Merge remote-tracking branch 'regulator/topic/max8973' into regulator-next
[deliverable/linux.git] / drivers / net / wan / ixp4xx_hss.c
1 /*
2 * Intel IXP4xx HSS (synchronous serial port) driver for Linux
3 *
4 * Copyright (C) 2007-2008 Krzysztof HaƂasa <khc@pm.waw.pl>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/module.h>
14 #include <linux/bitops.h>
15 #include <linux/cdev.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmapool.h>
18 #include <linux/fs.h>
19 #include <linux/hdlc.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/platform_device.h>
23 #include <linux/poll.h>
24 #include <linux/slab.h>
25 #include <mach/npe.h>
26 #include <mach/qmgr.h>
27
28 #define DEBUG_DESC 0
29 #define DEBUG_RX 0
30 #define DEBUG_TX 0
31 #define DEBUG_PKT_BYTES 0
32 #define DEBUG_CLOSE 0
33
34 #define DRV_NAME "ixp4xx_hss"
35
36 #define PKT_EXTRA_FLAGS 0 /* orig 1 */
37 #define PKT_NUM_PIPES 1 /* 1, 2 or 4 */
38 #define PKT_PIPE_FIFO_SIZEW 4 /* total 4 dwords per HSS */
39
40 #define RX_DESCS 16 /* also length of all RX queues */
41 #define TX_DESCS 16 /* also length of all TX queues */
42
43 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
44 #define RX_SIZE (HDLC_MAX_MRU + 4) /* NPE needs more space */
45 #define MAX_CLOSE_WAIT 1000 /* microseconds */
46 #define HSS_COUNT 2
47 #define FRAME_SIZE 256 /* doesn't matter at this point */
48 #define FRAME_OFFSET 0
49 #define MAX_CHANNELS (FRAME_SIZE / 8)
50
51 #define NAPI_WEIGHT 16
52
53 /* Queue IDs */
54 #define HSS0_CHL_RXTRIG_QUEUE 12 /* orig size = 32 dwords */
55 #define HSS0_PKT_RX_QUEUE 13 /* orig size = 32 dwords */
56 #define HSS0_PKT_TX0_QUEUE 14 /* orig size = 16 dwords */
57 #define HSS0_PKT_TX1_QUEUE 15
58 #define HSS0_PKT_TX2_QUEUE 16
59 #define HSS0_PKT_TX3_QUEUE 17
60 #define HSS0_PKT_RXFREE0_QUEUE 18 /* orig size = 16 dwords */
61 #define HSS0_PKT_RXFREE1_QUEUE 19
62 #define HSS0_PKT_RXFREE2_QUEUE 20
63 #define HSS0_PKT_RXFREE3_QUEUE 21
64 #define HSS0_PKT_TXDONE_QUEUE 22 /* orig size = 64 dwords */
65
66 #define HSS1_CHL_RXTRIG_QUEUE 10
67 #define HSS1_PKT_RX_QUEUE 0
68 #define HSS1_PKT_TX0_QUEUE 5
69 #define HSS1_PKT_TX1_QUEUE 6
70 #define HSS1_PKT_TX2_QUEUE 7
71 #define HSS1_PKT_TX3_QUEUE 8
72 #define HSS1_PKT_RXFREE0_QUEUE 1
73 #define HSS1_PKT_RXFREE1_QUEUE 2
74 #define HSS1_PKT_RXFREE2_QUEUE 3
75 #define HSS1_PKT_RXFREE3_QUEUE 4
76 #define HSS1_PKT_TXDONE_QUEUE 9
77
78 #define NPE_PKT_MODE_HDLC 0
79 #define NPE_PKT_MODE_RAW 1
80 #define NPE_PKT_MODE_56KMODE 2
81 #define NPE_PKT_MODE_56KENDIAN_MSB 4
82
83 /* PKT_PIPE_HDLC_CFG_WRITE flags */
84 #define PKT_HDLC_IDLE_ONES 0x1 /* default = flags */
85 #define PKT_HDLC_CRC_32 0x2 /* default = CRC-16 */
86 #define PKT_HDLC_MSB_ENDIAN 0x4 /* default = LE */
87
88
89 /* hss_config, PCRs */
90 /* Frame sync sampling, default = active low */
91 #define PCR_FRM_SYNC_ACTIVE_HIGH 0x40000000
92 #define PCR_FRM_SYNC_FALLINGEDGE 0x80000000
93 #define PCR_FRM_SYNC_RISINGEDGE 0xC0000000
94
95 /* Frame sync pin: input (default) or output generated off a given clk edge */
96 #define PCR_FRM_SYNC_OUTPUT_FALLING 0x20000000
97 #define PCR_FRM_SYNC_OUTPUT_RISING 0x30000000
98
99 /* Frame and data clock sampling on edge, default = falling */
100 #define PCR_FCLK_EDGE_RISING 0x08000000
101 #define PCR_DCLK_EDGE_RISING 0x04000000
102
103 /* Clock direction, default = input */
104 #define PCR_SYNC_CLK_DIR_OUTPUT 0x02000000
105
106 /* Generate/Receive frame pulses, default = enabled */
107 #define PCR_FRM_PULSE_DISABLED 0x01000000
108
109 /* Data rate is full (default) or half the configured clk speed */
110 #define PCR_HALF_CLK_RATE 0x00200000
111
112 /* Invert data between NPE and HSS FIFOs? (default = no) */
113 #define PCR_DATA_POLARITY_INVERT 0x00100000
114
115 /* TX/RX endianness, default = LSB */
116 #define PCR_MSB_ENDIAN 0x00080000
117
118 /* Normal (default) / open drain mode (TX only) */
119 #define PCR_TX_PINS_OPEN_DRAIN 0x00040000
120
121 /* No framing bit transmitted and expected on RX? (default = framing bit) */
122 #define PCR_SOF_NO_FBIT 0x00020000
123
124 /* Drive data pins? */
125 #define PCR_TX_DATA_ENABLE 0x00010000
126
127 /* Voice 56k type: drive the data pins low (default), high, high Z */
128 #define PCR_TX_V56K_HIGH 0x00002000
129 #define PCR_TX_V56K_HIGH_IMP 0x00004000
130
131 /* Unassigned type: drive the data pins low (default), high, high Z */
132 #define PCR_TX_UNASS_HIGH 0x00000800
133 #define PCR_TX_UNASS_HIGH_IMP 0x00001000
134
135 /* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
136 #define PCR_TX_FB_HIGH_IMP 0x00000400
137
138 /* 56k data endiannes - which bit unused: high (default) or low */
139 #define PCR_TX_56KE_BIT_0_UNUSED 0x00000200
140
141 /* 56k data transmission type: 32/8 bit data (default) or 56K data */
142 #define PCR_TX_56KS_56K_DATA 0x00000100
143
144 /* hss_config, cCR */
145 /* Number of packetized clients, default = 1 */
146 #define CCR_NPE_HFIFO_2_HDLC 0x04000000
147 #define CCR_NPE_HFIFO_3_OR_4HDLC 0x08000000
148
149 /* default = no loopback */
150 #define CCR_LOOPBACK 0x02000000
151
152 /* HSS number, default = 0 (first) */
153 #define CCR_SECOND_HSS 0x01000000
154
155
156 /* hss_config, clkCR: main:10, num:10, denom:12 */
157 #define CLK42X_SPEED_EXP ((0x3FF << 22) | ( 2 << 12) | 15) /*65 KHz*/
158
159 #define CLK42X_SPEED_512KHZ (( 130 << 22) | ( 2 << 12) | 15)
160 #define CLK42X_SPEED_1536KHZ (( 43 << 22) | ( 18 << 12) | 47)
161 #define CLK42X_SPEED_1544KHZ (( 43 << 22) | ( 33 << 12) | 192)
162 #define CLK42X_SPEED_2048KHZ (( 32 << 22) | ( 34 << 12) | 63)
163 #define CLK42X_SPEED_4096KHZ (( 16 << 22) | ( 34 << 12) | 127)
164 #define CLK42X_SPEED_8192KHZ (( 8 << 22) | ( 34 << 12) | 255)
165
166 #define CLK46X_SPEED_512KHZ (( 130 << 22) | ( 24 << 12) | 127)
167 #define CLK46X_SPEED_1536KHZ (( 43 << 22) | (152 << 12) | 383)
168 #define CLK46X_SPEED_1544KHZ (( 43 << 22) | ( 66 << 12) | 385)
169 #define CLK46X_SPEED_2048KHZ (( 32 << 22) | (280 << 12) | 511)
170 #define CLK46X_SPEED_4096KHZ (( 16 << 22) | (280 << 12) | 1023)
171 #define CLK46X_SPEED_8192KHZ (( 8 << 22) | (280 << 12) | 2047)
172
173 /*
174 * HSS_CONFIG_CLOCK_CR register consists of 3 parts:
175 * A (10 bits), B (10 bits) and C (12 bits).
176 * IXP42x HSS clock generator operation (verified with an oscilloscope):
177 * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
178 * The clock sequence consists of (C - B) states of 0s and 1s, each state is
179 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
180 * (A + 1) bits wide.
181 *
182 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
183 * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
184 * minimum freq = 66.666 MHz / (A + 1)
185 * maximum freq = 66.666 MHz / A
186 *
187 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
188 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
189 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
190 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
191 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
192 * The sequence consists of 4 complete clock periods, thus the average
193 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
194 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
195 */
196
197 /* hss_config, LUT entries */
198 #define TDMMAP_UNASSIGNED 0
199 #define TDMMAP_HDLC 1 /* HDLC - packetized */
200 #define TDMMAP_VOICE56K 2 /* Voice56K - 7-bit channelized */
201 #define TDMMAP_VOICE64K 3 /* Voice64K - 8-bit channelized */
202
203 /* offsets into HSS config */
204 #define HSS_CONFIG_TX_PCR 0x00 /* port configuration registers */
205 #define HSS_CONFIG_RX_PCR 0x04
206 #define HSS_CONFIG_CORE_CR 0x08 /* loopback control, HSS# */
207 #define HSS_CONFIG_CLOCK_CR 0x0C /* clock generator control */
208 #define HSS_CONFIG_TX_FCR 0x10 /* frame configuration registers */
209 #define HSS_CONFIG_RX_FCR 0x14
210 #define HSS_CONFIG_TX_LUT 0x18 /* channel look-up tables */
211 #define HSS_CONFIG_RX_LUT 0x38
212
213
214 /* NPE command codes */
215 /* writes the ConfigWord value to the location specified by offset */
216 #define PORT_CONFIG_WRITE 0x40
217
218 /* triggers the NPE to load the contents of the configuration table */
219 #define PORT_CONFIG_LOAD 0x41
220
221 /* triggers the NPE to return an HssErrorReadResponse message */
222 #define PORT_ERROR_READ 0x42
223
224 /* triggers the NPE to reset internal status and enable the HssPacketized
225 operation for the flow specified by pPipe */
226 #define PKT_PIPE_FLOW_ENABLE 0x50
227 #define PKT_PIPE_FLOW_DISABLE 0x51
228 #define PKT_NUM_PIPES_WRITE 0x52
229 #define PKT_PIPE_FIFO_SIZEW_WRITE 0x53
230 #define PKT_PIPE_HDLC_CFG_WRITE 0x54
231 #define PKT_PIPE_IDLE_PATTERN_WRITE 0x55
232 #define PKT_PIPE_RX_SIZE_WRITE 0x56
233 #define PKT_PIPE_MODE_WRITE 0x57
234
235 /* HDLC packet status values - desc->status */
236 #define ERR_SHUTDOWN 1 /* stop or shutdown occurrence */
237 #define ERR_HDLC_ALIGN 2 /* HDLC alignment error */
238 #define ERR_HDLC_FCS 3 /* HDLC Frame Check Sum error */
239 #define ERR_RXFREE_Q_EMPTY 4 /* RX-free queue became empty while receiving
240 this packet (if buf_len < pkt_len) */
241 #define ERR_HDLC_TOO_LONG 5 /* HDLC frame size too long */
242 #define ERR_HDLC_ABORT 6 /* abort sequence received */
243 #define ERR_DISCONNECTING 7 /* disconnect is in progress */
244
245
246 #ifdef __ARMEB__
247 typedef struct sk_buff buffer_t;
248 #define free_buffer dev_kfree_skb
249 #define free_buffer_irq dev_kfree_skb_irq
250 #else
251 typedef void buffer_t;
252 #define free_buffer kfree
253 #define free_buffer_irq kfree
254 #endif
255
256 struct port {
257 struct device *dev;
258 struct npe *npe;
259 struct net_device *netdev;
260 struct napi_struct napi;
261 struct hss_plat_info *plat;
262 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
263 struct desc *desc_tab; /* coherent */
264 u32 desc_tab_phys;
265 unsigned int id;
266 unsigned int clock_type, clock_rate, loopback;
267 unsigned int initialized, carrier;
268 u8 hdlc_cfg;
269 u32 clock_reg;
270 };
271
272 /* NPE message structure */
273 struct msg {
274 #ifdef __ARMEB__
275 u8 cmd, unused, hss_port, index;
276 union {
277 struct { u8 data8a, data8b, data8c, data8d; };
278 struct { u16 data16a, data16b; };
279 struct { u32 data32; };
280 };
281 #else
282 u8 index, hss_port, unused, cmd;
283 union {
284 struct { u8 data8d, data8c, data8b, data8a; };
285 struct { u16 data16b, data16a; };
286 struct { u32 data32; };
287 };
288 #endif
289 };
290
291 /* HDLC packet descriptor */
292 struct desc {
293 u32 next; /* pointer to next buffer, unused */
294
295 #ifdef __ARMEB__
296 u16 buf_len; /* buffer length */
297 u16 pkt_len; /* packet length */
298 u32 data; /* pointer to data buffer in RAM */
299 u8 status;
300 u8 error_count;
301 u16 __reserved;
302 #else
303 u16 pkt_len; /* packet length */
304 u16 buf_len; /* buffer length */
305 u32 data; /* pointer to data buffer in RAM */
306 u16 __reserved;
307 u8 error_count;
308 u8 status;
309 #endif
310 u32 __reserved1[4];
311 };
312
313
314 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
315 (n) * sizeof(struct desc))
316 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
317
318 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
319 ((n) + RX_DESCS) * sizeof(struct desc))
320 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
321
322 /*****************************************************************************
323 * global variables
324 ****************************************************************************/
325
326 static int ports_open;
327 static struct dma_pool *dma_pool;
328 static spinlock_t npe_lock;
329
330 static const struct {
331 int tx, txdone, rx, rxfree;
332 }queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE,
333 HSS0_PKT_RXFREE0_QUEUE},
334 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE,
335 HSS1_PKT_RXFREE0_QUEUE},
336 };
337
338 /*****************************************************************************
339 * utility functions
340 ****************************************************************************/
341
342 static inline struct port* dev_to_port(struct net_device *dev)
343 {
344 return dev_to_hdlc(dev)->priv;
345 }
346
347 #ifndef __ARMEB__
348 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
349 {
350 int i;
351 for (i = 0; i < cnt; i++)
352 dest[i] = swab32(src[i]);
353 }
354 #endif
355
356 /*****************************************************************************
357 * HSS access
358 ****************************************************************************/
359
360 static void hss_npe_send(struct port *port, struct msg *msg, const char* what)
361 {
362 u32 *val = (u32*)msg;
363 if (npe_send_message(port->npe, msg, what)) {
364 pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
365 port->id, val[0], val[1], npe_name(port->npe));
366 BUG();
367 }
368 }
369
370 static void hss_config_set_lut(struct port *port)
371 {
372 struct msg msg;
373 int ch;
374
375 memset(&msg, 0, sizeof(msg));
376 msg.cmd = PORT_CONFIG_WRITE;
377 msg.hss_port = port->id;
378
379 for (ch = 0; ch < MAX_CHANNELS; ch++) {
380 msg.data32 >>= 2;
381 msg.data32 |= TDMMAP_HDLC << 30;
382
383 if (ch % 16 == 15) {
384 msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
385 hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
386
387 msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
388 hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
389 }
390 }
391 }
392
393 static void hss_config(struct port *port)
394 {
395 struct msg msg;
396
397 memset(&msg, 0, sizeof(msg));
398 msg.cmd = PORT_CONFIG_WRITE;
399 msg.hss_port = port->id;
400 msg.index = HSS_CONFIG_TX_PCR;
401 msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
402 PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
403 if (port->clock_type == CLOCK_INT)
404 msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
405 hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
406
407 msg.index = HSS_CONFIG_RX_PCR;
408 msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
409 hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
410
411 memset(&msg, 0, sizeof(msg));
412 msg.cmd = PORT_CONFIG_WRITE;
413 msg.hss_port = port->id;
414 msg.index = HSS_CONFIG_CORE_CR;
415 msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
416 (port->id ? CCR_SECOND_HSS : 0);
417 hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
418
419 memset(&msg, 0, sizeof(msg));
420 msg.cmd = PORT_CONFIG_WRITE;
421 msg.hss_port = port->id;
422 msg.index = HSS_CONFIG_CLOCK_CR;
423 msg.data32 = port->clock_reg;
424 hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
425
426 memset(&msg, 0, sizeof(msg));
427 msg.cmd = PORT_CONFIG_WRITE;
428 msg.hss_port = port->id;
429 msg.index = HSS_CONFIG_TX_FCR;
430 msg.data16a = FRAME_OFFSET;
431 msg.data16b = FRAME_SIZE - 1;
432 hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
433
434 memset(&msg, 0, sizeof(msg));
435 msg.cmd = PORT_CONFIG_WRITE;
436 msg.hss_port = port->id;
437 msg.index = HSS_CONFIG_RX_FCR;
438 msg.data16a = FRAME_OFFSET;
439 msg.data16b = FRAME_SIZE - 1;
440 hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
441
442 hss_config_set_lut(port);
443
444 memset(&msg, 0, sizeof(msg));
445 msg.cmd = PORT_CONFIG_LOAD;
446 msg.hss_port = port->id;
447 hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
448
449 if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
450 /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
451 msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
452 pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
453 BUG();
454 }
455
456 /* HDLC may stop working without this - check FIXME */
457 npe_recv_message(port->npe, &msg, "FLUSH_IT");
458 }
459
460 static void hss_set_hdlc_cfg(struct port *port)
461 {
462 struct msg msg;
463
464 memset(&msg, 0, sizeof(msg));
465 msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
466 msg.hss_port = port->id;
467 msg.data8a = port->hdlc_cfg; /* rx_cfg */
468 msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
469 hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
470 }
471
472 static u32 hss_get_status(struct port *port)
473 {
474 struct msg msg;
475
476 memset(&msg, 0, sizeof(msg));
477 msg.cmd = PORT_ERROR_READ;
478 msg.hss_port = port->id;
479 hss_npe_send(port, &msg, "PORT_ERROR_READ");
480 if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
481 pr_crit("HSS-%i: unable to read HSS status\n", port->id);
482 BUG();
483 }
484
485 return msg.data32;
486 }
487
488 static void hss_start_hdlc(struct port *port)
489 {
490 struct msg msg;
491
492 memset(&msg, 0, sizeof(msg));
493 msg.cmd = PKT_PIPE_FLOW_ENABLE;
494 msg.hss_port = port->id;
495 msg.data32 = 0;
496 hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
497 }
498
499 static void hss_stop_hdlc(struct port *port)
500 {
501 struct msg msg;
502
503 memset(&msg, 0, sizeof(msg));
504 msg.cmd = PKT_PIPE_FLOW_DISABLE;
505 msg.hss_port = port->id;
506 hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
507 hss_get_status(port); /* make sure it's halted */
508 }
509
510 static int hss_load_firmware(struct port *port)
511 {
512 struct msg msg;
513 int err;
514
515 if (port->initialized)
516 return 0;
517
518 if (!npe_running(port->npe) &&
519 (err = npe_load_firmware(port->npe, npe_name(port->npe),
520 port->dev)))
521 return err;
522
523 /* HDLC mode configuration */
524 memset(&msg, 0, sizeof(msg));
525 msg.cmd = PKT_NUM_PIPES_WRITE;
526 msg.hss_port = port->id;
527 msg.data8a = PKT_NUM_PIPES;
528 hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
529
530 msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
531 msg.data8a = PKT_PIPE_FIFO_SIZEW;
532 hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
533
534 msg.cmd = PKT_PIPE_MODE_WRITE;
535 msg.data8a = NPE_PKT_MODE_HDLC;
536 /* msg.data8b = inv_mask */
537 /* msg.data8c = or_mask */
538 hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
539
540 msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
541 msg.data16a = HDLC_MAX_MRU; /* including CRC */
542 hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
543
544 msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
545 msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
546 hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
547
548 port->initialized = 1;
549 return 0;
550 }
551
552 /*****************************************************************************
553 * packetized (HDLC) operation
554 ****************************************************************************/
555
556 static inline void debug_pkt(struct net_device *dev, const char *func,
557 u8 *data, int len)
558 {
559 #if DEBUG_PKT_BYTES
560 int i;
561
562 printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
563 for (i = 0; i < len; i++) {
564 if (i >= DEBUG_PKT_BYTES)
565 break;
566 printk("%s%02X", !(i % 4) ? " " : "", data[i]);
567 }
568 printk("\n");
569 #endif
570 }
571
572
573 static inline void debug_desc(u32 phys, struct desc *desc)
574 {
575 #if DEBUG_DESC
576 printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
577 phys, desc->next, desc->buf_len, desc->pkt_len,
578 desc->data, desc->status, desc->error_count);
579 #endif
580 }
581
582 static inline int queue_get_desc(unsigned int queue, struct port *port,
583 int is_tx)
584 {
585 u32 phys, tab_phys, n_desc;
586 struct desc *tab;
587
588 if (!(phys = qmgr_get_entry(queue)))
589 return -1;
590
591 BUG_ON(phys & 0x1F);
592 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
593 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
594 n_desc = (phys - tab_phys) / sizeof(struct desc);
595 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
596 debug_desc(phys, &tab[n_desc]);
597 BUG_ON(tab[n_desc].next);
598 return n_desc;
599 }
600
601 static inline void queue_put_desc(unsigned int queue, u32 phys,
602 struct desc *desc)
603 {
604 debug_desc(phys, desc);
605 BUG_ON(phys & 0x1F);
606 qmgr_put_entry(queue, phys);
607 /* Don't check for queue overflow here, we've allocated sufficient
608 length and queues >= 32 don't support this check anyway. */
609 }
610
611
612 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
613 {
614 #ifdef __ARMEB__
615 dma_unmap_single(&port->netdev->dev, desc->data,
616 desc->buf_len, DMA_TO_DEVICE);
617 #else
618 dma_unmap_single(&port->netdev->dev, desc->data & ~3,
619 ALIGN((desc->data & 3) + desc->buf_len, 4),
620 DMA_TO_DEVICE);
621 #endif
622 }
623
624
625 static void hss_hdlc_set_carrier(void *pdev, int carrier)
626 {
627 struct net_device *netdev = pdev;
628 struct port *port = dev_to_port(netdev);
629 unsigned long flags;
630
631 spin_lock_irqsave(&npe_lock, flags);
632 port->carrier = carrier;
633 if (!port->loopback) {
634 if (carrier)
635 netif_carrier_on(netdev);
636 else
637 netif_carrier_off(netdev);
638 }
639 spin_unlock_irqrestore(&npe_lock, flags);
640 }
641
642 static void hss_hdlc_rx_irq(void *pdev)
643 {
644 struct net_device *dev = pdev;
645 struct port *port = dev_to_port(dev);
646
647 #if DEBUG_RX
648 printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
649 #endif
650 qmgr_disable_irq(queue_ids[port->id].rx);
651 napi_schedule(&port->napi);
652 }
653
654 static int hss_hdlc_poll(struct napi_struct *napi, int budget)
655 {
656 struct port *port = container_of(napi, struct port, napi);
657 struct net_device *dev = port->netdev;
658 unsigned int rxq = queue_ids[port->id].rx;
659 unsigned int rxfreeq = queue_ids[port->id].rxfree;
660 int received = 0;
661
662 #if DEBUG_RX
663 printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
664 #endif
665
666 while (received < budget) {
667 struct sk_buff *skb;
668 struct desc *desc;
669 int n;
670 #ifdef __ARMEB__
671 struct sk_buff *temp;
672 u32 phys;
673 #endif
674
675 if ((n = queue_get_desc(rxq, port, 0)) < 0) {
676 #if DEBUG_RX
677 printk(KERN_DEBUG "%s: hss_hdlc_poll"
678 " napi_complete\n", dev->name);
679 #endif
680 napi_complete(napi);
681 qmgr_enable_irq(rxq);
682 if (!qmgr_stat_empty(rxq) &&
683 napi_reschedule(napi)) {
684 #if DEBUG_RX
685 printk(KERN_DEBUG "%s: hss_hdlc_poll"
686 " napi_reschedule succeeded\n",
687 dev->name);
688 #endif
689 qmgr_disable_irq(rxq);
690 continue;
691 }
692 #if DEBUG_RX
693 printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
694 dev->name);
695 #endif
696 return received; /* all work done */
697 }
698
699 desc = rx_desc_ptr(port, n);
700 #if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
701 if (desc->error_count)
702 printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
703 " errors %u\n", dev->name, desc->status,
704 desc->error_count);
705 #endif
706 skb = NULL;
707 switch (desc->status) {
708 case 0:
709 #ifdef __ARMEB__
710 if ((skb = netdev_alloc_skb(dev, RX_SIZE)) != NULL) {
711 phys = dma_map_single(&dev->dev, skb->data,
712 RX_SIZE,
713 DMA_FROM_DEVICE);
714 if (dma_mapping_error(&dev->dev, phys)) {
715 dev_kfree_skb(skb);
716 skb = NULL;
717 }
718 }
719 #else
720 skb = netdev_alloc_skb(dev, desc->pkt_len);
721 #endif
722 if (!skb)
723 dev->stats.rx_dropped++;
724 break;
725 case ERR_HDLC_ALIGN:
726 case ERR_HDLC_ABORT:
727 dev->stats.rx_frame_errors++;
728 dev->stats.rx_errors++;
729 break;
730 case ERR_HDLC_FCS:
731 dev->stats.rx_crc_errors++;
732 dev->stats.rx_errors++;
733 break;
734 case ERR_HDLC_TOO_LONG:
735 dev->stats.rx_length_errors++;
736 dev->stats.rx_errors++;
737 break;
738 default: /* FIXME - remove printk */
739 netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
740 desc->status, desc->error_count);
741 dev->stats.rx_errors++;
742 }
743
744 if (!skb) {
745 /* put the desc back on RX-ready queue */
746 desc->buf_len = RX_SIZE;
747 desc->pkt_len = desc->status = 0;
748 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
749 continue;
750 }
751
752 /* process received frame */
753 #ifdef __ARMEB__
754 temp = skb;
755 skb = port->rx_buff_tab[n];
756 dma_unmap_single(&dev->dev, desc->data,
757 RX_SIZE, DMA_FROM_DEVICE);
758 #else
759 dma_sync_single_for_cpu(&dev->dev, desc->data,
760 RX_SIZE, DMA_FROM_DEVICE);
761 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
762 ALIGN(desc->pkt_len, 4) / 4);
763 #endif
764 skb_put(skb, desc->pkt_len);
765
766 debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
767
768 skb->protocol = hdlc_type_trans(skb, dev);
769 dev->stats.rx_packets++;
770 dev->stats.rx_bytes += skb->len;
771 netif_receive_skb(skb);
772
773 /* put the new buffer on RX-free queue */
774 #ifdef __ARMEB__
775 port->rx_buff_tab[n] = temp;
776 desc->data = phys;
777 #endif
778 desc->buf_len = RX_SIZE;
779 desc->pkt_len = 0;
780 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
781 received++;
782 }
783 #if DEBUG_RX
784 printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
785 #endif
786 return received; /* not all work done */
787 }
788
789
790 static void hss_hdlc_txdone_irq(void *pdev)
791 {
792 struct net_device *dev = pdev;
793 struct port *port = dev_to_port(dev);
794 int n_desc;
795
796 #if DEBUG_TX
797 printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
798 #endif
799 while ((n_desc = queue_get_desc(queue_ids[port->id].txdone,
800 port, 1)) >= 0) {
801 struct desc *desc;
802 int start;
803
804 desc = tx_desc_ptr(port, n_desc);
805
806 dev->stats.tx_packets++;
807 dev->stats.tx_bytes += desc->pkt_len;
808
809 dma_unmap_tx(port, desc);
810 #if DEBUG_TX
811 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
812 dev->name, port->tx_buff_tab[n_desc]);
813 #endif
814 free_buffer_irq(port->tx_buff_tab[n_desc]);
815 port->tx_buff_tab[n_desc] = NULL;
816
817 start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
818 queue_put_desc(port->plat->txreadyq,
819 tx_desc_phys(port, n_desc), desc);
820 if (start) { /* TX-ready queue was empty */
821 #if DEBUG_TX
822 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
823 " ready\n", dev->name);
824 #endif
825 netif_wake_queue(dev);
826 }
827 }
828 }
829
830 static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
831 {
832 struct port *port = dev_to_port(dev);
833 unsigned int txreadyq = port->plat->txreadyq;
834 int len, offset, bytes, n;
835 void *mem;
836 u32 phys;
837 struct desc *desc;
838
839 #if DEBUG_TX
840 printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
841 #endif
842
843 if (unlikely(skb->len > HDLC_MAX_MRU)) {
844 dev_kfree_skb(skb);
845 dev->stats.tx_errors++;
846 return NETDEV_TX_OK;
847 }
848
849 debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
850
851 len = skb->len;
852 #ifdef __ARMEB__
853 offset = 0; /* no need to keep alignment */
854 bytes = len;
855 mem = skb->data;
856 #else
857 offset = (int)skb->data & 3; /* keep 32-bit alignment */
858 bytes = ALIGN(offset + len, 4);
859 if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
860 dev_kfree_skb(skb);
861 dev->stats.tx_dropped++;
862 return NETDEV_TX_OK;
863 }
864 memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
865 dev_kfree_skb(skb);
866 #endif
867
868 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
869 if (dma_mapping_error(&dev->dev, phys)) {
870 #ifdef __ARMEB__
871 dev_kfree_skb(skb);
872 #else
873 kfree(mem);
874 #endif
875 dev->stats.tx_dropped++;
876 return NETDEV_TX_OK;
877 }
878
879 n = queue_get_desc(txreadyq, port, 1);
880 BUG_ON(n < 0);
881 desc = tx_desc_ptr(port, n);
882
883 #ifdef __ARMEB__
884 port->tx_buff_tab[n] = skb;
885 #else
886 port->tx_buff_tab[n] = mem;
887 #endif
888 desc->data = phys + offset;
889 desc->buf_len = desc->pkt_len = len;
890
891 wmb();
892 queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc);
893
894 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
895 #if DEBUG_TX
896 printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
897 #endif
898 netif_stop_queue(dev);
899 /* we could miss TX ready interrupt */
900 if (!qmgr_stat_below_low_watermark(txreadyq)) {
901 #if DEBUG_TX
902 printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
903 dev->name);
904 #endif
905 netif_wake_queue(dev);
906 }
907 }
908
909 #if DEBUG_TX
910 printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
911 #endif
912 return NETDEV_TX_OK;
913 }
914
915
916 static int request_hdlc_queues(struct port *port)
917 {
918 int err;
919
920 err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0,
921 "%s:RX-free", port->netdev->name);
922 if (err)
923 return err;
924
925 err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0,
926 "%s:RX", port->netdev->name);
927 if (err)
928 goto rel_rxfree;
929
930 err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0,
931 "%s:TX", port->netdev->name);
932 if (err)
933 goto rel_rx;
934
935 err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
936 "%s:TX-ready", port->netdev->name);
937 if (err)
938 goto rel_tx;
939
940 err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0,
941 "%s:TX-done", port->netdev->name);
942 if (err)
943 goto rel_txready;
944 return 0;
945
946 rel_txready:
947 qmgr_release_queue(port->plat->txreadyq);
948 rel_tx:
949 qmgr_release_queue(queue_ids[port->id].tx);
950 rel_rx:
951 qmgr_release_queue(queue_ids[port->id].rx);
952 rel_rxfree:
953 qmgr_release_queue(queue_ids[port->id].rxfree);
954 printk(KERN_DEBUG "%s: unable to request hardware queues\n",
955 port->netdev->name);
956 return err;
957 }
958
959 static void release_hdlc_queues(struct port *port)
960 {
961 qmgr_release_queue(queue_ids[port->id].rxfree);
962 qmgr_release_queue(queue_ids[port->id].rx);
963 qmgr_release_queue(queue_ids[port->id].txdone);
964 qmgr_release_queue(queue_ids[port->id].tx);
965 qmgr_release_queue(port->plat->txreadyq);
966 }
967
968 static int init_hdlc_queues(struct port *port)
969 {
970 int i;
971
972 if (!ports_open) {
973 dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
974 POOL_ALLOC_SIZE, 32, 0);
975 if (!dma_pool)
976 return -ENOMEM;
977 }
978
979 if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
980 &port->desc_tab_phys)))
981 return -ENOMEM;
982 memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
983 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
984 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
985
986 /* Setup RX buffers */
987 for (i = 0; i < RX_DESCS; i++) {
988 struct desc *desc = rx_desc_ptr(port, i);
989 buffer_t *buff;
990 void *data;
991 #ifdef __ARMEB__
992 if (!(buff = netdev_alloc_skb(port->netdev, RX_SIZE)))
993 return -ENOMEM;
994 data = buff->data;
995 #else
996 if (!(buff = kmalloc(RX_SIZE, GFP_KERNEL)))
997 return -ENOMEM;
998 data = buff;
999 #endif
1000 desc->buf_len = RX_SIZE;
1001 desc->data = dma_map_single(&port->netdev->dev, data,
1002 RX_SIZE, DMA_FROM_DEVICE);
1003 if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1004 free_buffer(buff);
1005 return -EIO;
1006 }
1007 port->rx_buff_tab[i] = buff;
1008 }
1009
1010 return 0;
1011 }
1012
1013 static void destroy_hdlc_queues(struct port *port)
1014 {
1015 int i;
1016
1017 if (port->desc_tab) {
1018 for (i = 0; i < RX_DESCS; i++) {
1019 struct desc *desc = rx_desc_ptr(port, i);
1020 buffer_t *buff = port->rx_buff_tab[i];
1021 if (buff) {
1022 dma_unmap_single(&port->netdev->dev,
1023 desc->data, RX_SIZE,
1024 DMA_FROM_DEVICE);
1025 free_buffer(buff);
1026 }
1027 }
1028 for (i = 0; i < TX_DESCS; i++) {
1029 struct desc *desc = tx_desc_ptr(port, i);
1030 buffer_t *buff = port->tx_buff_tab[i];
1031 if (buff) {
1032 dma_unmap_tx(port, desc);
1033 free_buffer(buff);
1034 }
1035 }
1036 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1037 port->desc_tab = NULL;
1038 }
1039
1040 if (!ports_open && dma_pool) {
1041 dma_pool_destroy(dma_pool);
1042 dma_pool = NULL;
1043 }
1044 }
1045
1046 static int hss_hdlc_open(struct net_device *dev)
1047 {
1048 struct port *port = dev_to_port(dev);
1049 unsigned long flags;
1050 int i, err = 0;
1051
1052 if ((err = hdlc_open(dev)))
1053 return err;
1054
1055 if ((err = hss_load_firmware(port)))
1056 goto err_hdlc_close;
1057
1058 if ((err = request_hdlc_queues(port)))
1059 goto err_hdlc_close;
1060
1061 if ((err = init_hdlc_queues(port)))
1062 goto err_destroy_queues;
1063
1064 spin_lock_irqsave(&npe_lock, flags);
1065 if (port->plat->open)
1066 if ((err = port->plat->open(port->id, dev,
1067 hss_hdlc_set_carrier)))
1068 goto err_unlock;
1069 spin_unlock_irqrestore(&npe_lock, flags);
1070
1071 /* Populate queues with buffers, no failure after this point */
1072 for (i = 0; i < TX_DESCS; i++)
1073 queue_put_desc(port->plat->txreadyq,
1074 tx_desc_phys(port, i), tx_desc_ptr(port, i));
1075
1076 for (i = 0; i < RX_DESCS; i++)
1077 queue_put_desc(queue_ids[port->id].rxfree,
1078 rx_desc_phys(port, i), rx_desc_ptr(port, i));
1079
1080 napi_enable(&port->napi);
1081 netif_start_queue(dev);
1082
1083 qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY,
1084 hss_hdlc_rx_irq, dev);
1085
1086 qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY,
1087 hss_hdlc_txdone_irq, dev);
1088 qmgr_enable_irq(queue_ids[port->id].txdone);
1089
1090 ports_open++;
1091
1092 hss_set_hdlc_cfg(port);
1093 hss_config(port);
1094
1095 hss_start_hdlc(port);
1096
1097 /* we may already have RX data, enables IRQ */
1098 napi_schedule(&port->napi);
1099 return 0;
1100
1101 err_unlock:
1102 spin_unlock_irqrestore(&npe_lock, flags);
1103 err_destroy_queues:
1104 destroy_hdlc_queues(port);
1105 release_hdlc_queues(port);
1106 err_hdlc_close:
1107 hdlc_close(dev);
1108 return err;
1109 }
1110
1111 static int hss_hdlc_close(struct net_device *dev)
1112 {
1113 struct port *port = dev_to_port(dev);
1114 unsigned long flags;
1115 int i, buffs = RX_DESCS; /* allocated RX buffers */
1116
1117 spin_lock_irqsave(&npe_lock, flags);
1118 ports_open--;
1119 qmgr_disable_irq(queue_ids[port->id].rx);
1120 netif_stop_queue(dev);
1121 napi_disable(&port->napi);
1122
1123 hss_stop_hdlc(port);
1124
1125 while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0)
1126 buffs--;
1127 while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0)
1128 buffs--;
1129
1130 if (buffs)
1131 netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
1132 buffs);
1133
1134 buffs = TX_DESCS;
1135 while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0)
1136 buffs--; /* cancel TX */
1137
1138 i = 0;
1139 do {
1140 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1141 buffs--;
1142 if (!buffs)
1143 break;
1144 } while (++i < MAX_CLOSE_WAIT);
1145
1146 if (buffs)
1147 netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
1148 buffs);
1149 #if DEBUG_CLOSE
1150 if (!buffs)
1151 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1152 #endif
1153 qmgr_disable_irq(queue_ids[port->id].txdone);
1154
1155 if (port->plat->close)
1156 port->plat->close(port->id, dev);
1157 spin_unlock_irqrestore(&npe_lock, flags);
1158
1159 destroy_hdlc_queues(port);
1160 release_hdlc_queues(port);
1161 hdlc_close(dev);
1162 return 0;
1163 }
1164
1165
1166 static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
1167 unsigned short parity)
1168 {
1169 struct port *port = dev_to_port(dev);
1170
1171 if (encoding != ENCODING_NRZ)
1172 return -EINVAL;
1173
1174 switch(parity) {
1175 case PARITY_CRC16_PR1_CCITT:
1176 port->hdlc_cfg = 0;
1177 return 0;
1178
1179 case PARITY_CRC32_PR1_CCITT:
1180 port->hdlc_cfg = PKT_HDLC_CRC_32;
1181 return 0;
1182
1183 default:
1184 return -EINVAL;
1185 }
1186 }
1187
1188 static u32 check_clock(u32 rate, u32 a, u32 b, u32 c,
1189 u32 *best, u32 *best_diff, u32 *reg)
1190 {
1191 /* a is 10-bit, b is 10-bit, c is 12-bit */
1192 u64 new_rate;
1193 u32 new_diff;
1194
1195 new_rate = ixp4xx_timer_freq * (u64)(c + 1);
1196 do_div(new_rate, a * (c + 1) + b + 1);
1197 new_diff = abs((u32)new_rate - rate);
1198
1199 if (new_diff < *best_diff) {
1200 *best = new_rate;
1201 *best_diff = new_diff;
1202 *reg = (a << 22) | (b << 12) | c;
1203 }
1204 return new_diff;
1205 }
1206
1207 static void find_best_clock(u32 rate, u32 *best, u32 *reg)
1208 {
1209 u32 a, b, diff = 0xFFFFFFFF;
1210
1211 a = ixp4xx_timer_freq / rate;
1212
1213 if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
1214 check_clock(rate, 0x3FF, 1, 1, best, &diff, reg);
1215 return;
1216 }
1217 if (a == 0) { /* > 66.666 MHz */
1218 a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
1219 rate = ixp4xx_timer_freq;
1220 }
1221
1222 if (rate * a == ixp4xx_timer_freq) { /* don't divide by 0 later */
1223 check_clock(rate, a - 1, 1, 1, best, &diff, reg);
1224 return;
1225 }
1226
1227 for (b = 0; b < 0x400; b++) {
1228 u64 c = (b + 1) * (u64)rate;
1229 do_div(c, ixp4xx_timer_freq - rate * a);
1230 c--;
1231 if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
1232 if (b == 0 && /* also try a bit higher rate */
1233 !check_clock(rate, a - 1, 1, 1, best, &diff, reg))
1234 return;
1235 check_clock(rate, a, b, 0xFFF, best, &diff, reg);
1236 return;
1237 }
1238 if (!check_clock(rate, a, b, c, best, &diff, reg))
1239 return;
1240 if (!check_clock(rate, a, b, c + 1, best, &diff, reg))
1241 return;
1242 }
1243 }
1244
1245 static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1246 {
1247 const size_t size = sizeof(sync_serial_settings);
1248 sync_serial_settings new_line;
1249 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1250 struct port *port = dev_to_port(dev);
1251 unsigned long flags;
1252 int clk;
1253
1254 if (cmd != SIOCWANDEV)
1255 return hdlc_ioctl(dev, ifr, cmd);
1256
1257 switch(ifr->ifr_settings.type) {
1258 case IF_GET_IFACE:
1259 ifr->ifr_settings.type = IF_IFACE_V35;
1260 if (ifr->ifr_settings.size < size) {
1261 ifr->ifr_settings.size = size; /* data size wanted */
1262 return -ENOBUFS;
1263 }
1264 memset(&new_line, 0, sizeof(new_line));
1265 new_line.clock_type = port->clock_type;
1266 new_line.clock_rate = port->clock_rate;
1267 new_line.loopback = port->loopback;
1268 if (copy_to_user(line, &new_line, size))
1269 return -EFAULT;
1270 return 0;
1271
1272 case IF_IFACE_SYNC_SERIAL:
1273 case IF_IFACE_V35:
1274 if(!capable(CAP_NET_ADMIN))
1275 return -EPERM;
1276 if (copy_from_user(&new_line, line, size))
1277 return -EFAULT;
1278
1279 clk = new_line.clock_type;
1280 if (port->plat->set_clock)
1281 clk = port->plat->set_clock(port->id, clk);
1282
1283 if (clk != CLOCK_EXT && clk != CLOCK_INT)
1284 return -EINVAL; /* No such clock setting */
1285
1286 if (new_line.loopback != 0 && new_line.loopback != 1)
1287 return -EINVAL;
1288
1289 port->clock_type = clk; /* Update settings */
1290 if (clk == CLOCK_INT)
1291 find_best_clock(new_line.clock_rate, &port->clock_rate,
1292 &port->clock_reg);
1293 else {
1294 port->clock_rate = 0;
1295 port->clock_reg = CLK42X_SPEED_2048KHZ;
1296 }
1297 port->loopback = new_line.loopback;
1298
1299 spin_lock_irqsave(&npe_lock, flags);
1300
1301 if (dev->flags & IFF_UP)
1302 hss_config(port);
1303
1304 if (port->loopback || port->carrier)
1305 netif_carrier_on(port->netdev);
1306 else
1307 netif_carrier_off(port->netdev);
1308 spin_unlock_irqrestore(&npe_lock, flags);
1309
1310 return 0;
1311
1312 default:
1313 return hdlc_ioctl(dev, ifr, cmd);
1314 }
1315 }
1316
1317 /*****************************************************************************
1318 * initialization
1319 ****************************************************************************/
1320
1321 static const struct net_device_ops hss_hdlc_ops = {
1322 .ndo_open = hss_hdlc_open,
1323 .ndo_stop = hss_hdlc_close,
1324 .ndo_change_mtu = hdlc_change_mtu,
1325 .ndo_start_xmit = hdlc_start_xmit,
1326 .ndo_do_ioctl = hss_hdlc_ioctl,
1327 };
1328
1329 static int __devinit hss_init_one(struct platform_device *pdev)
1330 {
1331 struct port *port;
1332 struct net_device *dev;
1333 hdlc_device *hdlc;
1334 int err;
1335
1336 if ((port = kzalloc(sizeof(*port), GFP_KERNEL)) == NULL)
1337 return -ENOMEM;
1338
1339 if ((port->npe = npe_request(0)) == NULL) {
1340 err = -ENODEV;
1341 goto err_free;
1342 }
1343
1344 if ((port->netdev = dev = alloc_hdlcdev(port)) == NULL) {
1345 err = -ENOMEM;
1346 goto err_plat;
1347 }
1348
1349 SET_NETDEV_DEV(dev, &pdev->dev);
1350 hdlc = dev_to_hdlc(dev);
1351 hdlc->attach = hss_hdlc_attach;
1352 hdlc->xmit = hss_hdlc_xmit;
1353 dev->netdev_ops = &hss_hdlc_ops;
1354 dev->tx_queue_len = 100;
1355 port->clock_type = CLOCK_EXT;
1356 port->clock_rate = 0;
1357 port->clock_reg = CLK42X_SPEED_2048KHZ;
1358 port->id = pdev->id;
1359 port->dev = &pdev->dev;
1360 port->plat = pdev->dev.platform_data;
1361 netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
1362
1363 if ((err = register_hdlc_device(dev)))
1364 goto err_free_netdev;
1365
1366 platform_set_drvdata(pdev, port);
1367
1368 netdev_info(dev, "HSS-%i\n", port->id);
1369 return 0;
1370
1371 err_free_netdev:
1372 free_netdev(dev);
1373 err_plat:
1374 npe_release(port->npe);
1375 err_free:
1376 kfree(port);
1377 return err;
1378 }
1379
1380 static int __devexit hss_remove_one(struct platform_device *pdev)
1381 {
1382 struct port *port = platform_get_drvdata(pdev);
1383
1384 unregister_hdlc_device(port->netdev);
1385 free_netdev(port->netdev);
1386 npe_release(port->npe);
1387 platform_set_drvdata(pdev, NULL);
1388 kfree(port);
1389 return 0;
1390 }
1391
1392 static struct platform_driver ixp4xx_hss_driver = {
1393 .driver.name = DRV_NAME,
1394 .probe = hss_init_one,
1395 .remove = hss_remove_one,
1396 };
1397
1398 static int __init hss_init_module(void)
1399 {
1400 if ((ixp4xx_read_feature_bits() &
1401 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
1402 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS))
1403 return -ENODEV;
1404
1405 spin_lock_init(&npe_lock);
1406
1407 return platform_driver_register(&ixp4xx_hss_driver);
1408 }
1409
1410 static void __exit hss_cleanup_module(void)
1411 {
1412 platform_driver_unregister(&ixp4xx_hss_driver);
1413 }
1414
1415 MODULE_AUTHOR("Krzysztof Halasa");
1416 MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
1417 MODULE_LICENSE("GPL v2");
1418 MODULE_ALIAS("platform:ixp4xx_hss");
1419 module_init(hss_init_module);
1420 module_exit(hss_cleanup_module);
This page took 0.060564 seconds and 5 git commands to generate.