ath9k_hw: add AR9271 single chip name mapping
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK 22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31 struct ar5416_eeprom_def *pEepData,
32 u32 reg, u32 value);
33 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
34 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
35
36 MODULE_AUTHOR("Atheros Communications");
37 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
38 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
39 MODULE_LICENSE("Dual BSD/GPL");
40
41 static int __init ath9k_init(void)
42 {
43 return 0;
44 }
45 module_init(ath9k_init);
46
47 static void __exit ath9k_exit(void)
48 {
49 return;
50 }
51 module_exit(ath9k_exit);
52
53 /********************/
54 /* Helper Functions */
55 /********************/
56
57 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
58 {
59 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
60
61 if (!ah->curchan) /* should really check for CCK instead */
62 return clks / ATH9K_CLOCK_RATE_CCK;
63 if (conf->channel->band == IEEE80211_BAND_2GHZ)
64 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
65
66 return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
67 }
68
69 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
70 {
71 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
72
73 if (conf_is_ht40(conf))
74 return ath9k_hw_mac_usec(ah, clks) / 2;
75 else
76 return ath9k_hw_mac_usec(ah, clks);
77 }
78
79 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
80 {
81 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
82
83 if (!ah->curchan) /* should really check for CCK instead */
84 return usecs *ATH9K_CLOCK_RATE_CCK;
85 if (conf->channel->band == IEEE80211_BAND_2GHZ)
86 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
87 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
88 }
89
90 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
91 {
92 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
93
94 if (conf_is_ht40(conf))
95 return ath9k_hw_mac_clks(ah, usecs) * 2;
96 else
97 return ath9k_hw_mac_clks(ah, usecs);
98 }
99
100 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
101 {
102 int i;
103
104 BUG_ON(timeout < AH_TIME_QUANTUM);
105
106 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
107 if ((REG_READ(ah, reg) & mask) == val)
108 return true;
109
110 udelay(AH_TIME_QUANTUM);
111 }
112
113 ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
114 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
115 timeout, reg, REG_READ(ah, reg), mask, val);
116
117 return false;
118 }
119 EXPORT_SYMBOL(ath9k_hw_wait);
120
121 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
122 {
123 u32 retval;
124 int i;
125
126 for (i = 0, retval = 0; i < n; i++) {
127 retval = (retval << 1) | (val & 1);
128 val >>= 1;
129 }
130 return retval;
131 }
132
133 bool ath9k_get_channel_edges(struct ath_hw *ah,
134 u16 flags, u16 *low,
135 u16 *high)
136 {
137 struct ath9k_hw_capabilities *pCap = &ah->caps;
138
139 if (flags & CHANNEL_5GHZ) {
140 *low = pCap->low_5ghz_chan;
141 *high = pCap->high_5ghz_chan;
142 return true;
143 }
144 if ((flags & CHANNEL_2GHZ)) {
145 *low = pCap->low_2ghz_chan;
146 *high = pCap->high_2ghz_chan;
147 return true;
148 }
149 return false;
150 }
151
152 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
153 const struct ath_rate_table *rates,
154 u32 frameLen, u16 rateix,
155 bool shortPreamble)
156 {
157 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
158 u32 kbps;
159
160 kbps = rates->info[rateix].ratekbps;
161
162 if (kbps == 0)
163 return 0;
164
165 switch (rates->info[rateix].phy) {
166 case WLAN_RC_PHY_CCK:
167 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
168 if (shortPreamble && rates->info[rateix].short_preamble)
169 phyTime >>= 1;
170 numBits = frameLen << 3;
171 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
172 break;
173 case WLAN_RC_PHY_OFDM:
174 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
175 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
176 numBits = OFDM_PLCP_BITS + (frameLen << 3);
177 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
178 txTime = OFDM_SIFS_TIME_QUARTER
179 + OFDM_PREAMBLE_TIME_QUARTER
180 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
181 } else if (ah->curchan &&
182 IS_CHAN_HALF_RATE(ah->curchan)) {
183 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
184 numBits = OFDM_PLCP_BITS + (frameLen << 3);
185 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
186 txTime = OFDM_SIFS_TIME_HALF +
187 OFDM_PREAMBLE_TIME_HALF
188 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
189 } else {
190 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
191 numBits = OFDM_PLCP_BITS + (frameLen << 3);
192 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
193 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
194 + (numSymbols * OFDM_SYMBOL_TIME);
195 }
196 break;
197 default:
198 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
199 "Unknown phy %u (rate ix %u)\n",
200 rates->info[rateix].phy, rateix);
201 txTime = 0;
202 break;
203 }
204
205 return txTime;
206 }
207 EXPORT_SYMBOL(ath9k_hw_computetxtime);
208
209 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
210 struct ath9k_channel *chan,
211 struct chan_centers *centers)
212 {
213 int8_t extoff;
214
215 if (!IS_CHAN_HT40(chan)) {
216 centers->ctl_center = centers->ext_center =
217 centers->synth_center = chan->channel;
218 return;
219 }
220
221 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
222 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
223 centers->synth_center =
224 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
225 extoff = 1;
226 } else {
227 centers->synth_center =
228 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
229 extoff = -1;
230 }
231
232 centers->ctl_center =
233 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
234 /* 25 MHz spacing is supported by hw but not on upper layers */
235 centers->ext_center =
236 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
237 }
238
239 /******************/
240 /* Chip Revisions */
241 /******************/
242
243 static void ath9k_hw_read_revisions(struct ath_hw *ah)
244 {
245 u32 val;
246
247 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
248
249 if (val == 0xFF) {
250 val = REG_READ(ah, AR_SREV);
251 ah->hw_version.macVersion =
252 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
253 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
254 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
255 } else {
256 if (!AR_SREV_9100(ah))
257 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
258
259 ah->hw_version.macRev = val & AR_SREV_REVISION;
260
261 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
262 ah->is_pciexpress = true;
263 }
264 }
265
266 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
267 {
268 u32 val;
269 int i;
270
271 REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
272
273 for (i = 0; i < 8; i++)
274 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
275 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
276 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
277
278 return ath9k_hw_reverse_bits(val, 8);
279 }
280
281 /************************************/
282 /* HW Attach, Detach, Init Routines */
283 /************************************/
284
285 static void ath9k_hw_disablepcie(struct ath_hw *ah)
286 {
287 if (AR_SREV_9100(ah))
288 return;
289
290 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
292 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
293 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
294 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
295 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
296 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
297 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
298 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
299
300 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
301 }
302
303 static bool ath9k_hw_chip_test(struct ath_hw *ah)
304 {
305 struct ath_common *common = ath9k_hw_common(ah);
306 u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
307 u32 regHold[2];
308 u32 patternData[4] = { 0x55555555,
309 0xaaaaaaaa,
310 0x66666666,
311 0x99999999 };
312 int i, j;
313
314 for (i = 0; i < 2; i++) {
315 u32 addr = regAddr[i];
316 u32 wrData, rdData;
317
318 regHold[i] = REG_READ(ah, addr);
319 for (j = 0; j < 0x100; j++) {
320 wrData = (j << 16) | j;
321 REG_WRITE(ah, addr, wrData);
322 rdData = REG_READ(ah, addr);
323 if (rdData != wrData) {
324 ath_print(common, ATH_DBG_FATAL,
325 "address test failed "
326 "addr: 0x%08x - wr:0x%08x != "
327 "rd:0x%08x\n",
328 addr, wrData, rdData);
329 return false;
330 }
331 }
332 for (j = 0; j < 4; j++) {
333 wrData = patternData[j];
334 REG_WRITE(ah, addr, wrData);
335 rdData = REG_READ(ah, addr);
336 if (wrData != rdData) {
337 ath_print(common, ATH_DBG_FATAL,
338 "address test failed "
339 "addr: 0x%08x - wr:0x%08x != "
340 "rd:0x%08x\n",
341 addr, wrData, rdData);
342 return false;
343 }
344 }
345 REG_WRITE(ah, regAddr[i], regHold[i]);
346 }
347 udelay(100);
348
349 return true;
350 }
351
352 static const char *ath9k_hw_devname(u16 devid)
353 {
354 switch (devid) {
355 case AR5416_DEVID_PCI:
356 return "Atheros 5416";
357 case AR5416_DEVID_PCIE:
358 return "Atheros 5418";
359 case AR9160_DEVID_PCI:
360 return "Atheros 9160";
361 case AR5416_AR9100_DEVID:
362 return "Atheros 9100";
363 case AR9280_DEVID_PCI:
364 case AR9280_DEVID_PCIE:
365 return "Atheros 9280";
366 case AR9285_DEVID_PCIE:
367 return "Atheros 9285";
368 case AR5416_DEVID_AR9287_PCI:
369 case AR5416_DEVID_AR9287_PCIE:
370 return "Atheros 9287";
371 }
372
373 return NULL;
374 }
375
376 static void ath9k_hw_init_config(struct ath_hw *ah)
377 {
378 int i;
379
380 ah->config.dma_beacon_response_time = 2;
381 ah->config.sw_beacon_response_time = 10;
382 ah->config.additional_swba_backoff = 0;
383 ah->config.ack_6mb = 0x0;
384 ah->config.cwm_ignore_extcca = 0;
385 ah->config.pcie_powersave_enable = 0;
386 ah->config.pcie_clock_req = 0;
387 ah->config.pcie_waen = 0;
388 ah->config.analog_shiftreg = 1;
389 ah->config.ht_enable = 1;
390 ah->config.ofdm_trig_low = 200;
391 ah->config.ofdm_trig_high = 500;
392 ah->config.cck_trig_high = 200;
393 ah->config.cck_trig_low = 100;
394 ah->config.enable_ani = 1;
395 ah->config.diversity_control = ATH9K_ANT_VARIABLE;
396 ah->config.antenna_switch_swap = 0;
397
398 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
399 ah->config.spurchans[i][0] = AR_NO_SPUR;
400 ah->config.spurchans[i][1] = AR_NO_SPUR;
401 }
402
403 ah->config.intr_mitigation = true;
404
405 /*
406 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
407 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
408 * This means we use it for all AR5416 devices, and the few
409 * minor PCI AR9280 devices out there.
410 *
411 * Serialization is required because these devices do not handle
412 * well the case of two concurrent reads/writes due to the latency
413 * involved. During one read/write another read/write can be issued
414 * on another CPU while the previous read/write may still be working
415 * on our hardware, if we hit this case the hardware poops in a loop.
416 * We prevent this by serializing reads and writes.
417 *
418 * This issue is not present on PCI-Express devices or pre-AR5416
419 * devices (legacy, 802.11abg).
420 */
421 if (num_possible_cpus() > 1)
422 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
423 }
424 EXPORT_SYMBOL(ath9k_hw_init);
425
426 static void ath9k_hw_init_defaults(struct ath_hw *ah)
427 {
428 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
429
430 regulatory->country_code = CTRY_DEFAULT;
431 regulatory->power_limit = MAX_RATE_POWER;
432 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
433
434 ah->hw_version.magic = AR5416_MAGIC;
435 ah->hw_version.subvendorid = 0;
436
437 ah->ah_flags = 0;
438 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
439 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
440 if (!AR_SREV_9100(ah))
441 ah->ah_flags = AH_USE_EEPROM;
442
443 ah->atim_window = 0;
444 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
445 ah->beacon_interval = 100;
446 ah->enable_32kHz_clock = DONT_USE_32KHZ;
447 ah->slottime = (u32) -1;
448 ah->acktimeout = (u32) -1;
449 ah->ctstimeout = (u32) -1;
450 ah->globaltxtimeout = (u32) -1;
451
452 ah->gbeacon_rate = 0;
453
454 ah->power_mode = ATH9K_PM_UNDEFINED;
455 }
456
457 static int ath9k_hw_rfattach(struct ath_hw *ah)
458 {
459 bool rfStatus = false;
460 int ecode = 0;
461
462 rfStatus = ath9k_hw_init_rf(ah, &ecode);
463 if (!rfStatus) {
464 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
465 "RF setup failed, status: %u\n", ecode);
466 return ecode;
467 }
468
469 return 0;
470 }
471
472 static int ath9k_hw_rf_claim(struct ath_hw *ah)
473 {
474 u32 val;
475
476 REG_WRITE(ah, AR_PHY(0), 0x00000007);
477
478 val = ath9k_hw_get_radiorev(ah);
479 switch (val & AR_RADIO_SREV_MAJOR) {
480 case 0:
481 val = AR_RAD5133_SREV_MAJOR;
482 break;
483 case AR_RAD5133_SREV_MAJOR:
484 case AR_RAD5122_SREV_MAJOR:
485 case AR_RAD2133_SREV_MAJOR:
486 case AR_RAD2122_SREV_MAJOR:
487 break;
488 default:
489 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
490 "Radio Chip Rev 0x%02X not supported\n",
491 val & AR_RADIO_SREV_MAJOR);
492 return -EOPNOTSUPP;
493 }
494
495 ah->hw_version.analog5GhzRev = val;
496
497 return 0;
498 }
499
500 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
501 {
502 struct ath_common *common = ath9k_hw_common(ah);
503 u32 sum;
504 int i;
505 u16 eeval;
506
507 sum = 0;
508 for (i = 0; i < 3; i++) {
509 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
510 sum += eeval;
511 common->macaddr[2 * i] = eeval >> 8;
512 common->macaddr[2 * i + 1] = eeval & 0xff;
513 }
514 if (sum == 0 || sum == 0xffff * 3)
515 return -EADDRNOTAVAIL;
516
517 return 0;
518 }
519
520 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
521 {
522 u32 rxgain_type;
523
524 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
525 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
526
527 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
528 INIT_INI_ARRAY(&ah->iniModesRxGain,
529 ar9280Modes_backoff_13db_rxgain_9280_2,
530 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
531 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
532 INIT_INI_ARRAY(&ah->iniModesRxGain,
533 ar9280Modes_backoff_23db_rxgain_9280_2,
534 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
535 else
536 INIT_INI_ARRAY(&ah->iniModesRxGain,
537 ar9280Modes_original_rxgain_9280_2,
538 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
539 } else {
540 INIT_INI_ARRAY(&ah->iniModesRxGain,
541 ar9280Modes_original_rxgain_9280_2,
542 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
543 }
544 }
545
546 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
547 {
548 u32 txgain_type;
549
550 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
551 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
552
553 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
554 INIT_INI_ARRAY(&ah->iniModesTxGain,
555 ar9280Modes_high_power_tx_gain_9280_2,
556 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
557 else
558 INIT_INI_ARRAY(&ah->iniModesTxGain,
559 ar9280Modes_original_tx_gain_9280_2,
560 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
561 } else {
562 INIT_INI_ARRAY(&ah->iniModesTxGain,
563 ar9280Modes_original_tx_gain_9280_2,
564 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
565 }
566 }
567
568 static int ath9k_hw_post_init(struct ath_hw *ah)
569 {
570 int ecode;
571
572 if (!ath9k_hw_chip_test(ah))
573 return -ENODEV;
574
575 ecode = ath9k_hw_rf_claim(ah);
576 if (ecode != 0)
577 return ecode;
578
579 ecode = ath9k_hw_eeprom_init(ah);
580 if (ecode != 0)
581 return ecode;
582
583 ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
584 "Eeprom VER: %d, REV: %d\n",
585 ah->eep_ops->get_eeprom_ver(ah),
586 ah->eep_ops->get_eeprom_rev(ah));
587
588 ecode = ath9k_hw_rfattach(ah);
589 if (ecode != 0)
590 return ecode;
591
592 if (!AR_SREV_9100(ah)) {
593 ath9k_hw_ani_setup(ah);
594 ath9k_hw_ani_init(ah);
595 }
596
597 return 0;
598 }
599
600 static bool ath9k_hw_devid_supported(u16 devid)
601 {
602 switch (devid) {
603 case AR5416_DEVID_PCI:
604 case AR5416_DEVID_PCIE:
605 case AR5416_AR9100_DEVID:
606 case AR9160_DEVID_PCI:
607 case AR9280_DEVID_PCI:
608 case AR9280_DEVID_PCIE:
609 case AR9285_DEVID_PCIE:
610 case AR5416_DEVID_AR9287_PCI:
611 case AR5416_DEVID_AR9287_PCIE:
612 case AR9271_USB:
613 return true;
614 default:
615 break;
616 }
617 return false;
618 }
619
620 static bool ath9k_hw_macversion_supported(u32 macversion)
621 {
622 switch (macversion) {
623 case AR_SREV_VERSION_5416_PCI:
624 case AR_SREV_VERSION_5416_PCIE:
625 case AR_SREV_VERSION_9160:
626 case AR_SREV_VERSION_9100:
627 case AR_SREV_VERSION_9280:
628 case AR_SREV_VERSION_9285:
629 case AR_SREV_VERSION_9287:
630 case AR_SREV_VERSION_9271:
631 return true;
632 default:
633 break;
634 }
635 return false;
636 }
637
638 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
639 {
640 if (AR_SREV_9160_10_OR_LATER(ah)) {
641 if (AR_SREV_9280_10_OR_LATER(ah)) {
642 ah->iq_caldata.calData = &iq_cal_single_sample;
643 ah->adcgain_caldata.calData =
644 &adc_gain_cal_single_sample;
645 ah->adcdc_caldata.calData =
646 &adc_dc_cal_single_sample;
647 ah->adcdc_calinitdata.calData =
648 &adc_init_dc_cal;
649 } else {
650 ah->iq_caldata.calData = &iq_cal_multi_sample;
651 ah->adcgain_caldata.calData =
652 &adc_gain_cal_multi_sample;
653 ah->adcdc_caldata.calData =
654 &adc_dc_cal_multi_sample;
655 ah->adcdc_calinitdata.calData =
656 &adc_init_dc_cal;
657 }
658 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
659 }
660 }
661
662 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
663 {
664 if (AR_SREV_9271(ah)) {
665 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271_1_0,
666 ARRAY_SIZE(ar9271Modes_9271_1_0), 6);
667 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271_1_0,
668 ARRAY_SIZE(ar9271Common_9271_1_0), 2);
669 return;
670 }
671
672 if (AR_SREV_9287_11_OR_LATER(ah)) {
673 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
674 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
675 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
676 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
677 if (ah->config.pcie_clock_req)
678 INIT_INI_ARRAY(&ah->iniPcieSerdes,
679 ar9287PciePhy_clkreq_off_L1_9287_1_1,
680 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
681 else
682 INIT_INI_ARRAY(&ah->iniPcieSerdes,
683 ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
684 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
685 2);
686 } else if (AR_SREV_9287_10_OR_LATER(ah)) {
687 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
688 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
689 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
690 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
691
692 if (ah->config.pcie_clock_req)
693 INIT_INI_ARRAY(&ah->iniPcieSerdes,
694 ar9287PciePhy_clkreq_off_L1_9287_1_0,
695 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
696 else
697 INIT_INI_ARRAY(&ah->iniPcieSerdes,
698 ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
699 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
700 2);
701 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
702
703
704 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
705 ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
706 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
707 ARRAY_SIZE(ar9285Common_9285_1_2), 2);
708
709 if (ah->config.pcie_clock_req) {
710 INIT_INI_ARRAY(&ah->iniPcieSerdes,
711 ar9285PciePhy_clkreq_off_L1_9285_1_2,
712 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
713 } else {
714 INIT_INI_ARRAY(&ah->iniPcieSerdes,
715 ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
716 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
717 2);
718 }
719 } else if (AR_SREV_9285_10_OR_LATER(ah)) {
720 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
721 ARRAY_SIZE(ar9285Modes_9285), 6);
722 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
723 ARRAY_SIZE(ar9285Common_9285), 2);
724
725 if (ah->config.pcie_clock_req) {
726 INIT_INI_ARRAY(&ah->iniPcieSerdes,
727 ar9285PciePhy_clkreq_off_L1_9285,
728 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
729 } else {
730 INIT_INI_ARRAY(&ah->iniPcieSerdes,
731 ar9285PciePhy_clkreq_always_on_L1_9285,
732 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
733 }
734 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
735 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
736 ARRAY_SIZE(ar9280Modes_9280_2), 6);
737 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
738 ARRAY_SIZE(ar9280Common_9280_2), 2);
739
740 if (ah->config.pcie_clock_req) {
741 INIT_INI_ARRAY(&ah->iniPcieSerdes,
742 ar9280PciePhy_clkreq_off_L1_9280,
743 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
744 } else {
745 INIT_INI_ARRAY(&ah->iniPcieSerdes,
746 ar9280PciePhy_clkreq_always_on_L1_9280,
747 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
748 }
749 INIT_INI_ARRAY(&ah->iniModesAdditional,
750 ar9280Modes_fast_clock_9280_2,
751 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
752 } else if (AR_SREV_9280_10_OR_LATER(ah)) {
753 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
754 ARRAY_SIZE(ar9280Modes_9280), 6);
755 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
756 ARRAY_SIZE(ar9280Common_9280), 2);
757 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
758 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
759 ARRAY_SIZE(ar5416Modes_9160), 6);
760 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
761 ARRAY_SIZE(ar5416Common_9160), 2);
762 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
763 ARRAY_SIZE(ar5416Bank0_9160), 2);
764 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
765 ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
766 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
767 ARRAY_SIZE(ar5416Bank1_9160), 2);
768 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
769 ARRAY_SIZE(ar5416Bank2_9160), 2);
770 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
771 ARRAY_SIZE(ar5416Bank3_9160), 3);
772 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
773 ARRAY_SIZE(ar5416Bank6_9160), 3);
774 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
775 ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
776 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
777 ARRAY_SIZE(ar5416Bank7_9160), 2);
778 if (AR_SREV_9160_11(ah)) {
779 INIT_INI_ARRAY(&ah->iniAddac,
780 ar5416Addac_91601_1,
781 ARRAY_SIZE(ar5416Addac_91601_1), 2);
782 } else {
783 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
784 ARRAY_SIZE(ar5416Addac_9160), 2);
785 }
786 } else if (AR_SREV_9100_OR_LATER(ah)) {
787 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
788 ARRAY_SIZE(ar5416Modes_9100), 6);
789 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
790 ARRAY_SIZE(ar5416Common_9100), 2);
791 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
792 ARRAY_SIZE(ar5416Bank0_9100), 2);
793 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
794 ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
795 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
796 ARRAY_SIZE(ar5416Bank1_9100), 2);
797 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
798 ARRAY_SIZE(ar5416Bank2_9100), 2);
799 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
800 ARRAY_SIZE(ar5416Bank3_9100), 3);
801 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
802 ARRAY_SIZE(ar5416Bank6_9100), 3);
803 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
804 ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
805 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
806 ARRAY_SIZE(ar5416Bank7_9100), 2);
807 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
808 ARRAY_SIZE(ar5416Addac_9100), 2);
809 } else {
810 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
811 ARRAY_SIZE(ar5416Modes), 6);
812 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
813 ARRAY_SIZE(ar5416Common), 2);
814 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
815 ARRAY_SIZE(ar5416Bank0), 2);
816 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
817 ARRAY_SIZE(ar5416BB_RfGain), 3);
818 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
819 ARRAY_SIZE(ar5416Bank1), 2);
820 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
821 ARRAY_SIZE(ar5416Bank2), 2);
822 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
823 ARRAY_SIZE(ar5416Bank3), 3);
824 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
825 ARRAY_SIZE(ar5416Bank6), 3);
826 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
827 ARRAY_SIZE(ar5416Bank6TPC), 3);
828 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
829 ARRAY_SIZE(ar5416Bank7), 2);
830 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
831 ARRAY_SIZE(ar5416Addac), 2);
832 }
833 }
834
835 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
836 {
837 if (AR_SREV_9287_11_OR_LATER(ah))
838 INIT_INI_ARRAY(&ah->iniModesRxGain,
839 ar9287Modes_rx_gain_9287_1_1,
840 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
841 else if (AR_SREV_9287_10(ah))
842 INIT_INI_ARRAY(&ah->iniModesRxGain,
843 ar9287Modes_rx_gain_9287_1_0,
844 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
845 else if (AR_SREV_9280_20(ah))
846 ath9k_hw_init_rxgain_ini(ah);
847
848 if (AR_SREV_9287_11_OR_LATER(ah)) {
849 INIT_INI_ARRAY(&ah->iniModesTxGain,
850 ar9287Modes_tx_gain_9287_1_1,
851 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
852 } else if (AR_SREV_9287_10(ah)) {
853 INIT_INI_ARRAY(&ah->iniModesTxGain,
854 ar9287Modes_tx_gain_9287_1_0,
855 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
856 } else if (AR_SREV_9280_20(ah)) {
857 ath9k_hw_init_txgain_ini(ah);
858 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
859 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
860
861 /* txgain table */
862 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
863 INIT_INI_ARRAY(&ah->iniModesTxGain,
864 ar9285Modes_high_power_tx_gain_9285_1_2,
865 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
866 } else {
867 INIT_INI_ARRAY(&ah->iniModesTxGain,
868 ar9285Modes_original_tx_gain_9285_1_2,
869 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
870 }
871
872 }
873 }
874
875 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
876 {
877 u32 i, j;
878
879 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
880 test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
881
882 /* EEPROM Fixup */
883 for (i = 0; i < ah->iniModes.ia_rows; i++) {
884 u32 reg = INI_RA(&ah->iniModes, i, 0);
885
886 for (j = 1; j < ah->iniModes.ia_columns; j++) {
887 u32 val = INI_RA(&ah->iniModes, i, j);
888
889 INI_RA(&ah->iniModes, i, j) =
890 ath9k_hw_ini_fixup(ah,
891 &ah->eeprom.def,
892 reg, val);
893 }
894 }
895 }
896 }
897
898 int ath9k_hw_init(struct ath_hw *ah)
899 {
900 struct ath_common *common = ath9k_hw_common(ah);
901 int r = 0;
902
903 if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
904 ath_print(common, ATH_DBG_FATAL,
905 "Unsupported device ID: 0x%0x\n",
906 ah->hw_version.devid);
907 return -EOPNOTSUPP;
908 }
909
910 ath9k_hw_init_defaults(ah);
911 ath9k_hw_init_config(ah);
912
913 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
914 ath_print(common, ATH_DBG_FATAL,
915 "Couldn't reset chip\n");
916 return -EIO;
917 }
918
919 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
920 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
921 return -EIO;
922 }
923
924 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
925 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
926 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
927 ah->config.serialize_regmode =
928 SER_REG_MODE_ON;
929 } else {
930 ah->config.serialize_regmode =
931 SER_REG_MODE_OFF;
932 }
933 }
934
935 ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
936 ah->config.serialize_regmode);
937
938 if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
939 ath_print(common, ATH_DBG_FATAL,
940 "Mac Chip Rev 0x%02x.%x is not supported by "
941 "this driver\n", ah->hw_version.macVersion,
942 ah->hw_version.macRev);
943 return -EOPNOTSUPP;
944 }
945
946 if (AR_SREV_9100(ah)) {
947 ah->iq_caldata.calData = &iq_cal_multi_sample;
948 ah->supp_cals = IQ_MISMATCH_CAL;
949 ah->is_pciexpress = false;
950 }
951
952 if (AR_SREV_9271(ah))
953 ah->is_pciexpress = false;
954
955 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
956
957 ath9k_hw_init_cal_settings(ah);
958
959 ah->ani_function = ATH9K_ANI_ALL;
960 if (AR_SREV_9280_10_OR_LATER(ah))
961 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
962
963 ath9k_hw_init_mode_regs(ah);
964
965 if (ah->is_pciexpress)
966 ath9k_hw_configpcipowersave(ah, 0, 0);
967 else
968 ath9k_hw_disablepcie(ah);
969
970 /* Support for Japan ch.14 (2484) spread */
971 if (AR_SREV_9287_11_OR_LATER(ah)) {
972 INIT_INI_ARRAY(&ah->iniCckfirNormal,
973 ar9287Common_normal_cck_fir_coeff_92871_1,
974 ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
975 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
976 ar9287Common_japan_2484_cck_fir_coeff_92871_1,
977 ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
978 }
979
980 r = ath9k_hw_post_init(ah);
981 if (r)
982 return r;
983
984 ath9k_hw_init_mode_gain_regs(ah);
985 ath9k_hw_fill_cap_info(ah);
986 ath9k_hw_init_11a_eeprom_fix(ah);
987
988 r = ath9k_hw_init_macaddr(ah);
989 if (r) {
990 ath_print(common, ATH_DBG_FATAL,
991 "Failed to initialize MAC address\n");
992 return r;
993 }
994
995 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
996 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
997 else
998 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
999
1000 ath9k_init_nfcal_hist_buffer(ah);
1001
1002 common->state = ATH_HW_INITIALIZED;
1003
1004 return 0;
1005 }
1006
1007 static void ath9k_hw_init_bb(struct ath_hw *ah,
1008 struct ath9k_channel *chan)
1009 {
1010 u32 synthDelay;
1011
1012 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1013 if (IS_CHAN_B(chan))
1014 synthDelay = (4 * synthDelay) / 22;
1015 else
1016 synthDelay /= 10;
1017
1018 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1019
1020 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1021 }
1022
1023 static void ath9k_hw_init_qos(struct ath_hw *ah)
1024 {
1025 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1026 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1027
1028 REG_WRITE(ah, AR_QOS_NO_ACK,
1029 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1030 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1031 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1032
1033 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1034 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1035 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1036 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1037 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1038 }
1039
1040 static void ath9k_hw_init_pll(struct ath_hw *ah,
1041 struct ath9k_channel *chan)
1042 {
1043 u32 pll;
1044
1045 if (AR_SREV_9100(ah)) {
1046 if (chan && IS_CHAN_5GHZ(chan))
1047 pll = 0x1450;
1048 else
1049 pll = 0x1458;
1050 } else {
1051 if (AR_SREV_9280_10_OR_LATER(ah)) {
1052 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1053
1054 if (chan && IS_CHAN_HALF_RATE(chan))
1055 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1056 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1057 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1058
1059 if (chan && IS_CHAN_5GHZ(chan)) {
1060 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1061
1062
1063 if (AR_SREV_9280_20(ah)) {
1064 if (((chan->channel % 20) == 0)
1065 || ((chan->channel % 10) == 0))
1066 pll = 0x2850;
1067 else
1068 pll = 0x142c;
1069 }
1070 } else {
1071 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1072 }
1073
1074 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1075
1076 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1077
1078 if (chan && IS_CHAN_HALF_RATE(chan))
1079 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1080 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1081 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1082
1083 if (chan && IS_CHAN_5GHZ(chan))
1084 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1085 else
1086 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1087 } else {
1088 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1089
1090 if (chan && IS_CHAN_HALF_RATE(chan))
1091 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1092 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1093 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1094
1095 if (chan && IS_CHAN_5GHZ(chan))
1096 pll |= SM(0xa, AR_RTC_PLL_DIV);
1097 else
1098 pll |= SM(0xb, AR_RTC_PLL_DIV);
1099 }
1100 }
1101 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1102
1103 udelay(RTC_PLL_SETTLE_DELAY);
1104
1105 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1106 }
1107
1108 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1109 {
1110 int rx_chainmask, tx_chainmask;
1111
1112 rx_chainmask = ah->rxchainmask;
1113 tx_chainmask = ah->txchainmask;
1114
1115 switch (rx_chainmask) {
1116 case 0x5:
1117 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1118 AR_PHY_SWAP_ALT_CHAIN);
1119 case 0x3:
1120 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1121 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1122 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1123 break;
1124 }
1125 case 0x1:
1126 case 0x2:
1127 case 0x7:
1128 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1129 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1130 break;
1131 default:
1132 break;
1133 }
1134
1135 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1136 if (tx_chainmask == 0x5) {
1137 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1138 AR_PHY_SWAP_ALT_CHAIN);
1139 }
1140 if (AR_SREV_9100(ah))
1141 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1142 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1143 }
1144
1145 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1146 enum nl80211_iftype opmode)
1147 {
1148 ah->mask_reg = AR_IMR_TXERR |
1149 AR_IMR_TXURN |
1150 AR_IMR_RXERR |
1151 AR_IMR_RXORN |
1152 AR_IMR_BCNMISC;
1153
1154 if (ah->config.intr_mitigation)
1155 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1156 else
1157 ah->mask_reg |= AR_IMR_RXOK;
1158
1159 ah->mask_reg |= AR_IMR_TXOK;
1160
1161 if (opmode == NL80211_IFTYPE_AP)
1162 ah->mask_reg |= AR_IMR_MIB;
1163
1164 REG_WRITE(ah, AR_IMR, ah->mask_reg);
1165 REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1166
1167 if (!AR_SREV_9100(ah)) {
1168 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1169 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1170 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1171 }
1172 }
1173
1174 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1175 {
1176 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1177 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1178 "bad ack timeout %u\n", us);
1179 ah->acktimeout = (u32) -1;
1180 return false;
1181 } else {
1182 REG_RMW_FIELD(ah, AR_TIME_OUT,
1183 AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1184 ah->acktimeout = us;
1185 return true;
1186 }
1187 }
1188
1189 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1190 {
1191 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1192 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1193 "bad cts timeout %u\n", us);
1194 ah->ctstimeout = (u32) -1;
1195 return false;
1196 } else {
1197 REG_RMW_FIELD(ah, AR_TIME_OUT,
1198 AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1199 ah->ctstimeout = us;
1200 return true;
1201 }
1202 }
1203
1204 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1205 {
1206 if (tu > 0xFFFF) {
1207 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1208 "bad global tx timeout %u\n", tu);
1209 ah->globaltxtimeout = (u32) -1;
1210 return false;
1211 } else {
1212 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1213 ah->globaltxtimeout = tu;
1214 return true;
1215 }
1216 }
1217
1218 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1219 {
1220 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1221 ah->misc_mode);
1222
1223 if (ah->misc_mode != 0)
1224 REG_WRITE(ah, AR_PCU_MISC,
1225 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1226 if (ah->slottime != (u32) -1)
1227 ath9k_hw_setslottime(ah, ah->slottime);
1228 if (ah->acktimeout != (u32) -1)
1229 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1230 if (ah->ctstimeout != (u32) -1)
1231 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1232 if (ah->globaltxtimeout != (u32) -1)
1233 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1234 }
1235
1236 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1237 {
1238 return vendorid == ATHEROS_VENDOR_ID ?
1239 ath9k_hw_devname(devid) : NULL;
1240 }
1241
1242 void ath9k_hw_detach(struct ath_hw *ah)
1243 {
1244 struct ath_common *common = ath9k_hw_common(ah);
1245
1246 if (common->state <= ATH_HW_INITIALIZED)
1247 goto free_hw;
1248
1249 if (!AR_SREV_9100(ah))
1250 ath9k_hw_ani_disable(ah);
1251
1252 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1253
1254 free_hw:
1255 ath9k_hw_rf_free(ah);
1256 kfree(ah);
1257 ah = NULL;
1258 }
1259 EXPORT_SYMBOL(ath9k_hw_detach);
1260
1261 /*******/
1262 /* INI */
1263 /*******/
1264
1265 static void ath9k_hw_override_ini(struct ath_hw *ah,
1266 struct ath9k_channel *chan)
1267 {
1268 u32 val;
1269
1270 if (AR_SREV_9271(ah)) {
1271 /*
1272 * Enable spectral scan to solution for issues with stuck
1273 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1274 * AR9271 1.1
1275 */
1276 if (AR_SREV_9271_10(ah)) {
1277 val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) | AR_PHY_SPECTRAL_SCAN_ENABLE;
1278 REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1279 }
1280 else if (AR_SREV_9271_11(ah))
1281 /*
1282 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1283 * present on AR9271 1.1
1284 */
1285 REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1286 return;
1287 }
1288
1289 /*
1290 * Set the RX_ABORT and RX_DIS and clear if off only after
1291 * RXE is set for MAC. This prevents frames with corrupted
1292 * descriptor status.
1293 */
1294 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1295
1296 if (AR_SREV_9280_10_OR_LATER(ah)) {
1297 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1298 (~AR_PCU_MISC_MODE2_HWWAR1);
1299
1300 if (AR_SREV_9287_10_OR_LATER(ah))
1301 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1302
1303 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1304 }
1305
1306 if (!AR_SREV_5416_20_OR_LATER(ah) ||
1307 AR_SREV_9280_10_OR_LATER(ah))
1308 return;
1309 /*
1310 * Disable BB clock gating
1311 * Necessary to avoid issues on AR5416 2.0
1312 */
1313 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1314 }
1315
1316 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1317 struct ar5416_eeprom_def *pEepData,
1318 u32 reg, u32 value)
1319 {
1320 struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1321 struct ath_common *common = ath9k_hw_common(ah);
1322
1323 switch (ah->hw_version.devid) {
1324 case AR9280_DEVID_PCI:
1325 if (reg == 0x7894) {
1326 ath_print(common, ATH_DBG_EEPROM,
1327 "ini VAL: %x EEPROM: %x\n", value,
1328 (pBase->version & 0xff));
1329
1330 if ((pBase->version & 0xff) > 0x0a) {
1331 ath_print(common, ATH_DBG_EEPROM,
1332 "PWDCLKIND: %d\n",
1333 pBase->pwdclkind);
1334 value &= ~AR_AN_TOP2_PWDCLKIND;
1335 value |= AR_AN_TOP2_PWDCLKIND &
1336 (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1337 } else {
1338 ath_print(common, ATH_DBG_EEPROM,
1339 "PWDCLKIND Earlier Rev\n");
1340 }
1341
1342 ath_print(common, ATH_DBG_EEPROM,
1343 "final ini VAL: %x\n", value);
1344 }
1345 break;
1346 }
1347
1348 return value;
1349 }
1350
1351 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1352 struct ar5416_eeprom_def *pEepData,
1353 u32 reg, u32 value)
1354 {
1355 if (ah->eep_map == EEP_MAP_4KBITS)
1356 return value;
1357 else
1358 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1359 }
1360
1361 static void ath9k_olc_init(struct ath_hw *ah)
1362 {
1363 u32 i;
1364
1365 if (OLC_FOR_AR9287_10_LATER) {
1366 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1367 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1368 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1369 AR9287_AN_TXPC0_TXPCMODE,
1370 AR9287_AN_TXPC0_TXPCMODE_S,
1371 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1372 udelay(100);
1373 } else {
1374 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1375 ah->originalGain[i] =
1376 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1377 AR_PHY_TX_GAIN);
1378 ah->PDADCdelta = 0;
1379 }
1380 }
1381
1382 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1383 struct ath9k_channel *chan)
1384 {
1385 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1386
1387 if (IS_CHAN_B(chan))
1388 ctl |= CTL_11B;
1389 else if (IS_CHAN_G(chan))
1390 ctl |= CTL_11G;
1391 else
1392 ctl |= CTL_11A;
1393
1394 return ctl;
1395 }
1396
1397 static int ath9k_hw_process_ini(struct ath_hw *ah,
1398 struct ath9k_channel *chan)
1399 {
1400 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1401 int i, regWrites = 0;
1402 struct ieee80211_channel *channel = chan->chan;
1403 u32 modesIndex, freqIndex;
1404
1405 switch (chan->chanmode) {
1406 case CHANNEL_A:
1407 case CHANNEL_A_HT20:
1408 modesIndex = 1;
1409 freqIndex = 1;
1410 break;
1411 case CHANNEL_A_HT40PLUS:
1412 case CHANNEL_A_HT40MINUS:
1413 modesIndex = 2;
1414 freqIndex = 1;
1415 break;
1416 case CHANNEL_G:
1417 case CHANNEL_G_HT20:
1418 case CHANNEL_B:
1419 modesIndex = 4;
1420 freqIndex = 2;
1421 break;
1422 case CHANNEL_G_HT40PLUS:
1423 case CHANNEL_G_HT40MINUS:
1424 modesIndex = 3;
1425 freqIndex = 2;
1426 break;
1427
1428 default:
1429 return -EINVAL;
1430 }
1431
1432 REG_WRITE(ah, AR_PHY(0), 0x00000007);
1433 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1434 ah->eep_ops->set_addac(ah, chan);
1435
1436 if (AR_SREV_5416_22_OR_LATER(ah)) {
1437 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1438 } else {
1439 struct ar5416IniArray temp;
1440 u32 addacSize =
1441 sizeof(u32) * ah->iniAddac.ia_rows *
1442 ah->iniAddac.ia_columns;
1443
1444 memcpy(ah->addac5416_21,
1445 ah->iniAddac.ia_array, addacSize);
1446
1447 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1448
1449 temp.ia_array = ah->addac5416_21;
1450 temp.ia_columns = ah->iniAddac.ia_columns;
1451 temp.ia_rows = ah->iniAddac.ia_rows;
1452 REG_WRITE_ARRAY(&temp, 1, regWrites);
1453 }
1454
1455 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1456
1457 for (i = 0; i < ah->iniModes.ia_rows; i++) {
1458 u32 reg = INI_RA(&ah->iniModes, i, 0);
1459 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1460
1461 REG_WRITE(ah, reg, val);
1462
1463 if (reg >= 0x7800 && reg < 0x78a0
1464 && ah->config.analog_shiftreg) {
1465 udelay(100);
1466 }
1467
1468 DO_DELAY(regWrites);
1469 }
1470
1471 if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1472 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1473
1474 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1475 AR_SREV_9287_10_OR_LATER(ah))
1476 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1477
1478 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1479 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1480 u32 val = INI_RA(&ah->iniCommon, i, 1);
1481
1482 REG_WRITE(ah, reg, val);
1483
1484 if (reg >= 0x7800 && reg < 0x78a0
1485 && ah->config.analog_shiftreg) {
1486 udelay(100);
1487 }
1488
1489 DO_DELAY(regWrites);
1490 }
1491
1492 ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1493
1494 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1495 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1496 regWrites);
1497 }
1498
1499 ath9k_hw_override_ini(ah, chan);
1500 ath9k_hw_set_regs(ah, chan);
1501 ath9k_hw_init_chain_masks(ah);
1502
1503 if (OLC_FOR_AR9280_20_LATER)
1504 ath9k_olc_init(ah);
1505
1506 ah->eep_ops->set_txpower(ah, chan,
1507 ath9k_regd_get_ctl(regulatory, chan),
1508 channel->max_antenna_gain * 2,
1509 channel->max_power * 2,
1510 min((u32) MAX_RATE_POWER,
1511 (u32) regulatory->power_limit));
1512
1513 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1514 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1515 "ar5416SetRfRegs failed\n");
1516 return -EIO;
1517 }
1518
1519 return 0;
1520 }
1521
1522 /****************************************/
1523 /* Reset and Channel Switching Routines */
1524 /****************************************/
1525
1526 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1527 {
1528 u32 rfMode = 0;
1529
1530 if (chan == NULL)
1531 return;
1532
1533 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1534 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1535
1536 if (!AR_SREV_9280_10_OR_LATER(ah))
1537 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1538 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1539
1540 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1541 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1542
1543 REG_WRITE(ah, AR_PHY_MODE, rfMode);
1544 }
1545
1546 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1547 {
1548 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1549 }
1550
1551 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1552 {
1553 u32 regval;
1554
1555 /*
1556 * set AHB_MODE not to do cacheline prefetches
1557 */
1558 regval = REG_READ(ah, AR_AHB_MODE);
1559 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1560
1561 /*
1562 * let mac dma reads be in 128 byte chunks
1563 */
1564 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1565 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1566
1567 /*
1568 * Restore TX Trigger Level to its pre-reset value.
1569 * The initial value depends on whether aggregation is enabled, and is
1570 * adjusted whenever underruns are detected.
1571 */
1572 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1573
1574 /*
1575 * let mac dma writes be in 128 byte chunks
1576 */
1577 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1578 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1579
1580 /*
1581 * Setup receive FIFO threshold to hold off TX activities
1582 */
1583 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1584
1585 /*
1586 * reduce the number of usable entries in PCU TXBUF to avoid
1587 * wrap around issues.
1588 */
1589 if (AR_SREV_9285(ah)) {
1590 /* For AR9285 the number of Fifos are reduced to half.
1591 * So set the usable tx buf size also to half to
1592 * avoid data/delimiter underruns
1593 */
1594 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1595 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1596 } else if (!AR_SREV_9271(ah)) {
1597 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1598 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1599 }
1600 }
1601
1602 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1603 {
1604 u32 val;
1605
1606 val = REG_READ(ah, AR_STA_ID1);
1607 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1608 switch (opmode) {
1609 case NL80211_IFTYPE_AP:
1610 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1611 | AR_STA_ID1_KSRCH_MODE);
1612 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1613 break;
1614 case NL80211_IFTYPE_ADHOC:
1615 case NL80211_IFTYPE_MESH_POINT:
1616 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1617 | AR_STA_ID1_KSRCH_MODE);
1618 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1619 break;
1620 case NL80211_IFTYPE_STATION:
1621 case NL80211_IFTYPE_MONITOR:
1622 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1623 break;
1624 }
1625 }
1626
1627 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1628 u32 coef_scaled,
1629 u32 *coef_mantissa,
1630 u32 *coef_exponent)
1631 {
1632 u32 coef_exp, coef_man;
1633
1634 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1635 if ((coef_scaled >> coef_exp) & 0x1)
1636 break;
1637
1638 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1639
1640 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1641
1642 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1643 *coef_exponent = coef_exp - 16;
1644 }
1645
1646 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1647 struct ath9k_channel *chan)
1648 {
1649 u32 coef_scaled, ds_coef_exp, ds_coef_man;
1650 u32 clockMhzScaled = 0x64000000;
1651 struct chan_centers centers;
1652
1653 if (IS_CHAN_HALF_RATE(chan))
1654 clockMhzScaled = clockMhzScaled >> 1;
1655 else if (IS_CHAN_QUARTER_RATE(chan))
1656 clockMhzScaled = clockMhzScaled >> 2;
1657
1658 ath9k_hw_get_channel_centers(ah, chan, &centers);
1659 coef_scaled = clockMhzScaled / centers.synth_center;
1660
1661 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1662 &ds_coef_exp);
1663
1664 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1665 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1666 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1667 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1668
1669 coef_scaled = (9 * coef_scaled) / 10;
1670
1671 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1672 &ds_coef_exp);
1673
1674 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1675 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1676 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1677 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1678 }
1679
1680 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1681 {
1682 u32 rst_flags;
1683 u32 tmpReg;
1684
1685 if (AR_SREV_9100(ah)) {
1686 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1687 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1688 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1689 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1690 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1691 }
1692
1693 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1694 AR_RTC_FORCE_WAKE_ON_INT);
1695
1696 if (AR_SREV_9100(ah)) {
1697 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1698 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1699 } else {
1700 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1701 if (tmpReg &
1702 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1703 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1704 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1705 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1706 } else {
1707 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1708 }
1709
1710 rst_flags = AR_RTC_RC_MAC_WARM;
1711 if (type == ATH9K_RESET_COLD)
1712 rst_flags |= AR_RTC_RC_MAC_COLD;
1713 }
1714
1715 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1716 udelay(50);
1717
1718 REG_WRITE(ah, AR_RTC_RC, 0);
1719 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1720 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1721 "RTC stuck in MAC reset\n");
1722 return false;
1723 }
1724
1725 if (!AR_SREV_9100(ah))
1726 REG_WRITE(ah, AR_RC, 0);
1727
1728 if (AR_SREV_9100(ah))
1729 udelay(50);
1730
1731 return true;
1732 }
1733
1734 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1735 {
1736 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1737 AR_RTC_FORCE_WAKE_ON_INT);
1738
1739 if (!AR_SREV_9100(ah))
1740 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1741
1742 REG_WRITE(ah, AR_RTC_RESET, 0);
1743 udelay(2);
1744
1745 if (!AR_SREV_9100(ah))
1746 REG_WRITE(ah, AR_RC, 0);
1747
1748 REG_WRITE(ah, AR_RTC_RESET, 1);
1749
1750 if (!ath9k_hw_wait(ah,
1751 AR_RTC_STATUS,
1752 AR_RTC_STATUS_M,
1753 AR_RTC_STATUS_ON,
1754 AH_WAIT_TIMEOUT)) {
1755 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1756 "RTC not waking up\n");
1757 return false;
1758 }
1759
1760 ath9k_hw_read_revisions(ah);
1761
1762 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1763 }
1764
1765 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1766 {
1767 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1768 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1769
1770 switch (type) {
1771 case ATH9K_RESET_POWER_ON:
1772 return ath9k_hw_set_reset_power_on(ah);
1773 case ATH9K_RESET_WARM:
1774 case ATH9K_RESET_COLD:
1775 return ath9k_hw_set_reset(ah, type);
1776 default:
1777 return false;
1778 }
1779 }
1780
1781 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1782 {
1783 u32 phymode;
1784 u32 enableDacFifo = 0;
1785
1786 if (AR_SREV_9285_10_OR_LATER(ah))
1787 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1788 AR_PHY_FC_ENABLE_DAC_FIFO);
1789
1790 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1791 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1792
1793 if (IS_CHAN_HT40(chan)) {
1794 phymode |= AR_PHY_FC_DYN2040_EN;
1795
1796 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1797 (chan->chanmode == CHANNEL_G_HT40PLUS))
1798 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1799
1800 }
1801 REG_WRITE(ah, AR_PHY_TURBO, phymode);
1802
1803 ath9k_hw_set11nmac2040(ah);
1804
1805 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1806 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1807 }
1808
1809 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1810 struct ath9k_channel *chan)
1811 {
1812 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1813 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1814 return false;
1815 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1816 return false;
1817
1818 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1819 return false;
1820
1821 ah->chip_fullsleep = false;
1822 ath9k_hw_init_pll(ah, chan);
1823 ath9k_hw_set_rfmode(ah, chan);
1824
1825 return true;
1826 }
1827
1828 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1829 struct ath9k_channel *chan)
1830 {
1831 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1832 struct ath_common *common = ath9k_hw_common(ah);
1833 struct ieee80211_channel *channel = chan->chan;
1834 u32 synthDelay, qnum;
1835
1836 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1837 if (ath9k_hw_numtxpending(ah, qnum)) {
1838 ath_print(common, ATH_DBG_QUEUE,
1839 "Transmit frames pending on "
1840 "queue %d\n", qnum);
1841 return false;
1842 }
1843 }
1844
1845 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1846 if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1847 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1848 ath_print(common, ATH_DBG_FATAL,
1849 "Could not kill baseband RX\n");
1850 return false;
1851 }
1852
1853 ath9k_hw_set_regs(ah, chan);
1854
1855 if (AR_SREV_9280_10_OR_LATER(ah)) {
1856 ath9k_hw_ar9280_set_channel(ah, chan);
1857 } else {
1858 if (!(ath9k_hw_set_channel(ah, chan))) {
1859 ath_print(common, ATH_DBG_FATAL,
1860 "Failed to set channel\n");
1861 return false;
1862 }
1863 }
1864
1865 ah->eep_ops->set_txpower(ah, chan,
1866 ath9k_regd_get_ctl(regulatory, chan),
1867 channel->max_antenna_gain * 2,
1868 channel->max_power * 2,
1869 min((u32) MAX_RATE_POWER,
1870 (u32) regulatory->power_limit));
1871
1872 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1873 if (IS_CHAN_B(chan))
1874 synthDelay = (4 * synthDelay) / 22;
1875 else
1876 synthDelay /= 10;
1877
1878 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1879
1880 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1881
1882 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1883 ath9k_hw_set_delta_slope(ah, chan);
1884
1885 if (AR_SREV_9280_10_OR_LATER(ah))
1886 ath9k_hw_9280_spur_mitigate(ah, chan);
1887 else
1888 ath9k_hw_spur_mitigate(ah, chan);
1889
1890 if (!chan->oneTimeCalsDone)
1891 chan->oneTimeCalsDone = true;
1892
1893 return true;
1894 }
1895
1896 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1897 {
1898 int bb_spur = AR_NO_SPUR;
1899 int freq;
1900 int bin, cur_bin;
1901 int bb_spur_off, spur_subchannel_sd;
1902 int spur_freq_sd;
1903 int spur_delta_phase;
1904 int denominator;
1905 int upper, lower, cur_vit_mask;
1906 int tmp, newVal;
1907 int i;
1908 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1909 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1910 };
1911 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1912 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1913 };
1914 int inc[4] = { 0, 100, 0, 0 };
1915 struct chan_centers centers;
1916
1917 int8_t mask_m[123];
1918 int8_t mask_p[123];
1919 int8_t mask_amt;
1920 int tmp_mask;
1921 int cur_bb_spur;
1922 bool is2GHz = IS_CHAN_2GHZ(chan);
1923
1924 memset(&mask_m, 0, sizeof(int8_t) * 123);
1925 memset(&mask_p, 0, sizeof(int8_t) * 123);
1926
1927 ath9k_hw_get_channel_centers(ah, chan, &centers);
1928 freq = centers.synth_center;
1929
1930 ah->config.spurmode = SPUR_ENABLE_EEPROM;
1931 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1932 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1933
1934 if (is2GHz)
1935 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1936 else
1937 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1938
1939 if (AR_NO_SPUR == cur_bb_spur)
1940 break;
1941 cur_bb_spur = cur_bb_spur - freq;
1942
1943 if (IS_CHAN_HT40(chan)) {
1944 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1945 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1946 bb_spur = cur_bb_spur;
1947 break;
1948 }
1949 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1950 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1951 bb_spur = cur_bb_spur;
1952 break;
1953 }
1954 }
1955
1956 if (AR_NO_SPUR == bb_spur) {
1957 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1958 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1959 return;
1960 } else {
1961 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1962 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1963 }
1964
1965 bin = bb_spur * 320;
1966
1967 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1968
1969 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1970 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1971 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1972 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1973 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1974
1975 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1976 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1977 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1978 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1979 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1980 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1981
1982 if (IS_CHAN_HT40(chan)) {
1983 if (bb_spur < 0) {
1984 spur_subchannel_sd = 1;
1985 bb_spur_off = bb_spur + 10;
1986 } else {
1987 spur_subchannel_sd = 0;
1988 bb_spur_off = bb_spur - 10;
1989 }
1990 } else {
1991 spur_subchannel_sd = 0;
1992 bb_spur_off = bb_spur;
1993 }
1994
1995 if (IS_CHAN_HT40(chan))
1996 spur_delta_phase =
1997 ((bb_spur * 262144) /
1998 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1999 else
2000 spur_delta_phase =
2001 ((bb_spur * 524288) /
2002 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2003
2004 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
2005 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
2006
2007 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2008 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2009 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2010 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
2011
2012 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
2013 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
2014
2015 cur_bin = -6000;
2016 upper = bin + 100;
2017 lower = bin - 100;
2018
2019 for (i = 0; i < 4; i++) {
2020 int pilot_mask = 0;
2021 int chan_mask = 0;
2022 int bp = 0;
2023 for (bp = 0; bp < 30; bp++) {
2024 if ((cur_bin > lower) && (cur_bin < upper)) {
2025 pilot_mask = pilot_mask | 0x1 << bp;
2026 chan_mask = chan_mask | 0x1 << bp;
2027 }
2028 cur_bin += 100;
2029 }
2030 cur_bin += inc[i];
2031 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2032 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2033 }
2034
2035 cur_vit_mask = 6100;
2036 upper = bin + 120;
2037 lower = bin - 120;
2038
2039 for (i = 0; i < 123; i++) {
2040 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2041
2042 /* workaround for gcc bug #37014 */
2043 volatile int tmp_v = abs(cur_vit_mask - bin);
2044
2045 if (tmp_v < 75)
2046 mask_amt = 1;
2047 else
2048 mask_amt = 0;
2049 if (cur_vit_mask < 0)
2050 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2051 else
2052 mask_p[cur_vit_mask / 100] = mask_amt;
2053 }
2054 cur_vit_mask -= 100;
2055 }
2056
2057 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2058 | (mask_m[48] << 26) | (mask_m[49] << 24)
2059 | (mask_m[50] << 22) | (mask_m[51] << 20)
2060 | (mask_m[52] << 18) | (mask_m[53] << 16)
2061 | (mask_m[54] << 14) | (mask_m[55] << 12)
2062 | (mask_m[56] << 10) | (mask_m[57] << 8)
2063 | (mask_m[58] << 6) | (mask_m[59] << 4)
2064 | (mask_m[60] << 2) | (mask_m[61] << 0);
2065 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2066 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2067
2068 tmp_mask = (mask_m[31] << 28)
2069 | (mask_m[32] << 26) | (mask_m[33] << 24)
2070 | (mask_m[34] << 22) | (mask_m[35] << 20)
2071 | (mask_m[36] << 18) | (mask_m[37] << 16)
2072 | (mask_m[48] << 14) | (mask_m[39] << 12)
2073 | (mask_m[40] << 10) | (mask_m[41] << 8)
2074 | (mask_m[42] << 6) | (mask_m[43] << 4)
2075 | (mask_m[44] << 2) | (mask_m[45] << 0);
2076 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2077 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2078
2079 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2080 | (mask_m[18] << 26) | (mask_m[18] << 24)
2081 | (mask_m[20] << 22) | (mask_m[20] << 20)
2082 | (mask_m[22] << 18) | (mask_m[22] << 16)
2083 | (mask_m[24] << 14) | (mask_m[24] << 12)
2084 | (mask_m[25] << 10) | (mask_m[26] << 8)
2085 | (mask_m[27] << 6) | (mask_m[28] << 4)
2086 | (mask_m[29] << 2) | (mask_m[30] << 0);
2087 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2088 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2089
2090 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2091 | (mask_m[2] << 26) | (mask_m[3] << 24)
2092 | (mask_m[4] << 22) | (mask_m[5] << 20)
2093 | (mask_m[6] << 18) | (mask_m[7] << 16)
2094 | (mask_m[8] << 14) | (mask_m[9] << 12)
2095 | (mask_m[10] << 10) | (mask_m[11] << 8)
2096 | (mask_m[12] << 6) | (mask_m[13] << 4)
2097 | (mask_m[14] << 2) | (mask_m[15] << 0);
2098 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2099 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2100
2101 tmp_mask = (mask_p[15] << 28)
2102 | (mask_p[14] << 26) | (mask_p[13] << 24)
2103 | (mask_p[12] << 22) | (mask_p[11] << 20)
2104 | (mask_p[10] << 18) | (mask_p[9] << 16)
2105 | (mask_p[8] << 14) | (mask_p[7] << 12)
2106 | (mask_p[6] << 10) | (mask_p[5] << 8)
2107 | (mask_p[4] << 6) | (mask_p[3] << 4)
2108 | (mask_p[2] << 2) | (mask_p[1] << 0);
2109 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2110 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2111
2112 tmp_mask = (mask_p[30] << 28)
2113 | (mask_p[29] << 26) | (mask_p[28] << 24)
2114 | (mask_p[27] << 22) | (mask_p[26] << 20)
2115 | (mask_p[25] << 18) | (mask_p[24] << 16)
2116 | (mask_p[23] << 14) | (mask_p[22] << 12)
2117 | (mask_p[21] << 10) | (mask_p[20] << 8)
2118 | (mask_p[19] << 6) | (mask_p[18] << 4)
2119 | (mask_p[17] << 2) | (mask_p[16] << 0);
2120 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2121 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2122
2123 tmp_mask = (mask_p[45] << 28)
2124 | (mask_p[44] << 26) | (mask_p[43] << 24)
2125 | (mask_p[42] << 22) | (mask_p[41] << 20)
2126 | (mask_p[40] << 18) | (mask_p[39] << 16)
2127 | (mask_p[38] << 14) | (mask_p[37] << 12)
2128 | (mask_p[36] << 10) | (mask_p[35] << 8)
2129 | (mask_p[34] << 6) | (mask_p[33] << 4)
2130 | (mask_p[32] << 2) | (mask_p[31] << 0);
2131 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2132 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2133
2134 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2135 | (mask_p[59] << 26) | (mask_p[58] << 24)
2136 | (mask_p[57] << 22) | (mask_p[56] << 20)
2137 | (mask_p[55] << 18) | (mask_p[54] << 16)
2138 | (mask_p[53] << 14) | (mask_p[52] << 12)
2139 | (mask_p[51] << 10) | (mask_p[50] << 8)
2140 | (mask_p[49] << 6) | (mask_p[48] << 4)
2141 | (mask_p[47] << 2) | (mask_p[46] << 0);
2142 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2143 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2144 }
2145
2146 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2147 {
2148 int bb_spur = AR_NO_SPUR;
2149 int bin, cur_bin;
2150 int spur_freq_sd;
2151 int spur_delta_phase;
2152 int denominator;
2153 int upper, lower, cur_vit_mask;
2154 int tmp, new;
2155 int i;
2156 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2157 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2158 };
2159 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2160 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2161 };
2162 int inc[4] = { 0, 100, 0, 0 };
2163
2164 int8_t mask_m[123];
2165 int8_t mask_p[123];
2166 int8_t mask_amt;
2167 int tmp_mask;
2168 int cur_bb_spur;
2169 bool is2GHz = IS_CHAN_2GHZ(chan);
2170
2171 memset(&mask_m, 0, sizeof(int8_t) * 123);
2172 memset(&mask_p, 0, sizeof(int8_t) * 123);
2173
2174 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2175 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2176 if (AR_NO_SPUR == cur_bb_spur)
2177 break;
2178 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2179 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2180 bb_spur = cur_bb_spur;
2181 break;
2182 }
2183 }
2184
2185 if (AR_NO_SPUR == bb_spur)
2186 return;
2187
2188 bin = bb_spur * 32;
2189
2190 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2191 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2192 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2193 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2194 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2195
2196 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2197
2198 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2199 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2200 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2201 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2202 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2203 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2204
2205 spur_delta_phase = ((bb_spur * 524288) / 100) &
2206 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2207
2208 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2209 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2210
2211 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2212 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2213 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2214 REG_WRITE(ah, AR_PHY_TIMING11, new);
2215
2216 cur_bin = -6000;
2217 upper = bin + 100;
2218 lower = bin - 100;
2219
2220 for (i = 0; i < 4; i++) {
2221 int pilot_mask = 0;
2222 int chan_mask = 0;
2223 int bp = 0;
2224 for (bp = 0; bp < 30; bp++) {
2225 if ((cur_bin > lower) && (cur_bin < upper)) {
2226 pilot_mask = pilot_mask | 0x1 << bp;
2227 chan_mask = chan_mask | 0x1 << bp;
2228 }
2229 cur_bin += 100;
2230 }
2231 cur_bin += inc[i];
2232 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2233 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2234 }
2235
2236 cur_vit_mask = 6100;
2237 upper = bin + 120;
2238 lower = bin - 120;
2239
2240 for (i = 0; i < 123; i++) {
2241 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2242
2243 /* workaround for gcc bug #37014 */
2244 volatile int tmp_v = abs(cur_vit_mask - bin);
2245
2246 if (tmp_v < 75)
2247 mask_amt = 1;
2248 else
2249 mask_amt = 0;
2250 if (cur_vit_mask < 0)
2251 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2252 else
2253 mask_p[cur_vit_mask / 100] = mask_amt;
2254 }
2255 cur_vit_mask -= 100;
2256 }
2257
2258 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2259 | (mask_m[48] << 26) | (mask_m[49] << 24)
2260 | (mask_m[50] << 22) | (mask_m[51] << 20)
2261 | (mask_m[52] << 18) | (mask_m[53] << 16)
2262 | (mask_m[54] << 14) | (mask_m[55] << 12)
2263 | (mask_m[56] << 10) | (mask_m[57] << 8)
2264 | (mask_m[58] << 6) | (mask_m[59] << 4)
2265 | (mask_m[60] << 2) | (mask_m[61] << 0);
2266 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2267 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2268
2269 tmp_mask = (mask_m[31] << 28)
2270 | (mask_m[32] << 26) | (mask_m[33] << 24)
2271 | (mask_m[34] << 22) | (mask_m[35] << 20)
2272 | (mask_m[36] << 18) | (mask_m[37] << 16)
2273 | (mask_m[48] << 14) | (mask_m[39] << 12)
2274 | (mask_m[40] << 10) | (mask_m[41] << 8)
2275 | (mask_m[42] << 6) | (mask_m[43] << 4)
2276 | (mask_m[44] << 2) | (mask_m[45] << 0);
2277 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2278 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2279
2280 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2281 | (mask_m[18] << 26) | (mask_m[18] << 24)
2282 | (mask_m[20] << 22) | (mask_m[20] << 20)
2283 | (mask_m[22] << 18) | (mask_m[22] << 16)
2284 | (mask_m[24] << 14) | (mask_m[24] << 12)
2285 | (mask_m[25] << 10) | (mask_m[26] << 8)
2286 | (mask_m[27] << 6) | (mask_m[28] << 4)
2287 | (mask_m[29] << 2) | (mask_m[30] << 0);
2288 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2289 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2290
2291 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2292 | (mask_m[2] << 26) | (mask_m[3] << 24)
2293 | (mask_m[4] << 22) | (mask_m[5] << 20)
2294 | (mask_m[6] << 18) | (mask_m[7] << 16)
2295 | (mask_m[8] << 14) | (mask_m[9] << 12)
2296 | (mask_m[10] << 10) | (mask_m[11] << 8)
2297 | (mask_m[12] << 6) | (mask_m[13] << 4)
2298 | (mask_m[14] << 2) | (mask_m[15] << 0);
2299 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2300 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2301
2302 tmp_mask = (mask_p[15] << 28)
2303 | (mask_p[14] << 26) | (mask_p[13] << 24)
2304 | (mask_p[12] << 22) | (mask_p[11] << 20)
2305 | (mask_p[10] << 18) | (mask_p[9] << 16)
2306 | (mask_p[8] << 14) | (mask_p[7] << 12)
2307 | (mask_p[6] << 10) | (mask_p[5] << 8)
2308 | (mask_p[4] << 6) | (mask_p[3] << 4)
2309 | (mask_p[2] << 2) | (mask_p[1] << 0);
2310 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2311 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2312
2313 tmp_mask = (mask_p[30] << 28)
2314 | (mask_p[29] << 26) | (mask_p[28] << 24)
2315 | (mask_p[27] << 22) | (mask_p[26] << 20)
2316 | (mask_p[25] << 18) | (mask_p[24] << 16)
2317 | (mask_p[23] << 14) | (mask_p[22] << 12)
2318 | (mask_p[21] << 10) | (mask_p[20] << 8)
2319 | (mask_p[19] << 6) | (mask_p[18] << 4)
2320 | (mask_p[17] << 2) | (mask_p[16] << 0);
2321 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2322 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2323
2324 tmp_mask = (mask_p[45] << 28)
2325 | (mask_p[44] << 26) | (mask_p[43] << 24)
2326 | (mask_p[42] << 22) | (mask_p[41] << 20)
2327 | (mask_p[40] << 18) | (mask_p[39] << 16)
2328 | (mask_p[38] << 14) | (mask_p[37] << 12)
2329 | (mask_p[36] << 10) | (mask_p[35] << 8)
2330 | (mask_p[34] << 6) | (mask_p[33] << 4)
2331 | (mask_p[32] << 2) | (mask_p[31] << 0);
2332 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2333 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2334
2335 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2336 | (mask_p[59] << 26) | (mask_p[58] << 24)
2337 | (mask_p[57] << 22) | (mask_p[56] << 20)
2338 | (mask_p[55] << 18) | (mask_p[54] << 16)
2339 | (mask_p[53] << 14) | (mask_p[52] << 12)
2340 | (mask_p[51] << 10) | (mask_p[50] << 8)
2341 | (mask_p[49] << 6) | (mask_p[48] << 4)
2342 | (mask_p[47] << 2) | (mask_p[46] << 0);
2343 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2344 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2345 }
2346
2347 static void ath9k_enable_rfkill(struct ath_hw *ah)
2348 {
2349 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2350 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2351
2352 REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2353 AR_GPIO_INPUT_MUX2_RFSILENT);
2354
2355 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2356 REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2357 }
2358
2359 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2360 bool bChannelChange)
2361 {
2362 struct ath_common *common = ath9k_hw_common(ah);
2363 u32 saveLedState;
2364 struct ath9k_channel *curchan = ah->curchan;
2365 u32 saveDefAntenna;
2366 u32 macStaId1;
2367 u64 tsf = 0;
2368 int i, rx_chainmask, r;
2369
2370 ah->txchainmask = common->tx_chainmask;
2371 ah->rxchainmask = common->rx_chainmask;
2372
2373 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2374 return -EIO;
2375
2376 if (curchan && !ah->chip_fullsleep)
2377 ath9k_hw_getnf(ah, curchan);
2378
2379 if (bChannelChange &&
2380 (ah->chip_fullsleep != true) &&
2381 (ah->curchan != NULL) &&
2382 (chan->channel != ah->curchan->channel) &&
2383 ((chan->channelFlags & CHANNEL_ALL) ==
2384 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2385 !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
2386 IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
2387
2388 if (ath9k_hw_channel_change(ah, chan)) {
2389 ath9k_hw_loadnf(ah, ah->curchan);
2390 ath9k_hw_start_nfcal(ah);
2391 return 0;
2392 }
2393 }
2394
2395 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2396 if (saveDefAntenna == 0)
2397 saveDefAntenna = 1;
2398
2399 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2400
2401 /* For chips on which RTC reset is done, save TSF before it gets cleared */
2402 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2403 tsf = ath9k_hw_gettsf64(ah);
2404
2405 saveLedState = REG_READ(ah, AR_CFG_LED) &
2406 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2407 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2408
2409 ath9k_hw_mark_phy_inactive(ah);
2410
2411 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2412 REG_WRITE(ah,
2413 AR9271_RESET_POWER_DOWN_CONTROL,
2414 AR9271_RADIO_RF_RST);
2415 udelay(50);
2416 }
2417
2418 if (!ath9k_hw_chip_reset(ah, chan)) {
2419 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
2420 return -EINVAL;
2421 }
2422
2423 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2424 ah->htc_reset_init = false;
2425 REG_WRITE(ah,
2426 AR9271_RESET_POWER_DOWN_CONTROL,
2427 AR9271_GATE_MAC_CTL);
2428 udelay(50);
2429 }
2430
2431 /* Restore TSF */
2432 if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2433 ath9k_hw_settsf64(ah, tsf);
2434
2435 if (AR_SREV_9280_10_OR_LATER(ah))
2436 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2437
2438 if (AR_SREV_9287_12_OR_LATER(ah)) {
2439 /* Enable ASYNC FIFO */
2440 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2441 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2442 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2443 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2444 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2445 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2446 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2447 }
2448 r = ath9k_hw_process_ini(ah, chan);
2449 if (r)
2450 return r;
2451
2452 /* Setup MFP options for CCMP */
2453 if (AR_SREV_9280_20_OR_LATER(ah)) {
2454 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2455 * frames when constructing CCMP AAD. */
2456 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2457 0xc7ff);
2458 ah->sw_mgmt_crypto = false;
2459 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2460 /* Disable hardware crypto for management frames */
2461 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2462 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2463 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2464 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2465 ah->sw_mgmt_crypto = true;
2466 } else
2467 ah->sw_mgmt_crypto = true;
2468
2469 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2470 ath9k_hw_set_delta_slope(ah, chan);
2471
2472 if (AR_SREV_9280_10_OR_LATER(ah))
2473 ath9k_hw_9280_spur_mitigate(ah, chan);
2474 else
2475 ath9k_hw_spur_mitigate(ah, chan);
2476
2477 ah->eep_ops->set_board_values(ah, chan);
2478
2479 ath9k_hw_decrease_chain_power(ah, chan);
2480
2481 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2482 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2483 | macStaId1
2484 | AR_STA_ID1_RTS_USE_DEF
2485 | (ah->config.
2486 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2487 | ah->sta_id1_defaults);
2488 ath9k_hw_set_operating_mode(ah, ah->opmode);
2489
2490 ath_hw_setbssidmask(common);
2491
2492 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2493
2494 ath9k_hw_write_associd(ah);
2495
2496 REG_WRITE(ah, AR_ISR, ~0);
2497
2498 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2499
2500 if (AR_SREV_9280_10_OR_LATER(ah))
2501 ath9k_hw_ar9280_set_channel(ah, chan);
2502 else
2503 if (!(ath9k_hw_set_channel(ah, chan)))
2504 return -EIO;
2505
2506 for (i = 0; i < AR_NUM_DCU; i++)
2507 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2508
2509 ah->intr_txqs = 0;
2510 for (i = 0; i < ah->caps.total_queues; i++)
2511 ath9k_hw_resettxqueue(ah, i);
2512
2513 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2514 ath9k_hw_init_qos(ah);
2515
2516 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2517 ath9k_enable_rfkill(ah);
2518
2519 ath9k_hw_init_user_settings(ah);
2520
2521 if (AR_SREV_9287_12_OR_LATER(ah)) {
2522 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2523 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2524 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2525 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2526 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2527 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2528
2529 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2530 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2531
2532 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2533 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2534 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2535 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2536 }
2537 if (AR_SREV_9287_12_OR_LATER(ah)) {
2538 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2539 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2540 }
2541
2542 REG_WRITE(ah, AR_STA_ID1,
2543 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2544
2545 ath9k_hw_set_dma(ah);
2546
2547 REG_WRITE(ah, AR_OBS, 8);
2548
2549 if (ah->config.intr_mitigation) {
2550 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2551 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2552 }
2553
2554 ath9k_hw_init_bb(ah, chan);
2555
2556 if (!ath9k_hw_init_cal(ah, chan))
2557 return -EIO;
2558
2559 rx_chainmask = ah->rxchainmask;
2560 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2561 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2562 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2563 }
2564
2565 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2566
2567 /*
2568 * For big endian systems turn on swapping for descriptors
2569 */
2570 if (AR_SREV_9100(ah)) {
2571 u32 mask;
2572 mask = REG_READ(ah, AR_CFG);
2573 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2574 ath_print(common, ATH_DBG_RESET,
2575 "CFG Byte Swap Set 0x%x\n", mask);
2576 } else {
2577 mask =
2578 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2579 REG_WRITE(ah, AR_CFG, mask);
2580 ath_print(common, ATH_DBG_RESET,
2581 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2582 }
2583 } else {
2584 /* Configure AR9271 target WLAN */
2585 if (AR_SREV_9271(ah))
2586 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2587 #ifdef __BIG_ENDIAN
2588 else
2589 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2590 #endif
2591 }
2592
2593 if (ah->btcoex_hw.enabled)
2594 ath9k_hw_btcoex_enable(ah);
2595
2596 return 0;
2597 }
2598 EXPORT_SYMBOL(ath9k_hw_reset);
2599
2600 /************************/
2601 /* Key Cache Management */
2602 /************************/
2603
2604 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2605 {
2606 u32 keyType;
2607
2608 if (entry >= ah->caps.keycache_size) {
2609 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2610 "keychache entry %u out of range\n", entry);
2611 return false;
2612 }
2613
2614 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2615
2616 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2617 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2618 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2619 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2620 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2621 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2622 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2623 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2624
2625 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2626 u16 micentry = entry + 64;
2627
2628 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2629 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2630 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2631 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2632
2633 }
2634
2635 return true;
2636 }
2637 EXPORT_SYMBOL(ath9k_hw_keyreset);
2638
2639 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2640 {
2641 u32 macHi, macLo;
2642
2643 if (entry >= ah->caps.keycache_size) {
2644 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2645 "keychache entry %u out of range\n", entry);
2646 return false;
2647 }
2648
2649 if (mac != NULL) {
2650 macHi = (mac[5] << 8) | mac[4];
2651 macLo = (mac[3] << 24) |
2652 (mac[2] << 16) |
2653 (mac[1] << 8) |
2654 mac[0];
2655 macLo >>= 1;
2656 macLo |= (macHi & 1) << 31;
2657 macHi >>= 1;
2658 } else {
2659 macLo = macHi = 0;
2660 }
2661 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2662 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2663
2664 return true;
2665 }
2666 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2667
2668 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2669 const struct ath9k_keyval *k,
2670 const u8 *mac)
2671 {
2672 const struct ath9k_hw_capabilities *pCap = &ah->caps;
2673 struct ath_common *common = ath9k_hw_common(ah);
2674 u32 key0, key1, key2, key3, key4;
2675 u32 keyType;
2676
2677 if (entry >= pCap->keycache_size) {
2678 ath_print(common, ATH_DBG_FATAL,
2679 "keycache entry %u out of range\n", entry);
2680 return false;
2681 }
2682
2683 switch (k->kv_type) {
2684 case ATH9K_CIPHER_AES_OCB:
2685 keyType = AR_KEYTABLE_TYPE_AES;
2686 break;
2687 case ATH9K_CIPHER_AES_CCM:
2688 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2689 ath_print(common, ATH_DBG_ANY,
2690 "AES-CCM not supported by mac rev 0x%x\n",
2691 ah->hw_version.macRev);
2692 return false;
2693 }
2694 keyType = AR_KEYTABLE_TYPE_CCM;
2695 break;
2696 case ATH9K_CIPHER_TKIP:
2697 keyType = AR_KEYTABLE_TYPE_TKIP;
2698 if (ATH9K_IS_MIC_ENABLED(ah)
2699 && entry + 64 >= pCap->keycache_size) {
2700 ath_print(common, ATH_DBG_ANY,
2701 "entry %u inappropriate for TKIP\n", entry);
2702 return false;
2703 }
2704 break;
2705 case ATH9K_CIPHER_WEP:
2706 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2707 ath_print(common, ATH_DBG_ANY,
2708 "WEP key length %u too small\n", k->kv_len);
2709 return false;
2710 }
2711 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2712 keyType = AR_KEYTABLE_TYPE_40;
2713 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2714 keyType = AR_KEYTABLE_TYPE_104;
2715 else
2716 keyType = AR_KEYTABLE_TYPE_128;
2717 break;
2718 case ATH9K_CIPHER_CLR:
2719 keyType = AR_KEYTABLE_TYPE_CLR;
2720 break;
2721 default:
2722 ath_print(common, ATH_DBG_FATAL,
2723 "cipher %u not supported\n", k->kv_type);
2724 return false;
2725 }
2726
2727 key0 = get_unaligned_le32(k->kv_val + 0);
2728 key1 = get_unaligned_le16(k->kv_val + 4);
2729 key2 = get_unaligned_le32(k->kv_val + 6);
2730 key3 = get_unaligned_le16(k->kv_val + 10);
2731 key4 = get_unaligned_le32(k->kv_val + 12);
2732 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2733 key4 &= 0xff;
2734
2735 /*
2736 * Note: Key cache registers access special memory area that requires
2737 * two 32-bit writes to actually update the values in the internal
2738 * memory. Consequently, the exact order and pairs used here must be
2739 * maintained.
2740 */
2741
2742 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2743 u16 micentry = entry + 64;
2744
2745 /*
2746 * Write inverted key[47:0] first to avoid Michael MIC errors
2747 * on frames that could be sent or received at the same time.
2748 * The correct key will be written in the end once everything
2749 * else is ready.
2750 */
2751 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2752 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2753
2754 /* Write key[95:48] */
2755 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2756 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2757
2758 /* Write key[127:96] and key type */
2759 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2760 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2761
2762 /* Write MAC address for the entry */
2763 (void) ath9k_hw_keysetmac(ah, entry, mac);
2764
2765 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2766 /*
2767 * TKIP uses two key cache entries:
2768 * Michael MIC TX/RX keys in the same key cache entry
2769 * (idx = main index + 64):
2770 * key0 [31:0] = RX key [31:0]
2771 * key1 [15:0] = TX key [31:16]
2772 * key1 [31:16] = reserved
2773 * key2 [31:0] = RX key [63:32]
2774 * key3 [15:0] = TX key [15:0]
2775 * key3 [31:16] = reserved
2776 * key4 [31:0] = TX key [63:32]
2777 */
2778 u32 mic0, mic1, mic2, mic3, mic4;
2779
2780 mic0 = get_unaligned_le32(k->kv_mic + 0);
2781 mic2 = get_unaligned_le32(k->kv_mic + 4);
2782 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2783 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2784 mic4 = get_unaligned_le32(k->kv_txmic + 4);
2785
2786 /* Write RX[31:0] and TX[31:16] */
2787 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2788 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2789
2790 /* Write RX[63:32] and TX[15:0] */
2791 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2792 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2793
2794 /* Write TX[63:32] and keyType(reserved) */
2795 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2796 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2797 AR_KEYTABLE_TYPE_CLR);
2798
2799 } else {
2800 /*
2801 * TKIP uses four key cache entries (two for group
2802 * keys):
2803 * Michael MIC TX/RX keys are in different key cache
2804 * entries (idx = main index + 64 for TX and
2805 * main index + 32 + 96 for RX):
2806 * key0 [31:0] = TX/RX MIC key [31:0]
2807 * key1 [31:0] = reserved
2808 * key2 [31:0] = TX/RX MIC key [63:32]
2809 * key3 [31:0] = reserved
2810 * key4 [31:0] = reserved
2811 *
2812 * Upper layer code will call this function separately
2813 * for TX and RX keys when these registers offsets are
2814 * used.
2815 */
2816 u32 mic0, mic2;
2817
2818 mic0 = get_unaligned_le32(k->kv_mic + 0);
2819 mic2 = get_unaligned_le32(k->kv_mic + 4);
2820
2821 /* Write MIC key[31:0] */
2822 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2823 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2824
2825 /* Write MIC key[63:32] */
2826 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2827 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2828
2829 /* Write TX[63:32] and keyType(reserved) */
2830 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2831 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2832 AR_KEYTABLE_TYPE_CLR);
2833 }
2834
2835 /* MAC address registers are reserved for the MIC entry */
2836 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2837 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2838
2839 /*
2840 * Write the correct (un-inverted) key[47:0] last to enable
2841 * TKIP now that all other registers are set with correct
2842 * values.
2843 */
2844 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2845 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2846 } else {
2847 /* Write key[47:0] */
2848 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2849 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2850
2851 /* Write key[95:48] */
2852 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2853 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2854
2855 /* Write key[127:96] and key type */
2856 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2857 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2858
2859 /* Write MAC address for the entry */
2860 (void) ath9k_hw_keysetmac(ah, entry, mac);
2861 }
2862
2863 return true;
2864 }
2865 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2866
2867 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2868 {
2869 if (entry < ah->caps.keycache_size) {
2870 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2871 if (val & AR_KEYTABLE_VALID)
2872 return true;
2873 }
2874 return false;
2875 }
2876 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2877
2878 /******************************/
2879 /* Power Management (Chipset) */
2880 /******************************/
2881
2882 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2883 {
2884 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2885 if (setChip) {
2886 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2887 AR_RTC_FORCE_WAKE_EN);
2888 if (!AR_SREV_9100(ah))
2889 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2890
2891 if(!AR_SREV_5416(ah))
2892 REG_CLR_BIT(ah, (AR_RTC_RESET),
2893 AR_RTC_RESET_EN);
2894 }
2895 }
2896
2897 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2898 {
2899 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2900 if (setChip) {
2901 struct ath9k_hw_capabilities *pCap = &ah->caps;
2902
2903 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2904 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2905 AR_RTC_FORCE_WAKE_ON_INT);
2906 } else {
2907 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2908 AR_RTC_FORCE_WAKE_EN);
2909 }
2910 }
2911 }
2912
2913 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2914 {
2915 u32 val;
2916 int i;
2917
2918 if (setChip) {
2919 if ((REG_READ(ah, AR_RTC_STATUS) &
2920 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2921 if (ath9k_hw_set_reset_reg(ah,
2922 ATH9K_RESET_POWER_ON) != true) {
2923 return false;
2924 }
2925 ath9k_hw_init_pll(ah, NULL);
2926 }
2927 if (AR_SREV_9100(ah))
2928 REG_SET_BIT(ah, AR_RTC_RESET,
2929 AR_RTC_RESET_EN);
2930
2931 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2932 AR_RTC_FORCE_WAKE_EN);
2933 udelay(50);
2934
2935 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2936 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2937 if (val == AR_RTC_STATUS_ON)
2938 break;
2939 udelay(50);
2940 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2941 AR_RTC_FORCE_WAKE_EN);
2942 }
2943 if (i == 0) {
2944 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2945 "Failed to wakeup in %uus\n",
2946 POWER_UP_TIME / 20);
2947 return false;
2948 }
2949 }
2950
2951 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2952
2953 return true;
2954 }
2955
2956 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2957 {
2958 struct ath_common *common = ath9k_hw_common(ah);
2959 int status = true, setChip = true;
2960 static const char *modes[] = {
2961 "AWAKE",
2962 "FULL-SLEEP",
2963 "NETWORK SLEEP",
2964 "UNDEFINED"
2965 };
2966
2967 if (ah->power_mode == mode)
2968 return status;
2969
2970 ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2971 modes[ah->power_mode], modes[mode]);
2972
2973 switch (mode) {
2974 case ATH9K_PM_AWAKE:
2975 status = ath9k_hw_set_power_awake(ah, setChip);
2976 break;
2977 case ATH9K_PM_FULL_SLEEP:
2978 ath9k_set_power_sleep(ah, setChip);
2979 ah->chip_fullsleep = true;
2980 break;
2981 case ATH9K_PM_NETWORK_SLEEP:
2982 ath9k_set_power_network_sleep(ah, setChip);
2983 break;
2984 default:
2985 ath_print(common, ATH_DBG_FATAL,
2986 "Unknown power mode %u\n", mode);
2987 return false;
2988 }
2989 ah->power_mode = mode;
2990
2991 return status;
2992 }
2993 EXPORT_SYMBOL(ath9k_hw_setpower);
2994
2995 /*
2996 * Helper for ASPM support.
2997 *
2998 * Disable PLL when in L0s as well as receiver clock when in L1.
2999 * This power saving option must be enabled through the SerDes.
3000 *
3001 * Programming the SerDes must go through the same 288 bit serial shift
3002 * register as the other analog registers. Hence the 9 writes.
3003 */
3004 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
3005 {
3006 u8 i;
3007 u32 val;
3008
3009 if (ah->is_pciexpress != true)
3010 return;
3011
3012 /* Do not touch SerDes registers */
3013 if (ah->config.pcie_powersave_enable == 2)
3014 return;
3015
3016 /* Nothing to do on restore for 11N */
3017 if (!restore) {
3018 if (AR_SREV_9280_20_OR_LATER(ah)) {
3019 /*
3020 * AR9280 2.0 or later chips use SerDes values from the
3021 * initvals.h initialized depending on chipset during
3022 * ath9k_hw_init()
3023 */
3024 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
3025 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
3026 INI_RA(&ah->iniPcieSerdes, i, 1));
3027 }
3028 } else if (AR_SREV_9280(ah) &&
3029 (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
3030 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
3031 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3032
3033 /* RX shut off when elecidle is asserted */
3034 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
3035 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
3036 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
3037
3038 /* Shut off CLKREQ active in L1 */
3039 if (ah->config.pcie_clock_req)
3040 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
3041 else
3042 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
3043
3044 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3045 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3046 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
3047
3048 /* Load the new settings */
3049 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3050
3051 } else {
3052 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
3053 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3054
3055 /* RX shut off when elecidle is asserted */
3056 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
3057 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
3058 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
3059
3060 /*
3061 * Ignore ah->ah_config.pcie_clock_req setting for
3062 * pre-AR9280 11n
3063 */
3064 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
3065
3066 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3067 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3068 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
3069
3070 /* Load the new settings */
3071 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3072 }
3073
3074 udelay(1000);
3075
3076 /* set bit 19 to allow forcing of pcie core into L1 state */
3077 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
3078
3079 /* Several PCIe massages to ensure proper behaviour */
3080 if (ah->config.pcie_waen) {
3081 val = ah->config.pcie_waen;
3082 if (!power_off)
3083 val &= (~AR_WA_D3_L1_DISABLE);
3084 } else {
3085 if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3086 AR_SREV_9287(ah)) {
3087 val = AR9285_WA_DEFAULT;
3088 if (!power_off)
3089 val &= (~AR_WA_D3_L1_DISABLE);
3090 } else if (AR_SREV_9280(ah)) {
3091 /*
3092 * On AR9280 chips bit 22 of 0x4004 needs to be
3093 * set otherwise card may disappear.
3094 */
3095 val = AR9280_WA_DEFAULT;
3096 if (!power_off)
3097 val &= (~AR_WA_D3_L1_DISABLE);
3098 } else
3099 val = AR_WA_DEFAULT;
3100 }
3101
3102 REG_WRITE(ah, AR_WA, val);
3103 }
3104
3105 if (power_off) {
3106 /*
3107 * Set PCIe workaround bits
3108 * bit 14 in WA register (disable L1) should only
3109 * be set when device enters D3 and be cleared
3110 * when device comes back to D0.
3111 */
3112 if (ah->config.pcie_waen) {
3113 if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
3114 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3115 } else {
3116 if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3117 AR_SREV_9287(ah)) &&
3118 (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
3119 (AR_SREV_9280(ah) &&
3120 (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
3121 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3122 }
3123 }
3124 }
3125 }
3126 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
3127
3128 /**********************/
3129 /* Interrupt Handling */
3130 /**********************/
3131
3132 bool ath9k_hw_intrpend(struct ath_hw *ah)
3133 {
3134 u32 host_isr;
3135
3136 if (AR_SREV_9100(ah))
3137 return true;
3138
3139 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
3140 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
3141 return true;
3142
3143 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
3144 if ((host_isr & AR_INTR_SYNC_DEFAULT)
3145 && (host_isr != AR_INTR_SPURIOUS))
3146 return true;
3147
3148 return false;
3149 }
3150 EXPORT_SYMBOL(ath9k_hw_intrpend);
3151
3152 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
3153 {
3154 u32 isr = 0;
3155 u32 mask2 = 0;
3156 struct ath9k_hw_capabilities *pCap = &ah->caps;
3157 u32 sync_cause = 0;
3158 bool fatal_int = false;
3159 struct ath_common *common = ath9k_hw_common(ah);
3160
3161 if (!AR_SREV_9100(ah)) {
3162 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3163 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3164 == AR_RTC_STATUS_ON) {
3165 isr = REG_READ(ah, AR_ISR);
3166 }
3167 }
3168
3169 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3170 AR_INTR_SYNC_DEFAULT;
3171
3172 *masked = 0;
3173
3174 if (!isr && !sync_cause)
3175 return false;
3176 } else {
3177 *masked = 0;
3178 isr = REG_READ(ah, AR_ISR);
3179 }
3180
3181 if (isr) {
3182 if (isr & AR_ISR_BCNMISC) {
3183 u32 isr2;
3184 isr2 = REG_READ(ah, AR_ISR_S2);
3185 if (isr2 & AR_ISR_S2_TIM)
3186 mask2 |= ATH9K_INT_TIM;
3187 if (isr2 & AR_ISR_S2_DTIM)
3188 mask2 |= ATH9K_INT_DTIM;
3189 if (isr2 & AR_ISR_S2_DTIMSYNC)
3190 mask2 |= ATH9K_INT_DTIMSYNC;
3191 if (isr2 & (AR_ISR_S2_CABEND))
3192 mask2 |= ATH9K_INT_CABEND;
3193 if (isr2 & AR_ISR_S2_GTT)
3194 mask2 |= ATH9K_INT_GTT;
3195 if (isr2 & AR_ISR_S2_CST)
3196 mask2 |= ATH9K_INT_CST;
3197 if (isr2 & AR_ISR_S2_TSFOOR)
3198 mask2 |= ATH9K_INT_TSFOOR;
3199 }
3200
3201 isr = REG_READ(ah, AR_ISR_RAC);
3202 if (isr == 0xffffffff) {
3203 *masked = 0;
3204 return false;
3205 }
3206
3207 *masked = isr & ATH9K_INT_COMMON;
3208
3209 if (ah->config.intr_mitigation) {
3210 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3211 *masked |= ATH9K_INT_RX;
3212 }
3213
3214 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3215 *masked |= ATH9K_INT_RX;
3216 if (isr &
3217 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3218 AR_ISR_TXEOL)) {
3219 u32 s0_s, s1_s;
3220
3221 *masked |= ATH9K_INT_TX;
3222
3223 s0_s = REG_READ(ah, AR_ISR_S0_S);
3224 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3225 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3226
3227 s1_s = REG_READ(ah, AR_ISR_S1_S);
3228 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3229 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3230 }
3231
3232 if (isr & AR_ISR_RXORN) {
3233 ath_print(common, ATH_DBG_INTERRUPT,
3234 "receive FIFO overrun interrupt\n");
3235 }
3236
3237 if (!AR_SREV_9100(ah)) {
3238 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3239 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
3240 if (isr5 & AR_ISR_S5_TIM_TIMER)
3241 *masked |= ATH9K_INT_TIM_TIMER;
3242 }
3243 }
3244
3245 *masked |= mask2;
3246 }
3247
3248 if (AR_SREV_9100(ah))
3249 return true;
3250
3251 if (isr & AR_ISR_GENTMR) {
3252 u32 s5_s;
3253
3254 s5_s = REG_READ(ah, AR_ISR_S5_S);
3255 if (isr & AR_ISR_GENTMR) {
3256 ah->intr_gen_timer_trigger =
3257 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
3258
3259 ah->intr_gen_timer_thresh =
3260 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
3261
3262 if (ah->intr_gen_timer_trigger)
3263 *masked |= ATH9K_INT_GENTIMER;
3264
3265 }
3266 }
3267
3268 if (sync_cause) {
3269 fatal_int =
3270 (sync_cause &
3271 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3272 ? true : false;
3273
3274 if (fatal_int) {
3275 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3276 ath_print(common, ATH_DBG_ANY,
3277 "received PCI FATAL interrupt\n");
3278 }
3279 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3280 ath_print(common, ATH_DBG_ANY,
3281 "received PCI PERR interrupt\n");
3282 }
3283 *masked |= ATH9K_INT_FATAL;
3284 }
3285 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3286 ath_print(common, ATH_DBG_INTERRUPT,
3287 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3288 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3289 REG_WRITE(ah, AR_RC, 0);
3290 *masked |= ATH9K_INT_FATAL;
3291 }
3292 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3293 ath_print(common, ATH_DBG_INTERRUPT,
3294 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3295 }
3296
3297 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3298 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3299 }
3300
3301 return true;
3302 }
3303 EXPORT_SYMBOL(ath9k_hw_getisr);
3304
3305 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3306 {
3307 u32 omask = ah->mask_reg;
3308 u32 mask, mask2;
3309 struct ath9k_hw_capabilities *pCap = &ah->caps;
3310 struct ath_common *common = ath9k_hw_common(ah);
3311
3312 ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3313
3314 if (omask & ATH9K_INT_GLOBAL) {
3315 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
3316 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3317 (void) REG_READ(ah, AR_IER);
3318 if (!AR_SREV_9100(ah)) {
3319 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3320 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3321
3322 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3323 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3324 }
3325 }
3326
3327 mask = ints & ATH9K_INT_COMMON;
3328 mask2 = 0;
3329
3330 if (ints & ATH9K_INT_TX) {
3331 if (ah->txok_interrupt_mask)
3332 mask |= AR_IMR_TXOK;
3333 if (ah->txdesc_interrupt_mask)
3334 mask |= AR_IMR_TXDESC;
3335 if (ah->txerr_interrupt_mask)
3336 mask |= AR_IMR_TXERR;
3337 if (ah->txeol_interrupt_mask)
3338 mask |= AR_IMR_TXEOL;
3339 }
3340 if (ints & ATH9K_INT_RX) {
3341 mask |= AR_IMR_RXERR;
3342 if (ah->config.intr_mitigation)
3343 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3344 else
3345 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3346 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3347 mask |= AR_IMR_GENTMR;
3348 }
3349
3350 if (ints & (ATH9K_INT_BMISC)) {
3351 mask |= AR_IMR_BCNMISC;
3352 if (ints & ATH9K_INT_TIM)
3353 mask2 |= AR_IMR_S2_TIM;
3354 if (ints & ATH9K_INT_DTIM)
3355 mask2 |= AR_IMR_S2_DTIM;
3356 if (ints & ATH9K_INT_DTIMSYNC)
3357 mask2 |= AR_IMR_S2_DTIMSYNC;
3358 if (ints & ATH9K_INT_CABEND)
3359 mask2 |= AR_IMR_S2_CABEND;
3360 if (ints & ATH9K_INT_TSFOOR)
3361 mask2 |= AR_IMR_S2_TSFOOR;
3362 }
3363
3364 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3365 mask |= AR_IMR_BCNMISC;
3366 if (ints & ATH9K_INT_GTT)
3367 mask2 |= AR_IMR_S2_GTT;
3368 if (ints & ATH9K_INT_CST)
3369 mask2 |= AR_IMR_S2_CST;
3370 }
3371
3372 ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3373 REG_WRITE(ah, AR_IMR, mask);
3374 mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3375 AR_IMR_S2_DTIM |
3376 AR_IMR_S2_DTIMSYNC |
3377 AR_IMR_S2_CABEND |
3378 AR_IMR_S2_CABTO |
3379 AR_IMR_S2_TSFOOR |
3380 AR_IMR_S2_GTT | AR_IMR_S2_CST);
3381 REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3382 ah->mask_reg = ints;
3383
3384 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3385 if (ints & ATH9K_INT_TIM_TIMER)
3386 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3387 else
3388 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3389 }
3390
3391 if (ints & ATH9K_INT_GLOBAL) {
3392 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
3393 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3394 if (!AR_SREV_9100(ah)) {
3395 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3396 AR_INTR_MAC_IRQ);
3397 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3398
3399
3400 REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3401 AR_INTR_SYNC_DEFAULT);
3402 REG_WRITE(ah, AR_INTR_SYNC_MASK,
3403 AR_INTR_SYNC_DEFAULT);
3404 }
3405 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3406 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3407 }
3408
3409 return omask;
3410 }
3411 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
3412
3413 /*******************/
3414 /* Beacon Handling */
3415 /*******************/
3416
3417 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3418 {
3419 int flags = 0;
3420
3421 ah->beacon_interval = beacon_period;
3422
3423 switch (ah->opmode) {
3424 case NL80211_IFTYPE_STATION:
3425 case NL80211_IFTYPE_MONITOR:
3426 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3427 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3428 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3429 flags |= AR_TBTT_TIMER_EN;
3430 break;
3431 case NL80211_IFTYPE_ADHOC:
3432 case NL80211_IFTYPE_MESH_POINT:
3433 REG_SET_BIT(ah, AR_TXCFG,
3434 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3435 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3436 TU_TO_USEC(next_beacon +
3437 (ah->atim_window ? ah->
3438 atim_window : 1)));
3439 flags |= AR_NDP_TIMER_EN;
3440 case NL80211_IFTYPE_AP:
3441 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3442 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3443 TU_TO_USEC(next_beacon -
3444 ah->config.
3445 dma_beacon_response_time));
3446 REG_WRITE(ah, AR_NEXT_SWBA,
3447 TU_TO_USEC(next_beacon -
3448 ah->config.
3449 sw_beacon_response_time));
3450 flags |=
3451 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3452 break;
3453 default:
3454 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3455 "%s: unsupported opmode: %d\n",
3456 __func__, ah->opmode);
3457 return;
3458 break;
3459 }
3460
3461 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3462 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3463 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3464 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3465
3466 beacon_period &= ~ATH9K_BEACON_ENA;
3467 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3468 ath9k_hw_reset_tsf(ah);
3469 }
3470
3471 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3472 }
3473 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3474
3475 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3476 const struct ath9k_beacon_state *bs)
3477 {
3478 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3479 struct ath9k_hw_capabilities *pCap = &ah->caps;
3480 struct ath_common *common = ath9k_hw_common(ah);
3481
3482 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3483
3484 REG_WRITE(ah, AR_BEACON_PERIOD,
3485 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3486 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3487 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3488
3489 REG_RMW_FIELD(ah, AR_RSSI_THR,
3490 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3491
3492 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3493
3494 if (bs->bs_sleepduration > beaconintval)
3495 beaconintval = bs->bs_sleepduration;
3496
3497 dtimperiod = bs->bs_dtimperiod;
3498 if (bs->bs_sleepduration > dtimperiod)
3499 dtimperiod = bs->bs_sleepduration;
3500
3501 if (beaconintval == dtimperiod)
3502 nextTbtt = bs->bs_nextdtim;
3503 else
3504 nextTbtt = bs->bs_nexttbtt;
3505
3506 ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3507 ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3508 ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3509 ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3510
3511 REG_WRITE(ah, AR_NEXT_DTIM,
3512 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3513 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3514
3515 REG_WRITE(ah, AR_SLEEP1,
3516 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3517 | AR_SLEEP1_ASSUME_DTIM);
3518
3519 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3520 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3521 else
3522 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3523
3524 REG_WRITE(ah, AR_SLEEP2,
3525 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3526
3527 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3528 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3529
3530 REG_SET_BIT(ah, AR_TIMER_MODE,
3531 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3532 AR_DTIM_TIMER_EN);
3533
3534 /* TSF Out of Range Threshold */
3535 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3536 }
3537 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3538
3539 /*******************/
3540 /* HW Capabilities */
3541 /*******************/
3542
3543 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3544 {
3545 struct ath9k_hw_capabilities *pCap = &ah->caps;
3546 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3547 struct ath_common *common = ath9k_hw_common(ah);
3548 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3549
3550 u16 capField = 0, eeval;
3551
3552 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3553 regulatory->current_rd = eeval;
3554
3555 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3556 if (AR_SREV_9285_10_OR_LATER(ah))
3557 eeval |= AR9285_RDEXT_DEFAULT;
3558 regulatory->current_rd_ext = eeval;
3559
3560 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3561
3562 if (ah->opmode != NL80211_IFTYPE_AP &&
3563 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3564 if (regulatory->current_rd == 0x64 ||
3565 regulatory->current_rd == 0x65)
3566 regulatory->current_rd += 5;
3567 else if (regulatory->current_rd == 0x41)
3568 regulatory->current_rd = 0x43;
3569 ath_print(common, ATH_DBG_REGULATORY,
3570 "regdomain mapped to 0x%x\n", regulatory->current_rd);
3571 }
3572
3573 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3574 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3575
3576 if (eeval & AR5416_OPFLAGS_11A) {
3577 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3578 if (ah->config.ht_enable) {
3579 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3580 set_bit(ATH9K_MODE_11NA_HT20,
3581 pCap->wireless_modes);
3582 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3583 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3584 pCap->wireless_modes);
3585 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3586 pCap->wireless_modes);
3587 }
3588 }
3589 }
3590
3591 if (eeval & AR5416_OPFLAGS_11G) {
3592 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3593 if (ah->config.ht_enable) {
3594 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3595 set_bit(ATH9K_MODE_11NG_HT20,
3596 pCap->wireless_modes);
3597 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3598 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3599 pCap->wireless_modes);
3600 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3601 pCap->wireless_modes);
3602 }
3603 }
3604 }
3605
3606 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3607 /*
3608 * For AR9271 we will temporarilly uses the rx chainmax as read from
3609 * the EEPROM.
3610 */
3611 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3612 !(eeval & AR5416_OPFLAGS_11A) &&
3613 !(AR_SREV_9271(ah)))
3614 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3615 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3616 else
3617 /* Use rx_chainmask from EEPROM. */
3618 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3619
3620 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3621 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3622
3623 pCap->low_2ghz_chan = 2312;
3624 pCap->high_2ghz_chan = 2732;
3625
3626 pCap->low_5ghz_chan = 4920;
3627 pCap->high_5ghz_chan = 6100;
3628
3629 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3630 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3631 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3632
3633 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3634 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3635 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3636
3637 if (ah->config.ht_enable)
3638 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3639 else
3640 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3641
3642 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3643 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3644 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3645 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3646
3647 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3648 pCap->total_queues =
3649 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3650 else
3651 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3652
3653 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3654 pCap->keycache_size =
3655 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3656 else
3657 pCap->keycache_size = AR_KEYTABLE_SIZE;
3658
3659 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3660 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3661
3662 if (AR_SREV_9285_10_OR_LATER(ah))
3663 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3664 else if (AR_SREV_9280_10_OR_LATER(ah))
3665 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3666 else
3667 pCap->num_gpio_pins = AR_NUM_GPIO;
3668
3669 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3670 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3671 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3672 } else {
3673 pCap->rts_aggr_limit = (8 * 1024);
3674 }
3675
3676 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3677
3678 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3679 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3680 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3681 ah->rfkill_gpio =
3682 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3683 ah->rfkill_polarity =
3684 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3685
3686 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3687 }
3688 #endif
3689
3690 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3691
3692 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3693 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3694 else
3695 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3696
3697 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3698 pCap->reg_cap =
3699 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3700 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3701 AR_EEPROM_EEREGCAP_EN_KK_U2 |
3702 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3703 } else {
3704 pCap->reg_cap =
3705 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3706 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3707 }
3708
3709 /* Advertise midband for AR5416 with FCC midband set in eeprom */
3710 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3711 AR_SREV_5416(ah))
3712 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3713
3714 pCap->num_antcfg_5ghz =
3715 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3716 pCap->num_antcfg_2ghz =
3717 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3718
3719 if (AR_SREV_9280_10_OR_LATER(ah) &&
3720 ath9k_hw_btcoex_supported(ah)) {
3721 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3722 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3723
3724 if (AR_SREV_9285(ah)) {
3725 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3726 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3727 } else {
3728 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3729 }
3730 } else {
3731 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3732 }
3733 }
3734
3735 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3736 u32 capability, u32 *result)
3737 {
3738 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3739 switch (type) {
3740 case ATH9K_CAP_CIPHER:
3741 switch (capability) {
3742 case ATH9K_CIPHER_AES_CCM:
3743 case ATH9K_CIPHER_AES_OCB:
3744 case ATH9K_CIPHER_TKIP:
3745 case ATH9K_CIPHER_WEP:
3746 case ATH9K_CIPHER_MIC:
3747 case ATH9K_CIPHER_CLR:
3748 return true;
3749 default:
3750 return false;
3751 }
3752 case ATH9K_CAP_TKIP_MIC:
3753 switch (capability) {
3754 case 0:
3755 return true;
3756 case 1:
3757 return (ah->sta_id1_defaults &
3758 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3759 false;
3760 }
3761 case ATH9K_CAP_TKIP_SPLIT:
3762 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3763 false : true;
3764 case ATH9K_CAP_DIVERSITY:
3765 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3766 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3767 true : false;
3768 case ATH9K_CAP_MCAST_KEYSRCH:
3769 switch (capability) {
3770 case 0:
3771 return true;
3772 case 1:
3773 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3774 return false;
3775 } else {
3776 return (ah->sta_id1_defaults &
3777 AR_STA_ID1_MCAST_KSRCH) ? true :
3778 false;
3779 }
3780 }
3781 return false;
3782 case ATH9K_CAP_TXPOW:
3783 switch (capability) {
3784 case 0:
3785 return 0;
3786 case 1:
3787 *result = regulatory->power_limit;
3788 return 0;
3789 case 2:
3790 *result = regulatory->max_power_level;
3791 return 0;
3792 case 3:
3793 *result = regulatory->tp_scale;
3794 return 0;
3795 }
3796 return false;
3797 case ATH9K_CAP_DS:
3798 return (AR_SREV_9280_20_OR_LATER(ah) &&
3799 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3800 ? false : true;
3801 default:
3802 return false;
3803 }
3804 }
3805 EXPORT_SYMBOL(ath9k_hw_getcapability);
3806
3807 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3808 u32 capability, u32 setting, int *status)
3809 {
3810 u32 v;
3811
3812 switch (type) {
3813 case ATH9K_CAP_TKIP_MIC:
3814 if (setting)
3815 ah->sta_id1_defaults |=
3816 AR_STA_ID1_CRPT_MIC_ENABLE;
3817 else
3818 ah->sta_id1_defaults &=
3819 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3820 return true;
3821 case ATH9K_CAP_DIVERSITY:
3822 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3823 if (setting)
3824 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3825 else
3826 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3827 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3828 return true;
3829 case ATH9K_CAP_MCAST_KEYSRCH:
3830 if (setting)
3831 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3832 else
3833 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3834 return true;
3835 default:
3836 return false;
3837 }
3838 }
3839 EXPORT_SYMBOL(ath9k_hw_setcapability);
3840
3841 /****************************/
3842 /* GPIO / RFKILL / Antennae */
3843 /****************************/
3844
3845 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3846 u32 gpio, u32 type)
3847 {
3848 int addr;
3849 u32 gpio_shift, tmp;
3850
3851 if (gpio > 11)
3852 addr = AR_GPIO_OUTPUT_MUX3;
3853 else if (gpio > 5)
3854 addr = AR_GPIO_OUTPUT_MUX2;
3855 else
3856 addr = AR_GPIO_OUTPUT_MUX1;
3857
3858 gpio_shift = (gpio % 6) * 5;
3859
3860 if (AR_SREV_9280_20_OR_LATER(ah)
3861 || (addr != AR_GPIO_OUTPUT_MUX1)) {
3862 REG_RMW(ah, addr, (type << gpio_shift),
3863 (0x1f << gpio_shift));
3864 } else {
3865 tmp = REG_READ(ah, addr);
3866 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3867 tmp &= ~(0x1f << gpio_shift);
3868 tmp |= (type << gpio_shift);
3869 REG_WRITE(ah, addr, tmp);
3870 }
3871 }
3872
3873 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3874 {
3875 u32 gpio_shift;
3876
3877 BUG_ON(gpio >= ah->caps.num_gpio_pins);
3878
3879 gpio_shift = gpio << 1;
3880
3881 REG_RMW(ah,
3882 AR_GPIO_OE_OUT,
3883 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3884 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3885 }
3886 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3887
3888 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3889 {
3890 #define MS_REG_READ(x, y) \
3891 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3892
3893 if (gpio >= ah->caps.num_gpio_pins)
3894 return 0xffffffff;
3895
3896 if (AR_SREV_9287_10_OR_LATER(ah))
3897 return MS_REG_READ(AR9287, gpio) != 0;
3898 else if (AR_SREV_9285_10_OR_LATER(ah))
3899 return MS_REG_READ(AR9285, gpio) != 0;
3900 else if (AR_SREV_9280_10_OR_LATER(ah))
3901 return MS_REG_READ(AR928X, gpio) != 0;
3902 else
3903 return MS_REG_READ(AR, gpio) != 0;
3904 }
3905 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3906
3907 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3908 u32 ah_signal_type)
3909 {
3910 u32 gpio_shift;
3911
3912 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3913
3914 gpio_shift = 2 * gpio;
3915
3916 REG_RMW(ah,
3917 AR_GPIO_OE_OUT,
3918 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3919 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3920 }
3921 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3922
3923 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3924 {
3925 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3926 AR_GPIO_BIT(gpio));
3927 }
3928 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3929
3930 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3931 {
3932 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3933 }
3934 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3935
3936 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3937 {
3938 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3939 }
3940 EXPORT_SYMBOL(ath9k_hw_setantenna);
3941
3942 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3943 enum ath9k_ant_setting settings,
3944 struct ath9k_channel *chan,
3945 u8 *tx_chainmask,
3946 u8 *rx_chainmask,
3947 u8 *antenna_cfgd)
3948 {
3949 static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3950
3951 if (AR_SREV_9280(ah)) {
3952 if (!tx_chainmask_cfg) {
3953
3954 tx_chainmask_cfg = *tx_chainmask;
3955 rx_chainmask_cfg = *rx_chainmask;
3956 }
3957
3958 switch (settings) {
3959 case ATH9K_ANT_FIXED_A:
3960 *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3961 *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3962 *antenna_cfgd = true;
3963 break;
3964 case ATH9K_ANT_FIXED_B:
3965 if (ah->caps.tx_chainmask >
3966 ATH9K_ANTENNA1_CHAINMASK) {
3967 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3968 }
3969 *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3970 *antenna_cfgd = true;
3971 break;
3972 case ATH9K_ANT_VARIABLE:
3973 *tx_chainmask = tx_chainmask_cfg;
3974 *rx_chainmask = rx_chainmask_cfg;
3975 *antenna_cfgd = true;
3976 break;
3977 default:
3978 break;
3979 }
3980 } else {
3981 ah->config.diversity_control = settings;
3982 }
3983
3984 return true;
3985 }
3986
3987 /*********************/
3988 /* General Operation */
3989 /*********************/
3990
3991 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3992 {
3993 u32 bits = REG_READ(ah, AR_RX_FILTER);
3994 u32 phybits = REG_READ(ah, AR_PHY_ERR);
3995
3996 if (phybits & AR_PHY_ERR_RADAR)
3997 bits |= ATH9K_RX_FILTER_PHYRADAR;
3998 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3999 bits |= ATH9K_RX_FILTER_PHYERR;
4000
4001 return bits;
4002 }
4003 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
4004
4005 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
4006 {
4007 u32 phybits;
4008
4009 REG_WRITE(ah, AR_RX_FILTER, bits);
4010
4011 phybits = 0;
4012 if (bits & ATH9K_RX_FILTER_PHYRADAR)
4013 phybits |= AR_PHY_ERR_RADAR;
4014 if (bits & ATH9K_RX_FILTER_PHYERR)
4015 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
4016 REG_WRITE(ah, AR_PHY_ERR, phybits);
4017
4018 if (phybits)
4019 REG_WRITE(ah, AR_RXCFG,
4020 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
4021 else
4022 REG_WRITE(ah, AR_RXCFG,
4023 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
4024 }
4025 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
4026
4027 bool ath9k_hw_phy_disable(struct ath_hw *ah)
4028 {
4029 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
4030 return false;
4031
4032 ath9k_hw_init_pll(ah, NULL);
4033 return true;
4034 }
4035 EXPORT_SYMBOL(ath9k_hw_phy_disable);
4036
4037 bool ath9k_hw_disable(struct ath_hw *ah)
4038 {
4039 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
4040 return false;
4041
4042 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
4043 return false;
4044
4045 ath9k_hw_init_pll(ah, NULL);
4046 return true;
4047 }
4048 EXPORT_SYMBOL(ath9k_hw_disable);
4049
4050 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
4051 {
4052 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4053 struct ath9k_channel *chan = ah->curchan;
4054 struct ieee80211_channel *channel = chan->chan;
4055
4056 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
4057
4058 ah->eep_ops->set_txpower(ah, chan,
4059 ath9k_regd_get_ctl(regulatory, chan),
4060 channel->max_antenna_gain * 2,
4061 channel->max_power * 2,
4062 min((u32) MAX_RATE_POWER,
4063 (u32) regulatory->power_limit));
4064 }
4065 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
4066
4067 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
4068 {
4069 memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
4070 }
4071 EXPORT_SYMBOL(ath9k_hw_setmac);
4072
4073 void ath9k_hw_setopmode(struct ath_hw *ah)
4074 {
4075 ath9k_hw_set_operating_mode(ah, ah->opmode);
4076 }
4077 EXPORT_SYMBOL(ath9k_hw_setopmode);
4078
4079 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
4080 {
4081 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
4082 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
4083 }
4084 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
4085
4086 void ath9k_hw_write_associd(struct ath_hw *ah)
4087 {
4088 struct ath_common *common = ath9k_hw_common(ah);
4089
4090 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
4091 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
4092 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
4093 }
4094 EXPORT_SYMBOL(ath9k_hw_write_associd);
4095
4096 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
4097 {
4098 u64 tsf;
4099
4100 tsf = REG_READ(ah, AR_TSF_U32);
4101 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
4102
4103 return tsf;
4104 }
4105 EXPORT_SYMBOL(ath9k_hw_gettsf64);
4106
4107 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
4108 {
4109 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
4110 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
4111 }
4112 EXPORT_SYMBOL(ath9k_hw_settsf64);
4113
4114 void ath9k_hw_reset_tsf(struct ath_hw *ah)
4115 {
4116 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
4117 AH_TSF_WRITE_TIMEOUT))
4118 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
4119 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
4120
4121 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
4122 }
4123 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
4124
4125 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
4126 {
4127 if (setting)
4128 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
4129 else
4130 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
4131 }
4132 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
4133
4134 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
4135 {
4136 if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
4137 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
4138 "bad slot time %u\n", us);
4139 ah->slottime = (u32) -1;
4140 return false;
4141 } else {
4142 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
4143 ah->slottime = us;
4144 return true;
4145 }
4146 }
4147 EXPORT_SYMBOL(ath9k_hw_setslottime);
4148
4149 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
4150 {
4151 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
4152 u32 macmode;
4153
4154 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
4155 macmode = AR_2040_JOINED_RX_CLEAR;
4156 else
4157 macmode = 0;
4158
4159 REG_WRITE(ah, AR_2040_MODE, macmode);
4160 }
4161
4162 /* HW Generic timers configuration */
4163
4164 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
4165 {
4166 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4167 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4168 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4169 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4170 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4171 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4172 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4173 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4174 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
4175 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
4176 AR_NDP2_TIMER_MODE, 0x0002},
4177 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
4178 AR_NDP2_TIMER_MODE, 0x0004},
4179 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
4180 AR_NDP2_TIMER_MODE, 0x0008},
4181 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
4182 AR_NDP2_TIMER_MODE, 0x0010},
4183 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
4184 AR_NDP2_TIMER_MODE, 0x0020},
4185 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
4186 AR_NDP2_TIMER_MODE, 0x0040},
4187 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
4188 AR_NDP2_TIMER_MODE, 0x0080}
4189 };
4190
4191 /* HW generic timer primitives */
4192
4193 /* compute and clear index of rightmost 1 */
4194 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
4195 {
4196 u32 b;
4197
4198 b = *mask;
4199 b &= (0-b);
4200 *mask &= ~b;
4201 b *= debruijn32;
4202 b >>= 27;
4203
4204 return timer_table->gen_timer_index[b];
4205 }
4206
4207 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
4208 {
4209 return REG_READ(ah, AR_TSF_L32);
4210 }
4211 EXPORT_SYMBOL(ath9k_hw_gettsf32);
4212
4213 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
4214 void (*trigger)(void *),
4215 void (*overflow)(void *),
4216 void *arg,
4217 u8 timer_index)
4218 {
4219 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4220 struct ath_gen_timer *timer;
4221
4222 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
4223
4224 if (timer == NULL) {
4225 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
4226 "Failed to allocate memory"
4227 "for hw timer[%d]\n", timer_index);
4228 return NULL;
4229 }
4230
4231 /* allocate a hardware generic timer slot */
4232 timer_table->timers[timer_index] = timer;
4233 timer->index = timer_index;
4234 timer->trigger = trigger;
4235 timer->overflow = overflow;
4236 timer->arg = arg;
4237
4238 return timer;
4239 }
4240 EXPORT_SYMBOL(ath_gen_timer_alloc);
4241
4242 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
4243 struct ath_gen_timer *timer,
4244 u32 timer_next,
4245 u32 timer_period)
4246 {
4247 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4248 u32 tsf;
4249
4250 BUG_ON(!timer_period);
4251
4252 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
4253
4254 tsf = ath9k_hw_gettsf32(ah);
4255
4256 ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
4257 "curent tsf %x period %x"
4258 "timer_next %x\n", tsf, timer_period, timer_next);
4259
4260 /*
4261 * Pull timer_next forward if the current TSF already passed it
4262 * because of software latency
4263 */
4264 if (timer_next < tsf)
4265 timer_next = tsf + timer_period;
4266
4267 /*
4268 * Program generic timer registers
4269 */
4270 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
4271 timer_next);
4272 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
4273 timer_period);
4274 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4275 gen_tmr_configuration[timer->index].mode_mask);
4276
4277 /* Enable both trigger and thresh interrupt masks */
4278 REG_SET_BIT(ah, AR_IMR_S5,
4279 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4280 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4281 }
4282 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
4283
4284 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
4285 {
4286 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4287
4288 if ((timer->index < AR_FIRST_NDP_TIMER) ||
4289 (timer->index >= ATH_MAX_GEN_TIMER)) {
4290 return;
4291 }
4292
4293 /* Clear generic timer enable bits. */
4294 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4295 gen_tmr_configuration[timer->index].mode_mask);
4296
4297 /* Disable both trigger and thresh interrupt masks */
4298 REG_CLR_BIT(ah, AR_IMR_S5,
4299 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4300 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4301
4302 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
4303 }
4304 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
4305
4306 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
4307 {
4308 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4309
4310 /* free the hardware generic timer slot */
4311 timer_table->timers[timer->index] = NULL;
4312 kfree(timer);
4313 }
4314 EXPORT_SYMBOL(ath_gen_timer_free);
4315
4316 /*
4317 * Generic Timer Interrupts handling
4318 */
4319 void ath_gen_timer_isr(struct ath_hw *ah)
4320 {
4321 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4322 struct ath_gen_timer *timer;
4323 struct ath_common *common = ath9k_hw_common(ah);
4324 u32 trigger_mask, thresh_mask, index;
4325
4326 /* get hardware generic timer interrupt status */
4327 trigger_mask = ah->intr_gen_timer_trigger;
4328 thresh_mask = ah->intr_gen_timer_thresh;
4329 trigger_mask &= timer_table->timer_mask.val;
4330 thresh_mask &= timer_table->timer_mask.val;
4331
4332 trigger_mask &= ~thresh_mask;
4333
4334 while (thresh_mask) {
4335 index = rightmost_index(timer_table, &thresh_mask);
4336 timer = timer_table->timers[index];
4337 BUG_ON(!timer);
4338 ath_print(common, ATH_DBG_HWTIMER,
4339 "TSF overflow for Gen timer %d\n", index);
4340 timer->overflow(timer->arg);
4341 }
4342
4343 while (trigger_mask) {
4344 index = rightmost_index(timer_table, &trigger_mask);
4345 timer = timer_table->timers[index];
4346 BUG_ON(!timer);
4347 ath_print(common, ATH_DBG_HWTIMER,
4348 "Gen timer[%d] trigger\n", index);
4349 timer->trigger(timer->arg);
4350 }
4351 }
4352 EXPORT_SYMBOL(ath_gen_timer_isr);
4353
4354 static struct {
4355 u32 version;
4356 const char * name;
4357 } ath_mac_bb_names[] = {
4358 /* Devices with external radios */
4359 { AR_SREV_VERSION_5416_PCI, "5416" },
4360 { AR_SREV_VERSION_5416_PCIE, "5418" },
4361 { AR_SREV_VERSION_9100, "9100" },
4362 { AR_SREV_VERSION_9160, "9160" },
4363 /* Single-chip solutions */
4364 { AR_SREV_VERSION_9280, "9280" },
4365 { AR_SREV_VERSION_9285, "9285" },
4366 { AR_SREV_VERSION_9287, "9287" },
4367 { AR_SREV_VERSION_9271, "9271" },
4368 };
4369
4370 /* For devices with external radios */
4371 static struct {
4372 u16 version;
4373 const char * name;
4374 } ath_rf_names[] = {
4375 { 0, "5133" },
4376 { AR_RAD5133_SREV_MAJOR, "5133" },
4377 { AR_RAD5122_SREV_MAJOR, "5122" },
4378 { AR_RAD2133_SREV_MAJOR, "2133" },
4379 { AR_RAD2122_SREV_MAJOR, "2122" }
4380 };
4381
4382 /*
4383 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
4384 */
4385 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
4386 {
4387 int i;
4388
4389 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
4390 if (ath_mac_bb_names[i].version == mac_bb_version) {
4391 return ath_mac_bb_names[i].name;
4392 }
4393 }
4394
4395 return "????";
4396 }
4397
4398 /*
4399 * Return the RF name. "????" is returned if the RF is unknown.
4400 * Used for devices with external radios.
4401 */
4402 static const char *ath9k_hw_rf_name(u16 rf_version)
4403 {
4404 int i;
4405
4406 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
4407 if (ath_rf_names[i].version == rf_version) {
4408 return ath_rf_names[i].name;
4409 }
4410 }
4411
4412 return "????";
4413 }
4414
4415 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
4416 {
4417 int used;
4418
4419 /* chipsets >= AR9280 are single-chip */
4420 if (AR_SREV_9280_10_OR_LATER(ah)) {
4421 used = snprintf(hw_name, len,
4422 "Atheros AR%s Rev:%x",
4423 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
4424 ah->hw_version.macRev);
4425 }
4426 else {
4427 used = snprintf(hw_name, len,
4428 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
4429 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
4430 ah->hw_version.macRev,
4431 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
4432 AR_RADIO_SREV_MAJOR)),
4433 ah->hw_version.phyRev);
4434 }
4435
4436 hw_name[used] = '\0';
4437 }
4438 EXPORT_SYMBOL(ath9k_hw_name);
This page took 0.129659 seconds and 5 git commands to generate.