ath5k: disable 32KHz sleep clock operation by default
[deliverable/linux.git] / drivers / net / wireless / ath / ath5k / reset.c
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 *
20 */
21
22 /*****************************\
23 Reset functions and helpers
24 \*****************************/
25
26 #include <asm/unaligned.h>
27
28 #include <linux/pci.h> /* To determine if a card is pci-e */
29 #include <linux/log2.h>
30 #include <linux/platform_device.h>
31 #include "ath5k.h"
32 #include "reg.h"
33 #include "base.h"
34 #include "debug.h"
35
36
37 /******************\
38 * Helper functions *
39 \******************/
40
41 /*
42 * Check if a register write has been completed
43 */
44 int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
45 bool is_set)
46 {
47 int i;
48 u32 data;
49
50 for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
51 data = ath5k_hw_reg_read(ah, reg);
52 if (is_set && (data & flag))
53 break;
54 else if ((data & flag) == val)
55 break;
56 udelay(15);
57 }
58
59 return (i <= 0) ? -EAGAIN : 0;
60 }
61
62
63 /*************************\
64 * Clock related functions *
65 \*************************/
66
67 /**
68 * ath5k_hw_htoclock - Translate usec to hw clock units
69 *
70 * @ah: The &struct ath5k_hw
71 * @usec: value in microseconds
72 */
73 unsigned int ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
74 {
75 struct ath_common *common = ath5k_hw_common(ah);
76 return usec * common->clockrate;
77 }
78
79 /**
80 * ath5k_hw_clocktoh - Translate hw clock units to usec
81 * @clock: value in hw clock units
82 */
83 unsigned int ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
84 {
85 struct ath_common *common = ath5k_hw_common(ah);
86 return clock / common->clockrate;
87 }
88
89 /**
90 * ath5k_hw_init_core_clock - Initialize core clock
91 *
92 * @ah The &struct ath5k_hw
93 *
94 * Initialize core clock parameters (usec, usec32, latencies etc).
95 */
96 static void ath5k_hw_init_core_clock(struct ath5k_hw *ah)
97 {
98 struct ieee80211_channel *channel = ah->ah_current_channel;
99 struct ath_common *common = ath5k_hw_common(ah);
100 u32 usec_reg, txlat, rxlat, usec, clock, sclock, txf2txs;
101
102 /*
103 * Set core clock frequency
104 */
105 if (channel->hw_value & CHANNEL_5GHZ)
106 clock = 40; /* 802.11a */
107 else if (channel->hw_value & CHANNEL_CCK)
108 clock = 22; /* 802.11b */
109 else
110 clock = 44; /* 802.11g */
111
112 /* Use clock multiplier for non-default
113 * bwmode */
114 switch (ah->ah_bwmode) {
115 case AR5K_BWMODE_40MHZ:
116 clock *= 2;
117 break;
118 case AR5K_BWMODE_10MHZ:
119 clock /= 2;
120 break;
121 case AR5K_BWMODE_5MHZ:
122 clock /= 4;
123 break;
124 default:
125 break;
126 }
127
128 common->clockrate = clock;
129
130 /*
131 * Set USEC parameters
132 */
133 /* Set USEC counter on PCU*/
134 usec = clock - 1;
135 usec = AR5K_REG_SM(usec, AR5K_USEC_1);
136
137 /* Set usec duration on DCU */
138 if (ah->ah_version != AR5K_AR5210)
139 AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
140 AR5K_DCU_GBL_IFS_MISC_USEC_DUR,
141 clock);
142
143 /* Set 32MHz USEC counter */
144 if ((ah->ah_radio == AR5K_RF5112) ||
145 (ah->ah_radio == AR5K_RF2413) ||
146 (ah->ah_radio == AR5K_RF5413) ||
147 (ah->ah_radio == AR5K_RF2316) ||
148 (ah->ah_radio == AR5K_RF2317))
149 /* Remain on 40MHz clock ? */
150 sclock = 40 - 1;
151 else
152 sclock = 32 - 1;
153 sclock = AR5K_REG_SM(sclock, AR5K_USEC_32);
154
155 /*
156 * Set tx/rx latencies
157 */
158 usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
159 txlat = AR5K_REG_MS(usec_reg, AR5K_USEC_TX_LATENCY_5211);
160 rxlat = AR5K_REG_MS(usec_reg, AR5K_USEC_RX_LATENCY_5211);
161
162 /*
163 * Set default Tx frame to Tx data start delay
164 */
165 txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
166
167 /*
168 * 5210 initvals don't include usec settings
169 * so we need to use magic values here for
170 * tx/rx latencies
171 */
172 if (ah->ah_version == AR5K_AR5210) {
173 /* same for turbo */
174 txlat = AR5K_INIT_TX_LATENCY_5210;
175 rxlat = AR5K_INIT_RX_LATENCY_5210;
176 }
177
178 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
179 /* 5311 has different tx/rx latency masks
180 * from 5211, since we deal 5311 the same
181 * as 5211 when setting initvals, shift
182 * values here to their proper locations
183 *
184 * Note: Initvals indicate tx/rx/ latencies
185 * are the same for turbo mode */
186 txlat = AR5K_REG_SM(txlat, AR5K_USEC_TX_LATENCY_5210);
187 rxlat = AR5K_REG_SM(rxlat, AR5K_USEC_RX_LATENCY_5210);
188 } else
189 switch (ah->ah_bwmode) {
190 case AR5K_BWMODE_10MHZ:
191 txlat = AR5K_REG_SM(txlat * 2,
192 AR5K_USEC_TX_LATENCY_5211);
193 rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
194 AR5K_USEC_RX_LATENCY_5211);
195 txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_10MHZ;
196 break;
197 case AR5K_BWMODE_5MHZ:
198 txlat = AR5K_REG_SM(txlat * 4,
199 AR5K_USEC_TX_LATENCY_5211);
200 rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
201 AR5K_USEC_RX_LATENCY_5211);
202 txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_5MHZ;
203 break;
204 case AR5K_BWMODE_40MHZ:
205 txlat = AR5K_INIT_TX_LAT_MIN;
206 rxlat = AR5K_REG_SM(rxlat / 2,
207 AR5K_USEC_RX_LATENCY_5211);
208 txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
209 break;
210 default:
211 break;
212 }
213
214 usec_reg = (usec | sclock | txlat | rxlat);
215 ath5k_hw_reg_write(ah, usec_reg, AR5K_USEC);
216
217 /* On 5112 set tx frame to tx data start delay */
218 if (ah->ah_radio == AR5K_RF5112) {
219 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL2,
220 AR5K_PHY_RF_CTL2_TXF2TXD_START,
221 txf2txs);
222 }
223 }
224
225 /*
226 * If there is an external 32KHz crystal available, use it
227 * as ref. clock instead of 32/40MHz clock and baseband clocks
228 * to save power during sleep or restore normal 32/40MHz
229 * operation.
230 *
231 * XXX: When operating on 32KHz certain PHY registers (27 - 31,
232 * 123 - 127) require delay on access.
233 */
234 static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
235 {
236 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
237 u32 scal, spending, sclock;
238
239 /* Only set 32KHz settings if we have an external
240 * 32KHz crystal present */
241 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
242 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
243 enable) {
244
245 /* 1 usec/cycle */
246 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
247 /* Set up tsf increment on each cycle */
248 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
249
250 /* Set baseband sleep control registers
251 * and sleep control rate */
252 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
253
254 if ((ah->ah_radio == AR5K_RF5112) ||
255 (ah->ah_radio == AR5K_RF5413) ||
256 (ah->ah_radio == AR5K_RF2316) ||
257 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
258 spending = 0x14;
259 else
260 spending = 0x18;
261 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
262
263 if ((ah->ah_radio == AR5K_RF5112) ||
264 (ah->ah_radio == AR5K_RF5413) ||
265 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
266 ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
267 ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
268 ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
269 ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
270 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
271 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
272 } else {
273 ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
274 ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
275 ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
276 ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
277 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
278 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
279 }
280
281 /* Enable sleep clock operation */
282 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
283 AR5K_PCICFG_SLEEP_CLOCK_EN);
284
285 } else {
286
287 /* Disable sleep clock operation and
288 * restore default parameters */
289 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
290 AR5K_PCICFG_SLEEP_CLOCK_EN);
291
292 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
293 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
294
295 /* Set DAC/ADC delays */
296 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
297 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
298
299 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
300 scal = AR5K_PHY_SCAL_32MHZ_2417;
301 else if (ee->ee_is_hb63)
302 scal = AR5K_PHY_SCAL_32MHZ_HB63;
303 else
304 scal = AR5K_PHY_SCAL_32MHZ;
305 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
306
307 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
308 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
309
310 if ((ah->ah_radio == AR5K_RF5112) ||
311 (ah->ah_radio == AR5K_RF5413) ||
312 (ah->ah_radio == AR5K_RF2316) ||
313 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
314 spending = 0x14;
315 else
316 spending = 0x18;
317 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
318
319 /* Set up tsf increment on each cycle */
320 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
321
322 if ((ah->ah_radio == AR5K_RF5112) ||
323 (ah->ah_radio == AR5K_RF5413) ||
324 (ah->ah_radio == AR5K_RF2316) ||
325 (ah->ah_radio == AR5K_RF2317))
326 sclock = 40 - 1;
327 else
328 sclock = 32 - 1;
329 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, sclock);
330 }
331 }
332
333
334 /*********************\
335 * Reset/Sleep control *
336 \*********************/
337
338 /*
339 * Reset chipset
340 */
341 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
342 {
343 int ret;
344 u32 mask = val ? val : ~0U;
345
346 /* Read-and-clear RX Descriptor Pointer*/
347 ath5k_hw_reg_read(ah, AR5K_RXDP);
348
349 /*
350 * Reset the device and wait until success
351 */
352 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
353
354 /* Wait at least 128 PCI clocks */
355 udelay(15);
356
357 if (ah->ah_version == AR5K_AR5210) {
358 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
359 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
360 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
361 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
362 } else {
363 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
364 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
365 }
366
367 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
368
369 /*
370 * Reset configuration register (for hw byte-swap). Note that this
371 * is only set for big endian. We do the necessary magic in
372 * AR5K_INIT_CFG.
373 */
374 if ((val & AR5K_RESET_CTL_PCU) == 0)
375 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
376
377 return ret;
378 }
379
380 /*
381 * Reset AHB chipset
382 * AR5K_RESET_CTL_PCU flag resets WMAC
383 * AR5K_RESET_CTL_BASEBAND flag resets WBB
384 */
385 static int ath5k_hw_wisoc_reset(struct ath5k_hw *ah, u32 flags)
386 {
387 u32 mask = flags ? flags : ~0U;
388 u32 __iomem *reg;
389 u32 regval;
390 u32 val = 0;
391
392 /* ah->ah_mac_srev is not available at this point yet */
393 if (ah->ah_sc->devid >= AR5K_SREV_AR2315_R6) {
394 reg = (u32 __iomem *) AR5K_AR2315_RESET;
395 if (mask & AR5K_RESET_CTL_PCU)
396 val |= AR5K_AR2315_RESET_WMAC;
397 if (mask & AR5K_RESET_CTL_BASEBAND)
398 val |= AR5K_AR2315_RESET_BB_WARM;
399 } else {
400 reg = (u32 __iomem *) AR5K_AR5312_RESET;
401 if (to_platform_device(ah->ah_sc->dev)->id == 0) {
402 if (mask & AR5K_RESET_CTL_PCU)
403 val |= AR5K_AR5312_RESET_WMAC0;
404 if (mask & AR5K_RESET_CTL_BASEBAND)
405 val |= AR5K_AR5312_RESET_BB0_COLD |
406 AR5K_AR5312_RESET_BB0_WARM;
407 } else {
408 if (mask & AR5K_RESET_CTL_PCU)
409 val |= AR5K_AR5312_RESET_WMAC1;
410 if (mask & AR5K_RESET_CTL_BASEBAND)
411 val |= AR5K_AR5312_RESET_BB1_COLD |
412 AR5K_AR5312_RESET_BB1_WARM;
413 }
414 }
415
416 /* Put BB/MAC into reset */
417 regval = __raw_readl(reg);
418 __raw_writel(regval | val, reg);
419 regval = __raw_readl(reg);
420 udelay(100);
421
422 /* Bring BB/MAC out of reset */
423 __raw_writel(regval & ~val, reg);
424 regval = __raw_readl(reg);
425
426 /*
427 * Reset configuration register (for hw byte-swap). Note that this
428 * is only set for big endian. We do the necessary magic in
429 * AR5K_INIT_CFG.
430 */
431 if ((flags & AR5K_RESET_CTL_PCU) == 0)
432 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
433
434 return 0;
435 }
436
437
438 /*
439 * Sleep control
440 */
441 static int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
442 bool set_chip, u16 sleep_duration)
443 {
444 unsigned int i;
445 u32 staid, data;
446
447 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
448
449 switch (mode) {
450 case AR5K_PM_AUTO:
451 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
452 /* fallthrough */
453 case AR5K_PM_NETWORK_SLEEP:
454 if (set_chip)
455 ath5k_hw_reg_write(ah,
456 AR5K_SLEEP_CTL_SLE_ALLOW |
457 sleep_duration,
458 AR5K_SLEEP_CTL);
459
460 staid |= AR5K_STA_ID1_PWR_SV;
461 break;
462
463 case AR5K_PM_FULL_SLEEP:
464 if (set_chip)
465 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
466 AR5K_SLEEP_CTL);
467
468 staid |= AR5K_STA_ID1_PWR_SV;
469 break;
470
471 case AR5K_PM_AWAKE:
472
473 staid &= ~AR5K_STA_ID1_PWR_SV;
474
475 if (!set_chip)
476 goto commit;
477
478 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
479
480 /* If card is down we 'll get 0xffff... so we
481 * need to clean this up before we write the register
482 */
483 if (data & 0xffc00000)
484 data = 0;
485 else
486 /* Preserve sleep duration etc */
487 data = data & ~AR5K_SLEEP_CTL_SLE;
488
489 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
490 AR5K_SLEEP_CTL);
491 udelay(15);
492
493 for (i = 200; i > 0; i--) {
494 /* Check if the chip did wake up */
495 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
496 AR5K_PCICFG_SPWR_DN) == 0)
497 break;
498
499 /* Wait a bit and retry */
500 udelay(50);
501 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
502 AR5K_SLEEP_CTL);
503 }
504
505 /* Fail if the chip didn't wake up */
506 if (i == 0)
507 return -EIO;
508
509 break;
510
511 default:
512 return -EINVAL;
513 }
514
515 commit:
516 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
517
518 return 0;
519 }
520
521 /*
522 * Put device on hold
523 *
524 * Put MAC and Baseband on warm reset and
525 * keep that state (don't clean sleep control
526 * register). After this MAC and Baseband are
527 * disabled and a full reset is needed to come
528 * back. This way we save as much power as possible
529 * without putting the card on full sleep.
530 */
531 int ath5k_hw_on_hold(struct ath5k_hw *ah)
532 {
533 struct pci_dev *pdev = ah->ah_sc->pdev;
534 u32 bus_flags;
535 int ret;
536
537 if (ath5k_get_bus_type(ah) == ATH_AHB)
538 return 0;
539
540 /* Make sure device is awake */
541 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
542 if (ret) {
543 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
544 return ret;
545 }
546
547 /*
548 * Put chipset on warm reset...
549 *
550 * Note: putting PCI core on warm reset on PCI-E cards
551 * results card to hang and always return 0xffff... so
552 * we ignore that flag for PCI-E cards. On PCI cards
553 * this flag gets cleared after 64 PCI clocks.
554 */
555 bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
556
557 if (ah->ah_version == AR5K_AR5210) {
558 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
559 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
560 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
561 mdelay(2);
562 } else {
563 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
564 AR5K_RESET_CTL_BASEBAND | bus_flags);
565 }
566
567 if (ret) {
568 ATH5K_ERR(ah->ah_sc, "failed to put device on warm reset\n");
569 return -EIO;
570 }
571
572 /* ...wakeup again!*/
573 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
574 if (ret) {
575 ATH5K_ERR(ah->ah_sc, "failed to put device on hold\n");
576 return ret;
577 }
578
579 return ret;
580 }
581
582 /*
583 * Bring up MAC + PHY Chips and program PLL
584 */
585 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
586 {
587 struct pci_dev *pdev = ah->ah_sc->pdev;
588 u32 turbo, mode, clock, bus_flags;
589 int ret;
590
591 turbo = 0;
592 mode = 0;
593 clock = 0;
594
595 if ((ath5k_get_bus_type(ah) != ATH_AHB) || !initial) {
596 /* Wakeup the device */
597 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
598 if (ret) {
599 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
600 return ret;
601 }
602 }
603
604 /*
605 * Put chipset on warm reset...
606 *
607 * Note: putting PCI core on warm reset on PCI-E cards
608 * results card to hang and always return 0xffff... so
609 * we ignore that flag for PCI-E cards. On PCI cards
610 * this flag gets cleared after 64 PCI clocks.
611 */
612 bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
613
614 if (ah->ah_version == AR5K_AR5210) {
615 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
616 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
617 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
618 mdelay(2);
619 } else {
620 if (ath5k_get_bus_type(ah) == ATH_AHB)
621 ret = ath5k_hw_wisoc_reset(ah, AR5K_RESET_CTL_PCU |
622 AR5K_RESET_CTL_BASEBAND);
623 else
624 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
625 AR5K_RESET_CTL_BASEBAND | bus_flags);
626 }
627
628 if (ret) {
629 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
630 return -EIO;
631 }
632
633 /* ...wakeup again!...*/
634 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
635 if (ret) {
636 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
637 return ret;
638 }
639
640 /* ...reset configuration register on Wisoc ...
641 * ...clear reset control register and pull device out of
642 * warm reset on others */
643 if (ath5k_get_bus_type(ah) == ATH_AHB)
644 ret = ath5k_hw_wisoc_reset(ah, 0);
645 else
646 ret = ath5k_hw_nic_reset(ah, 0);
647
648 if (ret) {
649 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
650 return -EIO;
651 }
652
653 /* On initialization skip PLL programming since we don't have
654 * a channel / mode set yet */
655 if (initial)
656 return 0;
657
658 if (ah->ah_version != AR5K_AR5210) {
659 /*
660 * Get channel mode flags
661 */
662
663 if (ah->ah_radio >= AR5K_RF5112) {
664 mode = AR5K_PHY_MODE_RAD_RF5112;
665 clock = AR5K_PHY_PLL_RF5112;
666 } else {
667 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
668 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
669 }
670
671 if (flags & CHANNEL_2GHZ) {
672 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
673 clock |= AR5K_PHY_PLL_44MHZ;
674
675 if (flags & CHANNEL_CCK) {
676 mode |= AR5K_PHY_MODE_MOD_CCK;
677 } else if (flags & CHANNEL_OFDM) {
678 /* XXX Dynamic OFDM/CCK is not supported by the
679 * AR5211 so we set MOD_OFDM for plain g (no
680 * CCK headers) operation. We need to test
681 * this, 5211 might support ofdm-only g after
682 * all, there are also initial register values
683 * in the code for g mode (see initvals.c).
684 */
685 if (ah->ah_version == AR5K_AR5211)
686 mode |= AR5K_PHY_MODE_MOD_OFDM;
687 else
688 mode |= AR5K_PHY_MODE_MOD_DYN;
689 } else {
690 ATH5K_ERR(ah->ah_sc,
691 "invalid radio modulation mode\n");
692 return -EINVAL;
693 }
694 } else if (flags & CHANNEL_5GHZ) {
695 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
696
697 /* Different PLL setting for 5413 */
698 if (ah->ah_radio == AR5K_RF5413)
699 clock = AR5K_PHY_PLL_40MHZ_5413;
700 else
701 clock |= AR5K_PHY_PLL_40MHZ;
702
703 if (flags & CHANNEL_OFDM)
704 mode |= AR5K_PHY_MODE_MOD_OFDM;
705 else {
706 ATH5K_ERR(ah->ah_sc,
707 "invalid radio modulation mode\n");
708 return -EINVAL;
709 }
710 } else {
711 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
712 return -EINVAL;
713 }
714
715 /*XXX: Can bwmode be used with dynamic mode ?
716 * (I don't think it supports 44MHz) */
717 /* On 2425 initvals TURBO_SHORT is not present */
718 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
719 turbo = AR5K_PHY_TURBO_MODE |
720 (ah->ah_radio == AR5K_RF2425) ? 0 :
721 AR5K_PHY_TURBO_SHORT;
722 } else if (ah->ah_bwmode != AR5K_BWMODE_DEFAULT) {
723 if (ah->ah_radio == AR5K_RF5413) {
724 mode |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
725 AR5K_PHY_MODE_HALF_RATE :
726 AR5K_PHY_MODE_QUARTER_RATE;
727 } else if (ah->ah_version == AR5K_AR5212) {
728 clock |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
729 AR5K_PHY_PLL_HALF_RATE :
730 AR5K_PHY_PLL_QUARTER_RATE;
731 }
732 }
733
734 } else { /* Reset the device */
735
736 /* ...enable Atheros turbo mode if requested */
737 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
738 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
739 AR5K_PHY_TURBO);
740 }
741
742 if (ah->ah_version != AR5K_AR5210) {
743
744 /* ...update PLL if needed */
745 if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
746 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
747 udelay(300);
748 }
749
750 /* ...set the PHY operating mode */
751 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
752 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
753 }
754
755 return 0;
756 }
757
758
759 /**************************************\
760 * Post-initvals register modifications *
761 \**************************************/
762
763 /* TODO: Half/Quarter rate */
764 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
765 struct ieee80211_channel *channel)
766 {
767 if (ah->ah_version == AR5K_AR5212 &&
768 ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
769
770 /* Setup ADC control */
771 ath5k_hw_reg_write(ah,
772 (AR5K_REG_SM(2,
773 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
774 AR5K_REG_SM(2,
775 AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
776 AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
777 AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
778 AR5K_PHY_ADC_CTL);
779
780
781
782 /* Disable barker RSSI threshold */
783 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
784 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
785
786 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
787 AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
788
789 /* Set the mute mask */
790 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
791 }
792
793 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
794 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
795 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
796
797 /* Enable DCU double buffering */
798 if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
799 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
800 AR5K_TXCFG_DCU_DBL_BUF_DIS);
801
802 /* Set fast ADC */
803 if ((ah->ah_radio == AR5K_RF5413) ||
804 (ah->ah_radio == AR5K_RF2317) ||
805 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
806 u32 fast_adc = true;
807
808 if (channel->center_freq == 2462 ||
809 channel->center_freq == 2467)
810 fast_adc = 0;
811
812 /* Only update if needed */
813 if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
814 ath5k_hw_reg_write(ah, fast_adc,
815 AR5K_PHY_FAST_ADC);
816 }
817
818 /* Fix for first revision of the RF5112 RF chipset */
819 if (ah->ah_radio == AR5K_RF5112 &&
820 ah->ah_radio_5ghz_revision <
821 AR5K_SREV_RAD_5112A) {
822 u32 data;
823 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
824 AR5K_PHY_CCKTXCTL);
825 if (channel->hw_value & CHANNEL_5GHZ)
826 data = 0xffb81020;
827 else
828 data = 0xffb80d20;
829 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
830 }
831
832 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
833 /* Clear QCU/DCU clock gating register */
834 ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
835 /* Set DAC/ADC delays */
836 ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ_5311,
837 AR5K_PHY_SCAL);
838 /* Enable PCU FIFO corruption ECO */
839 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
840 AR5K_DIAG_SW_ECO_ENABLE);
841 }
842
843 if (ah->ah_bwmode) {
844 /* Increase PHY switch and AGC settling time
845 * on turbo mode (ath5k_hw_commit_eeprom_settings
846 * will override settling time if available) */
847 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
848
849 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
850 AR5K_PHY_SETTLING_AGC,
851 AR5K_AGC_SETTLING_TURBO);
852
853 /* XXX: Initvals indicate we only increase
854 * switch time on AR5212, 5211 and 5210
855 * only change agc time (bug?) */
856 if (ah->ah_version == AR5K_AR5212)
857 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
858 AR5K_PHY_SETTLING_SWITCH,
859 AR5K_SWITCH_SETTLING_TURBO);
860
861 if (ah->ah_version == AR5K_AR5210) {
862 /* Set Frame Control Register */
863 ath5k_hw_reg_write(ah,
864 (AR5K_PHY_FRAME_CTL_INI |
865 AR5K_PHY_TURBO_MODE |
866 AR5K_PHY_TURBO_SHORT | 0x2020),
867 AR5K_PHY_FRAME_CTL_5210);
868 }
869 /* On 5413 PHY force window length for half/quarter rate*/
870 } else if ((ah->ah_mac_srev >= AR5K_SREV_AR5424) &&
871 (ah->ah_mac_srev <= AR5K_SREV_AR5414)) {
872 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL_5211,
873 AR5K_PHY_FRAME_CTL_WIN_LEN,
874 3);
875 }
876 } else if (ah->ah_version == AR5K_AR5210) {
877 /* Set Frame Control Register for normal operation */
878 ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | 0x1020),
879 AR5K_PHY_FRAME_CTL_5210);
880 }
881 }
882
883 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
884 struct ieee80211_channel *channel)
885 {
886 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
887 s16 cck_ofdm_pwr_delta;
888 u8 ee_mode;
889
890 /* TODO: Add support for AR5210 EEPROM */
891 if (ah->ah_version == AR5K_AR5210)
892 return;
893
894 ee_mode = ath5k_eeprom_mode_from_channel(channel);
895
896 /* Adjust power delta for channel 14 */
897 if (channel->center_freq == 2484)
898 cck_ofdm_pwr_delta =
899 ((ee->ee_cck_ofdm_power_delta -
900 ee->ee_scaled_cck_delta) * 2) / 10;
901 else
902 cck_ofdm_pwr_delta =
903 (ee->ee_cck_ofdm_power_delta * 2) / 10;
904
905 /* Set CCK to OFDM power delta on tx power
906 * adjustment register */
907 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
908 if (channel->hw_value == CHANNEL_G)
909 ath5k_hw_reg_write(ah,
910 AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
911 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
912 AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
913 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
914 AR5K_PHY_TX_PWR_ADJ);
915 else
916 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
917 } else {
918 /* For older revs we scale power on sw during tx power
919 * setup */
920 ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
921 ah->ah_txpower.txp_cck_ofdm_gainf_delta =
922 ee->ee_cck_ofdm_gain_delta;
923 }
924
925 /* XXX: necessary here? is called from ath5k_hw_set_antenna_mode()
926 * too */
927 ath5k_hw_set_antenna_switch(ah, ee_mode);
928
929 /* Noise floor threshold */
930 ath5k_hw_reg_write(ah,
931 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
932 AR5K_PHY_NFTHRES);
933
934 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
935 (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
936 /* Switch settling time (Turbo) */
937 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
938 AR5K_PHY_SETTLING_SWITCH,
939 ee->ee_switch_settling_turbo[ee_mode]);
940
941 /* Tx/Rx attenuation (Turbo) */
942 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
943 AR5K_PHY_GAIN_TXRX_ATTEN,
944 ee->ee_atn_tx_rx_turbo[ee_mode]);
945
946 /* ADC/PGA desired size (Turbo) */
947 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
948 AR5K_PHY_DESIRED_SIZE_ADC,
949 ee->ee_adc_desired_size_turbo[ee_mode]);
950
951 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
952 AR5K_PHY_DESIRED_SIZE_PGA,
953 ee->ee_pga_desired_size_turbo[ee_mode]);
954
955 /* Tx/Rx margin (Turbo) */
956 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
957 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
958 ee->ee_margin_tx_rx_turbo[ee_mode]);
959
960 } else {
961 /* Switch settling time */
962 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
963 AR5K_PHY_SETTLING_SWITCH,
964 ee->ee_switch_settling[ee_mode]);
965
966 /* Tx/Rx attenuation */
967 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
968 AR5K_PHY_GAIN_TXRX_ATTEN,
969 ee->ee_atn_tx_rx[ee_mode]);
970
971 /* ADC/PGA desired size */
972 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
973 AR5K_PHY_DESIRED_SIZE_ADC,
974 ee->ee_adc_desired_size[ee_mode]);
975
976 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
977 AR5K_PHY_DESIRED_SIZE_PGA,
978 ee->ee_pga_desired_size[ee_mode]);
979
980 /* Tx/Rx margin */
981 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
982 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
983 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
984 ee->ee_margin_tx_rx[ee_mode]);
985 }
986
987 /* XPA delays */
988 ath5k_hw_reg_write(ah,
989 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
990 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
991 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
992 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
993
994 /* XLNA delay */
995 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
996 AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
997 ee->ee_tx_end2xlna_enable[ee_mode]);
998
999 /* Thresh64 (ANI) */
1000 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
1001 AR5K_PHY_NF_THRESH62,
1002 ee->ee_thr_62[ee_mode]);
1003
1004 /* False detect backoff for channels
1005 * that have spur noise. Write the new
1006 * cyclic power RSSI threshold. */
1007 if (ath5k_hw_chan_has_spur_noise(ah, channel))
1008 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1009 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1010 AR5K_INIT_CYCRSSI_THR1 +
1011 ee->ee_false_detect[ee_mode]);
1012 else
1013 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1014 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1015 AR5K_INIT_CYCRSSI_THR1);
1016
1017 /* I/Q correction (set enable bit last to match HAL sources) */
1018 /* TODO: Per channel i/q infos ? */
1019 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1020 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF,
1021 ee->ee_i_cal[ee_mode]);
1022 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF,
1023 ee->ee_q_cal[ee_mode]);
1024 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1025 }
1026
1027 /* Heavy clipping -disable for now */
1028 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
1029 ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
1030 }
1031
1032
1033 /*********************\
1034 * Main reset function *
1035 \*********************/
1036
1037 int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
1038 struct ieee80211_channel *channel, bool fast, bool skip_pcu)
1039 {
1040 u32 s_seq[10], s_led[3], tsf_up, tsf_lo;
1041 u8 mode;
1042 int i, ret;
1043
1044 tsf_up = 0;
1045 tsf_lo = 0;
1046 mode = 0;
1047
1048 /*
1049 * Sanity check for fast flag
1050 * Fast channel change only available
1051 * on AR2413/AR5413.
1052 */
1053 if (fast && (ah->ah_radio != AR5K_RF2413) &&
1054 (ah->ah_radio != AR5K_RF5413))
1055 fast = 0;
1056
1057 /* Disable sleep clock operation
1058 * to avoid register access delay on certain
1059 * PHY registers */
1060 if (ah->ah_version == AR5K_AR5212)
1061 ath5k_hw_set_sleep_clock(ah, false);
1062
1063 /*
1064 * Stop PCU
1065 */
1066 ath5k_hw_stop_rx_pcu(ah);
1067
1068 /*
1069 * Stop DMA
1070 *
1071 * Note: If DMA didn't stop continue
1072 * since only a reset will fix it.
1073 */
1074 ret = ath5k_hw_dma_stop(ah);
1075
1076 /* RF Bus grant won't work if we have pending
1077 * frames */
1078 if (ret && fast) {
1079 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_RESET,
1080 "DMA didn't stop, falling back to normal reset\n");
1081 fast = 0;
1082 /* Non fatal, just continue with
1083 * normal reset */
1084 ret = 0;
1085 }
1086
1087 switch (channel->hw_value & CHANNEL_MODES) {
1088 case CHANNEL_A:
1089 mode = AR5K_MODE_11A;
1090 break;
1091 case CHANNEL_G:
1092
1093 if (ah->ah_version <= AR5K_AR5211) {
1094 ATH5K_ERR(ah->ah_sc,
1095 "G mode not available on 5210/5211");
1096 return -EINVAL;
1097 }
1098
1099 mode = AR5K_MODE_11G;
1100 break;
1101 case CHANNEL_B:
1102
1103 if (ah->ah_version < AR5K_AR5211) {
1104 ATH5K_ERR(ah->ah_sc,
1105 "B mode not available on 5210");
1106 return -EINVAL;
1107 }
1108
1109 mode = AR5K_MODE_11B;
1110 break;
1111 case CHANNEL_XR:
1112 if (ah->ah_version == AR5K_AR5211) {
1113 ATH5K_ERR(ah->ah_sc,
1114 "XR mode not available on 5211");
1115 return -EINVAL;
1116 }
1117 mode = AR5K_MODE_XR;
1118 break;
1119 default:
1120 ATH5K_ERR(ah->ah_sc,
1121 "invalid channel: %d\n", channel->center_freq);
1122 return -EINVAL;
1123 }
1124
1125 /*
1126 * If driver requested fast channel change and DMA has stopped
1127 * go on. If it fails continue with a normal reset.
1128 */
1129 if (fast) {
1130 ret = ath5k_hw_phy_init(ah, channel, mode, true);
1131 if (ret) {
1132 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_RESET,
1133 "fast chan change failed, falling back to normal reset\n");
1134 /* Non fatal, can happen eg.
1135 * on mode change */
1136 ret = 0;
1137 } else {
1138 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_RESET,
1139 "fast chan change successful\n");
1140 return 0;
1141 }
1142 }
1143
1144 /*
1145 * Save some registers before a reset
1146 */
1147 if (ah->ah_version != AR5K_AR5210) {
1148 /*
1149 * Save frame sequence count
1150 * For revs. after Oahu, only save
1151 * seq num for DCU 0 (Global seq num)
1152 */
1153 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1154
1155 for (i = 0; i < 10; i++)
1156 s_seq[i] = ath5k_hw_reg_read(ah,
1157 AR5K_QUEUE_DCU_SEQNUM(i));
1158
1159 } else {
1160 s_seq[0] = ath5k_hw_reg_read(ah,
1161 AR5K_QUEUE_DCU_SEQNUM(0));
1162 }
1163
1164 /* TSF accelerates on AR5211 during reset
1165 * As a workaround save it here and restore
1166 * it later so that it's back in time after
1167 * reset. This way it'll get re-synced on the
1168 * next beacon without breaking ad-hoc.
1169 *
1170 * On AR5212 TSF is almost preserved across a
1171 * reset so it stays back in time anyway and
1172 * we don't have to save/restore it.
1173 *
1174 * XXX: Since this breaks power saving we have
1175 * to disable power saving until we receive the
1176 * next beacon, so we can resync beacon timers */
1177 if (ah->ah_version == AR5K_AR5211) {
1178 tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
1179 tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
1180 }
1181 }
1182
1183
1184 /*GPIOs*/
1185 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1186 AR5K_PCICFG_LEDSTATE;
1187 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
1188 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1189
1190
1191 /*
1192 * Since we are going to write rf buffer
1193 * check if we have any pending gain_F
1194 * optimization settings
1195 */
1196 if (ah->ah_version == AR5K_AR5212 &&
1197 (ah->ah_radio <= AR5K_RF5112)) {
1198 if (!fast && ah->ah_rf_banks != NULL)
1199 ath5k_hw_gainf_calibrate(ah);
1200 }
1201
1202 /* Wakeup the device */
1203 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
1204 if (ret)
1205 return ret;
1206
1207 /* PHY access enable */
1208 if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1209 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1210 else
1211 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1212 AR5K_PHY(0));
1213
1214 /* Write initial settings */
1215 ret = ath5k_hw_write_initvals(ah, mode, skip_pcu);
1216 if (ret)
1217 return ret;
1218
1219 /* Initialize core clock settings */
1220 ath5k_hw_init_core_clock(ah);
1221
1222 /*
1223 * Tweak initval settings for revised
1224 * chipsets and add some more config
1225 * bits
1226 */
1227 ath5k_hw_tweak_initval_settings(ah, channel);
1228
1229 /* Commit values from EEPROM */
1230 ath5k_hw_commit_eeprom_settings(ah, channel);
1231
1232
1233 /*
1234 * Restore saved values
1235 */
1236
1237 /* Seqnum, TSF */
1238 if (ah->ah_version != AR5K_AR5210) {
1239 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1240 for (i = 0; i < 10; i++)
1241 ath5k_hw_reg_write(ah, s_seq[i],
1242 AR5K_QUEUE_DCU_SEQNUM(i));
1243 } else {
1244 ath5k_hw_reg_write(ah, s_seq[0],
1245 AR5K_QUEUE_DCU_SEQNUM(0));
1246 }
1247
1248 if (ah->ah_version == AR5K_AR5211) {
1249 ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1250 ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1251 }
1252 }
1253
1254 /* Ledstate */
1255 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1256
1257 /* Gpio settings */
1258 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1259 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1260
1261 /*
1262 * Initialize PCU
1263 */
1264 ath5k_hw_pcu_init(ah, op_mode, mode);
1265
1266 /*
1267 * Initialize PHY
1268 */
1269 ret = ath5k_hw_phy_init(ah, channel, mode, false);
1270 if (ret) {
1271 ATH5K_ERR(ah->ah_sc,
1272 "failed to initialize PHY (%i) !\n", ret);
1273 return ret;
1274 }
1275
1276 /*
1277 * Configure QCUs/DCUs
1278 */
1279 ret = ath5k_hw_init_queues(ah);
1280 if (ret)
1281 return ret;
1282
1283
1284 /*
1285 * Initialize DMA/Interrupts
1286 */
1287 ath5k_hw_dma_init(ah);
1288
1289
1290 /*
1291 * Enable 32KHz clock function for AR5212+ chips
1292 * Set clocks to 32KHz operation and use an
1293 * external 32KHz crystal when sleeping if one
1294 * exists.
1295 * Disabled by default because it is also disabled in
1296 * other drivers and it is known to cause stability
1297 * issues on some devices
1298 */
1299 if (ah->ah_use_32khz_clock && ah->ah_version == AR5K_AR5212 &&
1300 op_mode != NL80211_IFTYPE_AP)
1301 ath5k_hw_set_sleep_clock(ah, true);
1302
1303 /*
1304 * Disable beacons and reset the TSF
1305 */
1306 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE);
1307 ath5k_hw_reset_tsf(ah);
1308 return 0;
1309 }
This page took 0.059008 seconds and 5 git commands to generate.