ffe253ab9be7d8bd950a55195b31f6c5952a1c1c
[deliverable/linux.git] / drivers / net / wireless / ath / ath5k / phy.c
1 /*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23 #define _ATH5K_PHY
24
25 #include <linux/delay.h>
26
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "base.h"
30 #include "rfbuffer.h"
31 #include "rfgain.h"
32
33 /*
34 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
35 */
36 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
37 const struct ath5k_rf_reg *rf_regs,
38 u32 val, u8 reg_id, bool set)
39 {
40 const struct ath5k_rf_reg *rfreg = NULL;
41 u8 offset, bank, num_bits, col, position;
42 u16 entry;
43 u32 mask, data, last_bit, bits_shifted, first_bit;
44 u32 *rfb;
45 s32 bits_left;
46 int i;
47
48 data = 0;
49 rfb = ah->ah_rf_banks;
50
51 for (i = 0; i < ah->ah_rf_regs_count; i++) {
52 if (rf_regs[i].index == reg_id) {
53 rfreg = &rf_regs[i];
54 break;
55 }
56 }
57
58 if (rfb == NULL || rfreg == NULL) {
59 ATH5K_PRINTF("Rf register not found!\n");
60 /* should not happen */
61 return 0;
62 }
63
64 bank = rfreg->bank;
65 num_bits = rfreg->field.len;
66 first_bit = rfreg->field.pos;
67 col = rfreg->field.col;
68
69 /* first_bit is an offset from bank's
70 * start. Since we have all banks on
71 * the same array, we use this offset
72 * to mark each bank's start */
73 offset = ah->ah_offset[bank];
74
75 /* Boundary check */
76 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
77 ATH5K_PRINTF("invalid values at offset %u\n", offset);
78 return 0;
79 }
80
81 entry = ((first_bit - 1) / 8) + offset;
82 position = (first_bit - 1) % 8;
83
84 if (set)
85 data = ath5k_hw_bitswap(val, num_bits);
86
87 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
88 position = 0, entry++) {
89
90 last_bit = (position + bits_left > 8) ? 8 :
91 position + bits_left;
92
93 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
94 (col * 8);
95
96 if (set) {
97 rfb[entry] &= ~mask;
98 rfb[entry] |= ((data << position) << (col * 8)) & mask;
99 data >>= (8 - position);
100 } else {
101 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
102 << bits_shifted;
103 bits_shifted += last_bit - position;
104 }
105
106 bits_left -= 8 - position;
107 }
108
109 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
110
111 return data;
112 }
113
114 /**********************\
115 * RF Gain optimization *
116 \**********************/
117
118 /*
119 * This code is used to optimize rf gain on different environments
120 * (temperature mostly) based on feedback from a power detector.
121 *
122 * It's only used on RF5111 and RF5112, later RF chips seem to have
123 * auto adjustment on hw -notice they have a much smaller BANK 7 and
124 * no gain optimization ladder-.
125 *
126 * For more infos check out this patent doc
127 * http://www.freepatentsonline.com/7400691.html
128 *
129 * This paper describes power drops as seen on the receiver due to
130 * probe packets
131 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
132 * %20of%20Power%20Control.pdf
133 *
134 * And this is the MadWiFi bug entry related to the above
135 * http://madwifi-project.org/ticket/1659
136 * with various measurements and diagrams
137 *
138 * TODO: Deal with power drops due to probes by setting an apropriate
139 * tx power on the probe packets ! Make this part of the calibration process.
140 */
141
142 /* Initialize ah_gain durring attach */
143 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
144 {
145 /* Initialize the gain optimization values */
146 switch (ah->ah_radio) {
147 case AR5K_RF5111:
148 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
149 ah->ah_gain.g_low = 20;
150 ah->ah_gain.g_high = 35;
151 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
152 break;
153 case AR5K_RF5112:
154 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
155 ah->ah_gain.g_low = 20;
156 ah->ah_gain.g_high = 85;
157 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
158 break;
159 default:
160 return -EINVAL;
161 }
162
163 return 0;
164 }
165
166 /* Schedule a gain probe check on the next transmited packet.
167 * That means our next packet is going to be sent with lower
168 * tx power and a Peak to Average Power Detector (PAPD) will try
169 * to measure the gain.
170 *
171 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
172 * just after we enable the probe so that we don't mess with
173 * standard traffic ? Maybe it's time to use sw interrupts and
174 * a probe tasklet !!!
175 */
176 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
177 {
178
179 /* Skip if gain calibration is inactive or
180 * we already handle a probe request */
181 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
182 return;
183
184 /* Send the packet with 2dB below max power as
185 * patent doc suggest */
186 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
187 AR5K_PHY_PAPD_PROBE_TXPOWER) |
188 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
189
190 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
191
192 }
193
194 /* Calculate gain_F measurement correction
195 * based on the current step for RF5112 rev. 2 */
196 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
197 {
198 u32 mix, step;
199 u32 *rf;
200 const struct ath5k_gain_opt *go;
201 const struct ath5k_gain_opt_step *g_step;
202 const struct ath5k_rf_reg *rf_regs;
203
204 /* Only RF5112 Rev. 2 supports it */
205 if ((ah->ah_radio != AR5K_RF5112) ||
206 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
207 return 0;
208
209 go = &rfgain_opt_5112;
210 rf_regs = rf_regs_5112a;
211 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
212
213 g_step = &go->go_step[ah->ah_gain.g_step_idx];
214
215 if (ah->ah_rf_banks == NULL)
216 return 0;
217
218 rf = ah->ah_rf_banks;
219 ah->ah_gain.g_f_corr = 0;
220
221 /* No VGA (Variable Gain Amplifier) override, skip */
222 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
223 return 0;
224
225 /* Mix gain stepping */
226 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
227
228 /* Mix gain override */
229 mix = g_step->gos_param[0];
230
231 switch (mix) {
232 case 3:
233 ah->ah_gain.g_f_corr = step * 2;
234 break;
235 case 2:
236 ah->ah_gain.g_f_corr = (step - 5) * 2;
237 break;
238 case 1:
239 ah->ah_gain.g_f_corr = step;
240 break;
241 default:
242 ah->ah_gain.g_f_corr = 0;
243 break;
244 }
245
246 return ah->ah_gain.g_f_corr;
247 }
248
249 /* Check if current gain_F measurement is in the range of our
250 * power detector windows. If we get a measurement outside range
251 * we know it's not accurate (detectors can't measure anything outside
252 * their detection window) so we must ignore it */
253 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
254 {
255 const struct ath5k_rf_reg *rf_regs;
256 u32 step, mix_ovr, level[4];
257 u32 *rf;
258
259 if (ah->ah_rf_banks == NULL)
260 return false;
261
262 rf = ah->ah_rf_banks;
263
264 if (ah->ah_radio == AR5K_RF5111) {
265
266 rf_regs = rf_regs_5111;
267 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
268
269 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
270 false);
271
272 level[0] = 0;
273 level[1] = (step == 63) ? 50 : step + 4;
274 level[2] = (step != 63) ? 64 : level[0];
275 level[3] = level[2] + 50 ;
276
277 ah->ah_gain.g_high = level[3] -
278 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
279 ah->ah_gain.g_low = level[0] +
280 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
281 } else {
282
283 rf_regs = rf_regs_5112;
284 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
285
286 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
287 false);
288
289 level[0] = level[2] = 0;
290
291 if (mix_ovr == 1) {
292 level[1] = level[3] = 83;
293 } else {
294 level[1] = level[3] = 107;
295 ah->ah_gain.g_high = 55;
296 }
297 }
298
299 return (ah->ah_gain.g_current >= level[0] &&
300 ah->ah_gain.g_current <= level[1]) ||
301 (ah->ah_gain.g_current >= level[2] &&
302 ah->ah_gain.g_current <= level[3]);
303 }
304
305 /* Perform gain_F adjustment by choosing the right set
306 * of parameters from rf gain optimization ladder */
307 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
308 {
309 const struct ath5k_gain_opt *go;
310 const struct ath5k_gain_opt_step *g_step;
311 int ret = 0;
312
313 switch (ah->ah_radio) {
314 case AR5K_RF5111:
315 go = &rfgain_opt_5111;
316 break;
317 case AR5K_RF5112:
318 go = &rfgain_opt_5112;
319 break;
320 default:
321 return 0;
322 }
323
324 g_step = &go->go_step[ah->ah_gain.g_step_idx];
325
326 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
327
328 /* Reached maximum */
329 if (ah->ah_gain.g_step_idx == 0)
330 return -1;
331
332 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
333 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
334 ah->ah_gain.g_step_idx > 0;
335 g_step = &go->go_step[ah->ah_gain.g_step_idx])
336 ah->ah_gain.g_target -= 2 *
337 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
338 g_step->gos_gain);
339
340 ret = 1;
341 goto done;
342 }
343
344 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
345
346 /* Reached minimum */
347 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
348 return -2;
349
350 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
351 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
352 ah->ah_gain.g_step_idx < go->go_steps_count-1;
353 g_step = &go->go_step[ah->ah_gain.g_step_idx])
354 ah->ah_gain.g_target -= 2 *
355 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
356 g_step->gos_gain);
357
358 ret = 2;
359 goto done;
360 }
361
362 done:
363 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
364 "ret %d, gain step %u, current gain %u, target gain %u\n",
365 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
366 ah->ah_gain.g_target);
367
368 return ret;
369 }
370
371 /* Main callback for thermal rf gain calibration engine
372 * Check for a new gain reading and schedule an adjustment
373 * if needed.
374 *
375 * TODO: Use sw interrupt to schedule reset if gain_F needs
376 * adjustment */
377 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
378 {
379 u32 data, type;
380 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
381
382 ATH5K_TRACE(ah->ah_sc);
383
384 if (ah->ah_rf_banks == NULL ||
385 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
386 return AR5K_RFGAIN_INACTIVE;
387
388 /* No check requested, either engine is inactive
389 * or an adjustment is already requested */
390 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
391 goto done;
392
393 /* Read the PAPD (Peak to Average Power Detector)
394 * register */
395 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
396
397 /* No probe is scheduled, read gain_F measurement */
398 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
399 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
400 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
401
402 /* If tx packet is CCK correct the gain_F measurement
403 * by cck ofdm gain delta */
404 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
405 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
406 ah->ah_gain.g_current +=
407 ee->ee_cck_ofdm_gain_delta;
408 else
409 ah->ah_gain.g_current +=
410 AR5K_GAIN_CCK_PROBE_CORR;
411 }
412
413 /* Further correct gain_F measurement for
414 * RF5112A radios */
415 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
416 ath5k_hw_rf_gainf_corr(ah);
417 ah->ah_gain.g_current =
418 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
419 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
420 0;
421 }
422
423 /* Check if measurement is ok and if we need
424 * to adjust gain, schedule a gain adjustment,
425 * else switch back to the acive state */
426 if (ath5k_hw_rf_check_gainf_readback(ah) &&
427 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
428 ath5k_hw_rf_gainf_adjust(ah)) {
429 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
430 } else {
431 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
432 }
433 }
434
435 done:
436 return ah->ah_gain.g_state;
437 }
438
439 /* Write initial rf gain table to set the RF sensitivity
440 * this one works on all RF chips and has nothing to do
441 * with gain_F calibration */
442 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
443 {
444 const struct ath5k_ini_rfgain *ath5k_rfg;
445 unsigned int i, size;
446
447 switch (ah->ah_radio) {
448 case AR5K_RF5111:
449 ath5k_rfg = rfgain_5111;
450 size = ARRAY_SIZE(rfgain_5111);
451 break;
452 case AR5K_RF5112:
453 ath5k_rfg = rfgain_5112;
454 size = ARRAY_SIZE(rfgain_5112);
455 break;
456 case AR5K_RF2413:
457 ath5k_rfg = rfgain_2413;
458 size = ARRAY_SIZE(rfgain_2413);
459 break;
460 case AR5K_RF2316:
461 ath5k_rfg = rfgain_2316;
462 size = ARRAY_SIZE(rfgain_2316);
463 break;
464 case AR5K_RF5413:
465 ath5k_rfg = rfgain_5413;
466 size = ARRAY_SIZE(rfgain_5413);
467 break;
468 case AR5K_RF2317:
469 case AR5K_RF2425:
470 ath5k_rfg = rfgain_2425;
471 size = ARRAY_SIZE(rfgain_2425);
472 break;
473 default:
474 return -EINVAL;
475 }
476
477 switch (freq) {
478 case AR5K_INI_RFGAIN_2GHZ:
479 case AR5K_INI_RFGAIN_5GHZ:
480 break;
481 default:
482 return -EINVAL;
483 }
484
485 for (i = 0; i < size; i++) {
486 AR5K_REG_WAIT(i);
487 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
488 (u32)ath5k_rfg[i].rfg_register);
489 }
490
491 return 0;
492 }
493
494
495
496 /********************\
497 * RF Registers setup *
498 \********************/
499
500
501 /*
502 * Setup RF registers by writing rf buffer on hw
503 */
504 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
505 unsigned int mode)
506 {
507 const struct ath5k_rf_reg *rf_regs;
508 const struct ath5k_ini_rfbuffer *ini_rfb;
509 const struct ath5k_gain_opt *go = NULL;
510 const struct ath5k_gain_opt_step *g_step;
511 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
512 u8 ee_mode = 0;
513 u32 *rfb;
514 int i, obdb = -1, bank = -1;
515
516 switch (ah->ah_radio) {
517 case AR5K_RF5111:
518 rf_regs = rf_regs_5111;
519 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
520 ini_rfb = rfb_5111;
521 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
522 go = &rfgain_opt_5111;
523 break;
524 case AR5K_RF5112:
525 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
526 rf_regs = rf_regs_5112a;
527 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
528 ini_rfb = rfb_5112a;
529 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
530 } else {
531 rf_regs = rf_regs_5112;
532 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
533 ini_rfb = rfb_5112;
534 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
535 }
536 go = &rfgain_opt_5112;
537 break;
538 case AR5K_RF2413:
539 rf_regs = rf_regs_2413;
540 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
541 ini_rfb = rfb_2413;
542 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
543 break;
544 case AR5K_RF2316:
545 rf_regs = rf_regs_2316;
546 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
547 ini_rfb = rfb_2316;
548 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
549 break;
550 case AR5K_RF5413:
551 rf_regs = rf_regs_5413;
552 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
553 ini_rfb = rfb_5413;
554 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
555 break;
556 case AR5K_RF2317:
557 rf_regs = rf_regs_2425;
558 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
559 ini_rfb = rfb_2317;
560 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
561 break;
562 case AR5K_RF2425:
563 rf_regs = rf_regs_2425;
564 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
565 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
566 ini_rfb = rfb_2425;
567 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
568 } else {
569 ini_rfb = rfb_2417;
570 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
571 }
572 break;
573 default:
574 return -EINVAL;
575 }
576
577 /* If it's the first time we set rf buffer, allocate
578 * ah->ah_rf_banks based on ah->ah_rf_banks_size
579 * we set above */
580 if (ah->ah_rf_banks == NULL) {
581 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
582 GFP_KERNEL);
583 if (ah->ah_rf_banks == NULL) {
584 ATH5K_ERR(ah->ah_sc, "out of memory\n");
585 return -ENOMEM;
586 }
587 }
588
589 /* Copy values to modify them */
590 rfb = ah->ah_rf_banks;
591
592 for (i = 0; i < ah->ah_rf_banks_size; i++) {
593 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
594 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
595 return -EINVAL;
596 }
597
598 /* Bank changed, write down the offset */
599 if (bank != ini_rfb[i].rfb_bank) {
600 bank = ini_rfb[i].rfb_bank;
601 ah->ah_offset[bank] = i;
602 }
603
604 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
605 }
606
607 /* Set Output and Driver bias current (OB/DB) */
608 if (channel->hw_value & CHANNEL_2GHZ) {
609
610 if (channel->hw_value & CHANNEL_CCK)
611 ee_mode = AR5K_EEPROM_MODE_11B;
612 else
613 ee_mode = AR5K_EEPROM_MODE_11G;
614
615 /* For RF511X/RF211X combination we
616 * use b_OB and b_DB parameters stored
617 * in eeprom on ee->ee_ob[ee_mode][0]
618 *
619 * For all other chips we use OB/DB for 2Ghz
620 * stored in the b/g modal section just like
621 * 802.11a on ee->ee_ob[ee_mode][1] */
622 if ((ah->ah_radio == AR5K_RF5111) ||
623 (ah->ah_radio == AR5K_RF5112))
624 obdb = 0;
625 else
626 obdb = 1;
627
628 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
629 AR5K_RF_OB_2GHZ, true);
630
631 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
632 AR5K_RF_DB_2GHZ, true);
633
634 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
635 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
636 (ah->ah_radio == AR5K_RF5111)) {
637
638 /* For 11a, Turbo and XR we need to choose
639 * OB/DB based on frequency range */
640 ee_mode = AR5K_EEPROM_MODE_11A;
641 obdb = channel->center_freq >= 5725 ? 3 :
642 (channel->center_freq >= 5500 ? 2 :
643 (channel->center_freq >= 5260 ? 1 :
644 (channel->center_freq > 4000 ? 0 : -1)));
645
646 if (obdb < 0)
647 return -EINVAL;
648
649 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
650 AR5K_RF_OB_5GHZ, true);
651
652 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
653 AR5K_RF_DB_5GHZ, true);
654 }
655
656 g_step = &go->go_step[ah->ah_gain.g_step_idx];
657
658 /* Bank Modifications (chip-specific) */
659 if (ah->ah_radio == AR5K_RF5111) {
660
661 /* Set gain_F settings according to current step */
662 if (channel->hw_value & CHANNEL_OFDM) {
663
664 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
665 AR5K_PHY_FRAME_CTL_TX_CLIP,
666 g_step->gos_param[0]);
667
668 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
669 AR5K_RF_PWD_90, true);
670
671 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
672 AR5K_RF_PWD_84, true);
673
674 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
675 AR5K_RF_RFGAIN_SEL, true);
676
677 /* We programmed gain_F parameters, switch back
678 * to active state */
679 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
680
681 }
682
683 /* Bank 6/7 setup */
684
685 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
686 AR5K_RF_PWD_XPD, true);
687
688 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
689 AR5K_RF_XPD_GAIN, true);
690
691 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
692 AR5K_RF_GAIN_I, true);
693
694 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
695 AR5K_RF_PLO_SEL, true);
696
697 /* TODO: Half/quarter channel support */
698 }
699
700 if (ah->ah_radio == AR5K_RF5112) {
701
702 /* Set gain_F settings according to current step */
703 if (channel->hw_value & CHANNEL_OFDM) {
704
705 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
706 AR5K_RF_MIXGAIN_OVR, true);
707
708 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
709 AR5K_RF_PWD_138, true);
710
711 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
712 AR5K_RF_PWD_137, true);
713
714 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
715 AR5K_RF_PWD_136, true);
716
717 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
718 AR5K_RF_PWD_132, true);
719
720 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
721 AR5K_RF_PWD_131, true);
722
723 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
724 AR5K_RF_PWD_130, true);
725
726 /* We programmed gain_F parameters, switch back
727 * to active state */
728 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
729 }
730
731 /* Bank 6/7 setup */
732
733 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
734 AR5K_RF_XPD_SEL, true);
735
736 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
737 /* Rev. 1 supports only one xpd */
738 ath5k_hw_rfb_op(ah, rf_regs,
739 ee->ee_x_gain[ee_mode],
740 AR5K_RF_XPD_GAIN, true);
741
742 } else {
743 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
744 if (ee->ee_pd_gains[ee_mode] > 1) {
745 ath5k_hw_rfb_op(ah, rf_regs,
746 pdg_curve_to_idx[0],
747 AR5K_RF_PD_GAIN_LO, true);
748 ath5k_hw_rfb_op(ah, rf_regs,
749 pdg_curve_to_idx[1],
750 AR5K_RF_PD_GAIN_HI, true);
751 } else {
752 ath5k_hw_rfb_op(ah, rf_regs,
753 pdg_curve_to_idx[0],
754 AR5K_RF_PD_GAIN_LO, true);
755 ath5k_hw_rfb_op(ah, rf_regs,
756 pdg_curve_to_idx[0],
757 AR5K_RF_PD_GAIN_HI, true);
758 }
759
760 /* Lower synth voltage on Rev 2 */
761 ath5k_hw_rfb_op(ah, rf_regs, 2,
762 AR5K_RF_HIGH_VC_CP, true);
763
764 ath5k_hw_rfb_op(ah, rf_regs, 2,
765 AR5K_RF_MID_VC_CP, true);
766
767 ath5k_hw_rfb_op(ah, rf_regs, 2,
768 AR5K_RF_LOW_VC_CP, true);
769
770 ath5k_hw_rfb_op(ah, rf_regs, 2,
771 AR5K_RF_PUSH_UP, true);
772
773 /* Decrease power consumption on 5213+ BaseBand */
774 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
775 ath5k_hw_rfb_op(ah, rf_regs, 1,
776 AR5K_RF_PAD2GND, true);
777
778 ath5k_hw_rfb_op(ah, rf_regs, 1,
779 AR5K_RF_XB2_LVL, true);
780
781 ath5k_hw_rfb_op(ah, rf_regs, 1,
782 AR5K_RF_XB5_LVL, true);
783
784 ath5k_hw_rfb_op(ah, rf_regs, 1,
785 AR5K_RF_PWD_167, true);
786
787 ath5k_hw_rfb_op(ah, rf_regs, 1,
788 AR5K_RF_PWD_166, true);
789 }
790 }
791
792 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
793 AR5K_RF_GAIN_I, true);
794
795 /* TODO: Half/quarter channel support */
796
797 }
798
799 if (ah->ah_radio == AR5K_RF5413 &&
800 channel->hw_value & CHANNEL_2GHZ) {
801
802 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
803 true);
804
805 /* Set optimum value for early revisions (on pci-e chips) */
806 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
807 ah->ah_mac_srev < AR5K_SREV_AR5413)
808 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
809 AR5K_RF_PWD_ICLOBUF_2G, true);
810
811 }
812
813 /* Write RF banks on hw */
814 for (i = 0; i < ah->ah_rf_banks_size; i++) {
815 AR5K_REG_WAIT(i);
816 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
817 }
818
819 return 0;
820 }
821
822
823 /**************************\
824 PHY/RF channel functions
825 \**************************/
826
827 /*
828 * Check if a channel is supported
829 */
830 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
831 {
832 /* Check if the channel is in our supported range */
833 if (flags & CHANNEL_2GHZ) {
834 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
835 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
836 return true;
837 } else if (flags & CHANNEL_5GHZ)
838 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
839 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
840 return true;
841
842 return false;
843 }
844
845 /*
846 * Convertion needed for RF5110
847 */
848 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
849 {
850 u32 athchan;
851
852 /*
853 * Convert IEEE channel/MHz to an internal channel value used
854 * by the AR5210 chipset. This has not been verified with
855 * newer chipsets like the AR5212A who have a completely
856 * different RF/PHY part.
857 */
858 athchan = (ath5k_hw_bitswap(
859 (ieee80211_frequency_to_channel(
860 channel->center_freq) - 24) / 2, 5)
861 << 1) | (1 << 6) | 0x1;
862 return athchan;
863 }
864
865 /*
866 * Set channel on RF5110
867 */
868 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
869 struct ieee80211_channel *channel)
870 {
871 u32 data;
872
873 /*
874 * Set the channel and wait
875 */
876 data = ath5k_hw_rf5110_chan2athchan(channel);
877 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
878 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
879 mdelay(1);
880
881 return 0;
882 }
883
884 /*
885 * Convertion needed for 5111
886 */
887 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
888 struct ath5k_athchan_2ghz *athchan)
889 {
890 int channel;
891
892 /* Cast this value to catch negative channel numbers (>= -19) */
893 channel = (int)ieee;
894
895 /*
896 * Map 2GHz IEEE channel to 5GHz Atheros channel
897 */
898 if (channel <= 13) {
899 athchan->a2_athchan = 115 + channel;
900 athchan->a2_flags = 0x46;
901 } else if (channel == 14) {
902 athchan->a2_athchan = 124;
903 athchan->a2_flags = 0x44;
904 } else if (channel >= 15 && channel <= 26) {
905 athchan->a2_athchan = ((channel - 14) * 4) + 132;
906 athchan->a2_flags = 0x46;
907 } else
908 return -EINVAL;
909
910 return 0;
911 }
912
913 /*
914 * Set channel on 5111
915 */
916 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
917 struct ieee80211_channel *channel)
918 {
919 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
920 unsigned int ath5k_channel =
921 ieee80211_frequency_to_channel(channel->center_freq);
922 u32 data0, data1, clock;
923 int ret;
924
925 /*
926 * Set the channel on the RF5111 radio
927 */
928 data0 = data1 = 0;
929
930 if (channel->hw_value & CHANNEL_2GHZ) {
931 /* Map 2GHz channel to 5GHz Atheros channel ID */
932 ret = ath5k_hw_rf5111_chan2athchan(
933 ieee80211_frequency_to_channel(channel->center_freq),
934 &ath5k_channel_2ghz);
935 if (ret)
936 return ret;
937
938 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
939 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
940 << 5) | (1 << 4);
941 }
942
943 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
944 clock = 1;
945 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
946 (clock << 1) | (1 << 10) | 1;
947 } else {
948 clock = 0;
949 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
950 << 2) | (clock << 1) | (1 << 10) | 1;
951 }
952
953 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
954 AR5K_RF_BUFFER);
955 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
956 AR5K_RF_BUFFER_CONTROL_3);
957
958 return 0;
959 }
960
961 /*
962 * Set channel on 5112 and newer
963 */
964 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
965 struct ieee80211_channel *channel)
966 {
967 u32 data, data0, data1, data2;
968 u16 c;
969
970 data = data0 = data1 = data2 = 0;
971 c = channel->center_freq;
972
973 if (c < 4800) {
974 if (!((c - 2224) % 5)) {
975 data0 = ((2 * (c - 704)) - 3040) / 10;
976 data1 = 1;
977 } else if (!((c - 2192) % 5)) {
978 data0 = ((2 * (c - 672)) - 3040) / 10;
979 data1 = 0;
980 } else
981 return -EINVAL;
982
983 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
984 } else if ((c - (c % 5)) != 2 || c > 5435) {
985 if (!(c % 20) && c >= 5120) {
986 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
987 data2 = ath5k_hw_bitswap(3, 2);
988 } else if (!(c % 10)) {
989 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
990 data2 = ath5k_hw_bitswap(2, 2);
991 } else if (!(c % 5)) {
992 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
993 data2 = ath5k_hw_bitswap(1, 2);
994 } else
995 return -EINVAL;
996 } else {
997 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
998 data2 = ath5k_hw_bitswap(0, 2);
999 }
1000
1001 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1002
1003 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1004 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1005
1006 return 0;
1007 }
1008
1009 /*
1010 * Set the channel on the RF2425
1011 */
1012 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1013 struct ieee80211_channel *channel)
1014 {
1015 u32 data, data0, data2;
1016 u16 c;
1017
1018 data = data0 = data2 = 0;
1019 c = channel->center_freq;
1020
1021 if (c < 4800) {
1022 data0 = ath5k_hw_bitswap((c - 2272), 8);
1023 data2 = 0;
1024 /* ? 5GHz ? */
1025 } else if ((c - (c % 5)) != 2 || c > 5435) {
1026 if (!(c % 20) && c < 5120)
1027 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1028 else if (!(c % 10))
1029 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1030 else if (!(c % 5))
1031 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1032 else
1033 return -EINVAL;
1034 data2 = ath5k_hw_bitswap(1, 2);
1035 } else {
1036 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1037 data2 = ath5k_hw_bitswap(0, 2);
1038 }
1039
1040 data = (data0 << 4) | data2 << 2 | 0x1001;
1041
1042 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1043 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1044
1045 return 0;
1046 }
1047
1048 /*
1049 * Set a channel on the radio chip
1050 */
1051 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1052 {
1053 int ret;
1054 /*
1055 * Check bounds supported by the PHY (we don't care about regultory
1056 * restrictions at this point). Note: hw_value already has the band
1057 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1058 * of the band by that */
1059 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1060 ATH5K_ERR(ah->ah_sc,
1061 "channel frequency (%u MHz) out of supported "
1062 "band range\n",
1063 channel->center_freq);
1064 return -EINVAL;
1065 }
1066
1067 /*
1068 * Set the channel and wait
1069 */
1070 switch (ah->ah_radio) {
1071 case AR5K_RF5110:
1072 ret = ath5k_hw_rf5110_channel(ah, channel);
1073 break;
1074 case AR5K_RF5111:
1075 ret = ath5k_hw_rf5111_channel(ah, channel);
1076 break;
1077 case AR5K_RF2425:
1078 ret = ath5k_hw_rf2425_channel(ah, channel);
1079 break;
1080 default:
1081 ret = ath5k_hw_rf5112_channel(ah, channel);
1082 break;
1083 }
1084
1085 if (ret)
1086 return ret;
1087
1088 /* Set JAPAN setting for channel 14 */
1089 if (channel->center_freq == 2484) {
1090 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1091 AR5K_PHY_CCKTXCTL_JAPAN);
1092 } else {
1093 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1094 AR5K_PHY_CCKTXCTL_WORLD);
1095 }
1096
1097 ah->ah_current_channel = channel;
1098 ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1099
1100 return 0;
1101 }
1102
1103 /*****************\
1104 PHY calibration
1105 \*****************/
1106
1107 void
1108 ath5k_hw_calibration_poll(struct ath5k_hw *ah)
1109 {
1110 /* Calibration interval in jiffies */
1111 unsigned long cal_intval;
1112
1113 cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
1114
1115 /* Initialize timestamp if needed */
1116 if (!ah->ah_cal_tstamp)
1117 ah->ah_cal_tstamp = jiffies;
1118
1119 /* For now we always do full calibration
1120 * Mark software interrupt mask and fire software
1121 * interrupt (bit gets auto-cleared) */
1122 if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
1123 ah->ah_cal_tstamp = jiffies;
1124 ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
1125 AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
1126 }
1127 }
1128
1129 static int sign_extend(int val, const int nbits)
1130 {
1131 int order = BIT(nbits-1);
1132 return (val ^ order) - order;
1133 }
1134
1135 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1136 {
1137 s32 val;
1138
1139 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1140 return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1141 }
1142
1143 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1144 {
1145 int i;
1146
1147 ah->ah_nfcal_hist.index = 0;
1148 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1149 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1150 }
1151
1152 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1153 {
1154 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1155 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1156 hist->nfval[hist->index] = noise_floor;
1157 }
1158
1159 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1160 {
1161 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1162 s16 tmp;
1163 int i, j;
1164
1165 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1166 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1167 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1168 if (sort[j] > sort[j-1]) {
1169 tmp = sort[j];
1170 sort[j] = sort[j-1];
1171 sort[j-1] = tmp;
1172 }
1173 }
1174 }
1175 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1176 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1177 "cal %d:%d\n", i, sort[i]);
1178 }
1179 return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1180 }
1181
1182 /*
1183 * When we tell the hardware to perform a noise floor calibration
1184 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1185 * sample-and-hold the minimum noise level seen at the antennas.
1186 * This value is then stored in a ring buffer of recently measured
1187 * noise floor values so we have a moving window of the last few
1188 * samples.
1189 *
1190 * The median of the values in the history is then loaded into the
1191 * hardware for its own use for RSSI and CCA measurements.
1192 */
1193 void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1194 {
1195 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1196 u32 val;
1197 s16 nf, threshold;
1198 u8 ee_mode;
1199
1200 /* keep last value if calibration hasn't completed */
1201 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1202 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1203 "NF did not complete in calibration window\n");
1204
1205 return;
1206 }
1207
1208 switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1209 case CHANNEL_A:
1210 case CHANNEL_T:
1211 case CHANNEL_XR:
1212 ee_mode = AR5K_EEPROM_MODE_11A;
1213 break;
1214 case CHANNEL_G:
1215 case CHANNEL_TG:
1216 ee_mode = AR5K_EEPROM_MODE_11G;
1217 break;
1218 default:
1219 case CHANNEL_B:
1220 ee_mode = AR5K_EEPROM_MODE_11B;
1221 break;
1222 }
1223
1224
1225 /* completed NF calibration, test threshold */
1226 nf = ath5k_hw_read_measured_noise_floor(ah);
1227 threshold = ee->ee_noise_floor_thr[ee_mode];
1228
1229 if (nf > threshold) {
1230 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1231 "noise floor failure detected; "
1232 "read %d, threshold %d\n",
1233 nf, threshold);
1234
1235 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1236 }
1237
1238 ath5k_hw_update_nfcal_hist(ah, nf);
1239 nf = ath5k_hw_get_median_noise_floor(ah);
1240
1241 /* load noise floor (in .5 dBm) so the hardware will use it */
1242 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1243 val |= (nf * 2) & AR5K_PHY_NF_M;
1244 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1245
1246 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1247 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1248
1249 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1250 0, false);
1251
1252 /*
1253 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1254 * so that we're not capped by the median we just loaded.
1255 * This will be used as the initial value for the next noise
1256 * floor calibration.
1257 */
1258 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1259 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1260 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1261 AR5K_PHY_AGCCTL_NF_EN |
1262 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1263 AR5K_PHY_AGCCTL_NF);
1264
1265 ah->ah_noise_floor = nf;
1266
1267 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1268 "noise floor calibrated: %d\n", nf);
1269 }
1270
1271 /*
1272 * Perform a PHY calibration on RF5110
1273 * -Fix BPSK/QAM Constellation (I/Q correction)
1274 * -Calculate Noise Floor
1275 */
1276 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1277 struct ieee80211_channel *channel)
1278 {
1279 u32 phy_sig, phy_agc, phy_sat, beacon;
1280 int ret;
1281
1282 /*
1283 * Disable beacons and RX/TX queues, wait
1284 */
1285 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1286 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1287 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1288 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1289
1290 mdelay(2);
1291
1292 /*
1293 * Set the channel (with AGC turned off)
1294 */
1295 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1296 udelay(10);
1297 ret = ath5k_hw_channel(ah, channel);
1298
1299 /*
1300 * Activate PHY and wait
1301 */
1302 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1303 mdelay(1);
1304
1305 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1306
1307 if (ret)
1308 return ret;
1309
1310 /*
1311 * Calibrate the radio chip
1312 */
1313
1314 /* Remember normal state */
1315 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1316 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1317 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1318
1319 /* Update radio registers */
1320 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1321 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1322
1323 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1324 AR5K_PHY_AGCCOARSE_LO)) |
1325 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1326 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1327
1328 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1329 AR5K_PHY_ADCSAT_THR)) |
1330 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1331 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1332
1333 udelay(20);
1334
1335 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1336 udelay(10);
1337 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1338 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1339
1340 mdelay(1);
1341
1342 /*
1343 * Enable calibration and wait until completion
1344 */
1345 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1346
1347 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1348 AR5K_PHY_AGCCTL_CAL, 0, false);
1349
1350 /* Reset to normal state */
1351 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1352 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1353 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1354
1355 if (ret) {
1356 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1357 channel->center_freq);
1358 return ret;
1359 }
1360
1361 ath5k_hw_update_noise_floor(ah);
1362
1363 /*
1364 * Re-enable RX/TX and beacons
1365 */
1366 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1367 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1368 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1369
1370 return 0;
1371 }
1372
1373 /*
1374 * Perform a PHY calibration on RF5111/5112 and newer chips
1375 */
1376 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1377 struct ieee80211_channel *channel)
1378 {
1379 u32 i_pwr, q_pwr;
1380 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1381 int i;
1382 ATH5K_TRACE(ah->ah_sc);
1383
1384 if (!ah->ah_calibration ||
1385 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1386 goto done;
1387
1388 /* Calibration has finished, get the results and re-run */
1389 for (i = 0; i <= 10; i++) {
1390 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1391 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1392 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1393 }
1394
1395 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1396 q_coffd = q_pwr >> 7;
1397
1398 /* No correction */
1399 if (i_coffd == 0 || q_coffd == 0)
1400 goto done;
1401
1402 i_coff = ((-iq_corr) / i_coffd);
1403
1404 /* Boundary check */
1405 if (i_coff > 31)
1406 i_coff = 31;
1407 if (i_coff < -32)
1408 i_coff = -32;
1409
1410 q_coff = (((s32)i_pwr / q_coffd) - 128);
1411
1412 /* Boundary check */
1413 if (q_coff > 15)
1414 q_coff = 15;
1415 if (q_coff < -16)
1416 q_coff = -16;
1417
1418 /* Commit new I/Q value */
1419 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1420 ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1421
1422 /* Re-enable calibration -if we don't we'll commit
1423 * the same values again and again */
1424 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1425 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1426 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1427
1428 done:
1429
1430 /* TODO: Separate noise floor calibration from I/Q calibration
1431 * since noise floor calibration interrupts rx path while I/Q
1432 * calibration doesn't. We don't need to run noise floor calibration
1433 * as often as I/Q calibration.*/
1434 ath5k_hw_update_noise_floor(ah);
1435
1436 /* Initiate a gain_F calibration */
1437 ath5k_hw_request_rfgain_probe(ah);
1438
1439 return 0;
1440 }
1441
1442 /*
1443 * Perform a PHY calibration
1444 */
1445 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1446 struct ieee80211_channel *channel)
1447 {
1448 int ret;
1449
1450 if (ah->ah_radio == AR5K_RF5110)
1451 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1452 else
1453 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1454
1455 return ret;
1456 }
1457
1458 /***************************\
1459 * Spur mitigation functions *
1460 \***************************/
1461
1462 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1463 struct ieee80211_channel *channel)
1464 {
1465 u8 refclk_freq;
1466
1467 if ((ah->ah_radio == AR5K_RF5112) ||
1468 (ah->ah_radio == AR5K_RF5413) ||
1469 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1470 refclk_freq = 40;
1471 else
1472 refclk_freq = 32;
1473
1474 if ((channel->center_freq % refclk_freq != 0) &&
1475 ((channel->center_freq % refclk_freq < 10) ||
1476 (channel->center_freq % refclk_freq > 22)))
1477 return true;
1478 else
1479 return false;
1480 }
1481
1482 void
1483 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1484 struct ieee80211_channel *channel)
1485 {
1486 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1487 u32 mag_mask[4] = {0, 0, 0, 0};
1488 u32 pilot_mask[2] = {0, 0};
1489 /* Note: fbin values are scaled up by 2 */
1490 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1491 s32 spur_delta_phase, spur_freq_sigma_delta;
1492 s32 spur_offset, num_symbols_x16;
1493 u8 num_symbol_offsets, i, freq_band;
1494
1495 /* Convert current frequency to fbin value (the same way channels
1496 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1497 * up by 2 so we can compare it later */
1498 if (channel->hw_value & CHANNEL_2GHZ) {
1499 chan_fbin = (channel->center_freq - 2300) * 10;
1500 freq_band = AR5K_EEPROM_BAND_2GHZ;
1501 } else {
1502 chan_fbin = (channel->center_freq - 4900) * 10;
1503 freq_band = AR5K_EEPROM_BAND_5GHZ;
1504 }
1505
1506 /* Check if any spur_chan_fbin from EEPROM is
1507 * within our current channel's spur detection range */
1508 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1509 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1510 /* XXX: Half/Quarter channels ?*/
1511 if (channel->hw_value & CHANNEL_TURBO)
1512 spur_detection_window *= 2;
1513
1514 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1515 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1516
1517 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1518 * so it's zero if we got nothing from EEPROM */
1519 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1520 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1521 break;
1522 }
1523
1524 if ((chan_fbin - spur_detection_window <=
1525 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1526 (chan_fbin + spur_detection_window >=
1527 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1528 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1529 break;
1530 }
1531 }
1532
1533 /* We need to enable spur filter for this channel */
1534 if (spur_chan_fbin) {
1535 spur_offset = spur_chan_fbin - chan_fbin;
1536 /*
1537 * Calculate deltas:
1538 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1539 * spur_delta_phase -> spur_offset / chip_freq << 11
1540 * Note: Both values have 100KHz resolution
1541 */
1542 /* XXX: Half/Quarter rate channels ? */
1543 switch (channel->hw_value) {
1544 case CHANNEL_A:
1545 /* Both sample_freq and chip_freq are 40MHz */
1546 spur_delta_phase = (spur_offset << 17) / 25;
1547 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1548 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1549 break;
1550 case CHANNEL_G:
1551 /* sample_freq -> 40MHz chip_freq -> 44MHz
1552 * (for b compatibility) */
1553 spur_freq_sigma_delta = (spur_offset << 8) / 55;
1554 spur_delta_phase = (spur_offset << 17) / 25;
1555 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1556 break;
1557 case CHANNEL_T:
1558 case CHANNEL_TG:
1559 /* Both sample_freq and chip_freq are 80MHz */
1560 spur_delta_phase = (spur_offset << 16) / 25;
1561 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1562 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1563 break;
1564 default:
1565 return;
1566 }
1567
1568 /* Calculate pilot and magnitude masks */
1569
1570 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1571 * and divide by symbol_width to find how many symbols we have
1572 * Note: number of symbols is scaled up by 16 */
1573 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1574
1575 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1576 if (!(num_symbols_x16 & 0xF))
1577 /* _X_ */
1578 num_symbol_offsets = 3;
1579 else
1580 /* _xx_ */
1581 num_symbol_offsets = 4;
1582
1583 for (i = 0; i < num_symbol_offsets; i++) {
1584
1585 /* Calculate pilot mask */
1586 s32 curr_sym_off =
1587 (num_symbols_x16 / 16) + i + 25;
1588
1589 /* Pilot magnitude mask seems to be a way to
1590 * declare the boundaries for our detection
1591 * window or something, it's 2 for the middle
1592 * value(s) where the symbol is expected to be
1593 * and 1 on the boundary values */
1594 u8 plt_mag_map =
1595 (i == 0 || i == (num_symbol_offsets - 1))
1596 ? 1 : 2;
1597
1598 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1599 if (curr_sym_off <= 25)
1600 pilot_mask[0] |= 1 << curr_sym_off;
1601 else if (curr_sym_off >= 27)
1602 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1603 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1604 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1605
1606 /* Calculate magnitude mask (for viterbi decoder) */
1607 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1608 mag_mask[0] |=
1609 plt_mag_map << (curr_sym_off + 1) * 2;
1610 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1611 mag_mask[1] |=
1612 plt_mag_map << (curr_sym_off - 15) * 2;
1613 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1614 mag_mask[2] |=
1615 plt_mag_map << (curr_sym_off - 31) * 2;
1616 else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1617 mag_mask[3] |=
1618 plt_mag_map << (curr_sym_off - 47) * 2;
1619
1620 }
1621
1622 /* Write settings on hw to enable spur filter */
1623 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1624 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1625 /* XXX: Self correlator also ? */
1626 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1627 AR5K_PHY_IQ_PILOT_MASK_EN |
1628 AR5K_PHY_IQ_CHAN_MASK_EN |
1629 AR5K_PHY_IQ_SPUR_FILT_EN);
1630
1631 /* Set delta phase and freq sigma delta */
1632 ath5k_hw_reg_write(ah,
1633 AR5K_REG_SM(spur_delta_phase,
1634 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1635 AR5K_REG_SM(spur_freq_sigma_delta,
1636 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1637 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1638 AR5K_PHY_TIMING_11);
1639
1640 /* Write pilot masks */
1641 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1642 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1643 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1644 pilot_mask[1]);
1645
1646 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1647 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1648 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1649 pilot_mask[1]);
1650
1651 /* Write magnitude masks */
1652 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1653 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1654 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1655 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1656 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1657 mag_mask[3]);
1658
1659 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1660 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1661 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1662 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1663 AR5K_PHY_BIN_MASK2_4_MASK_4,
1664 mag_mask[3]);
1665
1666 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1667 AR5K_PHY_IQ_SPUR_FILT_EN) {
1668 /* Clean up spur mitigation settings and disable fliter */
1669 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1670 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1671 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1672 AR5K_PHY_IQ_PILOT_MASK_EN |
1673 AR5K_PHY_IQ_CHAN_MASK_EN |
1674 AR5K_PHY_IQ_SPUR_FILT_EN);
1675 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1676
1677 /* Clear pilot masks */
1678 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1679 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1680 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1681 0);
1682
1683 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1684 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1685 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1686 0);
1687
1688 /* Clear magnitude masks */
1689 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1690 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1691 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1692 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1693 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1694 0);
1695
1696 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1697 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1698 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1699 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1700 AR5K_PHY_BIN_MASK2_4_MASK_4,
1701 0);
1702 }
1703 }
1704
1705 /********************\
1706 Misc PHY functions
1707 \********************/
1708
1709 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1710 {
1711 ATH5K_TRACE(ah->ah_sc);
1712 /*Just a try M.F.*/
1713 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1714
1715 return 0;
1716 }
1717
1718 /*
1719 * Get the PHY Chip revision
1720 */
1721 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1722 {
1723 unsigned int i;
1724 u32 srev;
1725 u16 ret;
1726
1727 ATH5K_TRACE(ah->ah_sc);
1728
1729 /*
1730 * Set the radio chip access register
1731 */
1732 switch (chan) {
1733 case CHANNEL_2GHZ:
1734 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1735 break;
1736 case CHANNEL_5GHZ:
1737 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1738 break;
1739 default:
1740 return 0;
1741 }
1742
1743 mdelay(2);
1744
1745 /* ...wait until PHY is ready and read the selected radio revision */
1746 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1747
1748 for (i = 0; i < 8; i++)
1749 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1750
1751 if (ah->ah_version == AR5K_AR5210) {
1752 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1753 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1754 } else {
1755 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1756 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1757 ((srev & 0x0f) << 4), 8);
1758 }
1759
1760 /* Reset to the 5GHz mode */
1761 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1762
1763 return ret;
1764 }
1765
1766 /*****************\
1767 * Antenna control *
1768 \*****************/
1769
1770 void /*TODO:Boundary check*/
1771 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1772 {
1773 ATH5K_TRACE(ah->ah_sc);
1774
1775 if (ah->ah_version != AR5K_AR5210)
1776 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1777 }
1778
1779 unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1780 {
1781 ATH5K_TRACE(ah->ah_sc);
1782
1783 if (ah->ah_version != AR5K_AR5210)
1784 return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1785
1786 return false; /*XXX: What do we return for 5210 ?*/
1787 }
1788
1789 /*
1790 * Enable/disable fast rx antenna diversity
1791 */
1792 static void
1793 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1794 {
1795 switch (ee_mode) {
1796 case AR5K_EEPROM_MODE_11G:
1797 /* XXX: This is set to
1798 * disabled on initvals !!! */
1799 case AR5K_EEPROM_MODE_11A:
1800 if (enable)
1801 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1802 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1803 else
1804 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1805 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1806 break;
1807 case AR5K_EEPROM_MODE_11B:
1808 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1809 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1810 break;
1811 default:
1812 return;
1813 }
1814
1815 if (enable) {
1816 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1817 AR5K_PHY_RESTART_DIV_GC, 0xc);
1818
1819 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1820 AR5K_PHY_FAST_ANT_DIV_EN);
1821 } else {
1822 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1823 AR5K_PHY_RESTART_DIV_GC, 0x8);
1824
1825 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1826 AR5K_PHY_FAST_ANT_DIV_EN);
1827 }
1828 }
1829
1830 /*
1831 * Set antenna operating mode
1832 */
1833 void
1834 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1835 {
1836 struct ieee80211_channel *channel = ah->ah_current_channel;
1837 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1838 bool use_def_for_sg;
1839 u8 def_ant, tx_ant, ee_mode;
1840 u32 sta_id1 = 0;
1841
1842 def_ant = ah->ah_def_ant;
1843
1844 ATH5K_TRACE(ah->ah_sc);
1845
1846 switch (channel->hw_value & CHANNEL_MODES) {
1847 case CHANNEL_A:
1848 case CHANNEL_T:
1849 case CHANNEL_XR:
1850 ee_mode = AR5K_EEPROM_MODE_11A;
1851 break;
1852 case CHANNEL_G:
1853 case CHANNEL_TG:
1854 ee_mode = AR5K_EEPROM_MODE_11G;
1855 break;
1856 case CHANNEL_B:
1857 ee_mode = AR5K_EEPROM_MODE_11B;
1858 break;
1859 default:
1860 ATH5K_ERR(ah->ah_sc,
1861 "invalid channel: %d\n", channel->center_freq);
1862 return;
1863 }
1864
1865 switch (ant_mode) {
1866 case AR5K_ANTMODE_DEFAULT:
1867 tx_ant = 0;
1868 use_def_for_tx = false;
1869 update_def_on_tx = false;
1870 use_def_for_rts = false;
1871 use_def_for_sg = false;
1872 fast_div = true;
1873 break;
1874 case AR5K_ANTMODE_FIXED_A:
1875 def_ant = 1;
1876 tx_ant = 1;
1877 use_def_for_tx = true;
1878 update_def_on_tx = false;
1879 use_def_for_rts = true;
1880 use_def_for_sg = true;
1881 fast_div = false;
1882 break;
1883 case AR5K_ANTMODE_FIXED_B:
1884 def_ant = 2;
1885 tx_ant = 2;
1886 use_def_for_tx = true;
1887 update_def_on_tx = false;
1888 use_def_for_rts = true;
1889 use_def_for_sg = true;
1890 fast_div = false;
1891 break;
1892 case AR5K_ANTMODE_SINGLE_AP:
1893 def_ant = 1; /* updated on tx */
1894 tx_ant = 0;
1895 use_def_for_tx = true;
1896 update_def_on_tx = true;
1897 use_def_for_rts = true;
1898 use_def_for_sg = true;
1899 fast_div = true;
1900 break;
1901 case AR5K_ANTMODE_SECTOR_AP:
1902 tx_ant = 1; /* variable */
1903 use_def_for_tx = false;
1904 update_def_on_tx = false;
1905 use_def_for_rts = true;
1906 use_def_for_sg = false;
1907 fast_div = false;
1908 break;
1909 case AR5K_ANTMODE_SECTOR_STA:
1910 tx_ant = 1; /* variable */
1911 use_def_for_tx = true;
1912 update_def_on_tx = false;
1913 use_def_for_rts = true;
1914 use_def_for_sg = false;
1915 fast_div = true;
1916 break;
1917 case AR5K_ANTMODE_DEBUG:
1918 def_ant = 1;
1919 tx_ant = 2;
1920 use_def_for_tx = false;
1921 update_def_on_tx = false;
1922 use_def_for_rts = false;
1923 use_def_for_sg = false;
1924 fast_div = false;
1925 break;
1926 default:
1927 return;
1928 }
1929
1930 ah->ah_tx_ant = tx_ant;
1931 ah->ah_ant_mode = ant_mode;
1932
1933 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1934 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1935 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1936 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1937
1938 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1939
1940 if (sta_id1)
1941 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1942
1943 /* Note: set diversity before default antenna
1944 * because it won't work correctly */
1945 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1946 ath5k_hw_set_def_antenna(ah, def_ant);
1947 }
1948
1949
1950 /****************\
1951 * TX power setup *
1952 \****************/
1953
1954 /*
1955 * Helper functions
1956 */
1957
1958 /*
1959 * Do linear interpolation between two given (x, y) points
1960 */
1961 static s16
1962 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1963 s16 y_left, s16 y_right)
1964 {
1965 s16 ratio, result;
1966
1967 /* Avoid divide by zero and skip interpolation
1968 * if we have the same point */
1969 if ((x_left == x_right) || (y_left == y_right))
1970 return y_left;
1971
1972 /*
1973 * Since we use ints and not fps, we need to scale up in
1974 * order to get a sane ratio value (or else we 'll eg. get
1975 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1976 * to have some accuracy both for 0.5 and 0.25 steps.
1977 */
1978 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1979
1980 /* Now scale down to be in range */
1981 result = y_left + (ratio * (target - x_left) / 100);
1982
1983 return result;
1984 }
1985
1986 /*
1987 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1988 *
1989 * Since we have the top of the curve and we draw the line below
1990 * until we reach 1 (1 pcdac step) we need to know which point
1991 * (x value) that is so that we don't go below y axis and have negative
1992 * pcdac values when creating the curve, or fill the table with zeroes.
1993 */
1994 static s16
1995 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1996 const s16 *pwrL, const s16 *pwrR)
1997 {
1998 s8 tmp;
1999 s16 min_pwrL, min_pwrR;
2000 s16 pwr_i;
2001
2002 /* Some vendors write the same pcdac value twice !!! */
2003 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2004 return max(pwrL[0], pwrR[0]);
2005
2006 if (pwrL[0] == pwrL[1])
2007 min_pwrL = pwrL[0];
2008 else {
2009 pwr_i = pwrL[0];
2010 do {
2011 pwr_i--;
2012 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2013 pwrL[0], pwrL[1],
2014 stepL[0], stepL[1]);
2015 } while (tmp > 1);
2016
2017 min_pwrL = pwr_i;
2018 }
2019
2020 if (pwrR[0] == pwrR[1])
2021 min_pwrR = pwrR[0];
2022 else {
2023 pwr_i = pwrR[0];
2024 do {
2025 pwr_i--;
2026 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2027 pwrR[0], pwrR[1],
2028 stepR[0], stepR[1]);
2029 } while (tmp > 1);
2030
2031 min_pwrR = pwr_i;
2032 }
2033
2034 /* Keep the right boundary so that it works for both curves */
2035 return max(min_pwrL, min_pwrR);
2036 }
2037
2038 /*
2039 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2040 * Power to PCDAC curve.
2041 *
2042 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2043 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2044 * PCDAC/PDADC step for each curve is 64 but we can write more than
2045 * one curves on hw so we can go up to 128 (which is the max step we
2046 * can write on the final table).
2047 *
2048 * We write y values (PCDAC/PDADC steps) on hw.
2049 */
2050 static void
2051 ath5k_create_power_curve(s16 pmin, s16 pmax,
2052 const s16 *pwr, const u8 *vpd,
2053 u8 num_points,
2054 u8 *vpd_table, u8 type)
2055 {
2056 u8 idx[2] = { 0, 1 };
2057 s16 pwr_i = 2*pmin;
2058 int i;
2059
2060 if (num_points < 2)
2061 return;
2062
2063 /* We want the whole line, so adjust boundaries
2064 * to cover the entire power range. Note that
2065 * power values are already 0.25dB so no need
2066 * to multiply pwr_i by 2 */
2067 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2068 pwr_i = pmin;
2069 pmin = 0;
2070 pmax = 63;
2071 }
2072
2073 /* Find surrounding turning points (TPs)
2074 * and interpolate between them */
2075 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2076 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2077
2078 /* We passed the right TP, move to the next set of TPs
2079 * if we pass the last TP, extrapolate above using the last
2080 * two TPs for ratio */
2081 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2082 idx[0]++;
2083 idx[1]++;
2084 }
2085
2086 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2087 pwr[idx[0]], pwr[idx[1]],
2088 vpd[idx[0]], vpd[idx[1]]);
2089
2090 /* Increase by 0.5dB
2091 * (0.25 dB units) */
2092 pwr_i += 2;
2093 }
2094 }
2095
2096 /*
2097 * Get the surrounding per-channel power calibration piers
2098 * for a given frequency so that we can interpolate between
2099 * them and come up with an apropriate dataset for our current
2100 * channel.
2101 */
2102 static void
2103 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2104 struct ieee80211_channel *channel,
2105 struct ath5k_chan_pcal_info **pcinfo_l,
2106 struct ath5k_chan_pcal_info **pcinfo_r)
2107 {
2108 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2109 struct ath5k_chan_pcal_info *pcinfo;
2110 u8 idx_l, idx_r;
2111 u8 mode, max, i;
2112 u32 target = channel->center_freq;
2113
2114 idx_l = 0;
2115 idx_r = 0;
2116
2117 if (!(channel->hw_value & CHANNEL_OFDM)) {
2118 pcinfo = ee->ee_pwr_cal_b;
2119 mode = AR5K_EEPROM_MODE_11B;
2120 } else if (channel->hw_value & CHANNEL_2GHZ) {
2121 pcinfo = ee->ee_pwr_cal_g;
2122 mode = AR5K_EEPROM_MODE_11G;
2123 } else {
2124 pcinfo = ee->ee_pwr_cal_a;
2125 mode = AR5K_EEPROM_MODE_11A;
2126 }
2127 max = ee->ee_n_piers[mode] - 1;
2128
2129 /* Frequency is below our calibrated
2130 * range. Use the lowest power curve
2131 * we have */
2132 if (target < pcinfo[0].freq) {
2133 idx_l = idx_r = 0;
2134 goto done;
2135 }
2136
2137 /* Frequency is above our calibrated
2138 * range. Use the highest power curve
2139 * we have */
2140 if (target > pcinfo[max].freq) {
2141 idx_l = idx_r = max;
2142 goto done;
2143 }
2144
2145 /* Frequency is inside our calibrated
2146 * channel range. Pick the surrounding
2147 * calibration piers so that we can
2148 * interpolate */
2149 for (i = 0; i <= max; i++) {
2150
2151 /* Frequency matches one of our calibration
2152 * piers, no need to interpolate, just use
2153 * that calibration pier */
2154 if (pcinfo[i].freq == target) {
2155 idx_l = idx_r = i;
2156 goto done;
2157 }
2158
2159 /* We found a calibration pier that's above
2160 * frequency, use this pier and the previous
2161 * one to interpolate */
2162 if (target < pcinfo[i].freq) {
2163 idx_r = i;
2164 idx_l = idx_r - 1;
2165 goto done;
2166 }
2167 }
2168
2169 done:
2170 *pcinfo_l = &pcinfo[idx_l];
2171 *pcinfo_r = &pcinfo[idx_r];
2172
2173 return;
2174 }
2175
2176 /*
2177 * Get the surrounding per-rate power calibration data
2178 * for a given frequency and interpolate between power
2179 * values to set max target power supported by hw for
2180 * each rate.
2181 */
2182 static void
2183 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2184 struct ieee80211_channel *channel,
2185 struct ath5k_rate_pcal_info *rates)
2186 {
2187 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2188 struct ath5k_rate_pcal_info *rpinfo;
2189 u8 idx_l, idx_r;
2190 u8 mode, max, i;
2191 u32 target = channel->center_freq;
2192
2193 idx_l = 0;
2194 idx_r = 0;
2195
2196 if (!(channel->hw_value & CHANNEL_OFDM)) {
2197 rpinfo = ee->ee_rate_tpwr_b;
2198 mode = AR5K_EEPROM_MODE_11B;
2199 } else if (channel->hw_value & CHANNEL_2GHZ) {
2200 rpinfo = ee->ee_rate_tpwr_g;
2201 mode = AR5K_EEPROM_MODE_11G;
2202 } else {
2203 rpinfo = ee->ee_rate_tpwr_a;
2204 mode = AR5K_EEPROM_MODE_11A;
2205 }
2206 max = ee->ee_rate_target_pwr_num[mode] - 1;
2207
2208 /* Get the surrounding calibration
2209 * piers - same as above */
2210 if (target < rpinfo[0].freq) {
2211 idx_l = idx_r = 0;
2212 goto done;
2213 }
2214
2215 if (target > rpinfo[max].freq) {
2216 idx_l = idx_r = max;
2217 goto done;
2218 }
2219
2220 for (i = 0; i <= max; i++) {
2221
2222 if (rpinfo[i].freq == target) {
2223 idx_l = idx_r = i;
2224 goto done;
2225 }
2226
2227 if (target < rpinfo[i].freq) {
2228 idx_r = i;
2229 idx_l = idx_r - 1;
2230 goto done;
2231 }
2232 }
2233
2234 done:
2235 /* Now interpolate power value, based on the frequency */
2236 rates->freq = target;
2237
2238 rates->target_power_6to24 =
2239 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2240 rpinfo[idx_r].freq,
2241 rpinfo[idx_l].target_power_6to24,
2242 rpinfo[idx_r].target_power_6to24);
2243
2244 rates->target_power_36 =
2245 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2246 rpinfo[idx_r].freq,
2247 rpinfo[idx_l].target_power_36,
2248 rpinfo[idx_r].target_power_36);
2249
2250 rates->target_power_48 =
2251 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2252 rpinfo[idx_r].freq,
2253 rpinfo[idx_l].target_power_48,
2254 rpinfo[idx_r].target_power_48);
2255
2256 rates->target_power_54 =
2257 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2258 rpinfo[idx_r].freq,
2259 rpinfo[idx_l].target_power_54,
2260 rpinfo[idx_r].target_power_54);
2261 }
2262
2263 /*
2264 * Get the max edge power for this channel if
2265 * we have such data from EEPROM's Conformance Test
2266 * Limits (CTL), and limit max power if needed.
2267 */
2268 static void
2269 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2270 struct ieee80211_channel *channel)
2271 {
2272 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2273 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2274 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2275 u8 *ctl_val = ee->ee_ctl;
2276 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2277 s16 edge_pwr = 0;
2278 u8 rep_idx;
2279 u8 i, ctl_mode;
2280 u8 ctl_idx = 0xFF;
2281 u32 target = channel->center_freq;
2282
2283 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2284
2285 switch (channel->hw_value & CHANNEL_MODES) {
2286 case CHANNEL_A:
2287 ctl_mode |= AR5K_CTL_11A;
2288 break;
2289 case CHANNEL_G:
2290 ctl_mode |= AR5K_CTL_11G;
2291 break;
2292 case CHANNEL_B:
2293 ctl_mode |= AR5K_CTL_11B;
2294 break;
2295 case CHANNEL_T:
2296 ctl_mode |= AR5K_CTL_TURBO;
2297 break;
2298 case CHANNEL_TG:
2299 ctl_mode |= AR5K_CTL_TURBOG;
2300 break;
2301 case CHANNEL_XR:
2302 /* Fall through */
2303 default:
2304 return;
2305 }
2306
2307 for (i = 0; i < ee->ee_ctls; i++) {
2308 if (ctl_val[i] == ctl_mode) {
2309 ctl_idx = i;
2310 break;
2311 }
2312 }
2313
2314 /* If we have a CTL dataset available grab it and find the
2315 * edge power for our frequency */
2316 if (ctl_idx == 0xFF)
2317 return;
2318
2319 /* Edge powers are sorted by frequency from lower
2320 * to higher. Each CTL corresponds to 8 edge power
2321 * measurements. */
2322 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2323
2324 /* Don't do boundaries check because we
2325 * might have more that one bands defined
2326 * for this mode */
2327
2328 /* Get the edge power that's closer to our
2329 * frequency */
2330 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2331 rep_idx += i;
2332 if (target <= rep[rep_idx].freq)
2333 edge_pwr = (s16) rep[rep_idx].edge;
2334 }
2335
2336 if (edge_pwr)
2337 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2338 }
2339
2340
2341 /*
2342 * Power to PCDAC table functions
2343 */
2344
2345 /*
2346 * Fill Power to PCDAC table on RF5111
2347 *
2348 * No further processing is needed for RF5111, the only thing we have to
2349 * do is fill the values below and above calibration range since eeprom data
2350 * may not cover the entire PCDAC table.
2351 */
2352 static void
2353 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2354 s16 *table_max)
2355 {
2356 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2357 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2358 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2359 s16 min_pwr, max_pwr;
2360
2361 /* Get table boundaries */
2362 min_pwr = table_min[0];
2363 pcdac_0 = pcdac_tmp[0];
2364
2365 max_pwr = table_max[0];
2366 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2367
2368 /* Extrapolate below minimum using pcdac_0 */
2369 pcdac_i = 0;
2370 for (i = 0; i < min_pwr; i++)
2371 pcdac_out[pcdac_i++] = pcdac_0;
2372
2373 /* Copy values from pcdac_tmp */
2374 pwr_idx = min_pwr;
2375 for (i = 0 ; pwr_idx <= max_pwr &&
2376 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2377 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2378 pwr_idx++;
2379 }
2380
2381 /* Extrapolate above maximum */
2382 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2383 pcdac_out[pcdac_i++] = pcdac_n;
2384
2385 }
2386
2387 /*
2388 * Combine available XPD Curves and fill Linear Power to PCDAC table
2389 * on RF5112
2390 *
2391 * RFX112 can have up to 2 curves (one for low txpower range and one for
2392 * higher txpower range). We need to put them both on pcdac_out and place
2393 * them in the correct location. In case we only have one curve available
2394 * just fit it on pcdac_out (it's supposed to cover the entire range of
2395 * available pwr levels since it's always the higher power curve). Extrapolate
2396 * below and above final table if needed.
2397 */
2398 static void
2399 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2400 s16 *table_max, u8 pdcurves)
2401 {
2402 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2403 u8 *pcdac_low_pwr;
2404 u8 *pcdac_high_pwr;
2405 u8 *pcdac_tmp;
2406 u8 pwr;
2407 s16 max_pwr_idx;
2408 s16 min_pwr_idx;
2409 s16 mid_pwr_idx = 0;
2410 /* Edge flag turs on the 7nth bit on the PCDAC
2411 * to delcare the higher power curve (force values
2412 * to be greater than 64). If we only have one curve
2413 * we don't need to set this, if we have 2 curves and
2414 * fill the table backwards this can also be used to
2415 * switch from higher power curve to lower power curve */
2416 u8 edge_flag;
2417 int i;
2418
2419 /* When we have only one curve available
2420 * that's the higher power curve. If we have
2421 * two curves the first is the high power curve
2422 * and the next is the low power curve. */
2423 if (pdcurves > 1) {
2424 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2425 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2426 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2427 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2428
2429 /* If table size goes beyond 31.5dB, keep the
2430 * upper 31.5dB range when setting tx power.
2431 * Note: 126 = 31.5 dB in quarter dB steps */
2432 if (table_max[0] - table_min[1] > 126)
2433 min_pwr_idx = table_max[0] - 126;
2434 else
2435 min_pwr_idx = table_min[1];
2436
2437 /* Since we fill table backwards
2438 * start from high power curve */
2439 pcdac_tmp = pcdac_high_pwr;
2440
2441 edge_flag = 0x40;
2442 #if 0
2443 /* If both min and max power limits are in lower
2444 * power curve's range, only use the low power curve.
2445 * TODO: min/max levels are related to target
2446 * power values requested from driver/user
2447 * XXX: Is this really needed ? */
2448 if (min_pwr < table_max[1] &&
2449 max_pwr < table_max[1]) {
2450 edge_flag = 0;
2451 pcdac_tmp = pcdac_low_pwr;
2452 max_pwr_idx = (table_max[1] - table_min[1])/2;
2453 }
2454 #endif
2455 } else {
2456 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2457 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2458 min_pwr_idx = table_min[0];
2459 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2460 pcdac_tmp = pcdac_high_pwr;
2461 edge_flag = 0;
2462 }
2463
2464 /* This is used when setting tx power*/
2465 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2466
2467 /* Fill Power to PCDAC table backwards */
2468 pwr = max_pwr_idx;
2469 for (i = 63; i >= 0; i--) {
2470 /* Entering lower power range, reset
2471 * edge flag and set pcdac_tmp to lower
2472 * power curve.*/
2473 if (edge_flag == 0x40 &&
2474 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2475 edge_flag = 0x00;
2476 pcdac_tmp = pcdac_low_pwr;
2477 pwr = mid_pwr_idx/2;
2478 }
2479
2480 /* Don't go below 1, extrapolate below if we have
2481 * already swithced to the lower power curve -or
2482 * we only have one curve and edge_flag is zero
2483 * anyway */
2484 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2485 while (i >= 0) {
2486 pcdac_out[i] = pcdac_out[i + 1];
2487 i--;
2488 }
2489 break;
2490 }
2491
2492 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2493
2494 /* Extrapolate above if pcdac is greater than
2495 * 126 -this can happen because we OR pcdac_out
2496 * value with edge_flag on high power curve */
2497 if (pcdac_out[i] > 126)
2498 pcdac_out[i] = 126;
2499
2500 /* Decrease by a 0.5dB step */
2501 pwr--;
2502 }
2503 }
2504
2505 /* Write PCDAC values on hw */
2506 static void
2507 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2508 {
2509 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2510 int i;
2511
2512 /*
2513 * Write TX power values
2514 */
2515 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2516 ath5k_hw_reg_write(ah,
2517 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2518 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2519 AR5K_PHY_PCDAC_TXPOWER(i));
2520 }
2521 }
2522
2523
2524 /*
2525 * Power to PDADC table functions
2526 */
2527
2528 /*
2529 * Set the gain boundaries and create final Power to PDADC table
2530 *
2531 * We can have up to 4 pd curves, we need to do a simmilar process
2532 * as we do for RF5112. This time we don't have an edge_flag but we
2533 * set the gain boundaries on a separate register.
2534 */
2535 static void
2536 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2537 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2538 {
2539 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2540 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2541 u8 *pdadc_tmp;
2542 s16 pdadc_0;
2543 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2544 u8 pd_gain_overlap;
2545
2546 /* Note: Register value is initialized on initvals
2547 * there is no feedback from hw.
2548 * XXX: What about pd_gain_overlap from EEPROM ? */
2549 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2550 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2551
2552 /* Create final PDADC table */
2553 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2554 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2555
2556 if (pdg == pdcurves - 1)
2557 /* 2 dB boundary stretch for last
2558 * (higher power) curve */
2559 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2560 else
2561 /* Set gain boundary in the middle
2562 * between this curve and the next one */
2563 gain_boundaries[pdg] =
2564 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2565
2566 /* Sanity check in case our 2 db stretch got out of
2567 * range. */
2568 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2569 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2570
2571 /* For the first curve (lower power)
2572 * start from 0 dB */
2573 if (pdg == 0)
2574 pdadc_0 = 0;
2575 else
2576 /* For the other curves use the gain overlap */
2577 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2578 pd_gain_overlap;
2579
2580 /* Force each power step to be at least 0.5 dB */
2581 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2582 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2583 else
2584 pwr_step = 1;
2585
2586 /* If pdadc_0 is negative, we need to extrapolate
2587 * below this pdgain by a number of pwr_steps */
2588 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2589 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2590 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2591 pdadc_0++;
2592 }
2593
2594 /* Set last pwr level, using gain boundaries */
2595 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2596 /* Limit it to be inside pwr range */
2597 table_size = pwr_max[pdg] - pwr_min[pdg];
2598 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2599
2600 /* Fill pdadc_out table */
2601 while (pdadc_0 < max_idx)
2602 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2603
2604 /* Need to extrapolate above this pdgain? */
2605 if (pdadc_n <= max_idx)
2606 continue;
2607
2608 /* Force each power step to be at least 0.5 dB */
2609 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2610 pwr_step = pdadc_tmp[table_size - 1] -
2611 pdadc_tmp[table_size - 2];
2612 else
2613 pwr_step = 1;
2614
2615 /* Extrapolate above */
2616 while ((pdadc_0 < (s16) pdadc_n) &&
2617 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2618 s16 tmp = pdadc_tmp[table_size - 1] +
2619 (pdadc_0 - max_idx) * pwr_step;
2620 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2621 pdadc_0++;
2622 }
2623 }
2624
2625 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2626 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2627 pdg++;
2628 }
2629
2630 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2631 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2632 pdadc_i++;
2633 }
2634
2635 /* Set gain boundaries */
2636 ath5k_hw_reg_write(ah,
2637 AR5K_REG_SM(pd_gain_overlap,
2638 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2639 AR5K_REG_SM(gain_boundaries[0],
2640 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2641 AR5K_REG_SM(gain_boundaries[1],
2642 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2643 AR5K_REG_SM(gain_boundaries[2],
2644 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2645 AR5K_REG_SM(gain_boundaries[3],
2646 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2647 AR5K_PHY_TPC_RG5);
2648
2649 /* Used for setting rate power table */
2650 ah->ah_txpower.txp_min_idx = pwr_min[0];
2651
2652 }
2653
2654 /* Write PDADC values on hw */
2655 static void
2656 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2657 u8 pdcurves, u8 *pdg_to_idx)
2658 {
2659 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2660 u32 reg;
2661 u8 i;
2662
2663 /* Select the right pdgain curves */
2664
2665 /* Clear current settings */
2666 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2667 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2668 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2669 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2670 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2671
2672 /*
2673 * Use pd_gains curve from eeprom
2674 *
2675 * This overrides the default setting from initvals
2676 * in case some vendors (e.g. Zcomax) don't use the default
2677 * curves. If we don't honor their settings we 'll get a
2678 * 5dB (1 * gain overlap ?) drop.
2679 */
2680 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2681
2682 switch (pdcurves) {
2683 case 3:
2684 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2685 /* Fall through */
2686 case 2:
2687 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2688 /* Fall through */
2689 case 1:
2690 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2691 break;
2692 }
2693 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2694
2695 /*
2696 * Write TX power values
2697 */
2698 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2699 ath5k_hw_reg_write(ah,
2700 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2701 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2702 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2703 ((pdadc_out[4*i + 3] & 0xff) << 24),
2704 AR5K_PHY_PDADC_TXPOWER(i));
2705 }
2706 }
2707
2708
2709 /*
2710 * Common code for PCDAC/PDADC tables
2711 */
2712
2713 /*
2714 * This is the main function that uses all of the above
2715 * to set PCDAC/PDADC table on hw for the current channel.
2716 * This table is used for tx power calibration on the basband,
2717 * without it we get weird tx power levels and in some cases
2718 * distorted spectral mask
2719 */
2720 static int
2721 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2722 struct ieee80211_channel *channel,
2723 u8 ee_mode, u8 type)
2724 {
2725 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2726 struct ath5k_chan_pcal_info *pcinfo_L;
2727 struct ath5k_chan_pcal_info *pcinfo_R;
2728 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2729 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2730 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2731 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2732 u8 *tmpL;
2733 u8 *tmpR;
2734 u32 target = channel->center_freq;
2735 int pdg, i;
2736
2737 /* Get surounding freq piers for this channel */
2738 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2739 &pcinfo_L,
2740 &pcinfo_R);
2741
2742 /* Loop over pd gain curves on
2743 * surounding freq piers by index */
2744 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2745
2746 /* Fill curves in reverse order
2747 * from lower power (max gain)
2748 * to higher power. Use curve -> idx
2749 * backmapping we did on eeprom init */
2750 u8 idx = pdg_curve_to_idx[pdg];
2751
2752 /* Grab the needed curves by index */
2753 pdg_L = &pcinfo_L->pd_curves[idx];
2754 pdg_R = &pcinfo_R->pd_curves[idx];
2755
2756 /* Initialize the temp tables */
2757 tmpL = ah->ah_txpower.tmpL[pdg];
2758 tmpR = ah->ah_txpower.tmpR[pdg];
2759
2760 /* Set curve's x boundaries and create
2761 * curves so that they cover the same
2762 * range (if we don't do that one table
2763 * will have values on some range and the
2764 * other one won't have any so interpolation
2765 * will fail) */
2766 table_min[pdg] = min(pdg_L->pd_pwr[0],
2767 pdg_R->pd_pwr[0]) / 2;
2768
2769 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2770 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2771
2772 /* Now create the curves on surrounding channels
2773 * and interpolate if needed to get the final
2774 * curve for this gain on this channel */
2775 switch (type) {
2776 case AR5K_PWRTABLE_LINEAR_PCDAC:
2777 /* Override min/max so that we don't loose
2778 * accuracy (don't divide by 2) */
2779 table_min[pdg] = min(pdg_L->pd_pwr[0],
2780 pdg_R->pd_pwr[0]);
2781
2782 table_max[pdg] =
2783 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2784 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2785
2786 /* Override minimum so that we don't get
2787 * out of bounds while extrapolating
2788 * below. Don't do this when we have 2
2789 * curves and we are on the high power curve
2790 * because table_min is ok in this case */
2791 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2792
2793 table_min[pdg] =
2794 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2795 pdg_R->pd_step,
2796 pdg_L->pd_pwr,
2797 pdg_R->pd_pwr);
2798
2799 /* Don't go too low because we will
2800 * miss the upper part of the curve.
2801 * Note: 126 = 31.5dB (max power supported)
2802 * in 0.25dB units */
2803 if (table_max[pdg] - table_min[pdg] > 126)
2804 table_min[pdg] = table_max[pdg] - 126;
2805 }
2806
2807 /* Fall through */
2808 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2809 case AR5K_PWRTABLE_PWR_TO_PDADC:
2810
2811 ath5k_create_power_curve(table_min[pdg],
2812 table_max[pdg],
2813 pdg_L->pd_pwr,
2814 pdg_L->pd_step,
2815 pdg_L->pd_points, tmpL, type);
2816
2817 /* We are in a calibration
2818 * pier, no need to interpolate
2819 * between freq piers */
2820 if (pcinfo_L == pcinfo_R)
2821 continue;
2822
2823 ath5k_create_power_curve(table_min[pdg],
2824 table_max[pdg],
2825 pdg_R->pd_pwr,
2826 pdg_R->pd_step,
2827 pdg_R->pd_points, tmpR, type);
2828 break;
2829 default:
2830 return -EINVAL;
2831 }
2832
2833 /* Interpolate between curves
2834 * of surounding freq piers to
2835 * get the final curve for this
2836 * pd gain. Re-use tmpL for interpolation
2837 * output */
2838 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2839 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2840 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2841 (s16) pcinfo_L->freq,
2842 (s16) pcinfo_R->freq,
2843 (s16) tmpL[i],
2844 (s16) tmpR[i]);
2845 }
2846 }
2847
2848 /* Now we have a set of curves for this
2849 * channel on tmpL (x range is table_max - table_min
2850 * and y values are tmpL[pdg][]) sorted in the same
2851 * order as EEPROM (because we've used the backmapping).
2852 * So for RF5112 it's from higher power to lower power
2853 * and for RF2413 it's from lower power to higher power.
2854 * For RF5111 we only have one curve. */
2855
2856 /* Fill min and max power levels for this
2857 * channel by interpolating the values on
2858 * surounding channels to complete the dataset */
2859 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2860 (s16) pcinfo_L->freq,
2861 (s16) pcinfo_R->freq,
2862 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2863
2864 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2865 (s16) pcinfo_L->freq,
2866 (s16) pcinfo_R->freq,
2867 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2868
2869 /* We are ready to go, fill PCDAC/PDADC
2870 * table and write settings on hardware */
2871 switch (type) {
2872 case AR5K_PWRTABLE_LINEAR_PCDAC:
2873 /* For RF5112 we can have one or two curves
2874 * and each curve covers a certain power lvl
2875 * range so we need to do some more processing */
2876 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2877 ee->ee_pd_gains[ee_mode]);
2878
2879 /* Set txp.offset so that we can
2880 * match max power value with max
2881 * table index */
2882 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2883
2884 /* Write settings on hw */
2885 ath5k_setup_pcdac_table(ah);
2886 break;
2887 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2888 /* We are done for RF5111 since it has only
2889 * one curve, just fit the curve on the table */
2890 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2891
2892 /* No rate powertable adjustment for RF5111 */
2893 ah->ah_txpower.txp_min_idx = 0;
2894 ah->ah_txpower.txp_offset = 0;
2895
2896 /* Write settings on hw */
2897 ath5k_setup_pcdac_table(ah);
2898 break;
2899 case AR5K_PWRTABLE_PWR_TO_PDADC:
2900 /* Set PDADC boundaries and fill
2901 * final PDADC table */
2902 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2903 ee->ee_pd_gains[ee_mode]);
2904
2905 /* Write settings on hw */
2906 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2907
2908 /* Set txp.offset, note that table_min
2909 * can be negative */
2910 ah->ah_txpower.txp_offset = table_min[0];
2911 break;
2912 default:
2913 return -EINVAL;
2914 }
2915
2916 return 0;
2917 }
2918
2919
2920 /*
2921 * Per-rate tx power setting
2922 *
2923 * This is the code that sets the desired tx power (below
2924 * maximum) on hw for each rate (we also have TPC that sets
2925 * power per packet). We do that by providing an index on the
2926 * PCDAC/PDADC table we set up.
2927 */
2928
2929 /*
2930 * Set rate power table
2931 *
2932 * For now we only limit txpower based on maximum tx power
2933 * supported by hw (what's inside rate_info). We need to limit
2934 * this even more, based on regulatory domain etc.
2935 *
2936 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2937 * and is indexed as follows:
2938 * rates[0] - rates[7] -> OFDM rates
2939 * rates[8] - rates[14] -> CCK rates
2940 * rates[15] -> XR rates (they all have the same power)
2941 */
2942 static void
2943 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2944 struct ath5k_rate_pcal_info *rate_info,
2945 u8 ee_mode)
2946 {
2947 unsigned int i;
2948 u16 *rates;
2949
2950 /* max_pwr is power level we got from driver/user in 0.5dB
2951 * units, switch to 0.25dB units so we can compare */
2952 max_pwr *= 2;
2953 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2954
2955 /* apply rate limits */
2956 rates = ah->ah_txpower.txp_rates_power_table;
2957
2958 /* OFDM rates 6 to 24Mb/s */
2959 for (i = 0; i < 5; i++)
2960 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2961
2962 /* Rest OFDM rates */
2963 rates[5] = min(rates[0], rate_info->target_power_36);
2964 rates[6] = min(rates[0], rate_info->target_power_48);
2965 rates[7] = min(rates[0], rate_info->target_power_54);
2966
2967 /* CCK rates */
2968 /* 1L */
2969 rates[8] = min(rates[0], rate_info->target_power_6to24);
2970 /* 2L */
2971 rates[9] = min(rates[0], rate_info->target_power_36);
2972 /* 2S */
2973 rates[10] = min(rates[0], rate_info->target_power_36);
2974 /* 5L */
2975 rates[11] = min(rates[0], rate_info->target_power_48);
2976 /* 5S */
2977 rates[12] = min(rates[0], rate_info->target_power_48);
2978 /* 11L */
2979 rates[13] = min(rates[0], rate_info->target_power_54);
2980 /* 11S */
2981 rates[14] = min(rates[0], rate_info->target_power_54);
2982
2983 /* XR rates */
2984 rates[15] = min(rates[0], rate_info->target_power_6to24);
2985
2986 /* CCK rates have different peak to average ratio
2987 * so we have to tweak their power so that gainf
2988 * correction works ok. For this we use OFDM to
2989 * CCK delta from eeprom */
2990 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2991 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2992 for (i = 8; i <= 15; i++)
2993 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2994
2995 /* Now that we have all rates setup use table offset to
2996 * match the power range set by user with the power indices
2997 * on PCDAC/PDADC table */
2998 for (i = 0; i < 16; i++) {
2999 rates[i] += ah->ah_txpower.txp_offset;
3000 /* Don't get out of bounds */
3001 if (rates[i] > 63)
3002 rates[i] = 63;
3003 }
3004
3005 /* Min/max in 0.25dB units */
3006 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3007 ah->ah_txpower.txp_max_pwr = 2 * rates[0];
3008 ah->ah_txpower.txp_ofdm = rates[7];
3009 }
3010
3011
3012 /*
3013 * Set transmition power
3014 */
3015 int
3016 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3017 u8 ee_mode, u8 txpower)
3018 {
3019 struct ath5k_rate_pcal_info rate_info;
3020 u8 type;
3021 int ret;
3022
3023 ATH5K_TRACE(ah->ah_sc);
3024 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3025 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3026 return -EINVAL;
3027 }
3028
3029 /* Reset TX power values */
3030 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3031 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3032 ah->ah_txpower.txp_min_pwr = 0;
3033 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3034
3035 /* Initialize TX power table */
3036 switch (ah->ah_radio) {
3037 case AR5K_RF5111:
3038 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3039 break;
3040 case AR5K_RF5112:
3041 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3042 break;
3043 case AR5K_RF2413:
3044 case AR5K_RF5413:
3045 case AR5K_RF2316:
3046 case AR5K_RF2317:
3047 case AR5K_RF2425:
3048 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3049 break;
3050 default:
3051 return -EINVAL;
3052 }
3053
3054 /* FIXME: Only on channel/mode change */
3055 ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3056 if (ret)
3057 return ret;
3058
3059 /* Limit max power if we have a CTL available */
3060 ath5k_get_max_ctl_power(ah, channel);
3061
3062 /* FIXME: Tx power limit for this regdomain
3063 * XXX: Mac80211/CRDA will do that anyway ? */
3064
3065 /* FIXME: Antenna reduction stuff */
3066
3067 /* FIXME: Limit power on turbo modes */
3068
3069 /* FIXME: TPC scale reduction */
3070
3071 /* Get surounding channels for per-rate power table
3072 * calibration */
3073 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3074
3075 /* Setup rate power table */
3076 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3077
3078 /* Write rate power table on hw */
3079 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3080 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3081 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3082
3083 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3084 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3085 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3086
3087 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3088 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3089 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3090
3091 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3092 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3093 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3094
3095 /* FIXME: TPC support */
3096 if (ah->ah_txpower.txp_tpc) {
3097 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3098 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3099
3100 ath5k_hw_reg_write(ah,
3101 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3102 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3103 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3104 AR5K_TPC);
3105 } else {
3106 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3107 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3108 }
3109
3110 return 0;
3111 }
3112
3113 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3114 {
3115 /*Just a try M.F.*/
3116 struct ieee80211_channel *channel = ah->ah_current_channel;
3117 u8 ee_mode;
3118
3119 ATH5K_TRACE(ah->ah_sc);
3120
3121 switch (channel->hw_value & CHANNEL_MODES) {
3122 case CHANNEL_A:
3123 case CHANNEL_T:
3124 case CHANNEL_XR:
3125 ee_mode = AR5K_EEPROM_MODE_11A;
3126 break;
3127 case CHANNEL_G:
3128 case CHANNEL_TG:
3129 ee_mode = AR5K_EEPROM_MODE_11G;
3130 break;
3131 case CHANNEL_B:
3132 ee_mode = AR5K_EEPROM_MODE_11B;
3133 break;
3134 default:
3135 ATH5K_ERR(ah->ah_sc,
3136 "invalid channel: %d\n", channel->center_freq);
3137 return -EINVAL;
3138 }
3139
3140 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3141 "changing txpower to %d\n", txpower);
3142
3143 return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3144 }
3145
3146 #undef _ATH5K_PHY
This page took 0.174036 seconds and 4 git commands to generate.