread16(ioaddr + IntrStatus),
1190 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1191
1192 /* protect against concurrent rx interrupts */
1193 disable_irq(rp->pdev->irq);
1194
1195 napi_disable(&rp->napi);
1196
1197 spin_lock(&rp->lock);
1198
1199 /* clear all descriptors */
1200 free_tbufs(dev);
1201 free_rbufs(dev);
1202 alloc_tbufs(dev);
1203 alloc_rbufs(dev);
1204
1205 /* Reinitialize the hardware. */
1206 rhine_chip_reset(dev);
1207 init_registers(dev);
1208
1209 spin_unlock(&rp->lock);
1210 enable_irq(rp->pdev->irq);
1211
1212 dev->trans_start = jiffies;
1213 dev->stats.tx_errors++;
1214 netif_wake_queue(dev);
1215 }
1216
1217 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1218 struct net_device *dev)
1219 {
1220 struct rhine_private *rp = netdev_priv(dev);
1221 void __iomem *ioaddr = rp->base;
1222 unsigned entry;
1223 unsigned long flags;
1224
1225 /* Caution: the write order is important here, set the field
1226 with the "ownership" bits last. */
1227
1228 /* Calculate the next Tx descriptor entry. */
1229 entry = rp->cur_tx % TX_RING_SIZE;
1230
1231 if (skb_padto(skb, ETH_ZLEN))
1232 return NETDEV_TX_OK;
1233
1234 rp->tx_skbuff[entry] = skb;
1235
1236 if ((rp->quirks & rqRhineI) &&
1237 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1238 /* Must use alignment buffer. */
1239 if (skb->len > PKT_BUF_SZ) {
1240 /* packet too long, drop it */
1241 dev_kfree_skb(skb);
1242 rp->tx_skbuff[entry] = NULL;
1243 dev->stats.tx_dropped++;
1244 return NETDEV_TX_OK;
1245 }
1246
1247 /* Padding is not copied and so must be redone. */
1248 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1249 if (skb->len < ETH_ZLEN)
1250 memset(rp->tx_buf[entry] + skb->len, 0,
1251 ETH_ZLEN - skb->len);
1252 rp->tx_skbuff_dma[entry] = 0;
1253 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1254 (rp->tx_buf[entry] -
1255 rp->tx_bufs));
1256 } else {
1257 rp->tx_skbuff_dma[entry] =
1258 pci_map_single(rp->pdev, skb->data, skb->len,
1259 PCI_DMA_TODEVICE);
1260 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1261 }
1262
1263 rp->tx_ring[entry].desc_length =
1264 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1265
1266 /* lock eth irq */
1267 spin_lock_irqsave(&rp->lock, flags);
1268 wmb();
1269 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1270 wmb();
1271
1272 rp->cur_tx++;
1273
1274 /* Non-x86 Todo: explicitly flush cache lines here. */
1275
1276 /* Wake the potentially-idle transmit channel */
1277 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1278 ioaddr + ChipCmd1);
1279 IOSYNC;
1280
1281 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1282 netif_stop_queue(dev);
1283
1284 dev->trans_start = jiffies;
1285
1286 spin_unlock_irqrestore(&rp->lock, flags);
1287
1288 if (debug > 4) {
1289 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1290 dev->name, rp->cur_tx-1, entry);
1291 }
1292 return NETDEV_TX_OK;
1293 }
1294
1295 /* The interrupt handler does all of the Rx thread work and cleans up
1296 after the Tx thread. */
1297 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1298 {
1299 struct net_device *dev = dev_instance;
1300 struct rhine_private *rp = netdev_priv(dev);
1301 void __iomem *ioaddr = rp->base;
1302 u32 intr_status;
1303 int boguscnt = max_interrupt_work;
1304 int handled = 0;
1305
1306 while ((intr_status = get_intr_status(dev))) {
1307 handled = 1;
1308
1309 /* Acknowledge all of the current interrupt sources ASAP. */
1310 if (intr_status & IntrTxDescRace)
1311 iowrite8(0x08, ioaddr + IntrStatus2);
1312 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1313 IOSYNC;
1314
1315 if (debug > 4)
1316 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1317 dev->name, intr_status);
1318
1319 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1320 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1321 iowrite16(IntrTxAborted |
1322 IntrTxDone | IntrTxError | IntrTxUnderrun |
1323 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1324 ioaddr + IntrEnable);
1325
1326 napi_schedule(&rp->napi);
1327 }
1328
1329 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1330 if (intr_status & IntrTxErrSummary) {
1331 /* Avoid scavenging before Tx engine turned off */
1332 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1333 if (debug > 2 &&
1334 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1335 printk(KERN_WARNING "%s: "
1336 "rhine_interrupt() Tx engine "
1337 "still on.\n", dev->name);
1338 }
1339 rhine_tx(dev);
1340 }
1341
1342 /* Abnormal error summary/uncommon events handlers. */
1343 if (intr_status & (IntrPCIErr | IntrLinkChange |
1344 IntrStatsMax | IntrTxError | IntrTxAborted |
1345 IntrTxUnderrun | IntrTxDescRace))
1346 rhine_error(dev, intr_status);
1347
1348 if (--boguscnt < 0) {
1349 printk(KERN_WARNING "%s: Too much work at interrupt, "
1350 "status=%#8.8x.\n",
1351 dev->name, intr_status);
1352 break;
1353 }
1354 }
1355
1356 if (debug > 3)
1357 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1358 dev->name, ioread16(ioaddr + IntrStatus));
1359 return IRQ_RETVAL(handled);
1360 }
1361
1362 /* This routine is logically part of the interrupt handler, but isolated
1363 for clarity. */
1364 static void rhine_tx(struct net_device *dev)
1365 {
1366 struct rhine_private *rp = netdev_priv(dev);
1367 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1368
1369 spin_lock(&rp->lock);
1370
1371 /* find and cleanup dirty tx descriptors */
1372 while (rp->dirty_tx != rp->cur_tx) {
1373 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1374 if (debug > 6)
1375 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1376 entry, txstatus);
1377 if (txstatus & DescOwn)
1378 break;
1379 if (txstatus & 0x8000) {
1380 if (debug > 1)
1381 printk(KERN_DEBUG "%s: Transmit error, "
1382 "Tx status %8.8x.\n",
1383 dev->name, txstatus);
1384 dev->stats.tx_errors++;
1385 if (txstatus & 0x0400)
1386 dev->stats.tx_carrier_errors++;
1387 if (txstatus & 0x0200)
1388 dev->stats.tx_window_errors++;
1389 if (txstatus & 0x0100)
1390 dev->stats.tx_aborted_errors++;
1391 if (txstatus & 0x0080)
1392 dev->stats.tx_heartbeat_errors++;
1393 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1394 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1395 dev->stats.tx_fifo_errors++;
1396 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1397 break; /* Keep the skb - we try again */
1398 }
1399 /* Transmitter restarted in 'abnormal' handler. */
1400 } else {
1401 if (rp->quirks & rqRhineI)
1402 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1403 else
1404 dev->stats.collisions += txstatus & 0x0F;
1405 if (debug > 6)
1406 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1407 (txstatus >> 3) & 0xF,
1408 txstatus & 0xF);
1409 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1410 dev->stats.tx_packets++;
1411 }
1412 /* Free the original skb. */
1413 if (rp->tx_skbuff_dma[entry]) {
1414 pci_unmap_single(rp->pdev,
1415 rp->tx_skbuff_dma[entry],
1416 rp->tx_skbuff[entry]->len,
1417 PCI_DMA_TODEVICE);
1418 }
1419 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1420 rp->tx_skbuff[entry] = NULL;
1421 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1422 }
1423 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1424 netif_wake_queue(dev);
1425
1426 spin_unlock(&rp->lock);
1427 }
1428
1429 /* Process up to limit frames from receive ring */
1430 static int rhine_rx(struct net_device *dev, int limit)
1431 {
1432 struct rhine_private *rp = netdev_priv(dev);
1433 int count;
1434 int entry = rp->cur_rx % RX_RING_SIZE;
1435
1436 if (debug > 4) {
1437 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1438 dev->name, entry,
1439 le32_to_cpu(rp->rx_head_desc->rx_status));
1440 }
1441
1442 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1443 for (count = 0; count < limit; ++count) {
1444 struct rx_desc *desc = rp->rx_head_desc;
1445 u32 desc_status = le32_to_cpu(desc->rx_status);
1446 int data_size = desc_status >> 16;
1447
1448 if (desc_status & DescOwn)
1449 break;
1450
1451 if (debug > 4)
1452 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1453 desc_status);
1454
1455 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1456 if ((desc_status & RxWholePkt) != RxWholePkt) {
1457 printk(KERN_WARNING "%s: Oversized Ethernet "
1458 "frame spanned multiple buffers, entry "
1459 "%#x length %d status %8.8x!\n",
1460 dev->name, entry, data_size,
1461 desc_status);
1462 printk(KERN_WARNING "%s: Oversized Ethernet "
1463 "frame %p vs %p.\n", dev->name,
1464 rp->rx_head_desc, &rp->rx_ring[entry]);
1465 dev->stats.rx_length_errors++;
1466 } else if (desc_status & RxErr) {
1467 /* There was a error. */
1468 if (debug > 2)
1469 printk(KERN_DEBUG "rhine_rx() Rx "
1470 "error was %8.8x.\n",
1471 desc_status);
1472 dev->stats.rx_errors++;
1473 if (desc_status & 0x0030)
1474 dev->stats.rx_length_errors++;
1475 if (desc_status & 0x0048)
1476 dev->stats.rx_fifo_errors++;
1477 if (desc_status & 0x0004)
1478 dev->stats.rx_frame_errors++;
1479 if (desc_status & 0x0002) {
1480 /* this can also be updated outside the interrupt handler */
1481 spin_lock(&rp->lock);
1482 dev->stats.rx_crc_errors++;
1483 spin_unlock(&rp->lock);
1484 }
1485 }
1486 } else {
1487 struct sk_buff *skb;
1488 /* Length should omit the CRC */
1489 int pkt_len = data_size - 4;
1490
1491 /* Check if the packet is long enough to accept without
1492 copying to a minimally-sized skbuff. */
1493 if (pkt_len < rx_copybreak &&
1494 (skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN)) != NULL) {
1495 skb_reserve(skb, NET_IP_ALIGN); /* 16 byte align the IP header */
1496 pci_dma_sync_single_for_cpu(rp->pdev,
1497 rp->rx_skbuff_dma[entry],
1498 rp->rx_buf_sz,
1499 PCI_DMA_FROMDEVICE);
1500
1501 skb_copy_to_linear_data(skb,
1502 rp->rx_skbuff[entry]->data,
1503 pkt_len);
1504 skb_put(skb, pkt_len);
1505 pci_dma_sync_single_for_device(rp->pdev,
1506 rp->rx_skbuff_dma[entry],
1507 rp->rx_buf_sz,
1508 PCI_DMA_FROMDEVICE);
1509 } else {
1510 skb = rp->rx_skbuff[entry];
1511 if (skb == NULL) {
1512 printk(KERN_ERR "%s: Inconsistent Rx "
1513 "descriptor chain.\n",
1514 dev->name);
1515 break;
1516 }
1517 rp->rx_skbuff[entry] = NULL;
1518 skb_put(skb, pkt_len);
1519 pci_unmap_single(rp->pdev,
1520 rp->rx_skbuff_dma[entry],
1521 rp->rx_buf_sz,
1522 PCI_DMA_FROMDEVICE);
1523 }
1524 skb->protocol = eth_type_trans(skb, dev);
1525 netif_receive_skb(skb);
1526 dev->stats.rx_bytes += pkt_len;
1527 dev->stats.rx_packets++;
1528 }
1529 entry = (++rp->cur_rx) % RX_RING_SIZE;
1530 rp->rx_head_desc = &rp->rx_ring[entry];
1531 }
1532
1533 /* Refill the Rx ring buffers. */
1534 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1535 struct sk_buff *skb;
1536 entry = rp->dirty_rx % RX_RING_SIZE;
1537 if (rp->rx_skbuff[entry] == NULL) {
1538 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1539 rp->rx_skbuff[entry] = skb;
1540 if (skb == NULL)
1541 break; /* Better luck next round. */
1542 skb->dev = dev; /* Mark as being used by this device. */
1543 rp->rx_skbuff_dma[entry] =
1544 pci_map_single(rp->pdev, skb->data,
1545 rp->rx_buf_sz,
1546 PCI_DMA_FROMDEVICE);
1547 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1548 }
1549 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1550 }
1551
1552 return count;
1553 }
1554
1555 /*
1556 * Clears the "tally counters" for CRC errors and missed frames(?).
1557 * It has been reported that some chips need a write of 0 to clear
1558 * these, for others the counters are set to 1 when written to and
1559 * instead cleared when read. So we clear them both ways ...
1560 */
1561 static inline void clear_tally_counters(void __iomem *ioaddr)
1562 {
1563 iowrite32(0, ioaddr + RxMissed);
1564 ioread16(ioaddr + RxCRCErrs);
1565 ioread16(ioaddr + RxMissed);
1566 }
1567
1568 static void rhine_restart_tx(struct net_device *dev) {
1569 struct rhine_private *rp = netdev_priv(dev);
1570 void __iomem *ioaddr = rp->base;
1571 int entry = rp->dirty_tx % TX_RING_SIZE;
1572 u32 intr_status;
1573
1574 /*
1575 * If new errors occured, we need to sort them out before doing Tx.
1576 * In that case the ISR will be back here RSN anyway.
1577 */
1578 intr_status = get_intr_status(dev);
1579
1580 if ((intr_status & IntrTxErrSummary) == 0) {
1581
1582 /* We know better than the chip where it should continue. */
1583 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1584 ioaddr + TxRingPtr);
1585
1586 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1587 ioaddr + ChipCmd);
1588 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1589 ioaddr + ChipCmd1);
1590 IOSYNC;
1591 }
1592 else {
1593 /* This should never happen */
1594 if (debug > 1)
1595 printk(KERN_WARNING "%s: rhine_restart_tx() "
1596 "Another error occured %8.8x.\n",
1597 dev->name, intr_status);
1598 }
1599
1600 }
1601
1602 static void rhine_error(struct net_device *dev, int intr_status)
1603 {
1604 struct rhine_private *rp = netdev_priv(dev);
1605 void __iomem *ioaddr = rp->base;
1606
1607 spin_lock(&rp->lock);
1608
1609 if (intr_status & IntrLinkChange)
1610 rhine_check_media(dev, 0);
1611 if (intr_status & IntrStatsMax) {
1612 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1613 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1614 clear_tally_counters(ioaddr);
1615 }
1616 if (intr_status & IntrTxAborted) {
1617 if (debug > 1)
1618 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1619 dev->name, intr_status);
1620 }
1621 if (intr_status & IntrTxUnderrun) {
1622 if (rp->tx_thresh < 0xE0)
1623 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1624 if (debug > 1)
1625 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1626 "threshold now %2.2x.\n",
1627 dev->name, rp->tx_thresh);
1628 }
1629 if (intr_status & IntrTxDescRace) {
1630 if (debug > 2)
1631 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1632 dev->name);
1633 }
1634 if ((intr_status & IntrTxError) &&
1635 (intr_status & (IntrTxAborted |
1636 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1637 if (rp->tx_thresh < 0xE0) {
1638 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1639 }
1640 if (debug > 1)
1641 printk(KERN_INFO "%s: Unspecified error. Tx "
1642 "threshold now %2.2x.\n",
1643 dev->name, rp->tx_thresh);
1644 }
1645 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1646 IntrTxError))
1647 rhine_restart_tx(dev);
1648
1649 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1650 IntrTxError | IntrTxAborted | IntrNormalSummary |
1651 IntrTxDescRace)) {
1652 if (debug > 1)
1653 printk(KERN_ERR "%s: Something Wicked happened! "
1654 "%8.8x.\n", dev->name, intr_status);
1655 }
1656
1657 spin_unlock(&rp->lock);
1658 }
1659
1660 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1661 {
1662 struct rhine_private *rp = netdev_priv(dev);
1663 void __iomem *ioaddr = rp->base;
1664 unsigned long flags;
1665
1666 spin_lock_irqsave(&rp->lock, flags);
1667 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1668 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1669 clear_tally_counters(ioaddr);
1670 spin_unlock_irqrestore(&rp->lock, flags);
1671
1672 return &dev->stats;
1673 }
1674
1675 static void rhine_set_rx_mode(struct net_device *dev)
1676 {
1677 struct rhine_private *rp = netdev_priv(dev);
1678 void __iomem *ioaddr = rp->base;
1679 u32 mc_filter[2]; /* Multicast hash filter */
1680 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1681
1682 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1683 rx_mode = 0x1C;
1684 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1685 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1686 } else if ((dev->mc_count > multicast_filter_limit)
1687 || (dev->flags & IFF_ALLMULTI)) {
1688 /* Too many to match, or accept all multicasts. */
1689 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1690 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1691 rx_mode = 0x0C;
1692 } else {
1693 struct dev_mc_list *mclist;
1694 int i;
1695 memset(mc_filter, 0, sizeof(mc_filter));
1696 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1697 i++, mclist = mclist->next) {
1698 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1699
1700 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1701 }
1702 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1703 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1704 rx_mode = 0x0C;
1705 }
1706 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1707 }
1708
1709 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1710 {
1711 struct rhine_private *rp = netdev_priv(dev);
1712
1713 strcpy(info->driver, DRV_NAME);
1714 strcpy(info->version, DRV_VERSION);
1715 strcpy(info->bus_info, pci_name(rp->pdev));
1716 }
1717
1718 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1719 {
1720 struct rhine_private *rp = netdev_priv(dev);
1721 int rc;
1722
1723 spin_lock_irq(&rp->lock);
1724 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1725 spin_unlock_irq(&rp->lock);
1726
1727 return rc;
1728 }
1729
1730 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1731 {
1732 struct rhine_private *rp = netdev_priv(dev);
1733 int rc;
1734
1735 spin_lock_irq(&rp->lock);
1736 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1737 spin_unlock_irq(&rp->lock);
1738 rhine_set_carrier(&rp->mii_if);
1739
1740 return rc;
1741 }
1742
1743 static int netdev_nway_reset(struct net_device *dev)
1744 {
1745 struct rhine_private *rp = netdev_priv(dev);
1746
1747 return mii_nway_restart(&rp->mii_if);
1748 }
1749
1750 static u32 netdev_get_link(struct net_device *dev)
1751 {
1752 struct rhine_private *rp = netdev_priv(dev);
1753
1754 return mii_link_ok(&rp->mii_if);
1755 }
1756
1757 static u32 netdev_get_msglevel(struct net_device *dev)
1758 {
1759 return debug;
1760 }
1761
1762 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1763 {
1764 debug = value;
1765 }
1766
1767 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1768 {
1769 struct rhine_private *rp = netdev_priv(dev);
1770
1771 if (!(rp->quirks & rqWOL))
1772 return;
1773
1774 spin_lock_irq(&rp->lock);
1775 wol->supported = WAKE_PHY | WAKE_MAGIC |
1776 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1777 wol->wolopts = rp->wolopts;
1778 spin_unlock_irq(&rp->lock);
1779 }
1780
1781 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1782 {
1783 struct rhine_private *rp = netdev_priv(dev);
1784 u32 support = WAKE_PHY | WAKE_MAGIC |
1785 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1786
1787 if (!(rp->quirks & rqWOL))
1788 return -EINVAL;
1789
1790 if (wol->wolopts & ~support)
1791 return -EINVAL;
1792
1793 spin_lock_irq(&rp->lock);
1794 rp->wolopts = wol->wolopts;
1795 spin_unlock_irq(&rp->lock);
1796
1797 return 0;
1798 }
1799
1800 static const struct ethtool_ops netdev_ethtool_ops = {
1801 .get_drvinfo = netdev_get_drvinfo,
1802 .get_settings = netdev_get_settings,
1803 .set_settings = netdev_set_settings,
1804 .nway_reset = netdev_nway_reset,
1805 .get_link = netdev_get_link,
1806 .get_msglevel = netdev_get_msglevel,
1807 .set_msglevel = netdev_set_msglevel,
1808 .get_wol = rhine_get_wol,
1809 .set_wol = rhine_set_wol,
1810 };
1811
1812 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1813 {
1814 struct rhine_private *rp = netdev_priv(dev);
1815 int rc;
1816
1817 if (!netif_running(dev))
1818 return -EINVAL;
1819
1820 spin_lock_irq(&rp->lock);
1821 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1822 spin_unlock_irq(&rp->lock);
1823 rhine_set_carrier(&rp->mii_if);
1824
1825 return rc;
1826 }
1827
1828 static int rhine_close(struct net_device *dev)
1829 {
1830 struct rhine_private *rp = netdev_priv(dev);
1831 void __iomem *ioaddr = rp->base;
1832
1833 spin_lock_irq(&rp->lock);
1834
1835 netif_stop_queue(dev);
1836 napi_disable(&rp->napi);
1837
1838 if (debug > 1)
1839 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1840 "status was %4.4x.\n",
1841 dev->name, ioread16(ioaddr + ChipCmd));
1842
1843 /* Switch to loopback mode to avoid hardware races. */
1844 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1845
1846 /* Disable interrupts by clearing the interrupt mask. */
1847 iowrite16(0x0000, ioaddr + IntrEnable);
1848
1849 /* Stop the chip's Tx and Rx processes. */
1850 iowrite16(CmdStop, ioaddr + ChipCmd);
1851
1852 spin_unlock_irq(&rp->lock);
1853
1854 free_irq(rp->pdev->irq, dev);
1855 free_rbufs(dev);
1856 free_tbufs(dev);
1857 free_ring(dev);
1858
1859 return 0;
1860 }
1861
1862
1863 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1864 {
1865 struct net_device *dev = pci_get_drvdata(pdev);
1866 struct rhine_private *rp = netdev_priv(dev);
1867
1868 unregister_netdev(dev);
1869
1870 pci_iounmap(pdev, rp->base);
1871 pci_release_regions(pdev);
1872
1873 free_netdev(dev);
1874 pci_disable_device(pdev);
1875 pci_set_drvdata(pdev, NULL);
1876 }
1877
1878 static void rhine_shutdown (struct pci_dev *pdev)
1879 {
1880 struct net_device *dev = pci_get_drvdata(pdev);
1881 struct rhine_private *rp = netdev_priv(dev);
1882 void __iomem *ioaddr = rp->base;
1883
1884 if (!(rp->quirks & rqWOL))
1885 return; /* Nothing to do for non-WOL adapters */
1886
1887 rhine_power_init(dev);
1888
1889 /* Make sure we use pattern 0, 1 and not 4, 5 */
1890 if (rp->quirks & rq6patterns)
1891 iowrite8(0x04, ioaddr + WOLcgClr);
1892
1893 if (rp->wolopts & WAKE_MAGIC) {
1894 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1895 /*
1896 * Turn EEPROM-controlled wake-up back on -- some hardware may
1897 * not cooperate otherwise.
1898 */
1899 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1900 }
1901
1902 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1903 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1904
1905 if (rp->wolopts & WAKE_PHY)
1906 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1907
1908 if (rp->wolopts & WAKE_UCAST)
1909 iowrite8(WOLucast, ioaddr + WOLcrSet);
1910
1911 if (rp->wolopts) {
1912 /* Enable legacy WOL (for old motherboards) */
1913 iowrite8(0x01, ioaddr + PwcfgSet);
1914 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1915 }
1916
1917 /* Hit power state D3 (sleep) */
1918 if (!avoid_D3)
1919 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1920
1921 /* TODO: Check use of pci_enable_wake() */
1922
1923 }
1924
1925 #ifdef CONFIG_PM
1926 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1927 {
1928 struct net_device *dev = pci_get_drvdata(pdev);
1929 struct rhine_private *rp = netdev_priv(dev);
1930 unsigned long flags;
1931
1932 if (!netif_running(dev))
1933 return 0;
1934
1935 napi_disable(&rp->napi);
1936
1937 netif_device_detach(dev);
1938 pci_save_state(pdev);
1939
1940 spin_lock_irqsave(&rp->lock, flags);
1941 rhine_shutdown(pdev);
1942 spin_unlock_irqrestore(&rp->lock, flags);
1943
1944 free_irq(dev->irq, dev);
1945 return 0;
1946 }
1947
1948 static int rhine_resume(struct pci_dev *pdev)
1949 {
1950 struct net_device *dev = pci_get_drvdata(pdev);
1951 struct rhine_private *rp = netdev_priv(dev);
1952 unsigned long flags;
1953 int ret;
1954
1955 if (!netif_running(dev))
1956 return 0;
1957
1958 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1959 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1960
1961 ret = pci_set_power_state(pdev, PCI_D0);
1962 if (debug > 1)
1963 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1964 dev->name, ret ? "failed" : "succeeded", ret);
1965
1966 pci_restore_state(pdev);
1967
1968 spin_lock_irqsave(&rp->lock, flags);
1969 #ifdef USE_MMIO
1970 enable_mmio(rp->pioaddr, rp->quirks);
1971 #endif
1972 rhine_power_init(dev);
1973 free_tbufs(dev);
1974 free_rbufs(dev);
1975 alloc_tbufs(dev);
1976 alloc_rbufs(dev);
1977 init_registers(dev);
1978 spin_unlock_irqrestore(&rp->lock, flags);
1979
1980 netif_device_attach(dev);
1981
1982 return 0;
1983 }
1984 #endif /* CONFIG_PM */
1985
1986 static struct pci_driver rhine_driver = {
1987 .name = DRV_NAME,
1988 .id_table = rhine_pci_tbl,
1989 .probe = rhine_init_one,
1990 .remove = __devexit_p(rhine_remove_one),
1991 #ifdef CONFIG_PM
1992 .suspend = rhine_suspend,
1993 .resume = rhine_resume,
1994 #endif /* CONFIG_PM */
1995 .shutdown = rhine_shutdown,
1996 };
1997
1998 static struct dmi_system_id __initdata rhine_dmi_table[] = {
1999 {
2000 .ident = "EPIA-M",
2001 .matches = {
2002 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2003 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2004 },
2005 },
2006 {
2007 .ident = "KV7",
2008 .matches = {
2009 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2010 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2011 },
2012 },
2013 { NULL }
2014 };
2015
2016 static int __init rhine_init(void)
2017 {
2018 /* when a module, this is printed whether or not devices are found in probe */
2019 #ifdef MODULE
2020 printk(version);
2021 #endif
2022 if (dmi_check_system(rhine_dmi_table)) {
2023 /* these BIOSes fail at PXE boot if chip is in D3 */
2024 avoid_D3 = 1;
2025 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2026 "enabled.\n",
2027 DRV_NAME);
2028 }
2029 else if (avoid_D3)
2030 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2031
2032 return pci_register_driver(&rhine_driver);
2033 }
2034
2035
2036 static void __exit rhine_cleanup(void)
2037 {
2038 pci_unregister_driver(&rhine_driver);
2039 }
2040
2041
2042 module_init(rhine_init);
2043 module_exit(rhine_cleanup);
This page took 0.076713 seconds and 5 git commands to generate.