netfilter: Pass struct net into the netfilter hooks
[deliverable/linux.git] / drivers / net / vrf.c
1 /*
2 * vrf.c: device driver to encapsulate a VRF space
3 *
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7 *
8 * Based on dummy, team and ipvlan drivers
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_route.h>
34 #include <net/rtnetlink.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/vrf.h>
38
39 #define DRV_NAME "vrf"
40 #define DRV_VERSION "1.0"
41
42 #define vrf_is_slave(dev) ((dev)->flags & IFF_SLAVE)
43
44 #define vrf_master_get_rcu(dev) \
45 ((struct net_device *)rcu_dereference(dev->rx_handler_data))
46
47 struct pcpu_dstats {
48 u64 tx_pkts;
49 u64 tx_bytes;
50 u64 tx_drps;
51 u64 rx_pkts;
52 u64 rx_bytes;
53 struct u64_stats_sync syncp;
54 };
55
56 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie)
57 {
58 return dst;
59 }
60
61 static int vrf_ip_local_out(struct sk_buff *skb)
62 {
63 return ip_local_out(skb);
64 }
65
66 static unsigned int vrf_v4_mtu(const struct dst_entry *dst)
67 {
68 /* TO-DO: return max ethernet size? */
69 return dst->dev->mtu;
70 }
71
72 static void vrf_dst_destroy(struct dst_entry *dst)
73 {
74 /* our dst lives forever - or until the device is closed */
75 }
76
77 static unsigned int vrf_default_advmss(const struct dst_entry *dst)
78 {
79 return 65535 - 40;
80 }
81
82 static struct dst_ops vrf_dst_ops = {
83 .family = AF_INET,
84 .local_out = vrf_ip_local_out,
85 .check = vrf_ip_check,
86 .mtu = vrf_v4_mtu,
87 .destroy = vrf_dst_destroy,
88 .default_advmss = vrf_default_advmss,
89 };
90
91 static bool is_ip_rx_frame(struct sk_buff *skb)
92 {
93 switch (skb->protocol) {
94 case htons(ETH_P_IP):
95 case htons(ETH_P_IPV6):
96 return true;
97 }
98 return false;
99 }
100
101 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
102 {
103 vrf_dev->stats.tx_errors++;
104 kfree_skb(skb);
105 }
106
107 /* note: already called with rcu_read_lock */
108 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
109 {
110 struct sk_buff *skb = *pskb;
111
112 if (is_ip_rx_frame(skb)) {
113 struct net_device *dev = vrf_master_get_rcu(skb->dev);
114 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
115
116 u64_stats_update_begin(&dstats->syncp);
117 dstats->rx_pkts++;
118 dstats->rx_bytes += skb->len;
119 u64_stats_update_end(&dstats->syncp);
120
121 skb->dev = dev;
122
123 return RX_HANDLER_ANOTHER;
124 }
125 return RX_HANDLER_PASS;
126 }
127
128 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
129 struct rtnl_link_stats64 *stats)
130 {
131 int i;
132
133 for_each_possible_cpu(i) {
134 const struct pcpu_dstats *dstats;
135 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
136 unsigned int start;
137
138 dstats = per_cpu_ptr(dev->dstats, i);
139 do {
140 start = u64_stats_fetch_begin_irq(&dstats->syncp);
141 tbytes = dstats->tx_bytes;
142 tpkts = dstats->tx_pkts;
143 tdrops = dstats->tx_drps;
144 rbytes = dstats->rx_bytes;
145 rpkts = dstats->rx_pkts;
146 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
147 stats->tx_bytes += tbytes;
148 stats->tx_packets += tpkts;
149 stats->tx_dropped += tdrops;
150 stats->rx_bytes += rbytes;
151 stats->rx_packets += rpkts;
152 }
153 return stats;
154 }
155
156 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
157 struct net_device *dev)
158 {
159 vrf_tx_error(dev, skb);
160 return NET_XMIT_DROP;
161 }
162
163 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
164 struct net_device *vrf_dev)
165 {
166 struct rtable *rt;
167 int err = 1;
168
169 rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
170 if (IS_ERR(rt))
171 goto out;
172
173 /* TO-DO: what about broadcast ? */
174 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
175 ip_rt_put(rt);
176 goto out;
177 }
178
179 skb_dst_drop(skb);
180 skb_dst_set(skb, &rt->dst);
181 err = 0;
182 out:
183 return err;
184 }
185
186 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
187 struct net_device *vrf_dev)
188 {
189 struct iphdr *ip4h = ip_hdr(skb);
190 int ret = NET_XMIT_DROP;
191 struct flowi4 fl4 = {
192 /* needed to match OIF rule */
193 .flowi4_oif = vrf_dev->ifindex,
194 .flowi4_iif = LOOPBACK_IFINDEX,
195 .flowi4_tos = RT_TOS(ip4h->tos),
196 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_VRFSRC,
197 .daddr = ip4h->daddr,
198 };
199
200 if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
201 goto err;
202
203 if (!ip4h->saddr) {
204 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
205 RT_SCOPE_LINK);
206 }
207
208 ret = ip_local_out(skb);
209 if (unlikely(net_xmit_eval(ret)))
210 vrf_dev->stats.tx_errors++;
211 else
212 ret = NET_XMIT_SUCCESS;
213
214 out:
215 return ret;
216 err:
217 vrf_tx_error(vrf_dev, skb);
218 goto out;
219 }
220
221 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
222 {
223 /* strip the ethernet header added for pass through VRF device */
224 __skb_pull(skb, skb_network_offset(skb));
225
226 switch (skb->protocol) {
227 case htons(ETH_P_IP):
228 return vrf_process_v4_outbound(skb, dev);
229 case htons(ETH_P_IPV6):
230 return vrf_process_v6_outbound(skb, dev);
231 default:
232 vrf_tx_error(dev, skb);
233 return NET_XMIT_DROP;
234 }
235 }
236
237 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
238 {
239 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
240
241 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
242 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
243
244 u64_stats_update_begin(&dstats->syncp);
245 dstats->tx_pkts++;
246 dstats->tx_bytes += skb->len;
247 u64_stats_update_end(&dstats->syncp);
248 } else {
249 this_cpu_inc(dev->dstats->tx_drps);
250 }
251
252 return ret;
253 }
254
255 /* modelled after ip_finish_output2 */
256 static int vrf_finish_output(struct sock *sk, struct sk_buff *skb)
257 {
258 struct dst_entry *dst = skb_dst(skb);
259 struct rtable *rt = (struct rtable *)dst;
260 struct net_device *dev = dst->dev;
261 unsigned int hh_len = LL_RESERVED_SPACE(dev);
262 struct neighbour *neigh;
263 u32 nexthop;
264 int ret = -EINVAL;
265
266 /* Be paranoid, rather than too clever. */
267 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
268 struct sk_buff *skb2;
269
270 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
271 if (!skb2) {
272 ret = -ENOMEM;
273 goto err;
274 }
275 if (skb->sk)
276 skb_set_owner_w(skb2, skb->sk);
277
278 consume_skb(skb);
279 skb = skb2;
280 }
281
282 rcu_read_lock_bh();
283
284 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
285 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
286 if (unlikely(!neigh))
287 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
288 if (!IS_ERR(neigh))
289 ret = dst_neigh_output(dst, neigh, skb);
290
291 rcu_read_unlock_bh();
292 err:
293 if (unlikely(ret < 0))
294 vrf_tx_error(skb->dev, skb);
295 return ret;
296 }
297
298 static int vrf_output(struct sock *sk, struct sk_buff *skb)
299 {
300 struct net_device *dev = skb_dst(skb)->dev;
301 struct net *net = dev_net(dev);
302
303 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
304
305 skb->dev = dev;
306 skb->protocol = htons(ETH_P_IP);
307
308 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
309 net, sk, skb, NULL, dev,
310 vrf_finish_output,
311 !(IPCB(skb)->flags & IPSKB_REROUTED));
312 }
313
314 static void vrf_rtable_destroy(struct net_vrf *vrf)
315 {
316 struct dst_entry *dst = (struct dst_entry *)vrf->rth;
317
318 dst_destroy(dst);
319 vrf->rth = NULL;
320 }
321
322 static struct rtable *vrf_rtable_create(struct net_device *dev)
323 {
324 struct net_vrf *vrf = netdev_priv(dev);
325 struct rtable *rth;
326
327 rth = dst_alloc(&vrf_dst_ops, dev, 2,
328 DST_OBSOLETE_NONE,
329 (DST_HOST | DST_NOPOLICY | DST_NOXFRM));
330 if (rth) {
331 rth->dst.output = vrf_output;
332 rth->rt_genid = rt_genid_ipv4(dev_net(dev));
333 rth->rt_flags = 0;
334 rth->rt_type = RTN_UNICAST;
335 rth->rt_is_input = 0;
336 rth->rt_iif = 0;
337 rth->rt_pmtu = 0;
338 rth->rt_gateway = 0;
339 rth->rt_uses_gateway = 0;
340 rth->rt_table_id = vrf->tb_id;
341 INIT_LIST_HEAD(&rth->rt_uncached);
342 rth->rt_uncached_list = NULL;
343 }
344
345 return rth;
346 }
347
348 /**************************** device handling ********************/
349
350 /* cycle interface to flush neighbor cache and move routes across tables */
351 static void cycle_netdev(struct net_device *dev)
352 {
353 unsigned int flags = dev->flags;
354 int ret;
355
356 if (!netif_running(dev))
357 return;
358
359 ret = dev_change_flags(dev, flags & ~IFF_UP);
360 if (ret >= 0)
361 ret = dev_change_flags(dev, flags);
362
363 if (ret < 0) {
364 netdev_err(dev,
365 "Failed to cycle device %s; route tables might be wrong!\n",
366 dev->name);
367 }
368 }
369
370 static struct slave *__vrf_find_slave_dev(struct slave_queue *queue,
371 struct net_device *dev)
372 {
373 struct list_head *head = &queue->all_slaves;
374 struct slave *slave;
375
376 list_for_each_entry(slave, head, list) {
377 if (slave->dev == dev)
378 return slave;
379 }
380
381 return NULL;
382 }
383
384 /* inverse of __vrf_insert_slave */
385 static void __vrf_remove_slave(struct slave_queue *queue, struct slave *slave)
386 {
387 list_del(&slave->list);
388 }
389
390 static void __vrf_insert_slave(struct slave_queue *queue, struct slave *slave)
391 {
392 list_add(&slave->list, &queue->all_slaves);
393 }
394
395 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
396 {
397 struct net_vrf_dev *vrf_ptr = kmalloc(sizeof(*vrf_ptr), GFP_KERNEL);
398 struct slave *slave = kzalloc(sizeof(*slave), GFP_KERNEL);
399 struct net_vrf *vrf = netdev_priv(dev);
400 struct slave_queue *queue = &vrf->queue;
401 int ret = -ENOMEM;
402
403 if (!slave || !vrf_ptr)
404 goto out_fail;
405
406 slave->dev = port_dev;
407 vrf_ptr->ifindex = dev->ifindex;
408 vrf_ptr->tb_id = vrf->tb_id;
409
410 /* register the packet handler for slave ports */
411 ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
412 if (ret) {
413 netdev_err(port_dev,
414 "Device %s failed to register rx_handler\n",
415 port_dev->name);
416 goto out_fail;
417 }
418
419 ret = netdev_master_upper_dev_link(port_dev, dev);
420 if (ret < 0)
421 goto out_unregister;
422
423 port_dev->flags |= IFF_SLAVE;
424 __vrf_insert_slave(queue, slave);
425 rcu_assign_pointer(port_dev->vrf_ptr, vrf_ptr);
426 cycle_netdev(port_dev);
427
428 return 0;
429
430 out_unregister:
431 netdev_rx_handler_unregister(port_dev);
432 out_fail:
433 kfree(vrf_ptr);
434 kfree(slave);
435 return ret;
436 }
437
438 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
439 {
440 if (netif_is_vrf(port_dev) || vrf_is_slave(port_dev))
441 return -EINVAL;
442
443 return do_vrf_add_slave(dev, port_dev);
444 }
445
446 /* inverse of do_vrf_add_slave */
447 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
448 {
449 struct net_vrf_dev *vrf_ptr = rtnl_dereference(port_dev->vrf_ptr);
450 struct net_vrf *vrf = netdev_priv(dev);
451 struct slave_queue *queue = &vrf->queue;
452 struct slave *slave;
453
454 RCU_INIT_POINTER(port_dev->vrf_ptr, NULL);
455
456 netdev_upper_dev_unlink(port_dev, dev);
457 port_dev->flags &= ~IFF_SLAVE;
458
459 netdev_rx_handler_unregister(port_dev);
460
461 /* after netdev_rx_handler_unregister for synchronize_rcu */
462 kfree(vrf_ptr);
463
464 cycle_netdev(port_dev);
465
466 slave = __vrf_find_slave_dev(queue, port_dev);
467 if (slave)
468 __vrf_remove_slave(queue, slave);
469
470 kfree(slave);
471
472 return 0;
473 }
474
475 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
476 {
477 return do_vrf_del_slave(dev, port_dev);
478 }
479
480 static void vrf_dev_uninit(struct net_device *dev)
481 {
482 struct net_vrf *vrf = netdev_priv(dev);
483 struct slave_queue *queue = &vrf->queue;
484 struct list_head *head = &queue->all_slaves;
485 struct slave *slave, *next;
486
487 vrf_rtable_destroy(vrf);
488
489 list_for_each_entry_safe(slave, next, head, list)
490 vrf_del_slave(dev, slave->dev);
491
492 free_percpu(dev->dstats);
493 dev->dstats = NULL;
494 }
495
496 static int vrf_dev_init(struct net_device *dev)
497 {
498 struct net_vrf *vrf = netdev_priv(dev);
499
500 INIT_LIST_HEAD(&vrf->queue.all_slaves);
501
502 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
503 if (!dev->dstats)
504 goto out_nomem;
505
506 /* create the default dst which points back to us */
507 vrf->rth = vrf_rtable_create(dev);
508 if (!vrf->rth)
509 goto out_stats;
510
511 dev->flags = IFF_MASTER | IFF_NOARP;
512
513 return 0;
514
515 out_stats:
516 free_percpu(dev->dstats);
517 dev->dstats = NULL;
518 out_nomem:
519 return -ENOMEM;
520 }
521
522 static const struct net_device_ops vrf_netdev_ops = {
523 .ndo_init = vrf_dev_init,
524 .ndo_uninit = vrf_dev_uninit,
525 .ndo_start_xmit = vrf_xmit,
526 .ndo_get_stats64 = vrf_get_stats64,
527 .ndo_add_slave = vrf_add_slave,
528 .ndo_del_slave = vrf_del_slave,
529 };
530
531 static void vrf_get_drvinfo(struct net_device *dev,
532 struct ethtool_drvinfo *info)
533 {
534 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
535 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
536 }
537
538 static const struct ethtool_ops vrf_ethtool_ops = {
539 .get_drvinfo = vrf_get_drvinfo,
540 };
541
542 static void vrf_setup(struct net_device *dev)
543 {
544 ether_setup(dev);
545
546 /* Initialize the device structure. */
547 dev->netdev_ops = &vrf_netdev_ops;
548 dev->ethtool_ops = &vrf_ethtool_ops;
549 dev->destructor = free_netdev;
550
551 /* Fill in device structure with ethernet-generic values. */
552 eth_hw_addr_random(dev);
553
554 /* don't acquire vrf device's netif_tx_lock when transmitting */
555 dev->features |= NETIF_F_LLTX;
556
557 /* don't allow vrf devices to change network namespaces. */
558 dev->features |= NETIF_F_NETNS_LOCAL;
559 }
560
561 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
562 {
563 if (tb[IFLA_ADDRESS]) {
564 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
565 return -EINVAL;
566 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
567 return -EADDRNOTAVAIL;
568 }
569 return 0;
570 }
571
572 static void vrf_dellink(struct net_device *dev, struct list_head *head)
573 {
574 struct net_vrf_dev *vrf_ptr = rtnl_dereference(dev->vrf_ptr);
575
576 RCU_INIT_POINTER(dev->vrf_ptr, NULL);
577 kfree_rcu(vrf_ptr, rcu);
578 unregister_netdevice_queue(dev, head);
579 }
580
581 static int vrf_newlink(struct net *src_net, struct net_device *dev,
582 struct nlattr *tb[], struct nlattr *data[])
583 {
584 struct net_vrf *vrf = netdev_priv(dev);
585 struct net_vrf_dev *vrf_ptr;
586 int err;
587
588 if (!data || !data[IFLA_VRF_TABLE])
589 return -EINVAL;
590
591 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
592
593 dev->priv_flags |= IFF_VRF_MASTER;
594
595 err = -ENOMEM;
596 vrf_ptr = kmalloc(sizeof(*dev->vrf_ptr), GFP_KERNEL);
597 if (!vrf_ptr)
598 goto out_fail;
599
600 vrf_ptr->ifindex = dev->ifindex;
601 vrf_ptr->tb_id = vrf->tb_id;
602
603 err = register_netdevice(dev);
604 if (err < 0)
605 goto out_fail;
606
607 rcu_assign_pointer(dev->vrf_ptr, vrf_ptr);
608
609 return 0;
610
611 out_fail:
612 kfree(vrf_ptr);
613 free_netdev(dev);
614 return err;
615 }
616
617 static size_t vrf_nl_getsize(const struct net_device *dev)
618 {
619 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
620 }
621
622 static int vrf_fillinfo(struct sk_buff *skb,
623 const struct net_device *dev)
624 {
625 struct net_vrf *vrf = netdev_priv(dev);
626
627 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
628 }
629
630 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
631 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
632 };
633
634 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
635 .kind = DRV_NAME,
636 .priv_size = sizeof(struct net_vrf),
637
638 .get_size = vrf_nl_getsize,
639 .policy = vrf_nl_policy,
640 .validate = vrf_validate,
641 .fill_info = vrf_fillinfo,
642
643 .newlink = vrf_newlink,
644 .dellink = vrf_dellink,
645 .setup = vrf_setup,
646 .maxtype = IFLA_VRF_MAX,
647 };
648
649 static int vrf_device_event(struct notifier_block *unused,
650 unsigned long event, void *ptr)
651 {
652 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
653
654 /* only care about unregister events to drop slave references */
655 if (event == NETDEV_UNREGISTER) {
656 struct net_vrf_dev *vrf_ptr = rtnl_dereference(dev->vrf_ptr);
657 struct net_device *vrf_dev;
658
659 if (!vrf_ptr || netif_is_vrf(dev))
660 goto out;
661
662 vrf_dev = netdev_master_upper_dev_get(dev);
663 vrf_del_slave(vrf_dev, dev);
664 }
665 out:
666 return NOTIFY_DONE;
667 }
668
669 static struct notifier_block vrf_notifier_block __read_mostly = {
670 .notifier_call = vrf_device_event,
671 };
672
673 static int __init vrf_init_module(void)
674 {
675 int rc;
676
677 vrf_dst_ops.kmem_cachep =
678 kmem_cache_create("vrf_ip_dst_cache",
679 sizeof(struct rtable), 0,
680 SLAB_HWCACHE_ALIGN,
681 NULL);
682
683 if (!vrf_dst_ops.kmem_cachep)
684 return -ENOMEM;
685
686 register_netdevice_notifier(&vrf_notifier_block);
687
688 rc = rtnl_link_register(&vrf_link_ops);
689 if (rc < 0)
690 goto error;
691
692 return 0;
693
694 error:
695 unregister_netdevice_notifier(&vrf_notifier_block);
696 kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
697 return rc;
698 }
699
700 static void __exit vrf_cleanup_module(void)
701 {
702 rtnl_link_unregister(&vrf_link_ops);
703 unregister_netdevice_notifier(&vrf_notifier_block);
704 kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
705 }
706
707 module_init(vrf_init_module);
708 module_exit(vrf_cleanup_module);
709 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
710 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
711 MODULE_LICENSE("GPL");
712 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
713 MODULE_VERSION(DRV_VERSION);
This page took 0.045305 seconds and 5 git commands to generate.