Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / wireless / ath / ath10k / pci.c
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23
24 #include "core.h"
25 #include "debug.h"
26
27 #include "targaddrs.h"
28 #include "bmi.h"
29
30 #include "hif.h"
31 #include "htc.h"
32
33 #include "ce.h"
34 #include "pci.h"
35
36 enum ath10k_pci_irq_mode {
37 ATH10K_PCI_IRQ_AUTO = 0,
38 ATH10K_PCI_IRQ_LEGACY = 1,
39 ATH10K_PCI_IRQ_MSI = 2,
40 };
41
42 enum ath10k_pci_reset_mode {
43 ATH10K_PCI_RESET_AUTO = 0,
44 ATH10K_PCI_RESET_WARM_ONLY = 1,
45 };
46
47 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
48 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
49
50 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
51 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
52
53 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
54 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
55
56 /* how long wait to wait for target to initialise, in ms */
57 #define ATH10K_PCI_TARGET_WAIT 3000
58 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
59
60 #define QCA988X_2_0_DEVICE_ID (0x003c)
61 #define QCA6174_2_1_DEVICE_ID (0x003e)
62
63 static const struct pci_device_id ath10k_pci_id_table[] = {
64 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
65 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
66 {0}
67 };
68
69 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
70 /* QCA988X pre 2.0 chips are not supported because they need some nasty
71 * hacks. ath10k doesn't have them and these devices crash horribly
72 * because of that.
73 */
74 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
76 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
77 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
78 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
79 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
80 };
81
82 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
83 static int ath10k_pci_cold_reset(struct ath10k *ar);
84 static int ath10k_pci_warm_reset(struct ath10k *ar);
85 static int ath10k_pci_wait_for_target_init(struct ath10k *ar);
86 static int ath10k_pci_init_irq(struct ath10k *ar);
87 static int ath10k_pci_deinit_irq(struct ath10k *ar);
88 static int ath10k_pci_request_irq(struct ath10k *ar);
89 static void ath10k_pci_free_irq(struct ath10k *ar);
90 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
91 struct ath10k_ce_pipe *rx_pipe,
92 struct bmi_xfer *xfer);
93
94 static const struct ce_attr host_ce_config_wlan[] = {
95 /* CE0: host->target HTC control and raw streams */
96 {
97 .flags = CE_ATTR_FLAGS,
98 .src_nentries = 16,
99 .src_sz_max = 256,
100 .dest_nentries = 0,
101 },
102
103 /* CE1: target->host HTT + HTC control */
104 {
105 .flags = CE_ATTR_FLAGS,
106 .src_nentries = 0,
107 .src_sz_max = 2048,
108 .dest_nentries = 512,
109 },
110
111 /* CE2: target->host WMI */
112 {
113 .flags = CE_ATTR_FLAGS,
114 .src_nentries = 0,
115 .src_sz_max = 2048,
116 .dest_nentries = 128,
117 },
118
119 /* CE3: host->target WMI */
120 {
121 .flags = CE_ATTR_FLAGS,
122 .src_nentries = 32,
123 .src_sz_max = 2048,
124 .dest_nentries = 0,
125 },
126
127 /* CE4: host->target HTT */
128 {
129 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
130 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
131 .src_sz_max = 256,
132 .dest_nentries = 0,
133 },
134
135 /* CE5: unused */
136 {
137 .flags = CE_ATTR_FLAGS,
138 .src_nentries = 0,
139 .src_sz_max = 0,
140 .dest_nentries = 0,
141 },
142
143 /* CE6: target autonomous hif_memcpy */
144 {
145 .flags = CE_ATTR_FLAGS,
146 .src_nentries = 0,
147 .src_sz_max = 0,
148 .dest_nentries = 0,
149 },
150
151 /* CE7: ce_diag, the Diagnostic Window */
152 {
153 .flags = CE_ATTR_FLAGS,
154 .src_nentries = 2,
155 .src_sz_max = DIAG_TRANSFER_LIMIT,
156 .dest_nentries = 2,
157 },
158 };
159
160 /* Target firmware's Copy Engine configuration. */
161 static const struct ce_pipe_config target_ce_config_wlan[] = {
162 /* CE0: host->target HTC control and raw streams */
163 {
164 .pipenum = __cpu_to_le32(0),
165 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
166 .nentries = __cpu_to_le32(32),
167 .nbytes_max = __cpu_to_le32(256),
168 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
169 .reserved = __cpu_to_le32(0),
170 },
171
172 /* CE1: target->host HTT + HTC control */
173 {
174 .pipenum = __cpu_to_le32(1),
175 .pipedir = __cpu_to_le32(PIPEDIR_IN),
176 .nentries = __cpu_to_le32(32),
177 .nbytes_max = __cpu_to_le32(2048),
178 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
179 .reserved = __cpu_to_le32(0),
180 },
181
182 /* CE2: target->host WMI */
183 {
184 .pipenum = __cpu_to_le32(2),
185 .pipedir = __cpu_to_le32(PIPEDIR_IN),
186 .nentries = __cpu_to_le32(64),
187 .nbytes_max = __cpu_to_le32(2048),
188 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
189 .reserved = __cpu_to_le32(0),
190 },
191
192 /* CE3: host->target WMI */
193 {
194 .pipenum = __cpu_to_le32(3),
195 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
196 .nentries = __cpu_to_le32(32),
197 .nbytes_max = __cpu_to_le32(2048),
198 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
199 .reserved = __cpu_to_le32(0),
200 },
201
202 /* CE4: host->target HTT */
203 {
204 .pipenum = __cpu_to_le32(4),
205 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
206 .nentries = __cpu_to_le32(256),
207 .nbytes_max = __cpu_to_le32(256),
208 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
209 .reserved = __cpu_to_le32(0),
210 },
211
212 /* NB: 50% of src nentries, since tx has 2 frags */
213
214 /* CE5: unused */
215 {
216 .pipenum = __cpu_to_le32(5),
217 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
218 .nentries = __cpu_to_le32(32),
219 .nbytes_max = __cpu_to_le32(2048),
220 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
221 .reserved = __cpu_to_le32(0),
222 },
223
224 /* CE6: Reserved for target autonomous hif_memcpy */
225 {
226 .pipenum = __cpu_to_le32(6),
227 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
228 .nentries = __cpu_to_le32(32),
229 .nbytes_max = __cpu_to_le32(4096),
230 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
231 .reserved = __cpu_to_le32(0),
232 },
233
234 /* CE7 used only by Host */
235 };
236
237 /*
238 * Map from service/endpoint to Copy Engine.
239 * This table is derived from the CE_PCI TABLE, above.
240 * It is passed to the Target at startup for use by firmware.
241 */
242 static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
243 {
244 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
245 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
246 __cpu_to_le32(3),
247 },
248 {
249 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
250 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
251 __cpu_to_le32(2),
252 },
253 {
254 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
255 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
256 __cpu_to_le32(3),
257 },
258 {
259 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
260 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
261 __cpu_to_le32(2),
262 },
263 {
264 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
265 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
266 __cpu_to_le32(3),
267 },
268 {
269 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
270 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
271 __cpu_to_le32(2),
272 },
273 {
274 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
275 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
276 __cpu_to_le32(3),
277 },
278 {
279 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
280 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
281 __cpu_to_le32(2),
282 },
283 {
284 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
285 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
286 __cpu_to_le32(3),
287 },
288 {
289 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
290 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
291 __cpu_to_le32(2),
292 },
293 {
294 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
295 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
296 __cpu_to_le32(0),
297 },
298 {
299 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
300 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
301 __cpu_to_le32(1),
302 },
303 { /* not used */
304 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
305 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
306 __cpu_to_le32(0),
307 },
308 { /* not used */
309 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
310 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
311 __cpu_to_le32(1),
312 },
313 {
314 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
315 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
316 __cpu_to_le32(4),
317 },
318 {
319 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
320 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
321 __cpu_to_le32(1),
322 },
323
324 /* (Additions here) */
325
326 { /* must be last */
327 __cpu_to_le32(0),
328 __cpu_to_le32(0),
329 __cpu_to_le32(0),
330 },
331 };
332
333 static bool ath10k_pci_is_awake(struct ath10k *ar)
334 {
335 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
336 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
337 RTC_STATE_ADDRESS);
338
339 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
340 }
341
342 static void __ath10k_pci_wake(struct ath10k *ar)
343 {
344 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
345
346 lockdep_assert_held(&ar_pci->ps_lock);
347
348 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
349 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
350
351 iowrite32(PCIE_SOC_WAKE_V_MASK,
352 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
353 PCIE_SOC_WAKE_ADDRESS);
354 }
355
356 static void __ath10k_pci_sleep(struct ath10k *ar)
357 {
358 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
359
360 lockdep_assert_held(&ar_pci->ps_lock);
361
362 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
363 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
364
365 iowrite32(PCIE_SOC_WAKE_RESET,
366 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
367 PCIE_SOC_WAKE_ADDRESS);
368 ar_pci->ps_awake = false;
369 }
370
371 static int ath10k_pci_wake_wait(struct ath10k *ar)
372 {
373 int tot_delay = 0;
374 int curr_delay = 5;
375
376 while (tot_delay < PCIE_WAKE_TIMEOUT) {
377 if (ath10k_pci_is_awake(ar))
378 return 0;
379
380 udelay(curr_delay);
381 tot_delay += curr_delay;
382
383 if (curr_delay < 50)
384 curr_delay += 5;
385 }
386
387 return -ETIMEDOUT;
388 }
389
390 static int ath10k_pci_wake(struct ath10k *ar)
391 {
392 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
393 unsigned long flags;
394 int ret = 0;
395
396 spin_lock_irqsave(&ar_pci->ps_lock, flags);
397
398 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
399 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
400
401 /* This function can be called very frequently. To avoid excessive
402 * CPU stalls for MMIO reads use a cache var to hold the device state.
403 */
404 if (!ar_pci->ps_awake) {
405 __ath10k_pci_wake(ar);
406
407 ret = ath10k_pci_wake_wait(ar);
408 if (ret == 0)
409 ar_pci->ps_awake = true;
410 }
411
412 if (ret == 0) {
413 ar_pci->ps_wake_refcount++;
414 WARN_ON(ar_pci->ps_wake_refcount == 0);
415 }
416
417 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
418
419 return ret;
420 }
421
422 static void ath10k_pci_sleep(struct ath10k *ar)
423 {
424 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
425 unsigned long flags;
426
427 spin_lock_irqsave(&ar_pci->ps_lock, flags);
428
429 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
430 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
431
432 if (WARN_ON(ar_pci->ps_wake_refcount == 0))
433 goto skip;
434
435 ar_pci->ps_wake_refcount--;
436
437 mod_timer(&ar_pci->ps_timer, jiffies +
438 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
439
440 skip:
441 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
442 }
443
444 static void ath10k_pci_ps_timer(unsigned long ptr)
445 {
446 struct ath10k *ar = (void *)ptr;
447 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
448 unsigned long flags;
449
450 spin_lock_irqsave(&ar_pci->ps_lock, flags);
451
452 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
453 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
454
455 if (ar_pci->ps_wake_refcount > 0)
456 goto skip;
457
458 __ath10k_pci_sleep(ar);
459
460 skip:
461 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
462 }
463
464 static void ath10k_pci_sleep_sync(struct ath10k *ar)
465 {
466 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
467 unsigned long flags;
468
469 del_timer_sync(&ar_pci->ps_timer);
470
471 spin_lock_irqsave(&ar_pci->ps_lock, flags);
472 WARN_ON(ar_pci->ps_wake_refcount > 0);
473 __ath10k_pci_sleep(ar);
474 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
475 }
476
477 void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
478 {
479 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
480 int ret;
481
482 ret = ath10k_pci_wake(ar);
483 if (ret) {
484 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
485 value, offset, ret);
486 return;
487 }
488
489 iowrite32(value, ar_pci->mem + offset);
490 ath10k_pci_sleep(ar);
491 }
492
493 u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
494 {
495 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
496 u32 val;
497 int ret;
498
499 ret = ath10k_pci_wake(ar);
500 if (ret) {
501 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
502 offset, ret);
503 return 0xffffffff;
504 }
505
506 val = ioread32(ar_pci->mem + offset);
507 ath10k_pci_sleep(ar);
508
509 return val;
510 }
511
512 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
513 {
514 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
515 }
516
517 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
518 {
519 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
520 }
521
522 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
523 {
524 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
525 }
526
527 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
528 {
529 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
530 }
531
532 static bool ath10k_pci_irq_pending(struct ath10k *ar)
533 {
534 u32 cause;
535
536 /* Check if the shared legacy irq is for us */
537 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
538 PCIE_INTR_CAUSE_ADDRESS);
539 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
540 return true;
541
542 return false;
543 }
544
545 static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
546 {
547 /* IMPORTANT: INTR_CLR register has to be set after
548 * INTR_ENABLE is set to 0, otherwise interrupt can not be
549 * really cleared. */
550 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
551 0);
552 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
553 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
554
555 /* IMPORTANT: this extra read transaction is required to
556 * flush the posted write buffer. */
557 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
558 PCIE_INTR_ENABLE_ADDRESS);
559 }
560
561 static void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
562 {
563 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
564 PCIE_INTR_ENABLE_ADDRESS,
565 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
566
567 /* IMPORTANT: this extra read transaction is required to
568 * flush the posted write buffer. */
569 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
570 PCIE_INTR_ENABLE_ADDRESS);
571 }
572
573 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
574 {
575 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
576
577 if (ar_pci->num_msi_intrs > 1)
578 return "msi-x";
579
580 if (ar_pci->num_msi_intrs == 1)
581 return "msi";
582
583 return "legacy";
584 }
585
586 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
587 {
588 struct ath10k *ar = pipe->hif_ce_state;
589 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
590 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
591 struct sk_buff *skb;
592 dma_addr_t paddr;
593 int ret;
594
595 lockdep_assert_held(&ar_pci->ce_lock);
596
597 skb = dev_alloc_skb(pipe->buf_sz);
598 if (!skb)
599 return -ENOMEM;
600
601 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
602
603 paddr = dma_map_single(ar->dev, skb->data,
604 skb->len + skb_tailroom(skb),
605 DMA_FROM_DEVICE);
606 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
607 ath10k_warn(ar, "failed to dma map pci rx buf\n");
608 dev_kfree_skb_any(skb);
609 return -EIO;
610 }
611
612 ATH10K_SKB_RXCB(skb)->paddr = paddr;
613
614 ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
615 if (ret) {
616 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
617 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
618 DMA_FROM_DEVICE);
619 dev_kfree_skb_any(skb);
620 return ret;
621 }
622
623 return 0;
624 }
625
626 static void __ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
627 {
628 struct ath10k *ar = pipe->hif_ce_state;
629 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
630 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
631 int ret, num;
632
633 lockdep_assert_held(&ar_pci->ce_lock);
634
635 if (pipe->buf_sz == 0)
636 return;
637
638 if (!ce_pipe->dest_ring)
639 return;
640
641 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
642 while (num--) {
643 ret = __ath10k_pci_rx_post_buf(pipe);
644 if (ret) {
645 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
646 mod_timer(&ar_pci->rx_post_retry, jiffies +
647 ATH10K_PCI_RX_POST_RETRY_MS);
648 break;
649 }
650 }
651 }
652
653 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
654 {
655 struct ath10k *ar = pipe->hif_ce_state;
656 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
657
658 spin_lock_bh(&ar_pci->ce_lock);
659 __ath10k_pci_rx_post_pipe(pipe);
660 spin_unlock_bh(&ar_pci->ce_lock);
661 }
662
663 static void ath10k_pci_rx_post(struct ath10k *ar)
664 {
665 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
666 int i;
667
668 spin_lock_bh(&ar_pci->ce_lock);
669 for (i = 0; i < CE_COUNT; i++)
670 __ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
671 spin_unlock_bh(&ar_pci->ce_lock);
672 }
673
674 static void ath10k_pci_rx_replenish_retry(unsigned long ptr)
675 {
676 struct ath10k *ar = (void *)ptr;
677
678 ath10k_pci_rx_post(ar);
679 }
680
681 /*
682 * Diagnostic read/write access is provided for startup/config/debug usage.
683 * Caller must guarantee proper alignment, when applicable, and single user
684 * at any moment.
685 */
686 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
687 int nbytes)
688 {
689 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
690 int ret = 0;
691 u32 buf;
692 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
693 unsigned int id;
694 unsigned int flags;
695 struct ath10k_ce_pipe *ce_diag;
696 /* Host buffer address in CE space */
697 u32 ce_data;
698 dma_addr_t ce_data_base = 0;
699 void *data_buf = NULL;
700 int i;
701
702 spin_lock_bh(&ar_pci->ce_lock);
703
704 ce_diag = ar_pci->ce_diag;
705
706 /*
707 * Allocate a temporary bounce buffer to hold caller's data
708 * to be DMA'ed from Target. This guarantees
709 * 1) 4-byte alignment
710 * 2) Buffer in DMA-able space
711 */
712 orig_nbytes = nbytes;
713 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
714 orig_nbytes,
715 &ce_data_base,
716 GFP_ATOMIC);
717
718 if (!data_buf) {
719 ret = -ENOMEM;
720 goto done;
721 }
722 memset(data_buf, 0, orig_nbytes);
723
724 remaining_bytes = orig_nbytes;
725 ce_data = ce_data_base;
726 while (remaining_bytes) {
727 nbytes = min_t(unsigned int, remaining_bytes,
728 DIAG_TRANSFER_LIMIT);
729
730 ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data);
731 if (ret != 0)
732 goto done;
733
734 /* Request CE to send from Target(!) address to Host buffer */
735 /*
736 * The address supplied by the caller is in the
737 * Target CPU virtual address space.
738 *
739 * In order to use this address with the diagnostic CE,
740 * convert it from Target CPU virtual address space
741 * to CE address space
742 */
743 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
744 address);
745
746 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
747 0);
748 if (ret)
749 goto done;
750
751 i = 0;
752 while (ath10k_ce_completed_send_next_nolock(ce_diag, NULL, &buf,
753 &completed_nbytes,
754 &id) != 0) {
755 mdelay(1);
756 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
757 ret = -EBUSY;
758 goto done;
759 }
760 }
761
762 if (nbytes != completed_nbytes) {
763 ret = -EIO;
764 goto done;
765 }
766
767 if (buf != (u32)address) {
768 ret = -EIO;
769 goto done;
770 }
771
772 i = 0;
773 while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
774 &completed_nbytes,
775 &id, &flags) != 0) {
776 mdelay(1);
777
778 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
779 ret = -EBUSY;
780 goto done;
781 }
782 }
783
784 if (nbytes != completed_nbytes) {
785 ret = -EIO;
786 goto done;
787 }
788
789 if (buf != ce_data) {
790 ret = -EIO;
791 goto done;
792 }
793
794 remaining_bytes -= nbytes;
795 address += nbytes;
796 ce_data += nbytes;
797 }
798
799 done:
800 if (ret == 0)
801 memcpy(data, data_buf, orig_nbytes);
802 else
803 ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
804 address, ret);
805
806 if (data_buf)
807 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
808 ce_data_base);
809
810 spin_unlock_bh(&ar_pci->ce_lock);
811
812 return ret;
813 }
814
815 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
816 {
817 __le32 val = 0;
818 int ret;
819
820 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
821 *value = __le32_to_cpu(val);
822
823 return ret;
824 }
825
826 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
827 u32 src, u32 len)
828 {
829 u32 host_addr, addr;
830 int ret;
831
832 host_addr = host_interest_item_address(src);
833
834 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
835 if (ret != 0) {
836 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
837 src, ret);
838 return ret;
839 }
840
841 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
842 if (ret != 0) {
843 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
844 addr, len, ret);
845 return ret;
846 }
847
848 return 0;
849 }
850
851 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \
852 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
853
854 static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
855 const void *data, int nbytes)
856 {
857 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
858 int ret = 0;
859 u32 buf;
860 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
861 unsigned int id;
862 unsigned int flags;
863 struct ath10k_ce_pipe *ce_diag;
864 void *data_buf = NULL;
865 u32 ce_data; /* Host buffer address in CE space */
866 dma_addr_t ce_data_base = 0;
867 int i;
868
869 spin_lock_bh(&ar_pci->ce_lock);
870
871 ce_diag = ar_pci->ce_diag;
872
873 /*
874 * Allocate a temporary bounce buffer to hold caller's data
875 * to be DMA'ed to Target. This guarantees
876 * 1) 4-byte alignment
877 * 2) Buffer in DMA-able space
878 */
879 orig_nbytes = nbytes;
880 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
881 orig_nbytes,
882 &ce_data_base,
883 GFP_ATOMIC);
884 if (!data_buf) {
885 ret = -ENOMEM;
886 goto done;
887 }
888
889 /* Copy caller's data to allocated DMA buf */
890 memcpy(data_buf, data, orig_nbytes);
891
892 /*
893 * The address supplied by the caller is in the
894 * Target CPU virtual address space.
895 *
896 * In order to use this address with the diagnostic CE,
897 * convert it from
898 * Target CPU virtual address space
899 * to
900 * CE address space
901 */
902 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
903
904 remaining_bytes = orig_nbytes;
905 ce_data = ce_data_base;
906 while (remaining_bytes) {
907 /* FIXME: check cast */
908 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
909
910 /* Set up to receive directly into Target(!) address */
911 ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, address);
912 if (ret != 0)
913 goto done;
914
915 /*
916 * Request CE to send caller-supplied data that
917 * was copied to bounce buffer to Target(!) address.
918 */
919 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
920 nbytes, 0, 0);
921 if (ret != 0)
922 goto done;
923
924 i = 0;
925 while (ath10k_ce_completed_send_next_nolock(ce_diag, NULL, &buf,
926 &completed_nbytes,
927 &id) != 0) {
928 mdelay(1);
929
930 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
931 ret = -EBUSY;
932 goto done;
933 }
934 }
935
936 if (nbytes != completed_nbytes) {
937 ret = -EIO;
938 goto done;
939 }
940
941 if (buf != ce_data) {
942 ret = -EIO;
943 goto done;
944 }
945
946 i = 0;
947 while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
948 &completed_nbytes,
949 &id, &flags) != 0) {
950 mdelay(1);
951
952 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
953 ret = -EBUSY;
954 goto done;
955 }
956 }
957
958 if (nbytes != completed_nbytes) {
959 ret = -EIO;
960 goto done;
961 }
962
963 if (buf != address) {
964 ret = -EIO;
965 goto done;
966 }
967
968 remaining_bytes -= nbytes;
969 address += nbytes;
970 ce_data += nbytes;
971 }
972
973 done:
974 if (data_buf) {
975 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
976 ce_data_base);
977 }
978
979 if (ret != 0)
980 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
981 address, ret);
982
983 spin_unlock_bh(&ar_pci->ce_lock);
984
985 return ret;
986 }
987
988 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
989 {
990 __le32 val = __cpu_to_le32(value);
991
992 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
993 }
994
995 /* Called by lower (CE) layer when a send to Target completes. */
996 static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state)
997 {
998 struct ath10k *ar = ce_state->ar;
999 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1000 struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
1001 struct sk_buff_head list;
1002 struct sk_buff *skb;
1003 u32 ce_data;
1004 unsigned int nbytes;
1005 unsigned int transfer_id;
1006
1007 __skb_queue_head_init(&list);
1008 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb, &ce_data,
1009 &nbytes, &transfer_id) == 0) {
1010 /* no need to call tx completion for NULL pointers */
1011 if (skb == NULL)
1012 continue;
1013
1014 __skb_queue_tail(&list, skb);
1015 }
1016
1017 while ((skb = __skb_dequeue(&list)))
1018 cb->tx_completion(ar, skb);
1019 }
1020
1021 /* Called by lower (CE) layer when data is received from the Target. */
1022 static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state)
1023 {
1024 struct ath10k *ar = ce_state->ar;
1025 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1026 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1027 struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
1028 struct sk_buff *skb;
1029 struct sk_buff_head list;
1030 void *transfer_context;
1031 u32 ce_data;
1032 unsigned int nbytes, max_nbytes;
1033 unsigned int transfer_id;
1034 unsigned int flags;
1035
1036 __skb_queue_head_init(&list);
1037 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1038 &ce_data, &nbytes, &transfer_id,
1039 &flags) == 0) {
1040 skb = transfer_context;
1041 max_nbytes = skb->len + skb_tailroom(skb);
1042 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1043 max_nbytes, DMA_FROM_DEVICE);
1044
1045 if (unlikely(max_nbytes < nbytes)) {
1046 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1047 nbytes, max_nbytes);
1048 dev_kfree_skb_any(skb);
1049 continue;
1050 }
1051
1052 skb_put(skb, nbytes);
1053 __skb_queue_tail(&list, skb);
1054 }
1055
1056 while ((skb = __skb_dequeue(&list))) {
1057 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1058 ce_state->id, skb->len);
1059 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1060 skb->data, skb->len);
1061
1062 cb->rx_completion(ar, skb);
1063 }
1064
1065 ath10k_pci_rx_post_pipe(pipe_info);
1066 }
1067
1068 static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1069 struct ath10k_hif_sg_item *items, int n_items)
1070 {
1071 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1072 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1073 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1074 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1075 unsigned int nentries_mask;
1076 unsigned int sw_index;
1077 unsigned int write_index;
1078 int err, i = 0;
1079
1080 spin_lock_bh(&ar_pci->ce_lock);
1081
1082 nentries_mask = src_ring->nentries_mask;
1083 sw_index = src_ring->sw_index;
1084 write_index = src_ring->write_index;
1085
1086 if (unlikely(CE_RING_DELTA(nentries_mask,
1087 write_index, sw_index - 1) < n_items)) {
1088 err = -ENOBUFS;
1089 goto err;
1090 }
1091
1092 for (i = 0; i < n_items - 1; i++) {
1093 ath10k_dbg(ar, ATH10K_DBG_PCI,
1094 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1095 i, items[i].paddr, items[i].len, n_items);
1096 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1097 items[i].vaddr, items[i].len);
1098
1099 err = ath10k_ce_send_nolock(ce_pipe,
1100 items[i].transfer_context,
1101 items[i].paddr,
1102 items[i].len,
1103 items[i].transfer_id,
1104 CE_SEND_FLAG_GATHER);
1105 if (err)
1106 goto err;
1107 }
1108
1109 /* `i` is equal to `n_items -1` after for() */
1110
1111 ath10k_dbg(ar, ATH10K_DBG_PCI,
1112 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1113 i, items[i].paddr, items[i].len, n_items);
1114 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1115 items[i].vaddr, items[i].len);
1116
1117 err = ath10k_ce_send_nolock(ce_pipe,
1118 items[i].transfer_context,
1119 items[i].paddr,
1120 items[i].len,
1121 items[i].transfer_id,
1122 0);
1123 if (err)
1124 goto err;
1125
1126 spin_unlock_bh(&ar_pci->ce_lock);
1127 return 0;
1128
1129 err:
1130 for (; i > 0; i--)
1131 __ath10k_ce_send_revert(ce_pipe);
1132
1133 spin_unlock_bh(&ar_pci->ce_lock);
1134 return err;
1135 }
1136
1137 static int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1138 size_t buf_len)
1139 {
1140 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1141 }
1142
1143 static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1144 {
1145 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1146
1147 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1148
1149 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1150 }
1151
1152 static void ath10k_pci_dump_registers(struct ath10k *ar,
1153 struct ath10k_fw_crash_data *crash_data)
1154 {
1155 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1156 int i, ret;
1157
1158 lockdep_assert_held(&ar->data_lock);
1159
1160 ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1161 hi_failure_state,
1162 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1163 if (ret) {
1164 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1165 return;
1166 }
1167
1168 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1169
1170 ath10k_err(ar, "firmware register dump:\n");
1171 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1172 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1173 i,
1174 __le32_to_cpu(reg_dump_values[i]),
1175 __le32_to_cpu(reg_dump_values[i + 1]),
1176 __le32_to_cpu(reg_dump_values[i + 2]),
1177 __le32_to_cpu(reg_dump_values[i + 3]));
1178
1179 if (!crash_data)
1180 return;
1181
1182 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1183 crash_data->registers[i] = reg_dump_values[i];
1184 }
1185
1186 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1187 {
1188 struct ath10k_fw_crash_data *crash_data;
1189 char uuid[50];
1190
1191 spin_lock_bh(&ar->data_lock);
1192
1193 ar->stats.fw_crash_counter++;
1194
1195 crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1196
1197 if (crash_data)
1198 scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1199 else
1200 scnprintf(uuid, sizeof(uuid), "n/a");
1201
1202 ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1203 ath10k_print_driver_info(ar);
1204 ath10k_pci_dump_registers(ar, crash_data);
1205
1206 spin_unlock_bh(&ar->data_lock);
1207
1208 queue_work(ar->workqueue, &ar->restart_work);
1209 }
1210
1211 static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1212 int force)
1213 {
1214 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1215
1216 if (!force) {
1217 int resources;
1218 /*
1219 * Decide whether to actually poll for completions, or just
1220 * wait for a later chance.
1221 * If there seem to be plenty of resources left, then just wait
1222 * since checking involves reading a CE register, which is a
1223 * relatively expensive operation.
1224 */
1225 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1226
1227 /*
1228 * If at least 50% of the total resources are still available,
1229 * don't bother checking again yet.
1230 */
1231 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1232 return;
1233 }
1234 ath10k_ce_per_engine_service(ar, pipe);
1235 }
1236
1237 static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
1238 struct ath10k_hif_cb *callbacks)
1239 {
1240 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1241
1242 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif set callbacks\n");
1243
1244 memcpy(&ar_pci->msg_callbacks_current, callbacks,
1245 sizeof(ar_pci->msg_callbacks_current));
1246 }
1247
1248 static void ath10k_pci_kill_tasklet(struct ath10k *ar)
1249 {
1250 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1251 int i;
1252
1253 tasklet_kill(&ar_pci->intr_tq);
1254 tasklet_kill(&ar_pci->msi_fw_err);
1255
1256 for (i = 0; i < CE_COUNT; i++)
1257 tasklet_kill(&ar_pci->pipe_info[i].intr);
1258
1259 del_timer_sync(&ar_pci->rx_post_retry);
1260 }
1261
1262 static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
1263 u16 service_id, u8 *ul_pipe,
1264 u8 *dl_pipe, int *ul_is_polled,
1265 int *dl_is_polled)
1266 {
1267 const struct service_to_pipe *entry;
1268 bool ul_set = false, dl_set = false;
1269 int i;
1270
1271 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1272
1273 /* polling for received messages not supported */
1274 *dl_is_polled = 0;
1275
1276 for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1277 entry = &target_service_to_ce_map_wlan[i];
1278
1279 if (__le32_to_cpu(entry->service_id) != service_id)
1280 continue;
1281
1282 switch (__le32_to_cpu(entry->pipedir)) {
1283 case PIPEDIR_NONE:
1284 break;
1285 case PIPEDIR_IN:
1286 WARN_ON(dl_set);
1287 *dl_pipe = __le32_to_cpu(entry->pipenum);
1288 dl_set = true;
1289 break;
1290 case PIPEDIR_OUT:
1291 WARN_ON(ul_set);
1292 *ul_pipe = __le32_to_cpu(entry->pipenum);
1293 ul_set = true;
1294 break;
1295 case PIPEDIR_INOUT:
1296 WARN_ON(dl_set);
1297 WARN_ON(ul_set);
1298 *dl_pipe = __le32_to_cpu(entry->pipenum);
1299 *ul_pipe = __le32_to_cpu(entry->pipenum);
1300 dl_set = true;
1301 ul_set = true;
1302 break;
1303 }
1304 }
1305
1306 if (WARN_ON(!ul_set || !dl_set))
1307 return -ENOENT;
1308
1309 *ul_is_polled =
1310 (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
1311
1312 return 0;
1313 }
1314
1315 static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1316 u8 *ul_pipe, u8 *dl_pipe)
1317 {
1318 int ul_is_polled, dl_is_polled;
1319
1320 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1321
1322 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1323 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1324 ul_pipe,
1325 dl_pipe,
1326 &ul_is_polled,
1327 &dl_is_polled);
1328 }
1329
1330 static void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1331 {
1332 u32 val;
1333
1334 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS);
1335 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1336
1337 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS, val);
1338 }
1339
1340 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1341 {
1342 u32 val;
1343
1344 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS);
1345 val |= CORE_CTRL_PCIE_REG_31_MASK;
1346
1347 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS, val);
1348 }
1349
1350 static void ath10k_pci_irq_disable(struct ath10k *ar)
1351 {
1352 ath10k_ce_disable_interrupts(ar);
1353 ath10k_pci_disable_and_clear_legacy_irq(ar);
1354 ath10k_pci_irq_msi_fw_mask(ar);
1355 }
1356
1357 static void ath10k_pci_irq_sync(struct ath10k *ar)
1358 {
1359 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1360 int i;
1361
1362 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1363 synchronize_irq(ar_pci->pdev->irq + i);
1364 }
1365
1366 static void ath10k_pci_irq_enable(struct ath10k *ar)
1367 {
1368 ath10k_ce_enable_interrupts(ar);
1369 ath10k_pci_enable_legacy_irq(ar);
1370 ath10k_pci_irq_msi_fw_unmask(ar);
1371 }
1372
1373 static int ath10k_pci_hif_start(struct ath10k *ar)
1374 {
1375 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1376 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1377
1378 ath10k_pci_irq_enable(ar);
1379 ath10k_pci_rx_post(ar);
1380
1381 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1382 ar_pci->link_ctl);
1383
1384 return 0;
1385 }
1386
1387 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1388 {
1389 struct ath10k *ar;
1390 struct ath10k_ce_pipe *ce_pipe;
1391 struct ath10k_ce_ring *ce_ring;
1392 struct sk_buff *skb;
1393 int i;
1394
1395 ar = pci_pipe->hif_ce_state;
1396 ce_pipe = pci_pipe->ce_hdl;
1397 ce_ring = ce_pipe->dest_ring;
1398
1399 if (!ce_ring)
1400 return;
1401
1402 if (!pci_pipe->buf_sz)
1403 return;
1404
1405 for (i = 0; i < ce_ring->nentries; i++) {
1406 skb = ce_ring->per_transfer_context[i];
1407 if (!skb)
1408 continue;
1409
1410 ce_ring->per_transfer_context[i] = NULL;
1411
1412 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1413 skb->len + skb_tailroom(skb),
1414 DMA_FROM_DEVICE);
1415 dev_kfree_skb_any(skb);
1416 }
1417 }
1418
1419 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1420 {
1421 struct ath10k *ar;
1422 struct ath10k_pci *ar_pci;
1423 struct ath10k_ce_pipe *ce_pipe;
1424 struct ath10k_ce_ring *ce_ring;
1425 struct ce_desc *ce_desc;
1426 struct sk_buff *skb;
1427 int i;
1428
1429 ar = pci_pipe->hif_ce_state;
1430 ar_pci = ath10k_pci_priv(ar);
1431 ce_pipe = pci_pipe->ce_hdl;
1432 ce_ring = ce_pipe->src_ring;
1433
1434 if (!ce_ring)
1435 return;
1436
1437 if (!pci_pipe->buf_sz)
1438 return;
1439
1440 ce_desc = ce_ring->shadow_base;
1441 if (WARN_ON(!ce_desc))
1442 return;
1443
1444 for (i = 0; i < ce_ring->nentries; i++) {
1445 skb = ce_ring->per_transfer_context[i];
1446 if (!skb)
1447 continue;
1448
1449 ce_ring->per_transfer_context[i] = NULL;
1450
1451 ar_pci->msg_callbacks_current.tx_completion(ar, skb);
1452 }
1453 }
1454
1455 /*
1456 * Cleanup residual buffers for device shutdown:
1457 * buffers that were enqueued for receive
1458 * buffers that were to be sent
1459 * Note: Buffers that had completed but which were
1460 * not yet processed are on a completion queue. They
1461 * are handled when the completion thread shuts down.
1462 */
1463 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1464 {
1465 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1466 int pipe_num;
1467
1468 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1469 struct ath10k_pci_pipe *pipe_info;
1470
1471 pipe_info = &ar_pci->pipe_info[pipe_num];
1472 ath10k_pci_rx_pipe_cleanup(pipe_info);
1473 ath10k_pci_tx_pipe_cleanup(pipe_info);
1474 }
1475 }
1476
1477 static void ath10k_pci_ce_deinit(struct ath10k *ar)
1478 {
1479 int i;
1480
1481 for (i = 0; i < CE_COUNT; i++)
1482 ath10k_ce_deinit_pipe(ar, i);
1483 }
1484
1485 static void ath10k_pci_flush(struct ath10k *ar)
1486 {
1487 ath10k_pci_kill_tasklet(ar);
1488 ath10k_pci_buffer_cleanup(ar);
1489 }
1490
1491 static void ath10k_pci_hif_stop(struct ath10k *ar)
1492 {
1493 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1494 unsigned long flags;
1495
1496 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1497
1498 /* Most likely the device has HTT Rx ring configured. The only way to
1499 * prevent the device from accessing (and possible corrupting) host
1500 * memory is to reset the chip now.
1501 *
1502 * There's also no known way of masking MSI interrupts on the device.
1503 * For ranged MSI the CE-related interrupts can be masked. However
1504 * regardless how many MSI interrupts are assigned the first one
1505 * is always used for firmware indications (crashes) and cannot be
1506 * masked. To prevent the device from asserting the interrupt reset it
1507 * before proceeding with cleanup.
1508 */
1509 ath10k_pci_warm_reset(ar);
1510
1511 ath10k_pci_irq_disable(ar);
1512 ath10k_pci_irq_sync(ar);
1513 ath10k_pci_flush(ar);
1514
1515 spin_lock_irqsave(&ar_pci->ps_lock, flags);
1516 WARN_ON(ar_pci->ps_wake_refcount > 0);
1517 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1518 }
1519
1520 static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1521 void *req, u32 req_len,
1522 void *resp, u32 *resp_len)
1523 {
1524 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1525 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1526 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1527 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1528 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1529 dma_addr_t req_paddr = 0;
1530 dma_addr_t resp_paddr = 0;
1531 struct bmi_xfer xfer = {};
1532 void *treq, *tresp = NULL;
1533 int ret = 0;
1534
1535 might_sleep();
1536
1537 if (resp && !resp_len)
1538 return -EINVAL;
1539
1540 if (resp && resp_len && *resp_len == 0)
1541 return -EINVAL;
1542
1543 treq = kmemdup(req, req_len, GFP_KERNEL);
1544 if (!treq)
1545 return -ENOMEM;
1546
1547 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1548 ret = dma_mapping_error(ar->dev, req_paddr);
1549 if (ret)
1550 goto err_dma;
1551
1552 if (resp && resp_len) {
1553 tresp = kzalloc(*resp_len, GFP_KERNEL);
1554 if (!tresp) {
1555 ret = -ENOMEM;
1556 goto err_req;
1557 }
1558
1559 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1560 DMA_FROM_DEVICE);
1561 ret = dma_mapping_error(ar->dev, resp_paddr);
1562 if (ret)
1563 goto err_req;
1564
1565 xfer.wait_for_resp = true;
1566 xfer.resp_len = 0;
1567
1568 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1569 }
1570
1571 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1572 if (ret)
1573 goto err_resp;
1574
1575 ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1576 if (ret) {
1577 u32 unused_buffer;
1578 unsigned int unused_nbytes;
1579 unsigned int unused_id;
1580
1581 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1582 &unused_nbytes, &unused_id);
1583 } else {
1584 /* non-zero means we did not time out */
1585 ret = 0;
1586 }
1587
1588 err_resp:
1589 if (resp) {
1590 u32 unused_buffer;
1591
1592 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1593 dma_unmap_single(ar->dev, resp_paddr,
1594 *resp_len, DMA_FROM_DEVICE);
1595 }
1596 err_req:
1597 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1598
1599 if (ret == 0 && resp_len) {
1600 *resp_len = min(*resp_len, xfer.resp_len);
1601 memcpy(resp, tresp, xfer.resp_len);
1602 }
1603 err_dma:
1604 kfree(treq);
1605 kfree(tresp);
1606
1607 return ret;
1608 }
1609
1610 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1611 {
1612 struct bmi_xfer *xfer;
1613 u32 ce_data;
1614 unsigned int nbytes;
1615 unsigned int transfer_id;
1616
1617 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data,
1618 &nbytes, &transfer_id))
1619 return;
1620
1621 xfer->tx_done = true;
1622 }
1623
1624 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1625 {
1626 struct ath10k *ar = ce_state->ar;
1627 struct bmi_xfer *xfer;
1628 u32 ce_data;
1629 unsigned int nbytes;
1630 unsigned int transfer_id;
1631 unsigned int flags;
1632
1633 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
1634 &nbytes, &transfer_id, &flags))
1635 return;
1636
1637 if (WARN_ON_ONCE(!xfer))
1638 return;
1639
1640 if (!xfer->wait_for_resp) {
1641 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1642 return;
1643 }
1644
1645 xfer->resp_len = nbytes;
1646 xfer->rx_done = true;
1647 }
1648
1649 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1650 struct ath10k_ce_pipe *rx_pipe,
1651 struct bmi_xfer *xfer)
1652 {
1653 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1654
1655 while (time_before_eq(jiffies, timeout)) {
1656 ath10k_pci_bmi_send_done(tx_pipe);
1657 ath10k_pci_bmi_recv_data(rx_pipe);
1658
1659 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1660 return 0;
1661
1662 schedule();
1663 }
1664
1665 return -ETIMEDOUT;
1666 }
1667
1668 /*
1669 * Send an interrupt to the device to wake up the Target CPU
1670 * so it has an opportunity to notice any changed state.
1671 */
1672 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1673 {
1674 u32 addr, val;
1675
1676 addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1677 val = ath10k_pci_read32(ar, addr);
1678 val |= CORE_CTRL_CPU_INTR_MASK;
1679 ath10k_pci_write32(ar, addr, val);
1680
1681 return 0;
1682 }
1683
1684 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1685 {
1686 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1687
1688 switch (ar_pci->pdev->device) {
1689 case QCA988X_2_0_DEVICE_ID:
1690 return 1;
1691 case QCA6174_2_1_DEVICE_ID:
1692 switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1693 case QCA6174_HW_1_0_CHIP_ID_REV:
1694 case QCA6174_HW_1_1_CHIP_ID_REV:
1695 case QCA6174_HW_2_1_CHIP_ID_REV:
1696 case QCA6174_HW_2_2_CHIP_ID_REV:
1697 return 3;
1698 case QCA6174_HW_1_3_CHIP_ID_REV:
1699 return 2;
1700 case QCA6174_HW_3_0_CHIP_ID_REV:
1701 case QCA6174_HW_3_1_CHIP_ID_REV:
1702 case QCA6174_HW_3_2_CHIP_ID_REV:
1703 return 9;
1704 }
1705 break;
1706 }
1707
1708 ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1709 return 1;
1710 }
1711
1712 static int ath10k_pci_init_config(struct ath10k *ar)
1713 {
1714 u32 interconnect_targ_addr;
1715 u32 pcie_state_targ_addr = 0;
1716 u32 pipe_cfg_targ_addr = 0;
1717 u32 svc_to_pipe_map = 0;
1718 u32 pcie_config_flags = 0;
1719 u32 ealloc_value;
1720 u32 ealloc_targ_addr;
1721 u32 flag2_value;
1722 u32 flag2_targ_addr;
1723 int ret = 0;
1724
1725 /* Download to Target the CE Config and the service-to-CE map */
1726 interconnect_targ_addr =
1727 host_interest_item_address(HI_ITEM(hi_interconnect_state));
1728
1729 /* Supply Target-side CE configuration */
1730 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
1731 &pcie_state_targ_addr);
1732 if (ret != 0) {
1733 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
1734 return ret;
1735 }
1736
1737 if (pcie_state_targ_addr == 0) {
1738 ret = -EIO;
1739 ath10k_err(ar, "Invalid pcie state addr\n");
1740 return ret;
1741 }
1742
1743 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1744 offsetof(struct pcie_state,
1745 pipe_cfg_addr)),
1746 &pipe_cfg_targ_addr);
1747 if (ret != 0) {
1748 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
1749 return ret;
1750 }
1751
1752 if (pipe_cfg_targ_addr == 0) {
1753 ret = -EIO;
1754 ath10k_err(ar, "Invalid pipe cfg addr\n");
1755 return ret;
1756 }
1757
1758 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1759 target_ce_config_wlan,
1760 sizeof(target_ce_config_wlan));
1761
1762 if (ret != 0) {
1763 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
1764 return ret;
1765 }
1766
1767 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1768 offsetof(struct pcie_state,
1769 svc_to_pipe_map)),
1770 &svc_to_pipe_map);
1771 if (ret != 0) {
1772 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
1773 return ret;
1774 }
1775
1776 if (svc_to_pipe_map == 0) {
1777 ret = -EIO;
1778 ath10k_err(ar, "Invalid svc_to_pipe map\n");
1779 return ret;
1780 }
1781
1782 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1783 target_service_to_ce_map_wlan,
1784 sizeof(target_service_to_ce_map_wlan));
1785 if (ret != 0) {
1786 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
1787 return ret;
1788 }
1789
1790 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1791 offsetof(struct pcie_state,
1792 config_flags)),
1793 &pcie_config_flags);
1794 if (ret != 0) {
1795 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
1796 return ret;
1797 }
1798
1799 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1800
1801 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
1802 offsetof(struct pcie_state,
1803 config_flags)),
1804 pcie_config_flags);
1805 if (ret != 0) {
1806 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
1807 return ret;
1808 }
1809
1810 /* configure early allocation */
1811 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1812
1813 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
1814 if (ret != 0) {
1815 ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
1816 return ret;
1817 }
1818
1819 /* first bank is switched to IRAM */
1820 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1821 HI_EARLY_ALLOC_MAGIC_MASK);
1822 ealloc_value |= ((ath10k_pci_get_num_banks(ar) <<
1823 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
1824 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1825
1826 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
1827 if (ret != 0) {
1828 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
1829 return ret;
1830 }
1831
1832 /* Tell Target to proceed with initialization */
1833 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1834
1835 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
1836 if (ret != 0) {
1837 ath10k_err(ar, "Failed to get option val: %d\n", ret);
1838 return ret;
1839 }
1840
1841 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1842
1843 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
1844 if (ret != 0) {
1845 ath10k_err(ar, "Failed to set option val: %d\n", ret);
1846 return ret;
1847 }
1848
1849 return 0;
1850 }
1851
1852 static int ath10k_pci_alloc_pipes(struct ath10k *ar)
1853 {
1854 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1855 struct ath10k_pci_pipe *pipe;
1856 int i, ret;
1857
1858 for (i = 0; i < CE_COUNT; i++) {
1859 pipe = &ar_pci->pipe_info[i];
1860 pipe->ce_hdl = &ar_pci->ce_states[i];
1861 pipe->pipe_num = i;
1862 pipe->hif_ce_state = ar;
1863
1864 ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i],
1865 ath10k_pci_ce_send_done,
1866 ath10k_pci_ce_recv_data);
1867 if (ret) {
1868 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
1869 i, ret);
1870 return ret;
1871 }
1872
1873 /* Last CE is Diagnostic Window */
1874 if (i == CE_COUNT - 1) {
1875 ar_pci->ce_diag = pipe->ce_hdl;
1876 continue;
1877 }
1878
1879 pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
1880 }
1881
1882 return 0;
1883 }
1884
1885 static void ath10k_pci_free_pipes(struct ath10k *ar)
1886 {
1887 int i;
1888
1889 for (i = 0; i < CE_COUNT; i++)
1890 ath10k_ce_free_pipe(ar, i);
1891 }
1892
1893 static int ath10k_pci_init_pipes(struct ath10k *ar)
1894 {
1895 int i, ret;
1896
1897 for (i = 0; i < CE_COUNT; i++) {
1898 ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
1899 if (ret) {
1900 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
1901 i, ret);
1902 return ret;
1903 }
1904 }
1905
1906 return 0;
1907 }
1908
1909 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
1910 {
1911 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
1912 FW_IND_EVENT_PENDING;
1913 }
1914
1915 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
1916 {
1917 u32 val;
1918
1919 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
1920 val &= ~FW_IND_EVENT_PENDING;
1921 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
1922 }
1923
1924 /* this function effectively clears target memory controller assert line */
1925 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
1926 {
1927 u32 val;
1928
1929 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1930 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
1931 val | SOC_RESET_CONTROL_SI0_RST_MASK);
1932 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1933
1934 msleep(10);
1935
1936 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1937 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
1938 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
1939 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1940
1941 msleep(10);
1942 }
1943
1944 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
1945 {
1946 u32 val;
1947
1948 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
1949
1950 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1951 SOC_RESET_CONTROL_ADDRESS);
1952 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1953 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
1954 }
1955
1956 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
1957 {
1958 u32 val;
1959
1960 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1961 SOC_RESET_CONTROL_ADDRESS);
1962
1963 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1964 val | SOC_RESET_CONTROL_CE_RST_MASK);
1965 msleep(10);
1966 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1967 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
1968 }
1969
1970 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
1971 {
1972 u32 val;
1973
1974 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1975 SOC_LF_TIMER_CONTROL0_ADDRESS);
1976 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
1977 SOC_LF_TIMER_CONTROL0_ADDRESS,
1978 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
1979 }
1980
1981 static int ath10k_pci_warm_reset(struct ath10k *ar)
1982 {
1983 int ret;
1984
1985 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
1986
1987 spin_lock_bh(&ar->data_lock);
1988 ar->stats.fw_warm_reset_counter++;
1989 spin_unlock_bh(&ar->data_lock);
1990
1991 ath10k_pci_irq_disable(ar);
1992
1993 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
1994 * were to access copy engine while host performs copy engine reset
1995 * then it is possible for the device to confuse pci-e controller to
1996 * the point of bringing host system to a complete stop (i.e. hang).
1997 */
1998 ath10k_pci_warm_reset_si0(ar);
1999 ath10k_pci_warm_reset_cpu(ar);
2000 ath10k_pci_init_pipes(ar);
2001 ath10k_pci_wait_for_target_init(ar);
2002
2003 ath10k_pci_warm_reset_clear_lf(ar);
2004 ath10k_pci_warm_reset_ce(ar);
2005 ath10k_pci_warm_reset_cpu(ar);
2006 ath10k_pci_init_pipes(ar);
2007
2008 ret = ath10k_pci_wait_for_target_init(ar);
2009 if (ret) {
2010 ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2011 return ret;
2012 }
2013
2014 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2015
2016 return 0;
2017 }
2018
2019 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2020 {
2021 int i, ret;
2022 u32 val;
2023
2024 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2025
2026 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2027 * It is thus preferred to use warm reset which is safer but may not be
2028 * able to recover the device from all possible fail scenarios.
2029 *
2030 * Warm reset doesn't always work on first try so attempt it a few
2031 * times before giving up.
2032 */
2033 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2034 ret = ath10k_pci_warm_reset(ar);
2035 if (ret) {
2036 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2037 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2038 ret);
2039 continue;
2040 }
2041
2042 /* FIXME: Sometimes copy engine doesn't recover after warm
2043 * reset. In most cases this needs cold reset. In some of these
2044 * cases the device is in such a state that a cold reset may
2045 * lock up the host.
2046 *
2047 * Reading any host interest register via copy engine is
2048 * sufficient to verify if device is capable of booting
2049 * firmware blob.
2050 */
2051 ret = ath10k_pci_init_pipes(ar);
2052 if (ret) {
2053 ath10k_warn(ar, "failed to init copy engine: %d\n",
2054 ret);
2055 continue;
2056 }
2057
2058 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2059 &val);
2060 if (ret) {
2061 ath10k_warn(ar, "failed to poke copy engine: %d\n",
2062 ret);
2063 continue;
2064 }
2065
2066 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2067 return 0;
2068 }
2069
2070 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2071 ath10k_warn(ar, "refusing cold reset as requested\n");
2072 return -EPERM;
2073 }
2074
2075 ret = ath10k_pci_cold_reset(ar);
2076 if (ret) {
2077 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2078 return ret;
2079 }
2080
2081 ret = ath10k_pci_wait_for_target_init(ar);
2082 if (ret) {
2083 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2084 ret);
2085 return ret;
2086 }
2087
2088 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2089
2090 return 0;
2091 }
2092
2093 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2094 {
2095 int ret;
2096
2097 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2098
2099 /* FIXME: QCA6174 requires cold + warm reset to work. */
2100
2101 ret = ath10k_pci_cold_reset(ar);
2102 if (ret) {
2103 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2104 return ret;
2105 }
2106
2107 ret = ath10k_pci_wait_for_target_init(ar);
2108 if (ret) {
2109 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2110 ret);
2111 return ret;
2112 }
2113
2114 ret = ath10k_pci_warm_reset(ar);
2115 if (ret) {
2116 ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2117 return ret;
2118 }
2119
2120 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2121
2122 return 0;
2123 }
2124
2125 static int ath10k_pci_chip_reset(struct ath10k *ar)
2126 {
2127 if (QCA_REV_988X(ar))
2128 return ath10k_pci_qca988x_chip_reset(ar);
2129 else if (QCA_REV_6174(ar))
2130 return ath10k_pci_qca6174_chip_reset(ar);
2131 else
2132 return -ENOTSUPP;
2133 }
2134
2135 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2136 {
2137 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2138 int ret;
2139
2140 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2141
2142 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2143 &ar_pci->link_ctl);
2144 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2145 ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2146
2147 /*
2148 * Bring the target up cleanly.
2149 *
2150 * The target may be in an undefined state with an AUX-powered Target
2151 * and a Host in WoW mode. If the Host crashes, loses power, or is
2152 * restarted (without unloading the driver) then the Target is left
2153 * (aux) powered and running. On a subsequent driver load, the Target
2154 * is in an unexpected state. We try to catch that here in order to
2155 * reset the Target and retry the probe.
2156 */
2157 ret = ath10k_pci_chip_reset(ar);
2158 if (ret) {
2159 if (ath10k_pci_has_fw_crashed(ar)) {
2160 ath10k_warn(ar, "firmware crashed during chip reset\n");
2161 ath10k_pci_fw_crashed_clear(ar);
2162 ath10k_pci_fw_crashed_dump(ar);
2163 }
2164
2165 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2166 goto err_sleep;
2167 }
2168
2169 ret = ath10k_pci_init_pipes(ar);
2170 if (ret) {
2171 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2172 goto err_sleep;
2173 }
2174
2175 ret = ath10k_pci_init_config(ar);
2176 if (ret) {
2177 ath10k_err(ar, "failed to setup init config: %d\n", ret);
2178 goto err_ce;
2179 }
2180
2181 ret = ath10k_pci_wake_target_cpu(ar);
2182 if (ret) {
2183 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2184 goto err_ce;
2185 }
2186
2187 return 0;
2188
2189 err_ce:
2190 ath10k_pci_ce_deinit(ar);
2191
2192 err_sleep:
2193 return ret;
2194 }
2195
2196 static void ath10k_pci_hif_power_down(struct ath10k *ar)
2197 {
2198 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2199
2200 /* Currently hif_power_up performs effectively a reset and hif_stop
2201 * resets the chip as well so there's no point in resetting here.
2202 */
2203 }
2204
2205 #ifdef CONFIG_PM
2206
2207 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2208 {
2209 /* The grace timer can still be counting down and ar->ps_awake be true.
2210 * It is known that the device may be asleep after resuming regardless
2211 * of the SoC powersave state before suspending. Hence make sure the
2212 * device is asleep before proceeding.
2213 */
2214 ath10k_pci_sleep_sync(ar);
2215
2216 return 0;
2217 }
2218
2219 static int ath10k_pci_hif_resume(struct ath10k *ar)
2220 {
2221 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2222 struct pci_dev *pdev = ar_pci->pdev;
2223 u32 val;
2224
2225 /* Suspend/Resume resets the PCI configuration space, so we have to
2226 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2227 * from interfering with C3 CPU state. pci_restore_state won't help
2228 * here since it only restores the first 64 bytes pci config header.
2229 */
2230 pci_read_config_dword(pdev, 0x40, &val);
2231 if ((val & 0x0000ff00) != 0)
2232 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2233
2234 return 0;
2235 }
2236 #endif
2237
2238 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2239 .tx_sg = ath10k_pci_hif_tx_sg,
2240 .diag_read = ath10k_pci_hif_diag_read,
2241 .diag_write = ath10k_pci_diag_write_mem,
2242 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
2243 .start = ath10k_pci_hif_start,
2244 .stop = ath10k_pci_hif_stop,
2245 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
2246 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
2247 .send_complete_check = ath10k_pci_hif_send_complete_check,
2248 .set_callbacks = ath10k_pci_hif_set_callbacks,
2249 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
2250 .power_up = ath10k_pci_hif_power_up,
2251 .power_down = ath10k_pci_hif_power_down,
2252 .read32 = ath10k_pci_read32,
2253 .write32 = ath10k_pci_write32,
2254 #ifdef CONFIG_PM
2255 .suspend = ath10k_pci_hif_suspend,
2256 .resume = ath10k_pci_hif_resume,
2257 #endif
2258 };
2259
2260 static void ath10k_pci_ce_tasklet(unsigned long ptr)
2261 {
2262 struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2263 struct ath10k_pci *ar_pci = pipe->ar_pci;
2264
2265 ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2266 }
2267
2268 static void ath10k_msi_err_tasklet(unsigned long data)
2269 {
2270 struct ath10k *ar = (struct ath10k *)data;
2271
2272 if (!ath10k_pci_has_fw_crashed(ar)) {
2273 ath10k_warn(ar, "received unsolicited fw crash interrupt\n");
2274 return;
2275 }
2276
2277 ath10k_pci_irq_disable(ar);
2278 ath10k_pci_fw_crashed_clear(ar);
2279 ath10k_pci_fw_crashed_dump(ar);
2280 }
2281
2282 /*
2283 * Handler for a per-engine interrupt on a PARTICULAR CE.
2284 * This is used in cases where each CE has a private MSI interrupt.
2285 */
2286 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2287 {
2288 struct ath10k *ar = arg;
2289 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2290 int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2291
2292 if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2293 ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
2294 ce_id);
2295 return IRQ_HANDLED;
2296 }
2297
2298 /*
2299 * NOTE: We are able to derive ce_id from irq because we
2300 * use a one-to-one mapping for CE's 0..5.
2301 * CE's 6 & 7 do not use interrupts at all.
2302 *
2303 * This mapping must be kept in sync with the mapping
2304 * used by firmware.
2305 */
2306 tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2307 return IRQ_HANDLED;
2308 }
2309
2310 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2311 {
2312 struct ath10k *ar = arg;
2313 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2314
2315 tasklet_schedule(&ar_pci->msi_fw_err);
2316 return IRQ_HANDLED;
2317 }
2318
2319 /*
2320 * Top-level interrupt handler for all PCI interrupts from a Target.
2321 * When a block of MSI interrupts is allocated, this top-level handler
2322 * is not used; instead, we directly call the correct sub-handler.
2323 */
2324 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2325 {
2326 struct ath10k *ar = arg;
2327 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2328
2329 if (ar_pci->num_msi_intrs == 0) {
2330 if (!ath10k_pci_irq_pending(ar))
2331 return IRQ_NONE;
2332
2333 ath10k_pci_disable_and_clear_legacy_irq(ar);
2334 }
2335
2336 tasklet_schedule(&ar_pci->intr_tq);
2337
2338 return IRQ_HANDLED;
2339 }
2340
2341 static void ath10k_pci_tasklet(unsigned long data)
2342 {
2343 struct ath10k *ar = (struct ath10k *)data;
2344 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2345
2346 if (ath10k_pci_has_fw_crashed(ar)) {
2347 ath10k_pci_irq_disable(ar);
2348 ath10k_pci_fw_crashed_clear(ar);
2349 ath10k_pci_fw_crashed_dump(ar);
2350 return;
2351 }
2352
2353 ath10k_ce_per_engine_service_any(ar);
2354
2355 /* Re-enable legacy irq that was disabled in the irq handler */
2356 if (ar_pci->num_msi_intrs == 0)
2357 ath10k_pci_enable_legacy_irq(ar);
2358 }
2359
2360 static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2361 {
2362 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2363 int ret, i;
2364
2365 ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2366 ath10k_pci_msi_fw_handler,
2367 IRQF_SHARED, "ath10k_pci", ar);
2368 if (ret) {
2369 ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n",
2370 ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2371 return ret;
2372 }
2373
2374 for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2375 ret = request_irq(ar_pci->pdev->irq + i,
2376 ath10k_pci_per_engine_handler,
2377 IRQF_SHARED, "ath10k_pci", ar);
2378 if (ret) {
2379 ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n",
2380 ar_pci->pdev->irq + i, ret);
2381
2382 for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2383 free_irq(ar_pci->pdev->irq + i, ar);
2384
2385 free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2386 return ret;
2387 }
2388 }
2389
2390 return 0;
2391 }
2392
2393 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2394 {
2395 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2396 int ret;
2397
2398 ret = request_irq(ar_pci->pdev->irq,
2399 ath10k_pci_interrupt_handler,
2400 IRQF_SHARED, "ath10k_pci", ar);
2401 if (ret) {
2402 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2403 ar_pci->pdev->irq, ret);
2404 return ret;
2405 }
2406
2407 return 0;
2408 }
2409
2410 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2411 {
2412 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2413 int ret;
2414
2415 ret = request_irq(ar_pci->pdev->irq,
2416 ath10k_pci_interrupt_handler,
2417 IRQF_SHARED, "ath10k_pci", ar);
2418 if (ret) {
2419 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2420 ar_pci->pdev->irq, ret);
2421 return ret;
2422 }
2423
2424 return 0;
2425 }
2426
2427 static int ath10k_pci_request_irq(struct ath10k *ar)
2428 {
2429 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2430
2431 switch (ar_pci->num_msi_intrs) {
2432 case 0:
2433 return ath10k_pci_request_irq_legacy(ar);
2434 case 1:
2435 return ath10k_pci_request_irq_msi(ar);
2436 case MSI_NUM_REQUEST:
2437 return ath10k_pci_request_irq_msix(ar);
2438 }
2439
2440 ath10k_warn(ar, "unknown irq configuration upon request\n");
2441 return -EINVAL;
2442 }
2443
2444 static void ath10k_pci_free_irq(struct ath10k *ar)
2445 {
2446 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2447 int i;
2448
2449 /* There's at least one interrupt irregardless whether its legacy INTR
2450 * or MSI or MSI-X */
2451 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2452 free_irq(ar_pci->pdev->irq + i, ar);
2453 }
2454
2455 static void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2456 {
2457 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2458 int i;
2459
2460 tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2461 tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2462 (unsigned long)ar);
2463
2464 for (i = 0; i < CE_COUNT; i++) {
2465 ar_pci->pipe_info[i].ar_pci = ar_pci;
2466 tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2467 (unsigned long)&ar_pci->pipe_info[i]);
2468 }
2469 }
2470
2471 static int ath10k_pci_init_irq(struct ath10k *ar)
2472 {
2473 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2474 int ret;
2475
2476 ath10k_pci_init_irq_tasklets(ar);
2477
2478 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2479 ath10k_info(ar, "limiting irq mode to: %d\n",
2480 ath10k_pci_irq_mode);
2481
2482 /* Try MSI-X */
2483 if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) {
2484 ar_pci->num_msi_intrs = MSI_NUM_REQUEST;
2485 ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
2486 ar_pci->num_msi_intrs);
2487 if (ret > 0)
2488 return 0;
2489
2490 /* fall-through */
2491 }
2492
2493 /* Try MSI */
2494 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2495 ar_pci->num_msi_intrs = 1;
2496 ret = pci_enable_msi(ar_pci->pdev);
2497 if (ret == 0)
2498 return 0;
2499
2500 /* fall-through */
2501 }
2502
2503 /* Try legacy irq
2504 *
2505 * A potential race occurs here: The CORE_BASE write
2506 * depends on target correctly decoding AXI address but
2507 * host won't know when target writes BAR to CORE_CTRL.
2508 * This write might get lost if target has NOT written BAR.
2509 * For now, fix the race by repeating the write in below
2510 * synchronization checking. */
2511 ar_pci->num_msi_intrs = 0;
2512
2513 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2514 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2515
2516 return 0;
2517 }
2518
2519 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2520 {
2521 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2522 0);
2523 }
2524
2525 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2526 {
2527 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2528
2529 switch (ar_pci->num_msi_intrs) {
2530 case 0:
2531 ath10k_pci_deinit_irq_legacy(ar);
2532 return 0;
2533 case 1:
2534 /* fall-through */
2535 case MSI_NUM_REQUEST:
2536 pci_disable_msi(ar_pci->pdev);
2537 return 0;
2538 default:
2539 pci_disable_msi(ar_pci->pdev);
2540 }
2541
2542 ath10k_warn(ar, "unknown irq configuration upon deinit\n");
2543 return -EINVAL;
2544 }
2545
2546 static int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2547 {
2548 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2549 unsigned long timeout;
2550 u32 val;
2551
2552 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2553
2554 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2555
2556 do {
2557 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2558
2559 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2560 val);
2561
2562 /* target should never return this */
2563 if (val == 0xffffffff)
2564 continue;
2565
2566 /* the device has crashed so don't bother trying anymore */
2567 if (val & FW_IND_EVENT_PENDING)
2568 break;
2569
2570 if (val & FW_IND_INITIALIZED)
2571 break;
2572
2573 if (ar_pci->num_msi_intrs == 0)
2574 /* Fix potential race by repeating CORE_BASE writes */
2575 ath10k_pci_enable_legacy_irq(ar);
2576
2577 mdelay(10);
2578 } while (time_before(jiffies, timeout));
2579
2580 ath10k_pci_disable_and_clear_legacy_irq(ar);
2581 ath10k_pci_irq_msi_fw_mask(ar);
2582
2583 if (val == 0xffffffff) {
2584 ath10k_err(ar, "failed to read device register, device is gone\n");
2585 return -EIO;
2586 }
2587
2588 if (val & FW_IND_EVENT_PENDING) {
2589 ath10k_warn(ar, "device has crashed during init\n");
2590 return -ECOMM;
2591 }
2592
2593 if (!(val & FW_IND_INITIALIZED)) {
2594 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2595 val);
2596 return -ETIMEDOUT;
2597 }
2598
2599 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2600 return 0;
2601 }
2602
2603 static int ath10k_pci_cold_reset(struct ath10k *ar)
2604 {
2605 int i;
2606 u32 val;
2607
2608 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
2609
2610 spin_lock_bh(&ar->data_lock);
2611
2612 ar->stats.fw_cold_reset_counter++;
2613
2614 spin_unlock_bh(&ar->data_lock);
2615
2616 /* Put Target, including PCIe, into RESET. */
2617 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2618 val |= 1;
2619 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2620
2621 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2622 if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2623 RTC_STATE_COLD_RESET_MASK)
2624 break;
2625 msleep(1);
2626 }
2627
2628 /* Pull Target, including PCIe, out of RESET. */
2629 val &= ~1;
2630 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2631
2632 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2633 if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2634 RTC_STATE_COLD_RESET_MASK))
2635 break;
2636 msleep(1);
2637 }
2638
2639 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
2640
2641 return 0;
2642 }
2643
2644 static int ath10k_pci_claim(struct ath10k *ar)
2645 {
2646 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2647 struct pci_dev *pdev = ar_pci->pdev;
2648 int ret;
2649
2650 pci_set_drvdata(pdev, ar);
2651
2652 ret = pci_enable_device(pdev);
2653 if (ret) {
2654 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
2655 return ret;
2656 }
2657
2658 ret = pci_request_region(pdev, BAR_NUM, "ath");
2659 if (ret) {
2660 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
2661 ret);
2662 goto err_device;
2663 }
2664
2665 /* Target expects 32 bit DMA. Enforce it. */
2666 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2667 if (ret) {
2668 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
2669 goto err_region;
2670 }
2671
2672 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2673 if (ret) {
2674 ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
2675 ret);
2676 goto err_region;
2677 }
2678
2679 pci_set_master(pdev);
2680
2681 /* Arrange for access to Target SoC registers. */
2682 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
2683 if (!ar_pci->mem) {
2684 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
2685 ret = -EIO;
2686 goto err_master;
2687 }
2688
2689 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2690 return 0;
2691
2692 err_master:
2693 pci_clear_master(pdev);
2694
2695 err_region:
2696 pci_release_region(pdev, BAR_NUM);
2697
2698 err_device:
2699 pci_disable_device(pdev);
2700
2701 return ret;
2702 }
2703
2704 static void ath10k_pci_release(struct ath10k *ar)
2705 {
2706 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2707 struct pci_dev *pdev = ar_pci->pdev;
2708
2709 pci_iounmap(pdev, ar_pci->mem);
2710 pci_release_region(pdev, BAR_NUM);
2711 pci_clear_master(pdev);
2712 pci_disable_device(pdev);
2713 }
2714
2715 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
2716 {
2717 const struct ath10k_pci_supp_chip *supp_chip;
2718 int i;
2719 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
2720
2721 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
2722 supp_chip = &ath10k_pci_supp_chips[i];
2723
2724 if (supp_chip->dev_id == dev_id &&
2725 supp_chip->rev_id == rev_id)
2726 return true;
2727 }
2728
2729 return false;
2730 }
2731
2732 static int ath10k_pci_probe(struct pci_dev *pdev,
2733 const struct pci_device_id *pci_dev)
2734 {
2735 int ret = 0;
2736 struct ath10k *ar;
2737 struct ath10k_pci *ar_pci;
2738 enum ath10k_hw_rev hw_rev;
2739 u32 chip_id;
2740
2741 switch (pci_dev->device) {
2742 case QCA988X_2_0_DEVICE_ID:
2743 hw_rev = ATH10K_HW_QCA988X;
2744 break;
2745 case QCA6174_2_1_DEVICE_ID:
2746 hw_rev = ATH10K_HW_QCA6174;
2747 break;
2748 default:
2749 WARN_ON(1);
2750 return -ENOTSUPP;
2751 }
2752
2753 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
2754 hw_rev, &ath10k_pci_hif_ops);
2755 if (!ar) {
2756 dev_err(&pdev->dev, "failed to allocate core\n");
2757 return -ENOMEM;
2758 }
2759
2760 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci probe\n");
2761
2762 ar_pci = ath10k_pci_priv(ar);
2763 ar_pci->pdev = pdev;
2764 ar_pci->dev = &pdev->dev;
2765 ar_pci->ar = ar;
2766
2767 if (pdev->subsystem_vendor || pdev->subsystem_device)
2768 scnprintf(ar->spec_board_id, sizeof(ar->spec_board_id),
2769 "%04x:%04x:%04x:%04x",
2770 pdev->vendor, pdev->device,
2771 pdev->subsystem_vendor, pdev->subsystem_device);
2772
2773 spin_lock_init(&ar_pci->ce_lock);
2774 spin_lock_init(&ar_pci->ps_lock);
2775
2776 setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
2777 (unsigned long)ar);
2778 setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
2779 (unsigned long)ar);
2780
2781 ret = ath10k_pci_claim(ar);
2782 if (ret) {
2783 ath10k_err(ar, "failed to claim device: %d\n", ret);
2784 goto err_core_destroy;
2785 }
2786
2787 ret = ath10k_pci_alloc_pipes(ar);
2788 if (ret) {
2789 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
2790 ret);
2791 goto err_sleep;
2792 }
2793
2794 ath10k_pci_ce_deinit(ar);
2795 ath10k_pci_irq_disable(ar);
2796
2797 ret = ath10k_pci_init_irq(ar);
2798 if (ret) {
2799 ath10k_err(ar, "failed to init irqs: %d\n", ret);
2800 goto err_free_pipes;
2801 }
2802
2803 ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n",
2804 ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs,
2805 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
2806
2807 ret = ath10k_pci_request_irq(ar);
2808 if (ret) {
2809 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
2810 goto err_deinit_irq;
2811 }
2812
2813 ret = ath10k_pci_chip_reset(ar);
2814 if (ret) {
2815 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2816 goto err_free_irq;
2817 }
2818
2819 chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
2820 if (chip_id == 0xffffffff) {
2821 ath10k_err(ar, "failed to get chip id\n");
2822 goto err_free_irq;
2823 }
2824
2825 if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
2826 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
2827 pdev->device, chip_id);
2828 goto err_free_irq;
2829 }
2830
2831 ret = ath10k_core_register(ar, chip_id);
2832 if (ret) {
2833 ath10k_err(ar, "failed to register driver core: %d\n", ret);
2834 goto err_free_irq;
2835 }
2836
2837 return 0;
2838
2839 err_free_irq:
2840 ath10k_pci_free_irq(ar);
2841 ath10k_pci_kill_tasklet(ar);
2842
2843 err_deinit_irq:
2844 ath10k_pci_deinit_irq(ar);
2845
2846 err_free_pipes:
2847 ath10k_pci_free_pipes(ar);
2848
2849 err_sleep:
2850 ath10k_pci_sleep_sync(ar);
2851 ath10k_pci_release(ar);
2852
2853 err_core_destroy:
2854 ath10k_core_destroy(ar);
2855
2856 return ret;
2857 }
2858
2859 static void ath10k_pci_remove(struct pci_dev *pdev)
2860 {
2861 struct ath10k *ar = pci_get_drvdata(pdev);
2862 struct ath10k_pci *ar_pci;
2863
2864 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
2865
2866 if (!ar)
2867 return;
2868
2869 ar_pci = ath10k_pci_priv(ar);
2870
2871 if (!ar_pci)
2872 return;
2873
2874 ath10k_core_unregister(ar);
2875 ath10k_pci_free_irq(ar);
2876 ath10k_pci_kill_tasklet(ar);
2877 ath10k_pci_deinit_irq(ar);
2878 ath10k_pci_ce_deinit(ar);
2879 ath10k_pci_free_pipes(ar);
2880 ath10k_pci_sleep_sync(ar);
2881 ath10k_pci_release(ar);
2882 ath10k_core_destroy(ar);
2883 }
2884
2885 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
2886
2887 static struct pci_driver ath10k_pci_driver = {
2888 .name = "ath10k_pci",
2889 .id_table = ath10k_pci_id_table,
2890 .probe = ath10k_pci_probe,
2891 .remove = ath10k_pci_remove,
2892 };
2893
2894 static int __init ath10k_pci_init(void)
2895 {
2896 int ret;
2897
2898 ret = pci_register_driver(&ath10k_pci_driver);
2899 if (ret)
2900 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
2901 ret);
2902
2903 return ret;
2904 }
2905 module_init(ath10k_pci_init);
2906
2907 static void __exit ath10k_pci_exit(void)
2908 {
2909 pci_unregister_driver(&ath10k_pci_driver);
2910 }
2911
2912 module_exit(ath10k_pci_exit);
2913
2914 MODULE_AUTHOR("Qualcomm Atheros");
2915 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2916 MODULE_LICENSE("Dual BSD/GPL");
2917
2918 /* QCA988x 2.0 firmware files */
2919 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
2920 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
2921 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
2922 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
2923 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
2924 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
2925
2926 /* QCA6174 2.1 firmware files */
2927 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
2928 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
2929 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
2930
2931 /* QCA6174 3.1 firmware files */
2932 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
2933 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
2934 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
This page took 0.106394 seconds and 6 git commands to generate.