via-velocity: the link is not correctly detected when the device starts
[deliverable/linux.git] / drivers / net / via-velocity.c
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * Big-endian support
12 * rx_copybreak/alignment
13 * Scatter gather
14 * More testing
15 *
16 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@redhat.com>
17 * Additional fixes and clean up: Francois Romieu
18 *
19 * This source has not been verified for use in safety critical systems.
20 *
21 * Please direct queries about the revamped driver to the linux-kernel
22 * list not VIA.
23 *
24 * Original code:
25 *
26 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
27 * All rights reserved.
28 *
29 * This software may be redistributed and/or modified under
30 * the terms of the GNU General Public License as published by the Free
31 * Software Foundation; either version 2 of the License, or
32 * any later version.
33 *
34 * This program is distributed in the hope that it will be useful, but
35 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
36 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
37 * for more details.
38 *
39 * Author: Chuang Liang-Shing, AJ Jiang
40 *
41 * Date: Jan 24, 2003
42 *
43 * MODULE_LICENSE("GPL");
44 *
45 */
46
47
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/config.h>
51 #include <linux/init.h>
52 #include <linux/mm.h>
53 #include <linux/errno.h>
54 #include <linux/ioport.h>
55 #include <linux/pci.h>
56 #include <linux/kernel.h>
57 #include <linux/netdevice.h>
58 #include <linux/etherdevice.h>
59 #include <linux/skbuff.h>
60 #include <linux/delay.h>
61 #include <linux/timer.h>
62 #include <linux/slab.h>
63 #include <linux/interrupt.h>
64 #include <linux/string.h>
65 #include <linux/wait.h>
66 #include <asm/io.h>
67 #include <linux/if.h>
68 #include <linux/config.h>
69 #include <asm/uaccess.h>
70 #include <linux/proc_fs.h>
71 #include <linux/inetdevice.h>
72 #include <linux/reboot.h>
73 #include <linux/ethtool.h>
74 #include <linux/mii.h>
75 #include <linux/in.h>
76 #include <linux/if_arp.h>
77 #include <linux/ip.h>
78 #include <linux/tcp.h>
79 #include <linux/udp.h>
80 #include <linux/crc-ccitt.h>
81 #include <linux/crc32.h>
82
83 #include "via-velocity.h"
84
85
86 static int velocity_nics = 0;
87 static int msglevel = MSG_LEVEL_INFO;
88
89
90 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
91 static struct ethtool_ops velocity_ethtool_ops;
92
93 /*
94 Define module options
95 */
96
97 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
98 MODULE_LICENSE("GPL");
99 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
100
101 #define VELOCITY_PARAM(N,D) \
102 static int N[MAX_UNITS]=OPTION_DEFAULT;\
103 module_param_array(N, int, NULL, 0); \
104 MODULE_PARM_DESC(N, D);
105
106 #define RX_DESC_MIN 64
107 #define RX_DESC_MAX 255
108 #define RX_DESC_DEF 64
109 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
110
111 #define TX_DESC_MIN 16
112 #define TX_DESC_MAX 256
113 #define TX_DESC_DEF 64
114 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
115
116 #define VLAN_ID_MIN 0
117 #define VLAN_ID_MAX 4095
118 #define VLAN_ID_DEF 0
119 /* VID_setting[] is used for setting the VID of NIC.
120 0: default VID.
121 1-4094: other VIDs.
122 */
123 VELOCITY_PARAM(VID_setting, "802.1Q VLAN ID");
124
125 #define RX_THRESH_MIN 0
126 #define RX_THRESH_MAX 3
127 #define RX_THRESH_DEF 0
128 /* rx_thresh[] is used for controlling the receive fifo threshold.
129 0: indicate the rxfifo threshold is 128 bytes.
130 1: indicate the rxfifo threshold is 512 bytes.
131 2: indicate the rxfifo threshold is 1024 bytes.
132 3: indicate the rxfifo threshold is store & forward.
133 */
134 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
135
136 #define DMA_LENGTH_MIN 0
137 #define DMA_LENGTH_MAX 7
138 #define DMA_LENGTH_DEF 0
139
140 /* DMA_length[] is used for controlling the DMA length
141 0: 8 DWORDs
142 1: 16 DWORDs
143 2: 32 DWORDs
144 3: 64 DWORDs
145 4: 128 DWORDs
146 5: 256 DWORDs
147 6: SF(flush till emply)
148 7: SF(flush till emply)
149 */
150 VELOCITY_PARAM(DMA_length, "DMA length");
151
152 #define TAGGING_DEF 0
153 /* enable_tagging[] is used for enabling 802.1Q VID tagging.
154 0: disable VID seeting(default).
155 1: enable VID setting.
156 */
157 VELOCITY_PARAM(enable_tagging, "Enable 802.1Q tagging");
158
159 #define IP_ALIG_DEF 0
160 /* IP_byte_align[] is used for IP header DWORD byte aligned
161 0: indicate the IP header won't be DWORD byte aligned.(Default) .
162 1: indicate the IP header will be DWORD byte aligned.
163 In some enviroment, the IP header should be DWORD byte aligned,
164 or the packet will be droped when we receive it. (eg: IPVS)
165 */
166 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
167
168 #define TX_CSUM_DEF 1
169 /* txcsum_offload[] is used for setting the checksum offload ability of NIC.
170 (We only support RX checksum offload now)
171 0: disable csum_offload[checksum offload
172 1: enable checksum offload. (Default)
173 */
174 VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
175
176 #define FLOW_CNTL_DEF 1
177 #define FLOW_CNTL_MIN 1
178 #define FLOW_CNTL_MAX 5
179
180 /* flow_control[] is used for setting the flow control ability of NIC.
181 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
182 2: enable TX flow control.
183 3: enable RX flow control.
184 4: enable RX/TX flow control.
185 5: disable
186 */
187 VELOCITY_PARAM(flow_control, "Enable flow control ability");
188
189 #define MED_LNK_DEF 0
190 #define MED_LNK_MIN 0
191 #define MED_LNK_MAX 4
192 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
193 0: indicate autonegotiation for both speed and duplex mode
194 1: indicate 100Mbps half duplex mode
195 2: indicate 100Mbps full duplex mode
196 3: indicate 10Mbps half duplex mode
197 4: indicate 10Mbps full duplex mode
198
199 Note:
200 if EEPROM have been set to the force mode, this option is ignored
201 by driver.
202 */
203 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
204
205 #define VAL_PKT_LEN_DEF 0
206 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
207 0: Receive frame with invalid layer 2 length (Default)
208 1: Drop frame with invalid layer 2 length
209 */
210 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
211
212 #define WOL_OPT_DEF 0
213 #define WOL_OPT_MIN 0
214 #define WOL_OPT_MAX 7
215 /* wol_opts[] is used for controlling wake on lan behavior.
216 0: Wake up if recevied a magic packet. (Default)
217 1: Wake up if link status is on/off.
218 2: Wake up if recevied an arp packet.
219 4: Wake up if recevied any unicast packet.
220 Those value can be sumed up to support more than one option.
221 */
222 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
223
224 #define INT_WORKS_DEF 20
225 #define INT_WORKS_MIN 10
226 #define INT_WORKS_MAX 64
227
228 VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
229
230 static int rx_copybreak = 200;
231 module_param(rx_copybreak, int, 0644);
232 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
233
234 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, struct velocity_info_tbl *info);
235 static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
236 static void velocity_print_info(struct velocity_info *vptr);
237 static int velocity_open(struct net_device *dev);
238 static int velocity_change_mtu(struct net_device *dev, int mtu);
239 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
240 static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs);
241 static void velocity_set_multi(struct net_device *dev);
242 static struct net_device_stats *velocity_get_stats(struct net_device *dev);
243 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
244 static int velocity_close(struct net_device *dev);
245 static int velocity_receive_frame(struct velocity_info *, int idx);
246 static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
247 static void velocity_free_rd_ring(struct velocity_info *vptr);
248 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
249 static int velocity_soft_reset(struct velocity_info *vptr);
250 static void mii_init(struct velocity_info *vptr, u32 mii_status);
251 static u32 velocity_get_link(struct net_device *dev);
252 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
253 static void velocity_print_link_status(struct velocity_info *vptr);
254 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
255 static void velocity_shutdown(struct velocity_info *vptr);
256 static void enable_flow_control_ability(struct velocity_info *vptr);
257 static void enable_mii_autopoll(struct mac_regs __iomem * regs);
258 static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
259 static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
260 static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
261 static u32 check_connection_type(struct mac_regs __iomem * regs);
262 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
263
264 #ifdef CONFIG_PM
265
266 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
267 static int velocity_resume(struct pci_dev *pdev);
268
269 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
270
271 static struct notifier_block velocity_inetaddr_notifier = {
272 .notifier_call = velocity_netdev_event,
273 };
274
275 static DEFINE_SPINLOCK(velocity_dev_list_lock);
276 static LIST_HEAD(velocity_dev_list);
277
278 static void velocity_register_notifier(void)
279 {
280 register_inetaddr_notifier(&velocity_inetaddr_notifier);
281 }
282
283 static void velocity_unregister_notifier(void)
284 {
285 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
286 }
287
288 #else /* CONFIG_PM */
289
290 #define velocity_register_notifier() do {} while (0)
291 #define velocity_unregister_notifier() do {} while (0)
292
293 #endif /* !CONFIG_PM */
294
295 /*
296 * Internal board variants. At the moment we have only one
297 */
298
299 static struct velocity_info_tbl chip_info_table[] = {
300 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 256, 1, 0x00FFFFFFUL},
301 {0, NULL}
302 };
303
304 /*
305 * Describe the PCI device identifiers that we support in this
306 * device driver. Used for hotplug autoloading.
307 */
308
309 static struct pci_device_id velocity_id_table[] __devinitdata = {
310 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X,
311 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) chip_info_table},
312 {0, }
313 };
314
315 MODULE_DEVICE_TABLE(pci, velocity_id_table);
316
317 /**
318 * get_chip_name - identifier to name
319 * @id: chip identifier
320 *
321 * Given a chip identifier return a suitable description. Returns
322 * a pointer a static string valid while the driver is loaded.
323 */
324
325 static char __devinit *get_chip_name(enum chip_type chip_id)
326 {
327 int i;
328 for (i = 0; chip_info_table[i].name != NULL; i++)
329 if (chip_info_table[i].chip_id == chip_id)
330 break;
331 return chip_info_table[i].name;
332 }
333
334 /**
335 * velocity_remove1 - device unplug
336 * @pdev: PCI device being removed
337 *
338 * Device unload callback. Called on an unplug or on module
339 * unload for each active device that is present. Disconnects
340 * the device from the network layer and frees all the resources
341 */
342
343 static void __devexit velocity_remove1(struct pci_dev *pdev)
344 {
345 struct net_device *dev = pci_get_drvdata(pdev);
346 struct velocity_info *vptr = dev->priv;
347
348 #ifdef CONFIG_PM
349 unsigned long flags;
350
351 spin_lock_irqsave(&velocity_dev_list_lock, flags);
352 if (!list_empty(&velocity_dev_list))
353 list_del(&vptr->list);
354 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
355 #endif
356 unregister_netdev(dev);
357 iounmap(vptr->mac_regs);
358 pci_release_regions(pdev);
359 pci_disable_device(pdev);
360 pci_set_drvdata(pdev, NULL);
361 free_netdev(dev);
362
363 velocity_nics--;
364 }
365
366 /**
367 * velocity_set_int_opt - parser for integer options
368 * @opt: pointer to option value
369 * @val: value the user requested (or -1 for default)
370 * @min: lowest value allowed
371 * @max: highest value allowed
372 * @def: default value
373 * @name: property name
374 * @dev: device name
375 *
376 * Set an integer property in the module options. This function does
377 * all the verification and checking as well as reporting so that
378 * we don't duplicate code for each option.
379 */
380
381 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, char *devname)
382 {
383 if (val == -1)
384 *opt = def;
385 else if (val < min || val > max) {
386 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
387 devname, name, min, max);
388 *opt = def;
389 } else {
390 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
391 devname, name, val);
392 *opt = val;
393 }
394 }
395
396 /**
397 * velocity_set_bool_opt - parser for boolean options
398 * @opt: pointer to option value
399 * @val: value the user requested (or -1 for default)
400 * @def: default value (yes/no)
401 * @flag: numeric value to set for true.
402 * @name: property name
403 * @dev: device name
404 *
405 * Set a boolean property in the module options. This function does
406 * all the verification and checking as well as reporting so that
407 * we don't duplicate code for each option.
408 */
409
410 static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, char *devname)
411 {
412 (*opt) &= (~flag);
413 if (val == -1)
414 *opt |= (def ? flag : 0);
415 else if (val < 0 || val > 1) {
416 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
417 devname, name);
418 *opt |= (def ? flag : 0);
419 } else {
420 printk(KERN_INFO "%s: set parameter %s to %s\n",
421 devname, name, val ? "TRUE" : "FALSE");
422 *opt |= (val ? flag : 0);
423 }
424 }
425
426 /**
427 * velocity_get_options - set options on device
428 * @opts: option structure for the device
429 * @index: index of option to use in module options array
430 * @devname: device name
431 *
432 * Turn the module and command options into a single structure
433 * for the current device
434 */
435
436 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, char *devname)
437 {
438
439 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
440 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
441 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
442 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
443 velocity_set_int_opt(&opts->vid, VID_setting[index], VLAN_ID_MIN, VLAN_ID_MAX, VLAN_ID_DEF, "VID_setting", devname);
444 velocity_set_bool_opt(&opts->flags, enable_tagging[index], TAGGING_DEF, VELOCITY_FLAGS_TAGGING, "enable_tagging", devname);
445 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
446 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
447 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
448 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
449 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
450 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
451 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
452 opts->numrx = (opts->numrx & ~3);
453 }
454
455 /**
456 * velocity_init_cam_filter - initialise CAM
457 * @vptr: velocity to program
458 *
459 * Initialize the content addressable memory used for filters. Load
460 * appropriately according to the presence of VLAN
461 */
462
463 static void velocity_init_cam_filter(struct velocity_info *vptr)
464 {
465 struct mac_regs __iomem * regs = vptr->mac_regs;
466
467 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
468 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
469 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
470
471 /* Disable all CAMs */
472 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
473 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
474 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
475 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
476
477 /* Enable first VCAM */
478 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
479 /* If Tagging option is enabled and VLAN ID is not zero, then
480 turn on MCFG_RTGOPT also */
481 if (vptr->options.vid != 0)
482 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
483
484 mac_set_cam(regs, 0, (u8 *) & (vptr->options.vid), VELOCITY_VLAN_ID_CAM);
485 vptr->vCAMmask[0] |= 1;
486 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
487 } else {
488 u16 temp = 0;
489 mac_set_cam(regs, 0, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
490 temp = 1;
491 mac_set_cam_mask(regs, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
492 }
493 }
494
495 /**
496 * velocity_rx_reset - handle a receive reset
497 * @vptr: velocity we are resetting
498 *
499 * Reset the ownership and status for the receive ring side.
500 * Hand all the receive queue to the NIC.
501 */
502
503 static void velocity_rx_reset(struct velocity_info *vptr)
504 {
505
506 struct mac_regs __iomem * regs = vptr->mac_regs;
507 int i;
508
509 vptr->rd_dirty = vptr->rd_filled = vptr->rd_curr = 0;
510
511 /*
512 * Init state, all RD entries belong to the NIC
513 */
514 for (i = 0; i < vptr->options.numrx; ++i)
515 vptr->rd_ring[i].rdesc0.owner = OWNED_BY_NIC;
516
517 writew(vptr->options.numrx, &regs->RBRDU);
518 writel(vptr->rd_pool_dma, &regs->RDBaseLo);
519 writew(0, &regs->RDIdx);
520 writew(vptr->options.numrx - 1, &regs->RDCSize);
521 }
522
523 /**
524 * velocity_init_registers - initialise MAC registers
525 * @vptr: velocity to init
526 * @type: type of initialisation (hot or cold)
527 *
528 * Initialise the MAC on a reset or on first set up on the
529 * hardware.
530 */
531
532 static void velocity_init_registers(struct velocity_info *vptr,
533 enum velocity_init_type type)
534 {
535 struct mac_regs __iomem * regs = vptr->mac_regs;
536 int i, mii_status;
537
538 mac_wol_reset(regs);
539
540 switch (type) {
541 case VELOCITY_INIT_RESET:
542 case VELOCITY_INIT_WOL:
543
544 netif_stop_queue(vptr->dev);
545
546 /*
547 * Reset RX to prevent RX pointer not on the 4X location
548 */
549 velocity_rx_reset(vptr);
550 mac_rx_queue_run(regs);
551 mac_rx_queue_wake(regs);
552
553 mii_status = velocity_get_opt_media_mode(vptr);
554 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
555 velocity_print_link_status(vptr);
556 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
557 netif_wake_queue(vptr->dev);
558 }
559
560 enable_flow_control_ability(vptr);
561
562 mac_clear_isr(regs);
563 writel(CR0_STOP, &regs->CR0Clr);
564 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
565 &regs->CR0Set);
566
567 break;
568
569 case VELOCITY_INIT_COLD:
570 default:
571 /*
572 * Do reset
573 */
574 velocity_soft_reset(vptr);
575 mdelay(5);
576
577 mac_eeprom_reload(regs);
578 for (i = 0; i < 6; i++) {
579 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
580 }
581 /*
582 * clear Pre_ACPI bit.
583 */
584 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
585 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
586 mac_set_dma_length(regs, vptr->options.DMA_length);
587
588 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
589 /*
590 * Back off algorithm use original IEEE standard
591 */
592 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
593
594 /*
595 * Init CAM filter
596 */
597 velocity_init_cam_filter(vptr);
598
599 /*
600 * Set packet filter: Receive directed and broadcast address
601 */
602 velocity_set_multi(vptr->dev);
603
604 /*
605 * Enable MII auto-polling
606 */
607 enable_mii_autopoll(regs);
608
609 vptr->int_mask = INT_MASK_DEF;
610
611 writel(cpu_to_le32(vptr->rd_pool_dma), &regs->RDBaseLo);
612 writew(vptr->options.numrx - 1, &regs->RDCSize);
613 mac_rx_queue_run(regs);
614 mac_rx_queue_wake(regs);
615
616 writew(vptr->options.numtx - 1, &regs->TDCSize);
617
618 for (i = 0; i < vptr->num_txq; i++) {
619 writel(cpu_to_le32(vptr->td_pool_dma[i]), &(regs->TDBaseLo[i]));
620 mac_tx_queue_run(regs, i);
621 }
622
623 init_flow_control_register(vptr);
624
625 writel(CR0_STOP, &regs->CR0Clr);
626 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
627
628 mii_status = velocity_get_opt_media_mode(vptr);
629 netif_stop_queue(vptr->dev);
630
631 mii_init(vptr, mii_status);
632
633 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
634 velocity_print_link_status(vptr);
635 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
636 netif_wake_queue(vptr->dev);
637 }
638
639 enable_flow_control_ability(vptr);
640 mac_hw_mibs_init(regs);
641 mac_write_int_mask(vptr->int_mask, regs);
642 mac_clear_isr(regs);
643
644 }
645 }
646
647 /**
648 * velocity_soft_reset - soft reset
649 * @vptr: velocity to reset
650 *
651 * Kick off a soft reset of the velocity adapter and then poll
652 * until the reset sequence has completed before returning.
653 */
654
655 static int velocity_soft_reset(struct velocity_info *vptr)
656 {
657 struct mac_regs __iomem * regs = vptr->mac_regs;
658 int i = 0;
659
660 writel(CR0_SFRST, &regs->CR0Set);
661
662 for (i = 0; i < W_MAX_TIMEOUT; i++) {
663 udelay(5);
664 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
665 break;
666 }
667
668 if (i == W_MAX_TIMEOUT) {
669 writel(CR0_FORSRST, &regs->CR0Set);
670 /* FIXME: PCI POSTING */
671 /* delay 2ms */
672 mdelay(2);
673 }
674 return 0;
675 }
676
677 /**
678 * velocity_found1 - set up discovered velocity card
679 * @pdev: PCI device
680 * @ent: PCI device table entry that matched
681 *
682 * Configure a discovered adapter from scratch. Return a negative
683 * errno error code on failure paths.
684 */
685
686 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
687 {
688 static int first = 1;
689 struct net_device *dev;
690 int i;
691 struct velocity_info_tbl *info = (struct velocity_info_tbl *) ent->driver_data;
692 struct velocity_info *vptr;
693 struct mac_regs __iomem * regs;
694 int ret = -ENOMEM;
695
696 if (velocity_nics >= MAX_UNITS) {
697 printk(KERN_NOTICE VELOCITY_NAME ": already found %d NICs.\n",
698 velocity_nics);
699 return -ENODEV;
700 }
701
702 dev = alloc_etherdev(sizeof(struct velocity_info));
703
704 if (dev == NULL) {
705 printk(KERN_ERR VELOCITY_NAME ": allocate net device failed.\n");
706 goto out;
707 }
708
709 /* Chain it all together */
710
711 SET_MODULE_OWNER(dev);
712 SET_NETDEV_DEV(dev, &pdev->dev);
713 vptr = dev->priv;
714
715
716 if (first) {
717 printk(KERN_INFO "%s Ver. %s\n",
718 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
719 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
720 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
721 first = 0;
722 }
723
724 velocity_init_info(pdev, vptr, info);
725
726 vptr->dev = dev;
727
728 dev->irq = pdev->irq;
729
730 ret = pci_enable_device(pdev);
731 if (ret < 0)
732 goto err_free_dev;
733
734 ret = velocity_get_pci_info(vptr, pdev);
735 if (ret < 0) {
736 printk(KERN_ERR VELOCITY_NAME ": Failed to find PCI device.\n");
737 goto err_disable;
738 }
739
740 ret = pci_request_regions(pdev, VELOCITY_NAME);
741 if (ret < 0) {
742 printk(KERN_ERR VELOCITY_NAME ": Failed to find PCI device.\n");
743 goto err_disable;
744 }
745
746 regs = ioremap(vptr->memaddr, vptr->io_size);
747 if (regs == NULL) {
748 ret = -EIO;
749 goto err_release_res;
750 }
751
752 vptr->mac_regs = regs;
753
754 mac_wol_reset(regs);
755
756 dev->base_addr = vptr->ioaddr;
757
758 for (i = 0; i < 6; i++)
759 dev->dev_addr[i] = readb(&regs->PAR[i]);
760
761
762 velocity_get_options(&vptr->options, velocity_nics, dev->name);
763
764 /*
765 * Mask out the options cannot be set to the chip
766 */
767
768 vptr->options.flags &= info->flags;
769
770 /*
771 * Enable the chip specified capbilities
772 */
773
774 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
775
776 vptr->wol_opts = vptr->options.wol_opts;
777 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
778
779 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
780
781 dev->irq = pdev->irq;
782 dev->open = velocity_open;
783 dev->hard_start_xmit = velocity_xmit;
784 dev->stop = velocity_close;
785 dev->get_stats = velocity_get_stats;
786 dev->set_multicast_list = velocity_set_multi;
787 dev->do_ioctl = velocity_ioctl;
788 dev->ethtool_ops = &velocity_ethtool_ops;
789 dev->change_mtu = velocity_change_mtu;
790 #ifdef VELOCITY_ZERO_COPY_SUPPORT
791 dev->features |= NETIF_F_SG;
792 #endif
793
794 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM) {
795 dev->features |= NETIF_F_IP_CSUM;
796 }
797
798 ret = register_netdev(dev);
799 if (ret < 0)
800 goto err_iounmap;
801
802 if (velocity_get_link(dev))
803 netif_carrier_off(dev);
804
805 velocity_print_info(vptr);
806 pci_set_drvdata(pdev, dev);
807
808 /* and leave the chip powered down */
809
810 pci_set_power_state(pdev, PCI_D3hot);
811 #ifdef CONFIG_PM
812 {
813 unsigned long flags;
814
815 spin_lock_irqsave(&velocity_dev_list_lock, flags);
816 list_add(&vptr->list, &velocity_dev_list);
817 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
818 }
819 #endif
820 velocity_nics++;
821 out:
822 return ret;
823
824 err_iounmap:
825 iounmap(regs);
826 err_release_res:
827 pci_release_regions(pdev);
828 err_disable:
829 pci_disable_device(pdev);
830 err_free_dev:
831 free_netdev(dev);
832 goto out;
833 }
834
835 /**
836 * velocity_print_info - per driver data
837 * @vptr: velocity
838 *
839 * Print per driver data as the kernel driver finds Velocity
840 * hardware
841 */
842
843 static void __devinit velocity_print_info(struct velocity_info *vptr)
844 {
845 struct net_device *dev = vptr->dev;
846
847 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
848 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
849 dev->name,
850 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
851 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
852 }
853
854 /**
855 * velocity_init_info - init private data
856 * @pdev: PCI device
857 * @vptr: Velocity info
858 * @info: Board type
859 *
860 * Set up the initial velocity_info struct for the device that has been
861 * discovered.
862 */
863
864 static void __devinit velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, struct velocity_info_tbl *info)
865 {
866 memset(vptr, 0, sizeof(struct velocity_info));
867
868 vptr->pdev = pdev;
869 vptr->chip_id = info->chip_id;
870 vptr->io_size = info->io_size;
871 vptr->num_txq = info->txqueue;
872 vptr->multicast_limit = MCAM_SIZE;
873 spin_lock_init(&vptr->lock);
874 INIT_LIST_HEAD(&vptr->list);
875 }
876
877 /**
878 * velocity_get_pci_info - retrieve PCI info for device
879 * @vptr: velocity device
880 * @pdev: PCI device it matches
881 *
882 * Retrieve the PCI configuration space data that interests us from
883 * the kernel PCI layer
884 */
885
886 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
887 {
888
889 if(pci_read_config_byte(pdev, PCI_REVISION_ID, &vptr->rev_id) < 0)
890 return -EIO;
891
892 pci_set_master(pdev);
893
894 vptr->ioaddr = pci_resource_start(pdev, 0);
895 vptr->memaddr = pci_resource_start(pdev, 1);
896
897 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_IO))
898 {
899 printk(KERN_ERR "%s: region #0 is not an I/O resource, aborting.\n",
900 pci_name(pdev));
901 return -EINVAL;
902 }
903
904 if((pci_resource_flags(pdev, 1) & IORESOURCE_IO))
905 {
906 printk(KERN_ERR "%s: region #1 is an I/O resource, aborting.\n",
907 pci_name(pdev));
908 return -EINVAL;
909 }
910
911 if(pci_resource_len(pdev, 1) < 256)
912 {
913 printk(KERN_ERR "%s: region #1 is too small.\n",
914 pci_name(pdev));
915 return -EINVAL;
916 }
917 vptr->pdev = pdev;
918
919 return 0;
920 }
921
922 /**
923 * velocity_init_rings - set up DMA rings
924 * @vptr: Velocity to set up
925 *
926 * Allocate PCI mapped DMA rings for the receive and transmit layer
927 * to use.
928 */
929
930 static int velocity_init_rings(struct velocity_info *vptr)
931 {
932 int i;
933 unsigned int psize;
934 unsigned int tsize;
935 dma_addr_t pool_dma;
936 u8 *pool;
937
938 /*
939 * Allocate all RD/TD rings a single pool
940 */
941
942 psize = vptr->options.numrx * sizeof(struct rx_desc) +
943 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
944
945 /*
946 * pci_alloc_consistent() fulfills the requirement for 64 bytes
947 * alignment
948 */
949 pool = pci_alloc_consistent(vptr->pdev, psize, &pool_dma);
950
951 if (pool == NULL) {
952 printk(KERN_ERR "%s : DMA memory allocation failed.\n",
953 vptr->dev->name);
954 return -ENOMEM;
955 }
956
957 memset(pool, 0, psize);
958
959 vptr->rd_ring = (struct rx_desc *) pool;
960
961 vptr->rd_pool_dma = pool_dma;
962
963 tsize = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
964 vptr->tx_bufs = pci_alloc_consistent(vptr->pdev, tsize,
965 &vptr->tx_bufs_dma);
966
967 if (vptr->tx_bufs == NULL) {
968 printk(KERN_ERR "%s: DMA memory allocation failed.\n",
969 vptr->dev->name);
970 pci_free_consistent(vptr->pdev, psize, pool, pool_dma);
971 return -ENOMEM;
972 }
973
974 memset(vptr->tx_bufs, 0, vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq);
975
976 i = vptr->options.numrx * sizeof(struct rx_desc);
977 pool += i;
978 pool_dma += i;
979 for (i = 0; i < vptr->num_txq; i++) {
980 int offset = vptr->options.numtx * sizeof(struct tx_desc);
981
982 vptr->td_pool_dma[i] = pool_dma;
983 vptr->td_rings[i] = (struct tx_desc *) pool;
984 pool += offset;
985 pool_dma += offset;
986 }
987 return 0;
988 }
989
990 /**
991 * velocity_free_rings - free PCI ring pointers
992 * @vptr: Velocity to free from
993 *
994 * Clean up the PCI ring buffers allocated to this velocity.
995 */
996
997 static void velocity_free_rings(struct velocity_info *vptr)
998 {
999 int size;
1000
1001 size = vptr->options.numrx * sizeof(struct rx_desc) +
1002 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
1003
1004 pci_free_consistent(vptr->pdev, size, vptr->rd_ring, vptr->rd_pool_dma);
1005
1006 size = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
1007
1008 pci_free_consistent(vptr->pdev, size, vptr->tx_bufs, vptr->tx_bufs_dma);
1009 }
1010
1011 static inline void velocity_give_many_rx_descs(struct velocity_info *vptr)
1012 {
1013 struct mac_regs __iomem *regs = vptr->mac_regs;
1014 int avail, dirty, unusable;
1015
1016 /*
1017 * RD number must be equal to 4X per hardware spec
1018 * (programming guide rev 1.20, p.13)
1019 */
1020 if (vptr->rd_filled < 4)
1021 return;
1022
1023 wmb();
1024
1025 unusable = vptr->rd_filled & 0x0003;
1026 dirty = vptr->rd_dirty - unusable;
1027 for (avail = vptr->rd_filled & 0xfffc; avail; avail--) {
1028 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1029 vptr->rd_ring[dirty].rdesc0.owner = OWNED_BY_NIC;
1030 }
1031
1032 writew(vptr->rd_filled & 0xfffc, &regs->RBRDU);
1033 vptr->rd_filled = unusable;
1034 }
1035
1036 static int velocity_rx_refill(struct velocity_info *vptr)
1037 {
1038 int dirty = vptr->rd_dirty, done = 0, ret = 0;
1039
1040 do {
1041 struct rx_desc *rd = vptr->rd_ring + dirty;
1042
1043 /* Fine for an all zero Rx desc at init time as well */
1044 if (rd->rdesc0.owner == OWNED_BY_NIC)
1045 break;
1046
1047 if (!vptr->rd_info[dirty].skb) {
1048 ret = velocity_alloc_rx_buf(vptr, dirty);
1049 if (ret < 0)
1050 break;
1051 }
1052 done++;
1053 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1054 } while (dirty != vptr->rd_curr);
1055
1056 if (done) {
1057 vptr->rd_dirty = dirty;
1058 vptr->rd_filled += done;
1059 velocity_give_many_rx_descs(vptr);
1060 }
1061
1062 return ret;
1063 }
1064
1065 /**
1066 * velocity_init_rd_ring - set up receive ring
1067 * @vptr: velocity to configure
1068 *
1069 * Allocate and set up the receive buffers for each ring slot and
1070 * assign them to the network adapter.
1071 */
1072
1073 static int velocity_init_rd_ring(struct velocity_info *vptr)
1074 {
1075 int ret = -ENOMEM;
1076 unsigned int rsize = sizeof(struct velocity_rd_info) *
1077 vptr->options.numrx;
1078
1079 vptr->rd_info = kmalloc(rsize, GFP_KERNEL);
1080 if(vptr->rd_info == NULL)
1081 goto out;
1082 memset(vptr->rd_info, 0, rsize);
1083
1084 vptr->rd_filled = vptr->rd_dirty = vptr->rd_curr = 0;
1085
1086 ret = velocity_rx_refill(vptr);
1087 if (ret < 0) {
1088 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1089 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1090 velocity_free_rd_ring(vptr);
1091 }
1092 out:
1093 return ret;
1094 }
1095
1096 /**
1097 * velocity_free_rd_ring - free receive ring
1098 * @vptr: velocity to clean up
1099 *
1100 * Free the receive buffers for each ring slot and any
1101 * attached socket buffers that need to go away.
1102 */
1103
1104 static void velocity_free_rd_ring(struct velocity_info *vptr)
1105 {
1106 int i;
1107
1108 if (vptr->rd_info == NULL)
1109 return;
1110
1111 for (i = 0; i < vptr->options.numrx; i++) {
1112 struct velocity_rd_info *rd_info = &(vptr->rd_info[i]);
1113 struct rx_desc *rd = vptr->rd_ring + i;
1114
1115 memset(rd, 0, sizeof(*rd));
1116
1117 if (!rd_info->skb)
1118 continue;
1119 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1120 PCI_DMA_FROMDEVICE);
1121 rd_info->skb_dma = (dma_addr_t) NULL;
1122
1123 dev_kfree_skb(rd_info->skb);
1124 rd_info->skb = NULL;
1125 }
1126
1127 kfree(vptr->rd_info);
1128 vptr->rd_info = NULL;
1129 }
1130
1131 /**
1132 * velocity_init_td_ring - set up transmit ring
1133 * @vptr: velocity
1134 *
1135 * Set up the transmit ring and chain the ring pointers together.
1136 * Returns zero on success or a negative posix errno code for
1137 * failure.
1138 */
1139
1140 static int velocity_init_td_ring(struct velocity_info *vptr)
1141 {
1142 int i, j;
1143 dma_addr_t curr;
1144 struct tx_desc *td;
1145 struct velocity_td_info *td_info;
1146 unsigned int tsize = sizeof(struct velocity_td_info) *
1147 vptr->options.numtx;
1148
1149 /* Init the TD ring entries */
1150 for (j = 0; j < vptr->num_txq; j++) {
1151 curr = vptr->td_pool_dma[j];
1152
1153 vptr->td_infos[j] = kmalloc(tsize, GFP_KERNEL);
1154 if(vptr->td_infos[j] == NULL)
1155 {
1156 while(--j >= 0)
1157 kfree(vptr->td_infos[j]);
1158 return -ENOMEM;
1159 }
1160 memset(vptr->td_infos[j], 0, tsize);
1161
1162 for (i = 0; i < vptr->options.numtx; i++, curr += sizeof(struct tx_desc)) {
1163 td = &(vptr->td_rings[j][i]);
1164 td_info = &(vptr->td_infos[j][i]);
1165 td_info->buf = vptr->tx_bufs +
1166 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1167 td_info->buf_dma = vptr->tx_bufs_dma +
1168 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1169 }
1170 vptr->td_tail[j] = vptr->td_curr[j] = vptr->td_used[j] = 0;
1171 }
1172 return 0;
1173 }
1174
1175 /*
1176 * FIXME: could we merge this with velocity_free_tx_buf ?
1177 */
1178
1179 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1180 int q, int n)
1181 {
1182 struct velocity_td_info * td_info = &(vptr->td_infos[q][n]);
1183 int i;
1184
1185 if (td_info == NULL)
1186 return;
1187
1188 if (td_info->skb) {
1189 for (i = 0; i < td_info->nskb_dma; i++)
1190 {
1191 if (td_info->skb_dma[i]) {
1192 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1193 td_info->skb->len, PCI_DMA_TODEVICE);
1194 td_info->skb_dma[i] = (dma_addr_t) NULL;
1195 }
1196 }
1197 dev_kfree_skb(td_info->skb);
1198 td_info->skb = NULL;
1199 }
1200 }
1201
1202 /**
1203 * velocity_free_td_ring - free td ring
1204 * @vptr: velocity
1205 *
1206 * Free up the transmit ring for this particular velocity adapter.
1207 * We free the ring contents but not the ring itself.
1208 */
1209
1210 static void velocity_free_td_ring(struct velocity_info *vptr)
1211 {
1212 int i, j;
1213
1214 for (j = 0; j < vptr->num_txq; j++) {
1215 if (vptr->td_infos[j] == NULL)
1216 continue;
1217 for (i = 0; i < vptr->options.numtx; i++) {
1218 velocity_free_td_ring_entry(vptr, j, i);
1219
1220 }
1221 kfree(vptr->td_infos[j]);
1222 vptr->td_infos[j] = NULL;
1223 }
1224 }
1225
1226 /**
1227 * velocity_rx_srv - service RX interrupt
1228 * @vptr: velocity
1229 * @status: adapter status (unused)
1230 *
1231 * Walk the receive ring of the velocity adapter and remove
1232 * any received packets from the receive queue. Hand the ring
1233 * slots back to the adapter for reuse.
1234 */
1235
1236 static int velocity_rx_srv(struct velocity_info *vptr, int status)
1237 {
1238 struct net_device_stats *stats = &vptr->stats;
1239 int rd_curr = vptr->rd_curr;
1240 int works = 0;
1241
1242 do {
1243 struct rx_desc *rd = vptr->rd_ring + rd_curr;
1244
1245 if (!vptr->rd_info[rd_curr].skb)
1246 break;
1247
1248 if (rd->rdesc0.owner == OWNED_BY_NIC)
1249 break;
1250
1251 rmb();
1252
1253 /*
1254 * Don't drop CE or RL error frame although RXOK is off
1255 */
1256 if ((rd->rdesc0.RSR & RSR_RXOK) || (!(rd->rdesc0.RSR & RSR_RXOK) && (rd->rdesc0.RSR & (RSR_CE | RSR_RL)))) {
1257 if (velocity_receive_frame(vptr, rd_curr) < 0)
1258 stats->rx_dropped++;
1259 } else {
1260 if (rd->rdesc0.RSR & RSR_CRC)
1261 stats->rx_crc_errors++;
1262 if (rd->rdesc0.RSR & RSR_FAE)
1263 stats->rx_frame_errors++;
1264
1265 stats->rx_dropped++;
1266 }
1267
1268 rd->inten = 1;
1269
1270 vptr->dev->last_rx = jiffies;
1271
1272 rd_curr++;
1273 if (rd_curr >= vptr->options.numrx)
1274 rd_curr = 0;
1275 } while (++works <= 15);
1276
1277 vptr->rd_curr = rd_curr;
1278
1279 if (works > 0 && velocity_rx_refill(vptr) < 0) {
1280 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1281 "%s: rx buf allocation failure\n", vptr->dev->name);
1282 }
1283
1284 VAR_USED(stats);
1285 return works;
1286 }
1287
1288 /**
1289 * velocity_rx_csum - checksum process
1290 * @rd: receive packet descriptor
1291 * @skb: network layer packet buffer
1292 *
1293 * Process the status bits for the received packet and determine
1294 * if the checksum was computed and verified by the hardware
1295 */
1296
1297 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1298 {
1299 skb->ip_summed = CHECKSUM_NONE;
1300
1301 if (rd->rdesc1.CSM & CSM_IPKT) {
1302 if (rd->rdesc1.CSM & CSM_IPOK) {
1303 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1304 (rd->rdesc1.CSM & CSM_UDPKT)) {
1305 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1306 return;
1307 }
1308 }
1309 skb->ip_summed = CHECKSUM_UNNECESSARY;
1310 }
1311 }
1312 }
1313
1314 /**
1315 * velocity_rx_copy - in place Rx copy for small packets
1316 * @rx_skb: network layer packet buffer candidate
1317 * @pkt_size: received data size
1318 * @rd: receive packet descriptor
1319 * @dev: network device
1320 *
1321 * Replace the current skb that is scheduled for Rx processing by a
1322 * shorter, immediatly allocated skb, if the received packet is small
1323 * enough. This function returns a negative value if the received
1324 * packet is too big or if memory is exhausted.
1325 */
1326 static inline int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1327 struct velocity_info *vptr)
1328 {
1329 int ret = -1;
1330
1331 if (pkt_size < rx_copybreak) {
1332 struct sk_buff *new_skb;
1333
1334 new_skb = dev_alloc_skb(pkt_size + 2);
1335 if (new_skb) {
1336 new_skb->dev = vptr->dev;
1337 new_skb->ip_summed = rx_skb[0]->ip_summed;
1338
1339 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN)
1340 skb_reserve(new_skb, 2);
1341
1342 memcpy(new_skb->data, rx_skb[0]->data, pkt_size);
1343 *rx_skb = new_skb;
1344 ret = 0;
1345 }
1346
1347 }
1348 return ret;
1349 }
1350
1351 /**
1352 * velocity_iph_realign - IP header alignment
1353 * @vptr: velocity we are handling
1354 * @skb: network layer packet buffer
1355 * @pkt_size: received data size
1356 *
1357 * Align IP header on a 2 bytes boundary. This behavior can be
1358 * configured by the user.
1359 */
1360 static inline void velocity_iph_realign(struct velocity_info *vptr,
1361 struct sk_buff *skb, int pkt_size)
1362 {
1363 /* FIXME - memmove ? */
1364 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1365 int i;
1366
1367 for (i = pkt_size; i >= 0; i--)
1368 *(skb->data + i + 2) = *(skb->data + i);
1369 skb_reserve(skb, 2);
1370 }
1371 }
1372
1373 /**
1374 * velocity_receive_frame - received packet processor
1375 * @vptr: velocity we are handling
1376 * @idx: ring index
1377 *
1378 * A packet has arrived. We process the packet and if appropriate
1379 * pass the frame up the network stack
1380 */
1381
1382 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1383 {
1384 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1385 struct net_device_stats *stats = &vptr->stats;
1386 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1387 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1388 int pkt_len = rd->rdesc0.len;
1389 struct sk_buff *skb;
1390
1391 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1392 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1393 stats->rx_length_errors++;
1394 return -EINVAL;
1395 }
1396
1397 if (rd->rdesc0.RSR & RSR_MAR)
1398 vptr->stats.multicast++;
1399
1400 skb = rd_info->skb;
1401 skb->dev = vptr->dev;
1402
1403 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1404 vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1405
1406 /*
1407 * Drop frame not meeting IEEE 802.3
1408 */
1409
1410 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1411 if (rd->rdesc0.RSR & RSR_RL) {
1412 stats->rx_length_errors++;
1413 return -EINVAL;
1414 }
1415 }
1416
1417 pci_action = pci_dma_sync_single_for_device;
1418
1419 velocity_rx_csum(rd, skb);
1420
1421 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1422 velocity_iph_realign(vptr, skb, pkt_len);
1423 pci_action = pci_unmap_single;
1424 rd_info->skb = NULL;
1425 }
1426
1427 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1428 PCI_DMA_FROMDEVICE);
1429
1430 skb_put(skb, pkt_len - 4);
1431 skb->protocol = eth_type_trans(skb, skb->dev);
1432
1433 stats->rx_bytes += pkt_len;
1434 netif_rx(skb);
1435
1436 return 0;
1437 }
1438
1439 /**
1440 * velocity_alloc_rx_buf - allocate aligned receive buffer
1441 * @vptr: velocity
1442 * @idx: ring index
1443 *
1444 * Allocate a new full sized buffer for the reception of a frame and
1445 * map it into PCI space for the hardware to use. The hardware
1446 * requires *64* byte alignment of the buffer which makes life
1447 * less fun than would be ideal.
1448 */
1449
1450 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1451 {
1452 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1453 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1454
1455 rd_info->skb = dev_alloc_skb(vptr->rx_buf_sz + 64);
1456 if (rd_info->skb == NULL)
1457 return -ENOMEM;
1458
1459 /*
1460 * Do the gymnastics to get the buffer head for data at
1461 * 64byte alignment.
1462 */
1463 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1464 rd_info->skb->dev = vptr->dev;
1465 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data, vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1466
1467 /*
1468 * Fill in the descriptor to match
1469 */
1470
1471 *((u32 *) & (rd->rdesc0)) = 0;
1472 rd->len = cpu_to_le32(vptr->rx_buf_sz);
1473 rd->inten = 1;
1474 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1475 rd->pa_high = 0;
1476 return 0;
1477 }
1478
1479 /**
1480 * tx_srv - transmit interrupt service
1481 * @vptr; Velocity
1482 * @status:
1483 *
1484 * Scan the queues looking for transmitted packets that
1485 * we can complete and clean up. Update any statistics as
1486 * neccessary/
1487 */
1488
1489 static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1490 {
1491 struct tx_desc *td;
1492 int qnum;
1493 int full = 0;
1494 int idx;
1495 int works = 0;
1496 struct velocity_td_info *tdinfo;
1497 struct net_device_stats *stats = &vptr->stats;
1498
1499 for (qnum = 0; qnum < vptr->num_txq; qnum++) {
1500 for (idx = vptr->td_tail[qnum]; vptr->td_used[qnum] > 0;
1501 idx = (idx + 1) % vptr->options.numtx) {
1502
1503 /*
1504 * Get Tx Descriptor
1505 */
1506 td = &(vptr->td_rings[qnum][idx]);
1507 tdinfo = &(vptr->td_infos[qnum][idx]);
1508
1509 if (td->tdesc0.owner == OWNED_BY_NIC)
1510 break;
1511
1512 if ((works++ > 15))
1513 break;
1514
1515 if (td->tdesc0.TSR & TSR0_TERR) {
1516 stats->tx_errors++;
1517 stats->tx_dropped++;
1518 if (td->tdesc0.TSR & TSR0_CDH)
1519 stats->tx_heartbeat_errors++;
1520 if (td->tdesc0.TSR & TSR0_CRS)
1521 stats->tx_carrier_errors++;
1522 if (td->tdesc0.TSR & TSR0_ABT)
1523 stats->tx_aborted_errors++;
1524 if (td->tdesc0.TSR & TSR0_OWC)
1525 stats->tx_window_errors++;
1526 } else {
1527 stats->tx_packets++;
1528 stats->tx_bytes += tdinfo->skb->len;
1529 }
1530 velocity_free_tx_buf(vptr, tdinfo);
1531 vptr->td_used[qnum]--;
1532 }
1533 vptr->td_tail[qnum] = idx;
1534
1535 if (AVAIL_TD(vptr, qnum) < 1) {
1536 full = 1;
1537 }
1538 }
1539 /*
1540 * Look to see if we should kick the transmit network
1541 * layer for more work.
1542 */
1543 if (netif_queue_stopped(vptr->dev) && (full == 0)
1544 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1545 netif_wake_queue(vptr->dev);
1546 }
1547 return works;
1548 }
1549
1550 /**
1551 * velocity_print_link_status - link status reporting
1552 * @vptr: velocity to report on
1553 *
1554 * Turn the link status of the velocity card into a kernel log
1555 * description of the new link state, detailing speed and duplex
1556 * status
1557 */
1558
1559 static void velocity_print_link_status(struct velocity_info *vptr)
1560 {
1561
1562 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1563 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1564 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1565 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link autonegation", vptr->dev->name);
1566
1567 if (vptr->mii_status & VELOCITY_SPEED_1000)
1568 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1569 else if (vptr->mii_status & VELOCITY_SPEED_100)
1570 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1571 else
1572 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1573
1574 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1575 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1576 else
1577 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1578 } else {
1579 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1580 switch (vptr->options.spd_dpx) {
1581 case SPD_DPX_100_HALF:
1582 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1583 break;
1584 case SPD_DPX_100_FULL:
1585 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1586 break;
1587 case SPD_DPX_10_HALF:
1588 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1589 break;
1590 case SPD_DPX_10_FULL:
1591 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1592 break;
1593 default:
1594 break;
1595 }
1596 }
1597 }
1598
1599 /**
1600 * velocity_error - handle error from controller
1601 * @vptr: velocity
1602 * @status: card status
1603 *
1604 * Process an error report from the hardware and attempt to recover
1605 * the card itself. At the moment we cannot recover from some
1606 * theoretically impossible errors but this could be fixed using
1607 * the pci_device_failed logic to bounce the hardware
1608 *
1609 */
1610
1611 static void velocity_error(struct velocity_info *vptr, int status)
1612 {
1613
1614 if (status & ISR_TXSTLI) {
1615 struct mac_regs __iomem * regs = vptr->mac_regs;
1616
1617 printk(KERN_ERR "TD structure errror TDindex=%hx\n", readw(&regs->TDIdx[0]));
1618 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1619 writew(TRDCSR_RUN, &regs->TDCSRClr);
1620 netif_stop_queue(vptr->dev);
1621
1622 /* FIXME: port over the pci_device_failed code and use it
1623 here */
1624 }
1625
1626 if (status & ISR_SRCI) {
1627 struct mac_regs __iomem * regs = vptr->mac_regs;
1628 int linked;
1629
1630 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1631 vptr->mii_status = check_connection_type(regs);
1632
1633 /*
1634 * If it is a 3119, disable frame bursting in
1635 * halfduplex mode and enable it in fullduplex
1636 * mode
1637 */
1638 if (vptr->rev_id < REV_ID_VT3216_A0) {
1639 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1640 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1641 else
1642 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1643 }
1644 /*
1645 * Only enable CD heart beat counter in 10HD mode
1646 */
1647 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1648 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1649 } else {
1650 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1651 }
1652 }
1653 /*
1654 * Get link status from PHYSR0
1655 */
1656 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1657
1658 if (linked) {
1659 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1660 netif_carrier_on(vptr->dev);
1661 } else {
1662 vptr->mii_status |= VELOCITY_LINK_FAIL;
1663 netif_carrier_off(vptr->dev);
1664 }
1665
1666 velocity_print_link_status(vptr);
1667 enable_flow_control_ability(vptr);
1668
1669 /*
1670 * Re-enable auto-polling because SRCI will disable
1671 * auto-polling
1672 */
1673
1674 enable_mii_autopoll(regs);
1675
1676 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1677 netif_stop_queue(vptr->dev);
1678 else
1679 netif_wake_queue(vptr->dev);
1680
1681 };
1682 if (status & ISR_MIBFI)
1683 velocity_update_hw_mibs(vptr);
1684 if (status & ISR_LSTEI)
1685 mac_rx_queue_wake(vptr->mac_regs);
1686 }
1687
1688 /**
1689 * velocity_free_tx_buf - free transmit buffer
1690 * @vptr: velocity
1691 * @tdinfo: buffer
1692 *
1693 * Release an transmit buffer. If the buffer was preallocated then
1694 * recycle it, if not then unmap the buffer.
1695 */
1696
1697 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1698 {
1699 struct sk_buff *skb = tdinfo->skb;
1700 int i;
1701
1702 /*
1703 * Don't unmap the pre-allocated tx_bufs
1704 */
1705 if (tdinfo->skb_dma && (tdinfo->skb_dma[0] != tdinfo->buf_dma)) {
1706
1707 for (i = 0; i < tdinfo->nskb_dma; i++) {
1708 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1709 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], td->tdesc1.len, PCI_DMA_TODEVICE);
1710 #else
1711 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1712 #endif
1713 tdinfo->skb_dma[i] = 0;
1714 }
1715 }
1716 dev_kfree_skb_irq(skb);
1717 tdinfo->skb = NULL;
1718 }
1719
1720 /**
1721 * velocity_open - interface activation callback
1722 * @dev: network layer device to open
1723 *
1724 * Called when the network layer brings the interface up. Returns
1725 * a negative posix error code on failure, or zero on success.
1726 *
1727 * All the ring allocation and set up is done on open for this
1728 * adapter to minimise memory usage when inactive
1729 */
1730
1731 static int velocity_open(struct net_device *dev)
1732 {
1733 struct velocity_info *vptr = dev->priv;
1734 int ret;
1735
1736 vptr->rx_buf_sz = (dev->mtu <= 1504 ? PKT_BUF_SZ : dev->mtu + 32);
1737
1738 ret = velocity_init_rings(vptr);
1739 if (ret < 0)
1740 goto out;
1741
1742 ret = velocity_init_rd_ring(vptr);
1743 if (ret < 0)
1744 goto err_free_desc_rings;
1745
1746 ret = velocity_init_td_ring(vptr);
1747 if (ret < 0)
1748 goto err_free_rd_ring;
1749
1750 /* Ensure chip is running */
1751 pci_set_power_state(vptr->pdev, PCI_D0);
1752
1753 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1754
1755 ret = request_irq(vptr->pdev->irq, &velocity_intr, SA_SHIRQ,
1756 dev->name, dev);
1757 if (ret < 0) {
1758 /* Power down the chip */
1759 pci_set_power_state(vptr->pdev, PCI_D3hot);
1760 goto err_free_td_ring;
1761 }
1762
1763 mac_enable_int(vptr->mac_regs);
1764 netif_start_queue(dev);
1765 vptr->flags |= VELOCITY_FLAGS_OPENED;
1766 out:
1767 return ret;
1768
1769 err_free_td_ring:
1770 velocity_free_td_ring(vptr);
1771 err_free_rd_ring:
1772 velocity_free_rd_ring(vptr);
1773 err_free_desc_rings:
1774 velocity_free_rings(vptr);
1775 goto out;
1776 }
1777
1778 /**
1779 * velocity_change_mtu - MTU change callback
1780 * @dev: network device
1781 * @new_mtu: desired MTU
1782 *
1783 * Handle requests from the networking layer for MTU change on
1784 * this interface. It gets called on a change by the network layer.
1785 * Return zero for success or negative posix error code.
1786 */
1787
1788 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1789 {
1790 struct velocity_info *vptr = dev->priv;
1791 unsigned long flags;
1792 int oldmtu = dev->mtu;
1793 int ret = 0;
1794
1795 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1796 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1797 vptr->dev->name);
1798 return -EINVAL;
1799 }
1800
1801 if (new_mtu != oldmtu) {
1802 spin_lock_irqsave(&vptr->lock, flags);
1803
1804 netif_stop_queue(dev);
1805 velocity_shutdown(vptr);
1806
1807 velocity_free_td_ring(vptr);
1808 velocity_free_rd_ring(vptr);
1809
1810 dev->mtu = new_mtu;
1811 if (new_mtu > 8192)
1812 vptr->rx_buf_sz = 9 * 1024;
1813 else if (new_mtu > 4096)
1814 vptr->rx_buf_sz = 8192;
1815 else
1816 vptr->rx_buf_sz = 4 * 1024;
1817
1818 ret = velocity_init_rd_ring(vptr);
1819 if (ret < 0)
1820 goto out_unlock;
1821
1822 ret = velocity_init_td_ring(vptr);
1823 if (ret < 0)
1824 goto out_unlock;
1825
1826 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1827
1828 mac_enable_int(vptr->mac_regs);
1829 netif_start_queue(dev);
1830 out_unlock:
1831 spin_unlock_irqrestore(&vptr->lock, flags);
1832 }
1833
1834 return ret;
1835 }
1836
1837 /**
1838 * velocity_shutdown - shut down the chip
1839 * @vptr: velocity to deactivate
1840 *
1841 * Shuts down the internal operations of the velocity and
1842 * disables interrupts, autopolling, transmit and receive
1843 */
1844
1845 static void velocity_shutdown(struct velocity_info *vptr)
1846 {
1847 struct mac_regs __iomem * regs = vptr->mac_regs;
1848 mac_disable_int(regs);
1849 writel(CR0_STOP, &regs->CR0Set);
1850 writew(0xFFFF, &regs->TDCSRClr);
1851 writeb(0xFF, &regs->RDCSRClr);
1852 safe_disable_mii_autopoll(regs);
1853 mac_clear_isr(regs);
1854 }
1855
1856 /**
1857 * velocity_close - close adapter callback
1858 * @dev: network device
1859 *
1860 * Callback from the network layer when the velocity is being
1861 * deactivated by the network layer
1862 */
1863
1864 static int velocity_close(struct net_device *dev)
1865 {
1866 struct velocity_info *vptr = dev->priv;
1867
1868 netif_stop_queue(dev);
1869 velocity_shutdown(vptr);
1870
1871 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
1872 velocity_get_ip(vptr);
1873 if (dev->irq != 0)
1874 free_irq(dev->irq, dev);
1875
1876 /* Power down the chip */
1877 pci_set_power_state(vptr->pdev, PCI_D3hot);
1878
1879 /* Free the resources */
1880 velocity_free_td_ring(vptr);
1881 velocity_free_rd_ring(vptr);
1882 velocity_free_rings(vptr);
1883
1884 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
1885 return 0;
1886 }
1887
1888 /**
1889 * velocity_xmit - transmit packet callback
1890 * @skb: buffer to transmit
1891 * @dev: network device
1892 *
1893 * Called by the networ layer to request a packet is queued to
1894 * the velocity. Returns zero on success.
1895 */
1896
1897 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
1898 {
1899 struct velocity_info *vptr = dev->priv;
1900 int qnum = 0;
1901 struct tx_desc *td_ptr;
1902 struct velocity_td_info *tdinfo;
1903 unsigned long flags;
1904 int index;
1905
1906 int pktlen = skb->len;
1907
1908 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1909 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
1910 kfree_skb(skb);
1911 return 0;
1912 }
1913 #endif
1914
1915 spin_lock_irqsave(&vptr->lock, flags);
1916
1917 index = vptr->td_curr[qnum];
1918 td_ptr = &(vptr->td_rings[qnum][index]);
1919 tdinfo = &(vptr->td_infos[qnum][index]);
1920
1921 td_ptr->tdesc1.TCPLS = TCPLS_NORMAL;
1922 td_ptr->tdesc1.TCR = TCR0_TIC;
1923 td_ptr->td_buf[0].queue = 0;
1924
1925 /*
1926 * Pad short frames.
1927 */
1928 if (pktlen < ETH_ZLEN) {
1929 /* Cannot occur until ZC support */
1930 pktlen = ETH_ZLEN;
1931 memcpy(tdinfo->buf, skb->data, skb->len);
1932 memset(tdinfo->buf + skb->len, 0, ETH_ZLEN - skb->len);
1933 tdinfo->skb = skb;
1934 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1935 td_ptr->tdesc0.pktsize = pktlen;
1936 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1937 td_ptr->td_buf[0].pa_high = 0;
1938 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1939 tdinfo->nskb_dma = 1;
1940 td_ptr->tdesc1.CMDZ = 2;
1941 } else
1942 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1943 if (skb_shinfo(skb)->nr_frags > 0) {
1944 int nfrags = skb_shinfo(skb)->nr_frags;
1945 tdinfo->skb = skb;
1946 if (nfrags > 6) {
1947 memcpy(tdinfo->buf, skb->data, skb->len);
1948 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1949 td_ptr->tdesc0.pktsize =
1950 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1951 td_ptr->td_buf[0].pa_high = 0;
1952 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1953 tdinfo->nskb_dma = 1;
1954 td_ptr->tdesc1.CMDZ = 2;
1955 } else {
1956 int i = 0;
1957 tdinfo->nskb_dma = 0;
1958 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data, skb->len - skb->data_len, PCI_DMA_TODEVICE);
1959
1960 td_ptr->tdesc0.pktsize = pktlen;
1961
1962 /* FIXME: support 48bit DMA later */
1963 td_ptr->td_buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
1964 td_ptr->td_buf[i].pa_high = 0;
1965 td_ptr->td_buf[i].bufsize = skb->len->skb->data_len;
1966
1967 for (i = 0; i < nfrags; i++) {
1968 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1969 void *addr = ((void *) page_address(frag->page + frag->page_offset));
1970
1971 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
1972
1973 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
1974 td_ptr->td_buf[i + 1].pa_high = 0;
1975 td_ptr->td_buf[i + 1].bufsize = frag->size;
1976 }
1977 tdinfo->nskb_dma = i - 1;
1978 td_ptr->tdesc1.CMDZ = i;
1979 }
1980
1981 } else
1982 #endif
1983 {
1984 /*
1985 * Map the linear network buffer into PCI space and
1986 * add it to the transmit ring.
1987 */
1988 tdinfo->skb = skb;
1989 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
1990 td_ptr->tdesc0.pktsize = pktlen;
1991 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1992 td_ptr->td_buf[0].pa_high = 0;
1993 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1994 tdinfo->nskb_dma = 1;
1995 td_ptr->tdesc1.CMDZ = 2;
1996 }
1997
1998 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
1999 td_ptr->tdesc1.pqinf.VID = (vptr->options.vid & 0xfff);
2000 td_ptr->tdesc1.pqinf.priority = 0;
2001 td_ptr->tdesc1.pqinf.CFI = 0;
2002 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2003 }
2004
2005 /*
2006 * Handle hardware checksum
2007 */
2008 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2009 && (skb->ip_summed == CHECKSUM_HW)) {
2010 struct iphdr *ip = skb->nh.iph;
2011 if (ip->protocol == IPPROTO_TCP)
2012 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2013 else if (ip->protocol == IPPROTO_UDP)
2014 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2015 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2016 }
2017 {
2018
2019 int prev = index - 1;
2020
2021 if (prev < 0)
2022 prev = vptr->options.numtx - 1;
2023 td_ptr->tdesc0.owner = OWNED_BY_NIC;
2024 vptr->td_used[qnum]++;
2025 vptr->td_curr[qnum] = (index + 1) % vptr->options.numtx;
2026
2027 if (AVAIL_TD(vptr, qnum) < 1)
2028 netif_stop_queue(dev);
2029
2030 td_ptr = &(vptr->td_rings[qnum][prev]);
2031 td_ptr->td_buf[0].queue = 1;
2032 mac_tx_queue_wake(vptr->mac_regs, qnum);
2033 }
2034 dev->trans_start = jiffies;
2035 spin_unlock_irqrestore(&vptr->lock, flags);
2036 return 0;
2037 }
2038
2039 /**
2040 * velocity_intr - interrupt callback
2041 * @irq: interrupt number
2042 * @dev_instance: interrupting device
2043 * @pt_regs: CPU register state at interrupt
2044 *
2045 * Called whenever an interrupt is generated by the velocity
2046 * adapter IRQ line. We may not be the source of the interrupt
2047 * and need to identify initially if we are, and if not exit as
2048 * efficiently as possible.
2049 */
2050
2051 static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs)
2052 {
2053 struct net_device *dev = dev_instance;
2054 struct velocity_info *vptr = dev->priv;
2055 u32 isr_status;
2056 int max_count = 0;
2057
2058
2059 spin_lock(&vptr->lock);
2060 isr_status = mac_read_isr(vptr->mac_regs);
2061
2062 /* Not us ? */
2063 if (isr_status == 0) {
2064 spin_unlock(&vptr->lock);
2065 return IRQ_NONE;
2066 }
2067
2068 mac_disable_int(vptr->mac_regs);
2069
2070 /*
2071 * Keep processing the ISR until we have completed
2072 * processing and the isr_status becomes zero
2073 */
2074
2075 while (isr_status != 0) {
2076 mac_write_isr(vptr->mac_regs, isr_status);
2077 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2078 velocity_error(vptr, isr_status);
2079 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2080 max_count += velocity_rx_srv(vptr, isr_status);
2081 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2082 max_count += velocity_tx_srv(vptr, isr_status);
2083 isr_status = mac_read_isr(vptr->mac_regs);
2084 if (max_count > vptr->options.int_works)
2085 {
2086 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2087 dev->name);
2088 max_count = 0;
2089 }
2090 }
2091 spin_unlock(&vptr->lock);
2092 mac_enable_int(vptr->mac_regs);
2093 return IRQ_HANDLED;
2094
2095 }
2096
2097
2098 /**
2099 * velocity_set_multi - filter list change callback
2100 * @dev: network device
2101 *
2102 * Called by the network layer when the filter lists need to change
2103 * for a velocity adapter. Reload the CAMs with the new address
2104 * filter ruleset.
2105 */
2106
2107 static void velocity_set_multi(struct net_device *dev)
2108 {
2109 struct velocity_info *vptr = dev->priv;
2110 struct mac_regs __iomem * regs = vptr->mac_regs;
2111 u8 rx_mode;
2112 int i;
2113 struct dev_mc_list *mclist;
2114
2115 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2116 /* Unconditionally log net taps. */
2117 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2118 writel(0xffffffff, &regs->MARCAM[0]);
2119 writel(0xffffffff, &regs->MARCAM[4]);
2120 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2121 } else if ((dev->mc_count > vptr->multicast_limit)
2122 || (dev->flags & IFF_ALLMULTI)) {
2123 writel(0xffffffff, &regs->MARCAM[0]);
2124 writel(0xffffffff, &regs->MARCAM[4]);
2125 rx_mode = (RCR_AM | RCR_AB);
2126 } else {
2127 int offset = MCAM_SIZE - vptr->multicast_limit;
2128 mac_get_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2129
2130 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2131 mac_set_cam(regs, i + offset, mclist->dmi_addr, VELOCITY_MULTICAST_CAM);
2132 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2133 }
2134
2135 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2136 rx_mode = (RCR_AM | RCR_AB);
2137 }
2138 if (dev->mtu > 1500)
2139 rx_mode |= RCR_AL;
2140
2141 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2142
2143 }
2144
2145 /**
2146 * velocity_get_status - statistics callback
2147 * @dev: network device
2148 *
2149 * Callback from the network layer to allow driver statistics
2150 * to be resynchronized with hardware collected state. In the
2151 * case of the velocity we need to pull the MIB counters from
2152 * the hardware into the counters before letting the network
2153 * layer display them.
2154 */
2155
2156 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2157 {
2158 struct velocity_info *vptr = dev->priv;
2159
2160 /* If the hardware is down, don't touch MII */
2161 if(!netif_running(dev))
2162 return &vptr->stats;
2163
2164 spin_lock_irq(&vptr->lock);
2165 velocity_update_hw_mibs(vptr);
2166 spin_unlock_irq(&vptr->lock);
2167
2168 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2169 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2170 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2171
2172 // unsigned long rx_dropped; /* no space in linux buffers */
2173 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2174 /* detailed rx_errors: */
2175 // unsigned long rx_length_errors;
2176 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2177 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2178 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2179 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2180 // unsigned long rx_missed_errors; /* receiver missed packet */
2181
2182 /* detailed tx_errors */
2183 // unsigned long tx_fifo_errors;
2184
2185 return &vptr->stats;
2186 }
2187
2188
2189 /**
2190 * velocity_ioctl - ioctl entry point
2191 * @dev: network device
2192 * @rq: interface request ioctl
2193 * @cmd: command code
2194 *
2195 * Called when the user issues an ioctl request to the network
2196 * device in question. The velocity interface supports MII.
2197 */
2198
2199 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2200 {
2201 struct velocity_info *vptr = dev->priv;
2202 int ret;
2203
2204 /* If we are asked for information and the device is power
2205 saving then we need to bring the device back up to talk to it */
2206
2207 if (!netif_running(dev))
2208 pci_set_power_state(vptr->pdev, PCI_D0);
2209
2210 switch (cmd) {
2211 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2212 case SIOCGMIIREG: /* Read MII PHY register. */
2213 case SIOCSMIIREG: /* Write to MII PHY register. */
2214 ret = velocity_mii_ioctl(dev, rq, cmd);
2215 break;
2216
2217 default:
2218 ret = -EOPNOTSUPP;
2219 }
2220 if (!netif_running(dev))
2221 pci_set_power_state(vptr->pdev, PCI_D3hot);
2222
2223
2224 return ret;
2225 }
2226
2227 /*
2228 * Definition for our device driver. The PCI layer interface
2229 * uses this to handle all our card discover and plugging
2230 */
2231
2232 static struct pci_driver velocity_driver = {
2233 .name = VELOCITY_NAME,
2234 .id_table = velocity_id_table,
2235 .probe = velocity_found1,
2236 .remove = __devexit_p(velocity_remove1),
2237 #ifdef CONFIG_PM
2238 .suspend = velocity_suspend,
2239 .resume = velocity_resume,
2240 #endif
2241 };
2242
2243 /**
2244 * velocity_init_module - load time function
2245 *
2246 * Called when the velocity module is loaded. The PCI driver
2247 * is registered with the PCI layer, and in turn will call
2248 * the probe functions for each velocity adapter installed
2249 * in the system.
2250 */
2251
2252 static int __init velocity_init_module(void)
2253 {
2254 int ret;
2255
2256 velocity_register_notifier();
2257 ret = pci_module_init(&velocity_driver);
2258 if (ret < 0)
2259 velocity_unregister_notifier();
2260 return ret;
2261 }
2262
2263 /**
2264 * velocity_cleanup - module unload
2265 *
2266 * When the velocity hardware is unloaded this function is called.
2267 * It will clean up the notifiers and the unregister the PCI
2268 * driver interface for this hardware. This in turn cleans up
2269 * all discovered interfaces before returning from the function
2270 */
2271
2272 static void __exit velocity_cleanup_module(void)
2273 {
2274 velocity_unregister_notifier();
2275 pci_unregister_driver(&velocity_driver);
2276 }
2277
2278 module_init(velocity_init_module);
2279 module_exit(velocity_cleanup_module);
2280
2281
2282 /*
2283 * MII access , media link mode setting functions
2284 */
2285
2286
2287 /**
2288 * mii_init - set up MII
2289 * @vptr: velocity adapter
2290 * @mii_status: links tatus
2291 *
2292 * Set up the PHY for the current link state.
2293 */
2294
2295 static void mii_init(struct velocity_info *vptr, u32 mii_status)
2296 {
2297 u16 BMCR;
2298
2299 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2300 case PHYID_CICADA_CS8201:
2301 /*
2302 * Reset to hardware default
2303 */
2304 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2305 /*
2306 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2307 * off it in NWay-forced half mode for NWay-forced v.s.
2308 * legacy-forced issue.
2309 */
2310 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2311 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2312 else
2313 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2314 /*
2315 * Turn on Link/Activity LED enable bit for CIS8201
2316 */
2317 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2318 break;
2319 case PHYID_VT3216_32BIT:
2320 case PHYID_VT3216_64BIT:
2321 /*
2322 * Reset to hardware default
2323 */
2324 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2325 /*
2326 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2327 * off it in NWay-forced half mode for NWay-forced v.s.
2328 * legacy-forced issue
2329 */
2330 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2331 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2332 else
2333 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2334 break;
2335
2336 case PHYID_MARVELL_1000:
2337 case PHYID_MARVELL_1000S:
2338 /*
2339 * Assert CRS on Transmit
2340 */
2341 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2342 /*
2343 * Reset to hardware default
2344 */
2345 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2346 break;
2347 default:
2348 ;
2349 }
2350 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2351 if (BMCR & BMCR_ISO) {
2352 BMCR &= ~BMCR_ISO;
2353 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2354 }
2355 }
2356
2357 /**
2358 * safe_disable_mii_autopoll - autopoll off
2359 * @regs: velocity registers
2360 *
2361 * Turn off the autopoll and wait for it to disable on the chip
2362 */
2363
2364 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2365 {
2366 u16 ww;
2367
2368 /* turn off MAUTO */
2369 writeb(0, &regs->MIICR);
2370 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2371 udelay(1);
2372 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2373 break;
2374 }
2375 }
2376
2377 /**
2378 * enable_mii_autopoll - turn on autopolling
2379 * @regs: velocity registers
2380 *
2381 * Enable the MII link status autopoll feature on the Velocity
2382 * hardware. Wait for it to enable.
2383 */
2384
2385 static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2386 {
2387 int ii;
2388
2389 writeb(0, &(regs->MIICR));
2390 writeb(MIIADR_SWMPL, &regs->MIIADR);
2391
2392 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2393 udelay(1);
2394 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2395 break;
2396 }
2397
2398 writeb(MIICR_MAUTO, &regs->MIICR);
2399
2400 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2401 udelay(1);
2402 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2403 break;
2404 }
2405
2406 }
2407
2408 /**
2409 * velocity_mii_read - read MII data
2410 * @regs: velocity registers
2411 * @index: MII register index
2412 * @data: buffer for received data
2413 *
2414 * Perform a single read of an MII 16bit register. Returns zero
2415 * on success or -ETIMEDOUT if the PHY did not respond.
2416 */
2417
2418 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2419 {
2420 u16 ww;
2421
2422 /*
2423 * Disable MIICR_MAUTO, so that mii addr can be set normally
2424 */
2425 safe_disable_mii_autopoll(regs);
2426
2427 writeb(index, &regs->MIIADR);
2428
2429 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2430
2431 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2432 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2433 break;
2434 }
2435
2436 *data = readw(&regs->MIIDATA);
2437
2438 enable_mii_autopoll(regs);
2439 if (ww == W_MAX_TIMEOUT)
2440 return -ETIMEDOUT;
2441 return 0;
2442 }
2443
2444 /**
2445 * velocity_mii_write - write MII data
2446 * @regs: velocity registers
2447 * @index: MII register index
2448 * @data: 16bit data for the MII register
2449 *
2450 * Perform a single write to an MII 16bit register. Returns zero
2451 * on success or -ETIMEDOUT if the PHY did not respond.
2452 */
2453
2454 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2455 {
2456 u16 ww;
2457
2458 /*
2459 * Disable MIICR_MAUTO, so that mii addr can be set normally
2460 */
2461 safe_disable_mii_autopoll(regs);
2462
2463 /* MII reg offset */
2464 writeb(mii_addr, &regs->MIIADR);
2465 /* set MII data */
2466 writew(data, &regs->MIIDATA);
2467
2468 /* turn on MIICR_WCMD */
2469 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2470
2471 /* W_MAX_TIMEOUT is the timeout period */
2472 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2473 udelay(5);
2474 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2475 break;
2476 }
2477 enable_mii_autopoll(regs);
2478
2479 if (ww == W_MAX_TIMEOUT)
2480 return -ETIMEDOUT;
2481 return 0;
2482 }
2483
2484 /**
2485 * velocity_get_opt_media_mode - get media selection
2486 * @vptr: velocity adapter
2487 *
2488 * Get the media mode stored in EEPROM or module options and load
2489 * mii_status accordingly. The requested link state information
2490 * is also returned.
2491 */
2492
2493 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2494 {
2495 u32 status = 0;
2496
2497 switch (vptr->options.spd_dpx) {
2498 case SPD_DPX_AUTO:
2499 status = VELOCITY_AUTONEG_ENABLE;
2500 break;
2501 case SPD_DPX_100_FULL:
2502 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2503 break;
2504 case SPD_DPX_10_FULL:
2505 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2506 break;
2507 case SPD_DPX_100_HALF:
2508 status = VELOCITY_SPEED_100;
2509 break;
2510 case SPD_DPX_10_HALF:
2511 status = VELOCITY_SPEED_10;
2512 break;
2513 }
2514 vptr->mii_status = status;
2515 return status;
2516 }
2517
2518 /**
2519 * mii_set_auto_on - autonegotiate on
2520 * @vptr: velocity
2521 *
2522 * Enable autonegotation on this interface
2523 */
2524
2525 static void mii_set_auto_on(struct velocity_info *vptr)
2526 {
2527 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2528 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2529 else
2530 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2531 }
2532
2533
2534 /*
2535 static void mii_set_auto_off(struct velocity_info * vptr)
2536 {
2537 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2538 }
2539 */
2540
2541 /**
2542 * set_mii_flow_control - flow control setup
2543 * @vptr: velocity interface
2544 *
2545 * Set up the flow control on this interface according to
2546 * the supplied user/eeprom options.
2547 */
2548
2549 static void set_mii_flow_control(struct velocity_info *vptr)
2550 {
2551 /*Enable or Disable PAUSE in ANAR */
2552 switch (vptr->options.flow_cntl) {
2553 case FLOW_CNTL_TX:
2554 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2555 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2556 break;
2557
2558 case FLOW_CNTL_RX:
2559 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2560 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2561 break;
2562
2563 case FLOW_CNTL_TX_RX:
2564 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2565 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2566 break;
2567
2568 case FLOW_CNTL_DISABLE:
2569 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2570 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2571 break;
2572 default:
2573 break;
2574 }
2575 }
2576
2577 /**
2578 * velocity_set_media_mode - set media mode
2579 * @mii_status: old MII link state
2580 *
2581 * Check the media link state and configure the flow control
2582 * PHY and also velocity hardware setup accordingly. In particular
2583 * we need to set up CD polling and frame bursting.
2584 */
2585
2586 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2587 {
2588 u32 curr_status;
2589 struct mac_regs __iomem * regs = vptr->mac_regs;
2590
2591 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2592 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2593
2594 /* Set mii link status */
2595 set_mii_flow_control(vptr);
2596
2597 /*
2598 Check if new status is consisent with current status
2599 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2600 || (mii_status==curr_status)) {
2601 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2602 vptr->mii_status=check_connection_type(vptr->mac_regs);
2603 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2604 return 0;
2605 }
2606 */
2607
2608 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2609 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2610 }
2611
2612 /*
2613 * If connection type is AUTO
2614 */
2615 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2616 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2617 /* clear force MAC mode bit */
2618 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2619 /* set duplex mode of MAC according to duplex mode of MII */
2620 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2621 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2622 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2623
2624 /* enable AUTO-NEGO mode */
2625 mii_set_auto_on(vptr);
2626 } else {
2627 u16 ANAR;
2628 u8 CHIPGCR;
2629
2630 /*
2631 * 1. if it's 3119, disable frame bursting in halfduplex mode
2632 * and enable it in fullduplex mode
2633 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2634 * 3. only enable CD heart beat counter in 10HD mode
2635 */
2636
2637 /* set force MAC mode bit */
2638 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2639
2640 CHIPGCR = readb(&regs->CHIPGCR);
2641 CHIPGCR &= ~CHIPGCR_FCGMII;
2642
2643 if (mii_status & VELOCITY_DUPLEX_FULL) {
2644 CHIPGCR |= CHIPGCR_FCFDX;
2645 writeb(CHIPGCR, &regs->CHIPGCR);
2646 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2647 if (vptr->rev_id < REV_ID_VT3216_A0)
2648 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2649 } else {
2650 CHIPGCR &= ~CHIPGCR_FCFDX;
2651 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2652 writeb(CHIPGCR, &regs->CHIPGCR);
2653 if (vptr->rev_id < REV_ID_VT3216_A0)
2654 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2655 }
2656
2657 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2658
2659 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2660 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2661 } else {
2662 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2663 }
2664 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2665 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2666 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2667 if (mii_status & VELOCITY_SPEED_100) {
2668 if (mii_status & VELOCITY_DUPLEX_FULL)
2669 ANAR |= ANAR_TXFD;
2670 else
2671 ANAR |= ANAR_TX;
2672 } else {
2673 if (mii_status & VELOCITY_DUPLEX_FULL)
2674 ANAR |= ANAR_10FD;
2675 else
2676 ANAR |= ANAR_10;
2677 }
2678 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2679 /* enable AUTO-NEGO mode */
2680 mii_set_auto_on(vptr);
2681 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2682 }
2683 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2684 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2685 return VELOCITY_LINK_CHANGE;
2686 }
2687
2688 /**
2689 * mii_check_media_mode - check media state
2690 * @regs: velocity registers
2691 *
2692 * Check the current MII status and determine the link status
2693 * accordingly
2694 */
2695
2696 static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2697 {
2698 u32 status = 0;
2699 u16 ANAR;
2700
2701 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2702 status |= VELOCITY_LINK_FAIL;
2703
2704 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2705 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2706 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2707 status |= (VELOCITY_SPEED_1000);
2708 else {
2709 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2710 if (ANAR & ANAR_TXFD)
2711 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2712 else if (ANAR & ANAR_TX)
2713 status |= VELOCITY_SPEED_100;
2714 else if (ANAR & ANAR_10FD)
2715 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2716 else
2717 status |= (VELOCITY_SPEED_10);
2718 }
2719
2720 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2721 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2722 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2723 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2724 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2725 status |= VELOCITY_AUTONEG_ENABLE;
2726 }
2727 }
2728
2729 return status;
2730 }
2731
2732 static u32 check_connection_type(struct mac_regs __iomem * regs)
2733 {
2734 u32 status = 0;
2735 u8 PHYSR0;
2736 u16 ANAR;
2737 PHYSR0 = readb(&regs->PHYSR0);
2738
2739 /*
2740 if (!(PHYSR0 & PHYSR0_LINKGD))
2741 status|=VELOCITY_LINK_FAIL;
2742 */
2743
2744 if (PHYSR0 & PHYSR0_FDPX)
2745 status |= VELOCITY_DUPLEX_FULL;
2746
2747 if (PHYSR0 & PHYSR0_SPDG)
2748 status |= VELOCITY_SPEED_1000;
2749 if (PHYSR0 & PHYSR0_SPD10)
2750 status |= VELOCITY_SPEED_10;
2751 else
2752 status |= VELOCITY_SPEED_100;
2753
2754 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2755 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2756 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2757 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2758 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2759 status |= VELOCITY_AUTONEG_ENABLE;
2760 }
2761 }
2762
2763 return status;
2764 }
2765
2766 /**
2767 * enable_flow_control_ability - flow control
2768 * @vptr: veloity to configure
2769 *
2770 * Set up flow control according to the flow control options
2771 * determined by the eeprom/configuration.
2772 */
2773
2774 static void enable_flow_control_ability(struct velocity_info *vptr)
2775 {
2776
2777 struct mac_regs __iomem * regs = vptr->mac_regs;
2778
2779 switch (vptr->options.flow_cntl) {
2780
2781 case FLOW_CNTL_DEFAULT:
2782 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2783 writel(CR0_FDXRFCEN, &regs->CR0Set);
2784 else
2785 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2786
2787 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2788 writel(CR0_FDXTFCEN, &regs->CR0Set);
2789 else
2790 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2791 break;
2792
2793 case FLOW_CNTL_TX:
2794 writel(CR0_FDXTFCEN, &regs->CR0Set);
2795 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2796 break;
2797
2798 case FLOW_CNTL_RX:
2799 writel(CR0_FDXRFCEN, &regs->CR0Set);
2800 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2801 break;
2802
2803 case FLOW_CNTL_TX_RX:
2804 writel(CR0_FDXTFCEN, &regs->CR0Set);
2805 writel(CR0_FDXRFCEN, &regs->CR0Set);
2806 break;
2807
2808 case FLOW_CNTL_DISABLE:
2809 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2810 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2811 break;
2812
2813 default:
2814 break;
2815 }
2816
2817 }
2818
2819
2820 /**
2821 * velocity_ethtool_up - pre hook for ethtool
2822 * @dev: network device
2823 *
2824 * Called before an ethtool operation. We need to make sure the
2825 * chip is out of D3 state before we poke at it.
2826 */
2827
2828 static int velocity_ethtool_up(struct net_device *dev)
2829 {
2830 struct velocity_info *vptr = dev->priv;
2831 if (!netif_running(dev))
2832 pci_set_power_state(vptr->pdev, PCI_D0);
2833 return 0;
2834 }
2835
2836 /**
2837 * velocity_ethtool_down - post hook for ethtool
2838 * @dev: network device
2839 *
2840 * Called after an ethtool operation. Restore the chip back to D3
2841 * state if it isn't running.
2842 */
2843
2844 static void velocity_ethtool_down(struct net_device *dev)
2845 {
2846 struct velocity_info *vptr = dev->priv;
2847 if (!netif_running(dev))
2848 pci_set_power_state(vptr->pdev, PCI_D3hot);
2849 }
2850
2851 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2852 {
2853 struct velocity_info *vptr = dev->priv;
2854 struct mac_regs __iomem * regs = vptr->mac_regs;
2855 u32 status;
2856 status = check_connection_type(vptr->mac_regs);
2857
2858 cmd->supported = SUPPORTED_TP | SUPPORTED_Autoneg | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full;
2859 if (status & VELOCITY_SPEED_100)
2860 cmd->speed = SPEED_100;
2861 else
2862 cmd->speed = SPEED_10;
2863 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2864 cmd->port = PORT_TP;
2865 cmd->transceiver = XCVR_INTERNAL;
2866 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
2867
2868 if (status & VELOCITY_DUPLEX_FULL)
2869 cmd->duplex = DUPLEX_FULL;
2870 else
2871 cmd->duplex = DUPLEX_HALF;
2872
2873 return 0;
2874 }
2875
2876 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2877 {
2878 struct velocity_info *vptr = dev->priv;
2879 u32 curr_status;
2880 u32 new_status = 0;
2881 int ret = 0;
2882
2883 curr_status = check_connection_type(vptr->mac_regs);
2884 curr_status &= (~VELOCITY_LINK_FAIL);
2885
2886 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
2887 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
2888 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
2889 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
2890
2891 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
2892 ret = -EINVAL;
2893 else
2894 velocity_set_media_mode(vptr, new_status);
2895
2896 return ret;
2897 }
2898
2899 static u32 velocity_get_link(struct net_device *dev)
2900 {
2901 struct velocity_info *vptr = dev->priv;
2902 struct mac_regs __iomem * regs = vptr->mac_regs;
2903 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 0 : 1;
2904 }
2905
2906 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2907 {
2908 struct velocity_info *vptr = dev->priv;
2909 strcpy(info->driver, VELOCITY_NAME);
2910 strcpy(info->version, VELOCITY_VERSION);
2911 strcpy(info->bus_info, pci_name(vptr->pdev));
2912 }
2913
2914 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2915 {
2916 struct velocity_info *vptr = dev->priv;
2917 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
2918 wol->wolopts |= WAKE_MAGIC;
2919 /*
2920 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2921 wol.wolopts|=WAKE_PHY;
2922 */
2923 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2924 wol->wolopts |= WAKE_UCAST;
2925 if (vptr->wol_opts & VELOCITY_WOL_ARP)
2926 wol->wolopts |= WAKE_ARP;
2927 memcpy(&wol->sopass, vptr->wol_passwd, 6);
2928 }
2929
2930 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2931 {
2932 struct velocity_info *vptr = dev->priv;
2933
2934 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
2935 return -EFAULT;
2936 vptr->wol_opts = VELOCITY_WOL_MAGIC;
2937
2938 /*
2939 if (wol.wolopts & WAKE_PHY) {
2940 vptr->wol_opts|=VELOCITY_WOL_PHY;
2941 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
2942 }
2943 */
2944
2945 if (wol->wolopts & WAKE_MAGIC) {
2946 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
2947 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2948 }
2949 if (wol->wolopts & WAKE_UCAST) {
2950 vptr->wol_opts |= VELOCITY_WOL_UCAST;
2951 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2952 }
2953 if (wol->wolopts & WAKE_ARP) {
2954 vptr->wol_opts |= VELOCITY_WOL_ARP;
2955 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2956 }
2957 memcpy(vptr->wol_passwd, wol->sopass, 6);
2958 return 0;
2959 }
2960
2961 static u32 velocity_get_msglevel(struct net_device *dev)
2962 {
2963 return msglevel;
2964 }
2965
2966 static void velocity_set_msglevel(struct net_device *dev, u32 value)
2967 {
2968 msglevel = value;
2969 }
2970
2971 static struct ethtool_ops velocity_ethtool_ops = {
2972 .get_settings = velocity_get_settings,
2973 .set_settings = velocity_set_settings,
2974 .get_drvinfo = velocity_get_drvinfo,
2975 .get_wol = velocity_ethtool_get_wol,
2976 .set_wol = velocity_ethtool_set_wol,
2977 .get_msglevel = velocity_get_msglevel,
2978 .set_msglevel = velocity_set_msglevel,
2979 .get_link = velocity_get_link,
2980 .begin = velocity_ethtool_up,
2981 .complete = velocity_ethtool_down
2982 };
2983
2984 /**
2985 * velocity_mii_ioctl - MII ioctl handler
2986 * @dev: network device
2987 * @ifr: the ifreq block for the ioctl
2988 * @cmd: the command
2989 *
2990 * Process MII requests made via ioctl from the network layer. These
2991 * are used by tools like kudzu to interrogate the link state of the
2992 * hardware
2993 */
2994
2995 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2996 {
2997 struct velocity_info *vptr = dev->priv;
2998 struct mac_regs __iomem * regs = vptr->mac_regs;
2999 unsigned long flags;
3000 struct mii_ioctl_data *miidata = if_mii(ifr);
3001 int err;
3002
3003 switch (cmd) {
3004 case SIOCGMIIPHY:
3005 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
3006 break;
3007 case SIOCGMIIREG:
3008 if (!capable(CAP_NET_ADMIN))
3009 return -EPERM;
3010 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3011 return -ETIMEDOUT;
3012 break;
3013 case SIOCSMIIREG:
3014 if (!capable(CAP_NET_ADMIN))
3015 return -EPERM;
3016 spin_lock_irqsave(&vptr->lock, flags);
3017 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3018 spin_unlock_irqrestore(&vptr->lock, flags);
3019 check_connection_type(vptr->mac_regs);
3020 if(err)
3021 return err;
3022 break;
3023 default:
3024 return -EOPNOTSUPP;
3025 }
3026 return 0;
3027 }
3028
3029 #ifdef CONFIG_PM
3030
3031 /**
3032 * velocity_save_context - save registers
3033 * @vptr: velocity
3034 * @context: buffer for stored context
3035 *
3036 * Retrieve the current configuration from the velocity hardware
3037 * and stash it in the context structure, for use by the context
3038 * restore functions. This allows us to save things we need across
3039 * power down states
3040 */
3041
3042 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3043 {
3044 struct mac_regs __iomem * regs = vptr->mac_regs;
3045 u16 i;
3046 u8 __iomem *ptr = (u8 __iomem *)regs;
3047
3048 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3049 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3050
3051 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3052 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3053
3054 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3055 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3056
3057 }
3058
3059 /**
3060 * velocity_restore_context - restore registers
3061 * @vptr: velocity
3062 * @context: buffer for stored context
3063 *
3064 * Reload the register configuration from the velocity context
3065 * created by velocity_save_context.
3066 */
3067
3068 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3069 {
3070 struct mac_regs __iomem * regs = vptr->mac_regs;
3071 int i;
3072 u8 __iomem *ptr = (u8 __iomem *)regs;
3073
3074 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3075 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3076 }
3077
3078 /* Just skip cr0 */
3079 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3080 /* Clear */
3081 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3082 /* Set */
3083 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3084 }
3085
3086 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3087 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3088 }
3089
3090 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3091 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3092 }
3093
3094 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3095 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3096 }
3097
3098 }
3099
3100 /**
3101 * wol_calc_crc - WOL CRC
3102 * @pattern: data pattern
3103 * @mask_pattern: mask
3104 *
3105 * Compute the wake on lan crc hashes for the packet header
3106 * we are interested in.
3107 */
3108
3109 static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3110 {
3111 u16 crc = 0xFFFF;
3112 u8 mask;
3113 int i, j;
3114
3115 for (i = 0; i < size; i++) {
3116 mask = mask_pattern[i];
3117
3118 /* Skip this loop if the mask equals to zero */
3119 if (mask == 0x00)
3120 continue;
3121
3122 for (j = 0; j < 8; j++) {
3123 if ((mask & 0x01) == 0) {
3124 mask >>= 1;
3125 continue;
3126 }
3127 mask >>= 1;
3128 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3129 }
3130 }
3131 /* Finally, invert the result once to get the correct data */
3132 crc = ~crc;
3133 return bitreverse(crc) >> 16;
3134 }
3135
3136 /**
3137 * velocity_set_wol - set up for wake on lan
3138 * @vptr: velocity to set WOL status on
3139 *
3140 * Set a card up for wake on lan either by unicast or by
3141 * ARP packet.
3142 *
3143 * FIXME: check static buffer is safe here
3144 */
3145
3146 static int velocity_set_wol(struct velocity_info *vptr)
3147 {
3148 struct mac_regs __iomem * regs = vptr->mac_regs;
3149 static u8 buf[256];
3150 int i;
3151
3152 static u32 mask_pattern[2][4] = {
3153 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3154 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3155 };
3156
3157 writew(0xFFFF, &regs->WOLCRClr);
3158 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3159 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3160
3161 /*
3162 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3163 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3164 */
3165
3166 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3167 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3168 }
3169
3170 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3171 struct arp_packet *arp = (struct arp_packet *) buf;
3172 u16 crc;
3173 memset(buf, 0, sizeof(struct arp_packet) + 7);
3174
3175 for (i = 0; i < 4; i++)
3176 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3177
3178 arp->type = htons(ETH_P_ARP);
3179 arp->ar_op = htons(1);
3180
3181 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3182
3183 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3184 (u8 *) & mask_pattern[0][0]);
3185
3186 writew(crc, &regs->PatternCRC[0]);
3187 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3188 }
3189
3190 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3191 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3192
3193 writew(0x0FFF, &regs->WOLSRClr);
3194
3195 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3196 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3197 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3198
3199 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3200 }
3201
3202 if (vptr->mii_status & VELOCITY_SPEED_1000)
3203 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3204
3205 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3206
3207 {
3208 u8 GCR;
3209 GCR = readb(&regs->CHIPGCR);
3210 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3211 writeb(GCR, &regs->CHIPGCR);
3212 }
3213
3214 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3215 /* Turn on SWPTAG just before entering power mode */
3216 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3217 /* Go to bed ..... */
3218 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3219
3220 return 0;
3221 }
3222
3223 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3224 {
3225 struct net_device *dev = pci_get_drvdata(pdev);
3226 struct velocity_info *vptr = netdev_priv(dev);
3227 unsigned long flags;
3228
3229 if(!netif_running(vptr->dev))
3230 return 0;
3231
3232 netif_device_detach(vptr->dev);
3233
3234 spin_lock_irqsave(&vptr->lock, flags);
3235 pci_save_state(pdev);
3236 #ifdef ETHTOOL_GWOL
3237 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3238 velocity_get_ip(vptr);
3239 velocity_save_context(vptr, &vptr->context);
3240 velocity_shutdown(vptr);
3241 velocity_set_wol(vptr);
3242 pci_enable_wake(pdev, 3, 1);
3243 pci_set_power_state(pdev, PCI_D3hot);
3244 } else {
3245 velocity_save_context(vptr, &vptr->context);
3246 velocity_shutdown(vptr);
3247 pci_disable_device(pdev);
3248 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3249 }
3250 #else
3251 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3252 #endif
3253 spin_unlock_irqrestore(&vptr->lock, flags);
3254 return 0;
3255 }
3256
3257 static int velocity_resume(struct pci_dev *pdev)
3258 {
3259 struct net_device *dev = pci_get_drvdata(pdev);
3260 struct velocity_info *vptr = netdev_priv(dev);
3261 unsigned long flags;
3262 int i;
3263
3264 if(!netif_running(vptr->dev))
3265 return 0;
3266
3267 pci_set_power_state(pdev, PCI_D0);
3268 pci_enable_wake(pdev, 0, 0);
3269 pci_restore_state(pdev);
3270
3271 mac_wol_reset(vptr->mac_regs);
3272
3273 spin_lock_irqsave(&vptr->lock, flags);
3274 velocity_restore_context(vptr, &vptr->context);
3275 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3276 mac_disable_int(vptr->mac_regs);
3277
3278 velocity_tx_srv(vptr, 0);
3279
3280 for (i = 0; i < vptr->num_txq; i++) {
3281 if (vptr->td_used[i]) {
3282 mac_tx_queue_wake(vptr->mac_regs, i);
3283 }
3284 }
3285
3286 mac_enable_int(vptr->mac_regs);
3287 spin_unlock_irqrestore(&vptr->lock, flags);
3288 netif_device_attach(vptr->dev);
3289
3290 return 0;
3291 }
3292
3293 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3294 {
3295 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3296
3297 if (ifa) {
3298 struct net_device *dev = ifa->ifa_dev->dev;
3299 struct velocity_info *vptr;
3300 unsigned long flags;
3301
3302 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3303 list_for_each_entry(vptr, &velocity_dev_list, list) {
3304 if (vptr->dev == dev) {
3305 velocity_get_ip(vptr);
3306 break;
3307 }
3308 }
3309 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3310 }
3311 return NOTIFY_DONE;
3312 }
3313 #endif
This page took 0.100101 seconds and 6 git commands to generate.