ath9k: check for specific rx stuck conditions and recover from them
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "hw-ops.h"
22 #include "rc.h"
23 #include "ar9003_mac.h"
24
25 #define ATH9K_CLOCK_RATE_CCK 22
26 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
27 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
28
29 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
30
31 MODULE_AUTHOR("Atheros Communications");
32 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
33 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
34 MODULE_LICENSE("Dual BSD/GPL");
35
36 static int __init ath9k_init(void)
37 {
38 return 0;
39 }
40 module_init(ath9k_init);
41
42 static void __exit ath9k_exit(void)
43 {
44 return;
45 }
46 module_exit(ath9k_exit);
47
48 /* Private hardware callbacks */
49
50 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
51 {
52 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
53 }
54
55 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
56 {
57 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
58 }
59
60 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
61 {
62 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
63
64 return priv_ops->macversion_supported(ah->hw_version.macVersion);
65 }
66
67 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
68 struct ath9k_channel *chan)
69 {
70 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
71 }
72
73 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
74 {
75 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
76 return;
77
78 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
79 }
80
81 /********************/
82 /* Helper Functions */
83 /********************/
84
85 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
86 {
87 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
88
89 if (!ah->curchan) /* should really check for CCK instead */
90 return usecs *ATH9K_CLOCK_RATE_CCK;
91 if (conf->channel->band == IEEE80211_BAND_2GHZ)
92 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
93 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
94 }
95
96 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
97 {
98 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
99
100 if (conf_is_ht40(conf))
101 return ath9k_hw_mac_clks(ah, usecs) * 2;
102 else
103 return ath9k_hw_mac_clks(ah, usecs);
104 }
105
106 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
107 {
108 int i;
109
110 BUG_ON(timeout < AH_TIME_QUANTUM);
111
112 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
113 if ((REG_READ(ah, reg) & mask) == val)
114 return true;
115
116 udelay(AH_TIME_QUANTUM);
117 }
118
119 ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
120 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
121 timeout, reg, REG_READ(ah, reg), mask, val);
122
123 return false;
124 }
125 EXPORT_SYMBOL(ath9k_hw_wait);
126
127 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
128 {
129 u32 retval;
130 int i;
131
132 for (i = 0, retval = 0; i < n; i++) {
133 retval = (retval << 1) | (val & 1);
134 val >>= 1;
135 }
136 return retval;
137 }
138
139 bool ath9k_get_channel_edges(struct ath_hw *ah,
140 u16 flags, u16 *low,
141 u16 *high)
142 {
143 struct ath9k_hw_capabilities *pCap = &ah->caps;
144
145 if (flags & CHANNEL_5GHZ) {
146 *low = pCap->low_5ghz_chan;
147 *high = pCap->high_5ghz_chan;
148 return true;
149 }
150 if ((flags & CHANNEL_2GHZ)) {
151 *low = pCap->low_2ghz_chan;
152 *high = pCap->high_2ghz_chan;
153 return true;
154 }
155 return false;
156 }
157
158 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
159 u8 phy, int kbps,
160 u32 frameLen, u16 rateix,
161 bool shortPreamble)
162 {
163 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
164
165 if (kbps == 0)
166 return 0;
167
168 switch (phy) {
169 case WLAN_RC_PHY_CCK:
170 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
171 if (shortPreamble)
172 phyTime >>= 1;
173 numBits = frameLen << 3;
174 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
175 break;
176 case WLAN_RC_PHY_OFDM:
177 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
178 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
179 numBits = OFDM_PLCP_BITS + (frameLen << 3);
180 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
181 txTime = OFDM_SIFS_TIME_QUARTER
182 + OFDM_PREAMBLE_TIME_QUARTER
183 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
184 } else if (ah->curchan &&
185 IS_CHAN_HALF_RATE(ah->curchan)) {
186 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
187 numBits = OFDM_PLCP_BITS + (frameLen << 3);
188 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
189 txTime = OFDM_SIFS_TIME_HALF +
190 OFDM_PREAMBLE_TIME_HALF
191 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
192 } else {
193 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
194 numBits = OFDM_PLCP_BITS + (frameLen << 3);
195 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
196 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
197 + (numSymbols * OFDM_SYMBOL_TIME);
198 }
199 break;
200 default:
201 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
202 "Unknown phy %u (rate ix %u)\n", phy, rateix);
203 txTime = 0;
204 break;
205 }
206
207 return txTime;
208 }
209 EXPORT_SYMBOL(ath9k_hw_computetxtime);
210
211 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
212 struct ath9k_channel *chan,
213 struct chan_centers *centers)
214 {
215 int8_t extoff;
216
217 if (!IS_CHAN_HT40(chan)) {
218 centers->ctl_center = centers->ext_center =
219 centers->synth_center = chan->channel;
220 return;
221 }
222
223 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
224 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
225 centers->synth_center =
226 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
227 extoff = 1;
228 } else {
229 centers->synth_center =
230 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
231 extoff = -1;
232 }
233
234 centers->ctl_center =
235 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
236 /* 25 MHz spacing is supported by hw but not on upper layers */
237 centers->ext_center =
238 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
239 }
240
241 /******************/
242 /* Chip Revisions */
243 /******************/
244
245 static void ath9k_hw_read_revisions(struct ath_hw *ah)
246 {
247 u32 val;
248
249 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
250
251 if (val == 0xFF) {
252 val = REG_READ(ah, AR_SREV);
253 ah->hw_version.macVersion =
254 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
255 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
256 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
257 } else {
258 if (!AR_SREV_9100(ah))
259 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
260
261 ah->hw_version.macRev = val & AR_SREV_REVISION;
262
263 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
264 ah->is_pciexpress = true;
265 }
266 }
267
268 /************************************/
269 /* HW Attach, Detach, Init Routines */
270 /************************************/
271
272 static void ath9k_hw_disablepcie(struct ath_hw *ah)
273 {
274 if (AR_SREV_9100(ah))
275 return;
276
277 ENABLE_REGWRITE_BUFFER(ah);
278
279 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
280 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
281 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
282 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
283 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
284 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
285 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
286 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
287 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
288
289 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
290
291 REGWRITE_BUFFER_FLUSH(ah);
292 DISABLE_REGWRITE_BUFFER(ah);
293 }
294
295 /* This should work for all families including legacy */
296 static bool ath9k_hw_chip_test(struct ath_hw *ah)
297 {
298 struct ath_common *common = ath9k_hw_common(ah);
299 u32 regAddr[2] = { AR_STA_ID0 };
300 u32 regHold[2];
301 u32 patternData[4] = { 0x55555555,
302 0xaaaaaaaa,
303 0x66666666,
304 0x99999999 };
305 int i, j, loop_max;
306
307 if (!AR_SREV_9300_20_OR_LATER(ah)) {
308 loop_max = 2;
309 regAddr[1] = AR_PHY_BASE + (8 << 2);
310 } else
311 loop_max = 1;
312
313 for (i = 0; i < loop_max; i++) {
314 u32 addr = regAddr[i];
315 u32 wrData, rdData;
316
317 regHold[i] = REG_READ(ah, addr);
318 for (j = 0; j < 0x100; j++) {
319 wrData = (j << 16) | j;
320 REG_WRITE(ah, addr, wrData);
321 rdData = REG_READ(ah, addr);
322 if (rdData != wrData) {
323 ath_print(common, ATH_DBG_FATAL,
324 "address test failed "
325 "addr: 0x%08x - wr:0x%08x != "
326 "rd:0x%08x\n",
327 addr, wrData, rdData);
328 return false;
329 }
330 }
331 for (j = 0; j < 4; j++) {
332 wrData = patternData[j];
333 REG_WRITE(ah, addr, wrData);
334 rdData = REG_READ(ah, addr);
335 if (wrData != rdData) {
336 ath_print(common, ATH_DBG_FATAL,
337 "address test failed "
338 "addr: 0x%08x - wr:0x%08x != "
339 "rd:0x%08x\n",
340 addr, wrData, rdData);
341 return false;
342 }
343 }
344 REG_WRITE(ah, regAddr[i], regHold[i]);
345 }
346 udelay(100);
347
348 return true;
349 }
350
351 static void ath9k_hw_init_config(struct ath_hw *ah)
352 {
353 int i;
354
355 ah->config.dma_beacon_response_time = 2;
356 ah->config.sw_beacon_response_time = 10;
357 ah->config.additional_swba_backoff = 0;
358 ah->config.ack_6mb = 0x0;
359 ah->config.cwm_ignore_extcca = 0;
360 ah->config.pcie_powersave_enable = 0;
361 ah->config.pcie_clock_req = 0;
362 ah->config.pcie_waen = 0;
363 ah->config.analog_shiftreg = 1;
364 ah->config.ofdm_trig_low = 200;
365 ah->config.ofdm_trig_high = 500;
366 ah->config.cck_trig_high = 200;
367 ah->config.cck_trig_low = 100;
368
369 /*
370 * For now ANI is disabled for AR9003, it is still
371 * being tested.
372 */
373 if (!AR_SREV_9300_20_OR_LATER(ah))
374 ah->config.enable_ani = 1;
375
376 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
377 ah->config.spurchans[i][0] = AR_NO_SPUR;
378 ah->config.spurchans[i][1] = AR_NO_SPUR;
379 }
380
381 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
382 ah->config.ht_enable = 1;
383 else
384 ah->config.ht_enable = 0;
385
386 ah->config.rx_intr_mitigation = true;
387
388 /*
389 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
390 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
391 * This means we use it for all AR5416 devices, and the few
392 * minor PCI AR9280 devices out there.
393 *
394 * Serialization is required because these devices do not handle
395 * well the case of two concurrent reads/writes due to the latency
396 * involved. During one read/write another read/write can be issued
397 * on another CPU while the previous read/write may still be working
398 * on our hardware, if we hit this case the hardware poops in a loop.
399 * We prevent this by serializing reads and writes.
400 *
401 * This issue is not present on PCI-Express devices or pre-AR5416
402 * devices (legacy, 802.11abg).
403 */
404 if (num_possible_cpus() > 1)
405 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
406 }
407
408 static void ath9k_hw_init_defaults(struct ath_hw *ah)
409 {
410 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
411
412 regulatory->country_code = CTRY_DEFAULT;
413 regulatory->power_limit = MAX_RATE_POWER;
414 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
415
416 ah->hw_version.magic = AR5416_MAGIC;
417 ah->hw_version.subvendorid = 0;
418
419 ah->ah_flags = 0;
420 if (!AR_SREV_9100(ah))
421 ah->ah_flags = AH_USE_EEPROM;
422
423 ah->atim_window = 0;
424 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
425 ah->beacon_interval = 100;
426 ah->enable_32kHz_clock = DONT_USE_32KHZ;
427 ah->slottime = (u32) -1;
428 ah->globaltxtimeout = (u32) -1;
429 ah->power_mode = ATH9K_PM_UNDEFINED;
430 }
431
432 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
433 {
434 struct ath_common *common = ath9k_hw_common(ah);
435 u32 sum;
436 int i;
437 u16 eeval;
438 u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
439
440 sum = 0;
441 for (i = 0; i < 3; i++) {
442 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
443 sum += eeval;
444 common->macaddr[2 * i] = eeval >> 8;
445 common->macaddr[2 * i + 1] = eeval & 0xff;
446 }
447 if (sum == 0 || sum == 0xffff * 3)
448 return -EADDRNOTAVAIL;
449
450 return 0;
451 }
452
453 static int ath9k_hw_post_init(struct ath_hw *ah)
454 {
455 int ecode;
456
457 if (!AR_SREV_9271(ah)) {
458 if (!ath9k_hw_chip_test(ah))
459 return -ENODEV;
460 }
461
462 if (!AR_SREV_9300_20_OR_LATER(ah)) {
463 ecode = ar9002_hw_rf_claim(ah);
464 if (ecode != 0)
465 return ecode;
466 }
467
468 ecode = ath9k_hw_eeprom_init(ah);
469 if (ecode != 0)
470 return ecode;
471
472 ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
473 "Eeprom VER: %d, REV: %d\n",
474 ah->eep_ops->get_eeprom_ver(ah),
475 ah->eep_ops->get_eeprom_rev(ah));
476
477 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
478 if (ecode) {
479 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
480 "Failed allocating banks for "
481 "external radio\n");
482 return ecode;
483 }
484
485 if (!AR_SREV_9100(ah)) {
486 ath9k_hw_ani_setup(ah);
487 ath9k_hw_ani_init(ah);
488 }
489
490 return 0;
491 }
492
493 static void ath9k_hw_attach_ops(struct ath_hw *ah)
494 {
495 if (AR_SREV_9300_20_OR_LATER(ah))
496 ar9003_hw_attach_ops(ah);
497 else
498 ar9002_hw_attach_ops(ah);
499 }
500
501 /* Called for all hardware families */
502 static int __ath9k_hw_init(struct ath_hw *ah)
503 {
504 struct ath_common *common = ath9k_hw_common(ah);
505 int r = 0;
506
507 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
508 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
509
510 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
511 ath_print(common, ATH_DBG_FATAL,
512 "Couldn't reset chip\n");
513 return -EIO;
514 }
515
516 ath9k_hw_init_defaults(ah);
517 ath9k_hw_init_config(ah);
518
519 ath9k_hw_attach_ops(ah);
520
521 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
522 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
523 return -EIO;
524 }
525
526 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
527 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
528 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
529 ah->config.serialize_regmode =
530 SER_REG_MODE_ON;
531 } else {
532 ah->config.serialize_regmode =
533 SER_REG_MODE_OFF;
534 }
535 }
536
537 ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
538 ah->config.serialize_regmode);
539
540 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
541 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
542 else
543 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
544
545 if (!ath9k_hw_macversion_supported(ah)) {
546 ath_print(common, ATH_DBG_FATAL,
547 "Mac Chip Rev 0x%02x.%x is not supported by "
548 "this driver\n", ah->hw_version.macVersion,
549 ah->hw_version.macRev);
550 return -EOPNOTSUPP;
551 }
552
553 if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
554 ah->is_pciexpress = false;
555
556 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
557 ath9k_hw_init_cal_settings(ah);
558
559 ah->ani_function = ATH9K_ANI_ALL;
560 if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
561 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
562
563 ath9k_hw_init_mode_regs(ah);
564
565 if (ah->is_pciexpress)
566 ath9k_hw_configpcipowersave(ah, 0, 0);
567 else
568 ath9k_hw_disablepcie(ah);
569
570 if (!AR_SREV_9300_20_OR_LATER(ah))
571 ar9002_hw_cck_chan14_spread(ah);
572
573 r = ath9k_hw_post_init(ah);
574 if (r)
575 return r;
576
577 ath9k_hw_init_mode_gain_regs(ah);
578 r = ath9k_hw_fill_cap_info(ah);
579 if (r)
580 return r;
581
582 r = ath9k_hw_init_macaddr(ah);
583 if (r) {
584 ath_print(common, ATH_DBG_FATAL,
585 "Failed to initialize MAC address\n");
586 return r;
587 }
588
589 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
590 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
591 else
592 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
593
594 if (AR_SREV_9300_20_OR_LATER(ah))
595 ar9003_hw_set_nf_limits(ah);
596
597 ath9k_init_nfcal_hist_buffer(ah);
598
599 common->state = ATH_HW_INITIALIZED;
600
601 return 0;
602 }
603
604 int ath9k_hw_init(struct ath_hw *ah)
605 {
606 int ret;
607 struct ath_common *common = ath9k_hw_common(ah);
608
609 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
610 switch (ah->hw_version.devid) {
611 case AR5416_DEVID_PCI:
612 case AR5416_DEVID_PCIE:
613 case AR5416_AR9100_DEVID:
614 case AR9160_DEVID_PCI:
615 case AR9280_DEVID_PCI:
616 case AR9280_DEVID_PCIE:
617 case AR9285_DEVID_PCIE:
618 case AR9287_DEVID_PCI:
619 case AR9287_DEVID_PCIE:
620 case AR2427_DEVID_PCIE:
621 case AR9300_DEVID_PCIE:
622 break;
623 default:
624 if (common->bus_ops->ath_bus_type == ATH_USB)
625 break;
626 ath_print(common, ATH_DBG_FATAL,
627 "Hardware device ID 0x%04x not supported\n",
628 ah->hw_version.devid);
629 return -EOPNOTSUPP;
630 }
631
632 ret = __ath9k_hw_init(ah);
633 if (ret) {
634 ath_print(common, ATH_DBG_FATAL,
635 "Unable to initialize hardware; "
636 "initialization status: %d\n", ret);
637 return ret;
638 }
639
640 return 0;
641 }
642 EXPORT_SYMBOL(ath9k_hw_init);
643
644 static void ath9k_hw_init_qos(struct ath_hw *ah)
645 {
646 ENABLE_REGWRITE_BUFFER(ah);
647
648 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
649 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
650
651 REG_WRITE(ah, AR_QOS_NO_ACK,
652 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
653 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
654 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
655
656 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
657 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
658 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
659 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
660 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
661
662 REGWRITE_BUFFER_FLUSH(ah);
663 DISABLE_REGWRITE_BUFFER(ah);
664 }
665
666 static void ath9k_hw_init_pll(struct ath_hw *ah,
667 struct ath9k_channel *chan)
668 {
669 u32 pll = ath9k_hw_compute_pll_control(ah, chan);
670
671 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
672
673 /* Switch the core clock for ar9271 to 117Mhz */
674 if (AR_SREV_9271(ah)) {
675 udelay(500);
676 REG_WRITE(ah, 0x50040, 0x304);
677 }
678
679 udelay(RTC_PLL_SETTLE_DELAY);
680
681 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
682 }
683
684 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
685 enum nl80211_iftype opmode)
686 {
687 u32 imr_reg = AR_IMR_TXERR |
688 AR_IMR_TXURN |
689 AR_IMR_RXERR |
690 AR_IMR_RXORN |
691 AR_IMR_BCNMISC;
692
693 if (AR_SREV_9300_20_OR_LATER(ah)) {
694 imr_reg |= AR_IMR_RXOK_HP;
695 if (ah->config.rx_intr_mitigation)
696 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
697 else
698 imr_reg |= AR_IMR_RXOK_LP;
699
700 } else {
701 if (ah->config.rx_intr_mitigation)
702 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
703 else
704 imr_reg |= AR_IMR_RXOK;
705 }
706
707 if (ah->config.tx_intr_mitigation)
708 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
709 else
710 imr_reg |= AR_IMR_TXOK;
711
712 if (opmode == NL80211_IFTYPE_AP)
713 imr_reg |= AR_IMR_MIB;
714
715 ENABLE_REGWRITE_BUFFER(ah);
716
717 REG_WRITE(ah, AR_IMR, imr_reg);
718 ah->imrs2_reg |= AR_IMR_S2_GTT;
719 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
720
721 if (!AR_SREV_9100(ah)) {
722 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
723 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
724 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
725 }
726
727 REGWRITE_BUFFER_FLUSH(ah);
728 DISABLE_REGWRITE_BUFFER(ah);
729
730 if (AR_SREV_9300_20_OR_LATER(ah)) {
731 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
732 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
733 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
734 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
735 }
736 }
737
738 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
739 {
740 u32 val = ath9k_hw_mac_to_clks(ah, us);
741 val = min(val, (u32) 0xFFFF);
742 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
743 }
744
745 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
746 {
747 u32 val = ath9k_hw_mac_to_clks(ah, us);
748 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
749 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
750 }
751
752 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
753 {
754 u32 val = ath9k_hw_mac_to_clks(ah, us);
755 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
756 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
757 }
758
759 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
760 {
761 if (tu > 0xFFFF) {
762 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
763 "bad global tx timeout %u\n", tu);
764 ah->globaltxtimeout = (u32) -1;
765 return false;
766 } else {
767 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
768 ah->globaltxtimeout = tu;
769 return true;
770 }
771 }
772
773 void ath9k_hw_init_global_settings(struct ath_hw *ah)
774 {
775 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
776 int acktimeout;
777 int slottime;
778 int sifstime;
779
780 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
781 ah->misc_mode);
782
783 if (ah->misc_mode != 0)
784 REG_WRITE(ah, AR_PCU_MISC,
785 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
786
787 if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
788 sifstime = 16;
789 else
790 sifstime = 10;
791
792 /* As defined by IEEE 802.11-2007 17.3.8.6 */
793 slottime = ah->slottime + 3 * ah->coverage_class;
794 acktimeout = slottime + sifstime;
795
796 /*
797 * Workaround for early ACK timeouts, add an offset to match the
798 * initval's 64us ack timeout value.
799 * This was initially only meant to work around an issue with delayed
800 * BA frames in some implementations, but it has been found to fix ACK
801 * timeout issues in other cases as well.
802 */
803 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
804 acktimeout += 64 - sifstime - ah->slottime;
805
806 ath9k_hw_setslottime(ah, slottime);
807 ath9k_hw_set_ack_timeout(ah, acktimeout);
808 ath9k_hw_set_cts_timeout(ah, acktimeout);
809 if (ah->globaltxtimeout != (u32) -1)
810 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
811 }
812 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
813
814 void ath9k_hw_deinit(struct ath_hw *ah)
815 {
816 struct ath_common *common = ath9k_hw_common(ah);
817
818 if (common->state < ATH_HW_INITIALIZED)
819 goto free_hw;
820
821 if (!AR_SREV_9100(ah))
822 ath9k_hw_ani_disable(ah);
823
824 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
825
826 free_hw:
827 ath9k_hw_rf_free_ext_banks(ah);
828 }
829 EXPORT_SYMBOL(ath9k_hw_deinit);
830
831 /*******/
832 /* INI */
833 /*******/
834
835 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
836 {
837 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
838
839 if (IS_CHAN_B(chan))
840 ctl |= CTL_11B;
841 else if (IS_CHAN_G(chan))
842 ctl |= CTL_11G;
843 else
844 ctl |= CTL_11A;
845
846 return ctl;
847 }
848
849 /****************************************/
850 /* Reset and Channel Switching Routines */
851 /****************************************/
852
853 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
854 {
855 struct ath_common *common = ath9k_hw_common(ah);
856 u32 regval;
857
858 ENABLE_REGWRITE_BUFFER(ah);
859
860 /*
861 * set AHB_MODE not to do cacheline prefetches
862 */
863 if (!AR_SREV_9300_20_OR_LATER(ah)) {
864 regval = REG_READ(ah, AR_AHB_MODE);
865 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
866 }
867
868 /*
869 * let mac dma reads be in 128 byte chunks
870 */
871 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
872 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
873
874 REGWRITE_BUFFER_FLUSH(ah);
875 DISABLE_REGWRITE_BUFFER(ah);
876
877 /*
878 * Restore TX Trigger Level to its pre-reset value.
879 * The initial value depends on whether aggregation is enabled, and is
880 * adjusted whenever underruns are detected.
881 */
882 if (!AR_SREV_9300_20_OR_LATER(ah))
883 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
884
885 ENABLE_REGWRITE_BUFFER(ah);
886
887 /*
888 * let mac dma writes be in 128 byte chunks
889 */
890 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
891 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
892
893 /*
894 * Setup receive FIFO threshold to hold off TX activities
895 */
896 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
897
898 if (AR_SREV_9300_20_OR_LATER(ah)) {
899 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
900 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
901
902 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
903 ah->caps.rx_status_len);
904 }
905
906 /*
907 * reduce the number of usable entries in PCU TXBUF to avoid
908 * wrap around issues.
909 */
910 if (AR_SREV_9285(ah)) {
911 /* For AR9285 the number of Fifos are reduced to half.
912 * So set the usable tx buf size also to half to
913 * avoid data/delimiter underruns
914 */
915 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
916 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
917 } else if (!AR_SREV_9271(ah)) {
918 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
919 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
920 }
921
922 REGWRITE_BUFFER_FLUSH(ah);
923 DISABLE_REGWRITE_BUFFER(ah);
924
925 if (AR_SREV_9300_20_OR_LATER(ah))
926 ath9k_hw_reset_txstatus_ring(ah);
927 }
928
929 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
930 {
931 u32 val;
932
933 val = REG_READ(ah, AR_STA_ID1);
934 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
935 switch (opmode) {
936 case NL80211_IFTYPE_AP:
937 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
938 | AR_STA_ID1_KSRCH_MODE);
939 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
940 break;
941 case NL80211_IFTYPE_ADHOC:
942 case NL80211_IFTYPE_MESH_POINT:
943 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
944 | AR_STA_ID1_KSRCH_MODE);
945 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
946 break;
947 case NL80211_IFTYPE_STATION:
948 case NL80211_IFTYPE_MONITOR:
949 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
950 break;
951 }
952 }
953
954 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
955 u32 *coef_mantissa, u32 *coef_exponent)
956 {
957 u32 coef_exp, coef_man;
958
959 for (coef_exp = 31; coef_exp > 0; coef_exp--)
960 if ((coef_scaled >> coef_exp) & 0x1)
961 break;
962
963 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
964
965 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
966
967 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
968 *coef_exponent = coef_exp - 16;
969 }
970
971 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
972 {
973 u32 rst_flags;
974 u32 tmpReg;
975
976 if (AR_SREV_9100(ah)) {
977 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
978 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
979 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
980 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
981 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
982 }
983
984 ENABLE_REGWRITE_BUFFER(ah);
985
986 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
987 AR_RTC_FORCE_WAKE_ON_INT);
988
989 if (AR_SREV_9100(ah)) {
990 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
991 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
992 } else {
993 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
994 if (tmpReg &
995 (AR_INTR_SYNC_LOCAL_TIMEOUT |
996 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
997 u32 val;
998 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
999
1000 val = AR_RC_HOSTIF;
1001 if (!AR_SREV_9300_20_OR_LATER(ah))
1002 val |= AR_RC_AHB;
1003 REG_WRITE(ah, AR_RC, val);
1004
1005 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1006 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1007
1008 rst_flags = AR_RTC_RC_MAC_WARM;
1009 if (type == ATH9K_RESET_COLD)
1010 rst_flags |= AR_RTC_RC_MAC_COLD;
1011 }
1012
1013 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1014
1015 REGWRITE_BUFFER_FLUSH(ah);
1016 DISABLE_REGWRITE_BUFFER(ah);
1017
1018 udelay(50);
1019
1020 REG_WRITE(ah, AR_RTC_RC, 0);
1021 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1022 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1023 "RTC stuck in MAC reset\n");
1024 return false;
1025 }
1026
1027 if (!AR_SREV_9100(ah))
1028 REG_WRITE(ah, AR_RC, 0);
1029
1030 if (AR_SREV_9100(ah))
1031 udelay(50);
1032
1033 return true;
1034 }
1035
1036 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1037 {
1038 ENABLE_REGWRITE_BUFFER(ah);
1039
1040 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1041 AR_RTC_FORCE_WAKE_ON_INT);
1042
1043 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1044 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1045
1046 REG_WRITE(ah, AR_RTC_RESET, 0);
1047
1048 REGWRITE_BUFFER_FLUSH(ah);
1049 DISABLE_REGWRITE_BUFFER(ah);
1050
1051 if (!AR_SREV_9300_20_OR_LATER(ah))
1052 udelay(2);
1053
1054 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1055 REG_WRITE(ah, AR_RC, 0);
1056
1057 REG_WRITE(ah, AR_RTC_RESET, 1);
1058
1059 if (!ath9k_hw_wait(ah,
1060 AR_RTC_STATUS,
1061 AR_RTC_STATUS_M,
1062 AR_RTC_STATUS_ON,
1063 AH_WAIT_TIMEOUT)) {
1064 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1065 "RTC not waking up\n");
1066 return false;
1067 }
1068
1069 ath9k_hw_read_revisions(ah);
1070
1071 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1072 }
1073
1074 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1075 {
1076 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1077 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1078
1079 switch (type) {
1080 case ATH9K_RESET_POWER_ON:
1081 return ath9k_hw_set_reset_power_on(ah);
1082 case ATH9K_RESET_WARM:
1083 case ATH9K_RESET_COLD:
1084 return ath9k_hw_set_reset(ah, type);
1085 default:
1086 return false;
1087 }
1088 }
1089
1090 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1091 struct ath9k_channel *chan)
1092 {
1093 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1094 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1095 return false;
1096 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1097 return false;
1098
1099 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1100 return false;
1101
1102 ah->chip_fullsleep = false;
1103 ath9k_hw_init_pll(ah, chan);
1104 ath9k_hw_set_rfmode(ah, chan);
1105
1106 return true;
1107 }
1108
1109 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1110 struct ath9k_channel *chan)
1111 {
1112 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1113 struct ath_common *common = ath9k_hw_common(ah);
1114 struct ieee80211_channel *channel = chan->chan;
1115 u32 qnum;
1116 int r;
1117
1118 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1119 if (ath9k_hw_numtxpending(ah, qnum)) {
1120 ath_print(common, ATH_DBG_QUEUE,
1121 "Transmit frames pending on "
1122 "queue %d\n", qnum);
1123 return false;
1124 }
1125 }
1126
1127 if (!ath9k_hw_rfbus_req(ah)) {
1128 ath_print(common, ATH_DBG_FATAL,
1129 "Could not kill baseband RX\n");
1130 return false;
1131 }
1132
1133 ath9k_hw_set_channel_regs(ah, chan);
1134
1135 r = ath9k_hw_rf_set_freq(ah, chan);
1136 if (r) {
1137 ath_print(common, ATH_DBG_FATAL,
1138 "Failed to set channel\n");
1139 return false;
1140 }
1141
1142 ah->eep_ops->set_txpower(ah, chan,
1143 ath9k_regd_get_ctl(regulatory, chan),
1144 channel->max_antenna_gain * 2,
1145 channel->max_power * 2,
1146 min((u32) MAX_RATE_POWER,
1147 (u32) regulatory->power_limit));
1148
1149 ath9k_hw_rfbus_done(ah);
1150
1151 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1152 ath9k_hw_set_delta_slope(ah, chan);
1153
1154 ath9k_hw_spur_mitigate_freq(ah, chan);
1155
1156 if (!chan->oneTimeCalsDone)
1157 chan->oneTimeCalsDone = true;
1158
1159 return true;
1160 }
1161
1162 bool ath9k_hw_check_alive(struct ath_hw *ah)
1163 {
1164 int count = 50;
1165 u32 reg;
1166
1167 if (AR_SREV_9285_10_OR_LATER(ah))
1168 return true;
1169
1170 do {
1171 reg = REG_READ(ah, AR_OBS_BUS_1);
1172
1173 if ((reg & 0x7E7FFFEF) == 0x00702400)
1174 continue;
1175
1176 switch (reg & 0x7E000B00) {
1177 case 0x1E000000:
1178 case 0x52000B00:
1179 case 0x18000B00:
1180 continue;
1181 default:
1182 return true;
1183 }
1184 } while (count-- > 0);
1185
1186 return false;
1187 }
1188 EXPORT_SYMBOL(ath9k_hw_check_alive);
1189
1190 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1191 bool bChannelChange)
1192 {
1193 struct ath_common *common = ath9k_hw_common(ah);
1194 u32 saveLedState;
1195 struct ath9k_channel *curchan = ah->curchan;
1196 u32 saveDefAntenna;
1197 u32 macStaId1;
1198 u64 tsf = 0;
1199 int i, r;
1200
1201 ah->txchainmask = common->tx_chainmask;
1202 ah->rxchainmask = common->rx_chainmask;
1203
1204 if (!ah->chip_fullsleep) {
1205 ath9k_hw_abortpcurecv(ah);
1206 if (!ath9k_hw_stopdmarecv(ah))
1207 ath_print(common, ATH_DBG_XMIT,
1208 "Failed to stop receive dma\n");
1209 }
1210
1211 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1212 return -EIO;
1213
1214 if (curchan && !ah->chip_fullsleep)
1215 ath9k_hw_getnf(ah, curchan);
1216
1217 if (bChannelChange &&
1218 (ah->chip_fullsleep != true) &&
1219 (ah->curchan != NULL) &&
1220 (chan->channel != ah->curchan->channel) &&
1221 ((chan->channelFlags & CHANNEL_ALL) ==
1222 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1223 !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1224 IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1225
1226 if (ath9k_hw_channel_change(ah, chan)) {
1227 ath9k_hw_loadnf(ah, ah->curchan);
1228 ath9k_hw_start_nfcal(ah);
1229 return 0;
1230 }
1231 }
1232
1233 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1234 if (saveDefAntenna == 0)
1235 saveDefAntenna = 1;
1236
1237 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1238
1239 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1240 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1241 tsf = ath9k_hw_gettsf64(ah);
1242
1243 saveLedState = REG_READ(ah, AR_CFG_LED) &
1244 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1245 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1246
1247 ath9k_hw_mark_phy_inactive(ah);
1248
1249 /* Only required on the first reset */
1250 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1251 REG_WRITE(ah,
1252 AR9271_RESET_POWER_DOWN_CONTROL,
1253 AR9271_RADIO_RF_RST);
1254 udelay(50);
1255 }
1256
1257 if (!ath9k_hw_chip_reset(ah, chan)) {
1258 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1259 return -EINVAL;
1260 }
1261
1262 /* Only required on the first reset */
1263 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1264 ah->htc_reset_init = false;
1265 REG_WRITE(ah,
1266 AR9271_RESET_POWER_DOWN_CONTROL,
1267 AR9271_GATE_MAC_CTL);
1268 udelay(50);
1269 }
1270
1271 /* Restore TSF */
1272 if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1273 ath9k_hw_settsf64(ah, tsf);
1274
1275 if (AR_SREV_9280_10_OR_LATER(ah))
1276 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1277
1278 r = ath9k_hw_process_ini(ah, chan);
1279 if (r)
1280 return r;
1281
1282 /* Setup MFP options for CCMP */
1283 if (AR_SREV_9280_20_OR_LATER(ah)) {
1284 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1285 * frames when constructing CCMP AAD. */
1286 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1287 0xc7ff);
1288 ah->sw_mgmt_crypto = false;
1289 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1290 /* Disable hardware crypto for management frames */
1291 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1292 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1293 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1294 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1295 ah->sw_mgmt_crypto = true;
1296 } else
1297 ah->sw_mgmt_crypto = true;
1298
1299 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1300 ath9k_hw_set_delta_slope(ah, chan);
1301
1302 ath9k_hw_spur_mitigate_freq(ah, chan);
1303 ah->eep_ops->set_board_values(ah, chan);
1304
1305 ath9k_hw_set_operating_mode(ah, ah->opmode);
1306
1307 ENABLE_REGWRITE_BUFFER(ah);
1308
1309 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1310 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1311 | macStaId1
1312 | AR_STA_ID1_RTS_USE_DEF
1313 | (ah->config.
1314 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1315 | ah->sta_id1_defaults);
1316 ath_hw_setbssidmask(common);
1317 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1318 ath9k_hw_write_associd(ah);
1319 REG_WRITE(ah, AR_ISR, ~0);
1320 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1321
1322 REGWRITE_BUFFER_FLUSH(ah);
1323 DISABLE_REGWRITE_BUFFER(ah);
1324
1325 r = ath9k_hw_rf_set_freq(ah, chan);
1326 if (r)
1327 return r;
1328
1329 ENABLE_REGWRITE_BUFFER(ah);
1330
1331 for (i = 0; i < AR_NUM_DCU; i++)
1332 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1333
1334 REGWRITE_BUFFER_FLUSH(ah);
1335 DISABLE_REGWRITE_BUFFER(ah);
1336
1337 ah->intr_txqs = 0;
1338 for (i = 0; i < ah->caps.total_queues; i++)
1339 ath9k_hw_resettxqueue(ah, i);
1340
1341 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1342 ath9k_hw_init_qos(ah);
1343
1344 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1345 ath9k_enable_rfkill(ah);
1346
1347 ath9k_hw_init_global_settings(ah);
1348
1349 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1350 ar9002_hw_enable_async_fifo(ah);
1351 ar9002_hw_enable_wep_aggregation(ah);
1352 }
1353
1354 REG_WRITE(ah, AR_STA_ID1,
1355 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1356
1357 ath9k_hw_set_dma(ah);
1358
1359 REG_WRITE(ah, AR_OBS, 8);
1360
1361 if (ah->config.rx_intr_mitigation) {
1362 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1363 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1364 }
1365
1366 if (ah->config.tx_intr_mitigation) {
1367 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1368 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1369 }
1370
1371 ath9k_hw_init_bb(ah, chan);
1372
1373 if (!ath9k_hw_init_cal(ah, chan))
1374 return -EIO;
1375
1376 ENABLE_REGWRITE_BUFFER(ah);
1377
1378 ath9k_hw_restore_chainmask(ah);
1379 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1380
1381 REGWRITE_BUFFER_FLUSH(ah);
1382 DISABLE_REGWRITE_BUFFER(ah);
1383
1384 /*
1385 * For big endian systems turn on swapping for descriptors
1386 */
1387 if (AR_SREV_9100(ah)) {
1388 u32 mask;
1389 mask = REG_READ(ah, AR_CFG);
1390 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1391 ath_print(common, ATH_DBG_RESET,
1392 "CFG Byte Swap Set 0x%x\n", mask);
1393 } else {
1394 mask =
1395 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1396 REG_WRITE(ah, AR_CFG, mask);
1397 ath_print(common, ATH_DBG_RESET,
1398 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1399 }
1400 } else {
1401 /* Configure AR9271 target WLAN */
1402 if (AR_SREV_9271(ah))
1403 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1404 #ifdef __BIG_ENDIAN
1405 else
1406 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1407 #endif
1408 }
1409
1410 if (ah->btcoex_hw.enabled)
1411 ath9k_hw_btcoex_enable(ah);
1412
1413 if (AR_SREV_9300_20_OR_LATER(ah)) {
1414 ath9k_hw_loadnf(ah, curchan);
1415 ath9k_hw_start_nfcal(ah);
1416 }
1417
1418 return 0;
1419 }
1420 EXPORT_SYMBOL(ath9k_hw_reset);
1421
1422 /************************/
1423 /* Key Cache Management */
1424 /************************/
1425
1426 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1427 {
1428 u32 keyType;
1429
1430 if (entry >= ah->caps.keycache_size) {
1431 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1432 "keychache entry %u out of range\n", entry);
1433 return false;
1434 }
1435
1436 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1437
1438 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1439 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1440 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1441 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1442 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1443 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1444 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1445 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1446
1447 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1448 u16 micentry = entry + 64;
1449
1450 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1451 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1452 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1453 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1454
1455 }
1456
1457 return true;
1458 }
1459 EXPORT_SYMBOL(ath9k_hw_keyreset);
1460
1461 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1462 {
1463 u32 macHi, macLo;
1464
1465 if (entry >= ah->caps.keycache_size) {
1466 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1467 "keychache entry %u out of range\n", entry);
1468 return false;
1469 }
1470
1471 if (mac != NULL) {
1472 macHi = (mac[5] << 8) | mac[4];
1473 macLo = (mac[3] << 24) |
1474 (mac[2] << 16) |
1475 (mac[1] << 8) |
1476 mac[0];
1477 macLo >>= 1;
1478 macLo |= (macHi & 1) << 31;
1479 macHi >>= 1;
1480 } else {
1481 macLo = macHi = 0;
1482 }
1483 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1484 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
1485
1486 return true;
1487 }
1488 EXPORT_SYMBOL(ath9k_hw_keysetmac);
1489
1490 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1491 const struct ath9k_keyval *k,
1492 const u8 *mac)
1493 {
1494 const struct ath9k_hw_capabilities *pCap = &ah->caps;
1495 struct ath_common *common = ath9k_hw_common(ah);
1496 u32 key0, key1, key2, key3, key4;
1497 u32 keyType;
1498
1499 if (entry >= pCap->keycache_size) {
1500 ath_print(common, ATH_DBG_FATAL,
1501 "keycache entry %u out of range\n", entry);
1502 return false;
1503 }
1504
1505 switch (k->kv_type) {
1506 case ATH9K_CIPHER_AES_OCB:
1507 keyType = AR_KEYTABLE_TYPE_AES;
1508 break;
1509 case ATH9K_CIPHER_AES_CCM:
1510 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1511 ath_print(common, ATH_DBG_ANY,
1512 "AES-CCM not supported by mac rev 0x%x\n",
1513 ah->hw_version.macRev);
1514 return false;
1515 }
1516 keyType = AR_KEYTABLE_TYPE_CCM;
1517 break;
1518 case ATH9K_CIPHER_TKIP:
1519 keyType = AR_KEYTABLE_TYPE_TKIP;
1520 if (ATH9K_IS_MIC_ENABLED(ah)
1521 && entry + 64 >= pCap->keycache_size) {
1522 ath_print(common, ATH_DBG_ANY,
1523 "entry %u inappropriate for TKIP\n", entry);
1524 return false;
1525 }
1526 break;
1527 case ATH9K_CIPHER_WEP:
1528 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1529 ath_print(common, ATH_DBG_ANY,
1530 "WEP key length %u too small\n", k->kv_len);
1531 return false;
1532 }
1533 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1534 keyType = AR_KEYTABLE_TYPE_40;
1535 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1536 keyType = AR_KEYTABLE_TYPE_104;
1537 else
1538 keyType = AR_KEYTABLE_TYPE_128;
1539 break;
1540 case ATH9K_CIPHER_CLR:
1541 keyType = AR_KEYTABLE_TYPE_CLR;
1542 break;
1543 default:
1544 ath_print(common, ATH_DBG_FATAL,
1545 "cipher %u not supported\n", k->kv_type);
1546 return false;
1547 }
1548
1549 key0 = get_unaligned_le32(k->kv_val + 0);
1550 key1 = get_unaligned_le16(k->kv_val + 4);
1551 key2 = get_unaligned_le32(k->kv_val + 6);
1552 key3 = get_unaligned_le16(k->kv_val + 10);
1553 key4 = get_unaligned_le32(k->kv_val + 12);
1554 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1555 key4 &= 0xff;
1556
1557 /*
1558 * Note: Key cache registers access special memory area that requires
1559 * two 32-bit writes to actually update the values in the internal
1560 * memory. Consequently, the exact order and pairs used here must be
1561 * maintained.
1562 */
1563
1564 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1565 u16 micentry = entry + 64;
1566
1567 /*
1568 * Write inverted key[47:0] first to avoid Michael MIC errors
1569 * on frames that could be sent or received at the same time.
1570 * The correct key will be written in the end once everything
1571 * else is ready.
1572 */
1573 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1574 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1575
1576 /* Write key[95:48] */
1577 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1578 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1579
1580 /* Write key[127:96] and key type */
1581 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1582 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1583
1584 /* Write MAC address for the entry */
1585 (void) ath9k_hw_keysetmac(ah, entry, mac);
1586
1587 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1588 /*
1589 * TKIP uses two key cache entries:
1590 * Michael MIC TX/RX keys in the same key cache entry
1591 * (idx = main index + 64):
1592 * key0 [31:0] = RX key [31:0]
1593 * key1 [15:0] = TX key [31:16]
1594 * key1 [31:16] = reserved
1595 * key2 [31:0] = RX key [63:32]
1596 * key3 [15:0] = TX key [15:0]
1597 * key3 [31:16] = reserved
1598 * key4 [31:0] = TX key [63:32]
1599 */
1600 u32 mic0, mic1, mic2, mic3, mic4;
1601
1602 mic0 = get_unaligned_le32(k->kv_mic + 0);
1603 mic2 = get_unaligned_le32(k->kv_mic + 4);
1604 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1605 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1606 mic4 = get_unaligned_le32(k->kv_txmic + 4);
1607
1608 /* Write RX[31:0] and TX[31:16] */
1609 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1610 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1611
1612 /* Write RX[63:32] and TX[15:0] */
1613 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1614 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1615
1616 /* Write TX[63:32] and keyType(reserved) */
1617 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1618 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1619 AR_KEYTABLE_TYPE_CLR);
1620
1621 } else {
1622 /*
1623 * TKIP uses four key cache entries (two for group
1624 * keys):
1625 * Michael MIC TX/RX keys are in different key cache
1626 * entries (idx = main index + 64 for TX and
1627 * main index + 32 + 96 for RX):
1628 * key0 [31:0] = TX/RX MIC key [31:0]
1629 * key1 [31:0] = reserved
1630 * key2 [31:0] = TX/RX MIC key [63:32]
1631 * key3 [31:0] = reserved
1632 * key4 [31:0] = reserved
1633 *
1634 * Upper layer code will call this function separately
1635 * for TX and RX keys when these registers offsets are
1636 * used.
1637 */
1638 u32 mic0, mic2;
1639
1640 mic0 = get_unaligned_le32(k->kv_mic + 0);
1641 mic2 = get_unaligned_le32(k->kv_mic + 4);
1642
1643 /* Write MIC key[31:0] */
1644 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1645 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1646
1647 /* Write MIC key[63:32] */
1648 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1649 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1650
1651 /* Write TX[63:32] and keyType(reserved) */
1652 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1653 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1654 AR_KEYTABLE_TYPE_CLR);
1655 }
1656
1657 /* MAC address registers are reserved for the MIC entry */
1658 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1659 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1660
1661 /*
1662 * Write the correct (un-inverted) key[47:0] last to enable
1663 * TKIP now that all other registers are set with correct
1664 * values.
1665 */
1666 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1667 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1668 } else {
1669 /* Write key[47:0] */
1670 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1671 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1672
1673 /* Write key[95:48] */
1674 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1675 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1676
1677 /* Write key[127:96] and key type */
1678 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1679 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1680
1681 /* Write MAC address for the entry */
1682 (void) ath9k_hw_keysetmac(ah, entry, mac);
1683 }
1684
1685 return true;
1686 }
1687 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1688
1689 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
1690 {
1691 if (entry < ah->caps.keycache_size) {
1692 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
1693 if (val & AR_KEYTABLE_VALID)
1694 return true;
1695 }
1696 return false;
1697 }
1698 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
1699
1700 /******************************/
1701 /* Power Management (Chipset) */
1702 /******************************/
1703
1704 /*
1705 * Notify Power Mgt is disabled in self-generated frames.
1706 * If requested, force chip to sleep.
1707 */
1708 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1709 {
1710 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1711 if (setChip) {
1712 /*
1713 * Clear the RTC force wake bit to allow the
1714 * mac to go to sleep.
1715 */
1716 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1717 AR_RTC_FORCE_WAKE_EN);
1718 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1719 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1720
1721 /* Shutdown chip. Active low */
1722 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1723 REG_CLR_BIT(ah, (AR_RTC_RESET),
1724 AR_RTC_RESET_EN);
1725 }
1726 }
1727
1728 /*
1729 * Notify Power Management is enabled in self-generating
1730 * frames. If request, set power mode of chip to
1731 * auto/normal. Duration in units of 128us (1/8 TU).
1732 */
1733 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1734 {
1735 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1736 if (setChip) {
1737 struct ath9k_hw_capabilities *pCap = &ah->caps;
1738
1739 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1740 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1741 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1742 AR_RTC_FORCE_WAKE_ON_INT);
1743 } else {
1744 /*
1745 * Clear the RTC force wake bit to allow the
1746 * mac to go to sleep.
1747 */
1748 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1749 AR_RTC_FORCE_WAKE_EN);
1750 }
1751 }
1752 }
1753
1754 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1755 {
1756 u32 val;
1757 int i;
1758
1759 if (setChip) {
1760 if ((REG_READ(ah, AR_RTC_STATUS) &
1761 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1762 if (ath9k_hw_set_reset_reg(ah,
1763 ATH9K_RESET_POWER_ON) != true) {
1764 return false;
1765 }
1766 if (!AR_SREV_9300_20_OR_LATER(ah))
1767 ath9k_hw_init_pll(ah, NULL);
1768 }
1769 if (AR_SREV_9100(ah))
1770 REG_SET_BIT(ah, AR_RTC_RESET,
1771 AR_RTC_RESET_EN);
1772
1773 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1774 AR_RTC_FORCE_WAKE_EN);
1775 udelay(50);
1776
1777 for (i = POWER_UP_TIME / 50; i > 0; i--) {
1778 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1779 if (val == AR_RTC_STATUS_ON)
1780 break;
1781 udelay(50);
1782 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1783 AR_RTC_FORCE_WAKE_EN);
1784 }
1785 if (i == 0) {
1786 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1787 "Failed to wakeup in %uus\n",
1788 POWER_UP_TIME / 20);
1789 return false;
1790 }
1791 }
1792
1793 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1794
1795 return true;
1796 }
1797
1798 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1799 {
1800 struct ath_common *common = ath9k_hw_common(ah);
1801 int status = true, setChip = true;
1802 static const char *modes[] = {
1803 "AWAKE",
1804 "FULL-SLEEP",
1805 "NETWORK SLEEP",
1806 "UNDEFINED"
1807 };
1808
1809 if (ah->power_mode == mode)
1810 return status;
1811
1812 ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
1813 modes[ah->power_mode], modes[mode]);
1814
1815 switch (mode) {
1816 case ATH9K_PM_AWAKE:
1817 status = ath9k_hw_set_power_awake(ah, setChip);
1818 break;
1819 case ATH9K_PM_FULL_SLEEP:
1820 ath9k_set_power_sleep(ah, setChip);
1821 ah->chip_fullsleep = true;
1822 break;
1823 case ATH9K_PM_NETWORK_SLEEP:
1824 ath9k_set_power_network_sleep(ah, setChip);
1825 break;
1826 default:
1827 ath_print(common, ATH_DBG_FATAL,
1828 "Unknown power mode %u\n", mode);
1829 return false;
1830 }
1831 ah->power_mode = mode;
1832
1833 return status;
1834 }
1835 EXPORT_SYMBOL(ath9k_hw_setpower);
1836
1837 /*******************/
1838 /* Beacon Handling */
1839 /*******************/
1840
1841 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1842 {
1843 int flags = 0;
1844
1845 ah->beacon_interval = beacon_period;
1846
1847 ENABLE_REGWRITE_BUFFER(ah);
1848
1849 switch (ah->opmode) {
1850 case NL80211_IFTYPE_STATION:
1851 case NL80211_IFTYPE_MONITOR:
1852 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1853 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
1854 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
1855 flags |= AR_TBTT_TIMER_EN;
1856 break;
1857 case NL80211_IFTYPE_ADHOC:
1858 case NL80211_IFTYPE_MESH_POINT:
1859 REG_SET_BIT(ah, AR_TXCFG,
1860 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1861 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1862 TU_TO_USEC(next_beacon +
1863 (ah->atim_window ? ah->
1864 atim_window : 1)));
1865 flags |= AR_NDP_TIMER_EN;
1866 case NL80211_IFTYPE_AP:
1867 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1868 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1869 TU_TO_USEC(next_beacon -
1870 ah->config.
1871 dma_beacon_response_time));
1872 REG_WRITE(ah, AR_NEXT_SWBA,
1873 TU_TO_USEC(next_beacon -
1874 ah->config.
1875 sw_beacon_response_time));
1876 flags |=
1877 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1878 break;
1879 default:
1880 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
1881 "%s: unsupported opmode: %d\n",
1882 __func__, ah->opmode);
1883 return;
1884 break;
1885 }
1886
1887 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1888 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1889 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1890 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1891
1892 REGWRITE_BUFFER_FLUSH(ah);
1893 DISABLE_REGWRITE_BUFFER(ah);
1894
1895 beacon_period &= ~ATH9K_BEACON_ENA;
1896 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1897 ath9k_hw_reset_tsf(ah);
1898 }
1899
1900 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1901 }
1902 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1903
1904 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1905 const struct ath9k_beacon_state *bs)
1906 {
1907 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1908 struct ath9k_hw_capabilities *pCap = &ah->caps;
1909 struct ath_common *common = ath9k_hw_common(ah);
1910
1911 ENABLE_REGWRITE_BUFFER(ah);
1912
1913 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1914
1915 REG_WRITE(ah, AR_BEACON_PERIOD,
1916 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1917 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1918 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1919
1920 REGWRITE_BUFFER_FLUSH(ah);
1921 DISABLE_REGWRITE_BUFFER(ah);
1922
1923 REG_RMW_FIELD(ah, AR_RSSI_THR,
1924 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1925
1926 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1927
1928 if (bs->bs_sleepduration > beaconintval)
1929 beaconintval = bs->bs_sleepduration;
1930
1931 dtimperiod = bs->bs_dtimperiod;
1932 if (bs->bs_sleepduration > dtimperiod)
1933 dtimperiod = bs->bs_sleepduration;
1934
1935 if (beaconintval == dtimperiod)
1936 nextTbtt = bs->bs_nextdtim;
1937 else
1938 nextTbtt = bs->bs_nexttbtt;
1939
1940 ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1941 ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1942 ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1943 ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1944
1945 ENABLE_REGWRITE_BUFFER(ah);
1946
1947 REG_WRITE(ah, AR_NEXT_DTIM,
1948 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1949 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1950
1951 REG_WRITE(ah, AR_SLEEP1,
1952 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1953 | AR_SLEEP1_ASSUME_DTIM);
1954
1955 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1956 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1957 else
1958 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1959
1960 REG_WRITE(ah, AR_SLEEP2,
1961 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1962
1963 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1964 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1965
1966 REGWRITE_BUFFER_FLUSH(ah);
1967 DISABLE_REGWRITE_BUFFER(ah);
1968
1969 REG_SET_BIT(ah, AR_TIMER_MODE,
1970 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1971 AR_DTIM_TIMER_EN);
1972
1973 /* TSF Out of Range Threshold */
1974 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1975 }
1976 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1977
1978 /*******************/
1979 /* HW Capabilities */
1980 /*******************/
1981
1982 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1983 {
1984 struct ath9k_hw_capabilities *pCap = &ah->caps;
1985 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1986 struct ath_common *common = ath9k_hw_common(ah);
1987 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1988
1989 u16 capField = 0, eeval;
1990
1991 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1992 regulatory->current_rd = eeval;
1993
1994 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1995 if (AR_SREV_9285_10_OR_LATER(ah))
1996 eeval |= AR9285_RDEXT_DEFAULT;
1997 regulatory->current_rd_ext = eeval;
1998
1999 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2000
2001 if (ah->opmode != NL80211_IFTYPE_AP &&
2002 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2003 if (regulatory->current_rd == 0x64 ||
2004 regulatory->current_rd == 0x65)
2005 regulatory->current_rd += 5;
2006 else if (regulatory->current_rd == 0x41)
2007 regulatory->current_rd = 0x43;
2008 ath_print(common, ATH_DBG_REGULATORY,
2009 "regdomain mapped to 0x%x\n", regulatory->current_rd);
2010 }
2011
2012 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2013 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2014 ath_print(common, ATH_DBG_FATAL,
2015 "no band has been marked as supported in EEPROM.\n");
2016 return -EINVAL;
2017 }
2018
2019 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2020
2021 if (eeval & AR5416_OPFLAGS_11A) {
2022 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2023 if (ah->config.ht_enable) {
2024 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2025 set_bit(ATH9K_MODE_11NA_HT20,
2026 pCap->wireless_modes);
2027 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2028 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2029 pCap->wireless_modes);
2030 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2031 pCap->wireless_modes);
2032 }
2033 }
2034 }
2035
2036 if (eeval & AR5416_OPFLAGS_11G) {
2037 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2038 if (ah->config.ht_enable) {
2039 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2040 set_bit(ATH9K_MODE_11NG_HT20,
2041 pCap->wireless_modes);
2042 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2043 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2044 pCap->wireless_modes);
2045 set_bit(ATH9K_MODE_11NG_HT40MINUS,
2046 pCap->wireless_modes);
2047 }
2048 }
2049 }
2050
2051 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2052 /*
2053 * For AR9271 we will temporarilly uses the rx chainmax as read from
2054 * the EEPROM.
2055 */
2056 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2057 !(eeval & AR5416_OPFLAGS_11A) &&
2058 !(AR_SREV_9271(ah)))
2059 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2060 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2061 else
2062 /* Use rx_chainmask from EEPROM. */
2063 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2064
2065 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2066 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2067
2068 pCap->low_2ghz_chan = 2312;
2069 pCap->high_2ghz_chan = 2732;
2070
2071 pCap->low_5ghz_chan = 4920;
2072 pCap->high_5ghz_chan = 6100;
2073
2074 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2075 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2076 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2077
2078 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2079 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2080 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2081
2082 if (ah->config.ht_enable)
2083 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2084 else
2085 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2086
2087 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2088 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2089 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2090 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2091
2092 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2093 pCap->total_queues =
2094 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2095 else
2096 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2097
2098 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2099 pCap->keycache_size =
2100 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2101 else
2102 pCap->keycache_size = AR_KEYTABLE_SIZE;
2103
2104 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2105
2106 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2107 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2108 else
2109 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2110
2111 if (AR_SREV_9271(ah))
2112 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2113 else if (AR_SREV_9285_10_OR_LATER(ah))
2114 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2115 else if (AR_SREV_9280_10_OR_LATER(ah))
2116 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2117 else
2118 pCap->num_gpio_pins = AR_NUM_GPIO;
2119
2120 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2121 pCap->hw_caps |= ATH9K_HW_CAP_CST;
2122 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2123 } else {
2124 pCap->rts_aggr_limit = (8 * 1024);
2125 }
2126
2127 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2128
2129 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2130 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2131 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2132 ah->rfkill_gpio =
2133 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2134 ah->rfkill_polarity =
2135 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2136
2137 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2138 }
2139 #endif
2140 if (AR_SREV_9271(ah))
2141 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2142 else
2143 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2144
2145 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2146 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2147 else
2148 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2149
2150 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2151 pCap->reg_cap =
2152 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2153 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2154 AR_EEPROM_EEREGCAP_EN_KK_U2 |
2155 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2156 } else {
2157 pCap->reg_cap =
2158 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2159 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2160 }
2161
2162 /* Advertise midband for AR5416 with FCC midband set in eeprom */
2163 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2164 AR_SREV_5416(ah))
2165 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2166
2167 pCap->num_antcfg_5ghz =
2168 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2169 pCap->num_antcfg_2ghz =
2170 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2171
2172 if (AR_SREV_9280_10_OR_LATER(ah) &&
2173 ath9k_hw_btcoex_supported(ah)) {
2174 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2175 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2176
2177 if (AR_SREV_9285(ah)) {
2178 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2179 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2180 } else {
2181 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2182 }
2183 } else {
2184 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2185 }
2186
2187 if (AR_SREV_9300_20_OR_LATER(ah)) {
2188 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC;
2189 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2190 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2191 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2192 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2193 pCap->txs_len = sizeof(struct ar9003_txs);
2194 } else {
2195 pCap->tx_desc_len = sizeof(struct ath_desc);
2196 }
2197
2198 if (AR_SREV_9300_20_OR_LATER(ah))
2199 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2200
2201 return 0;
2202 }
2203
2204 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2205 u32 capability, u32 *result)
2206 {
2207 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2208 switch (type) {
2209 case ATH9K_CAP_CIPHER:
2210 switch (capability) {
2211 case ATH9K_CIPHER_AES_CCM:
2212 case ATH9K_CIPHER_AES_OCB:
2213 case ATH9K_CIPHER_TKIP:
2214 case ATH9K_CIPHER_WEP:
2215 case ATH9K_CIPHER_MIC:
2216 case ATH9K_CIPHER_CLR:
2217 return true;
2218 default:
2219 return false;
2220 }
2221 case ATH9K_CAP_TKIP_MIC:
2222 switch (capability) {
2223 case 0:
2224 return true;
2225 case 1:
2226 return (ah->sta_id1_defaults &
2227 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
2228 false;
2229 }
2230 case ATH9K_CAP_TKIP_SPLIT:
2231 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
2232 false : true;
2233 case ATH9K_CAP_MCAST_KEYSRCH:
2234 switch (capability) {
2235 case 0:
2236 return true;
2237 case 1:
2238 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
2239 return false;
2240 } else {
2241 return (ah->sta_id1_defaults &
2242 AR_STA_ID1_MCAST_KSRCH) ? true :
2243 false;
2244 }
2245 }
2246 return false;
2247 case ATH9K_CAP_TXPOW:
2248 switch (capability) {
2249 case 0:
2250 return 0;
2251 case 1:
2252 *result = regulatory->power_limit;
2253 return 0;
2254 case 2:
2255 *result = regulatory->max_power_level;
2256 return 0;
2257 case 3:
2258 *result = regulatory->tp_scale;
2259 return 0;
2260 }
2261 return false;
2262 case ATH9K_CAP_DS:
2263 return (AR_SREV_9280_20_OR_LATER(ah) &&
2264 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
2265 ? false : true;
2266 default:
2267 return false;
2268 }
2269 }
2270 EXPORT_SYMBOL(ath9k_hw_getcapability);
2271
2272 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2273 u32 capability, u32 setting, int *status)
2274 {
2275 switch (type) {
2276 case ATH9K_CAP_TKIP_MIC:
2277 if (setting)
2278 ah->sta_id1_defaults |=
2279 AR_STA_ID1_CRPT_MIC_ENABLE;
2280 else
2281 ah->sta_id1_defaults &=
2282 ~AR_STA_ID1_CRPT_MIC_ENABLE;
2283 return true;
2284 case ATH9K_CAP_MCAST_KEYSRCH:
2285 if (setting)
2286 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
2287 else
2288 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
2289 return true;
2290 default:
2291 return false;
2292 }
2293 }
2294 EXPORT_SYMBOL(ath9k_hw_setcapability);
2295
2296 /****************************/
2297 /* GPIO / RFKILL / Antennae */
2298 /****************************/
2299
2300 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2301 u32 gpio, u32 type)
2302 {
2303 int addr;
2304 u32 gpio_shift, tmp;
2305
2306 if (gpio > 11)
2307 addr = AR_GPIO_OUTPUT_MUX3;
2308 else if (gpio > 5)
2309 addr = AR_GPIO_OUTPUT_MUX2;
2310 else
2311 addr = AR_GPIO_OUTPUT_MUX1;
2312
2313 gpio_shift = (gpio % 6) * 5;
2314
2315 if (AR_SREV_9280_20_OR_LATER(ah)
2316 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2317 REG_RMW(ah, addr, (type << gpio_shift),
2318 (0x1f << gpio_shift));
2319 } else {
2320 tmp = REG_READ(ah, addr);
2321 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2322 tmp &= ~(0x1f << gpio_shift);
2323 tmp |= (type << gpio_shift);
2324 REG_WRITE(ah, addr, tmp);
2325 }
2326 }
2327
2328 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2329 {
2330 u32 gpio_shift;
2331
2332 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2333
2334 gpio_shift = gpio << 1;
2335
2336 REG_RMW(ah,
2337 AR_GPIO_OE_OUT,
2338 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2339 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2340 }
2341 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2342
2343 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2344 {
2345 #define MS_REG_READ(x, y) \
2346 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2347
2348 if (gpio >= ah->caps.num_gpio_pins)
2349 return 0xffffffff;
2350
2351 if (AR_SREV_9300_20_OR_LATER(ah))
2352 return MS_REG_READ(AR9300, gpio) != 0;
2353 else if (AR_SREV_9271(ah))
2354 return MS_REG_READ(AR9271, gpio) != 0;
2355 else if (AR_SREV_9287_10_OR_LATER(ah))
2356 return MS_REG_READ(AR9287, gpio) != 0;
2357 else if (AR_SREV_9285_10_OR_LATER(ah))
2358 return MS_REG_READ(AR9285, gpio) != 0;
2359 else if (AR_SREV_9280_10_OR_LATER(ah))
2360 return MS_REG_READ(AR928X, gpio) != 0;
2361 else
2362 return MS_REG_READ(AR, gpio) != 0;
2363 }
2364 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2365
2366 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2367 u32 ah_signal_type)
2368 {
2369 u32 gpio_shift;
2370
2371 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2372
2373 gpio_shift = 2 * gpio;
2374
2375 REG_RMW(ah,
2376 AR_GPIO_OE_OUT,
2377 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2378 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2379 }
2380 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2381
2382 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2383 {
2384 if (AR_SREV_9271(ah))
2385 val = ~val;
2386
2387 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2388 AR_GPIO_BIT(gpio));
2389 }
2390 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2391
2392 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2393 {
2394 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2395 }
2396 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2397
2398 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2399 {
2400 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2401 }
2402 EXPORT_SYMBOL(ath9k_hw_setantenna);
2403
2404 /*********************/
2405 /* General Operation */
2406 /*********************/
2407
2408 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2409 {
2410 u32 bits = REG_READ(ah, AR_RX_FILTER);
2411 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2412
2413 if (phybits & AR_PHY_ERR_RADAR)
2414 bits |= ATH9K_RX_FILTER_PHYRADAR;
2415 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2416 bits |= ATH9K_RX_FILTER_PHYERR;
2417
2418 return bits;
2419 }
2420 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2421
2422 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2423 {
2424 u32 phybits;
2425
2426 ENABLE_REGWRITE_BUFFER(ah);
2427
2428 REG_WRITE(ah, AR_RX_FILTER, bits);
2429
2430 phybits = 0;
2431 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2432 phybits |= AR_PHY_ERR_RADAR;
2433 if (bits & ATH9K_RX_FILTER_PHYERR)
2434 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2435 REG_WRITE(ah, AR_PHY_ERR, phybits);
2436
2437 if (phybits)
2438 REG_WRITE(ah, AR_RXCFG,
2439 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2440 else
2441 REG_WRITE(ah, AR_RXCFG,
2442 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2443
2444 REGWRITE_BUFFER_FLUSH(ah);
2445 DISABLE_REGWRITE_BUFFER(ah);
2446 }
2447 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2448
2449 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2450 {
2451 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2452 return false;
2453
2454 ath9k_hw_init_pll(ah, NULL);
2455 return true;
2456 }
2457 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2458
2459 bool ath9k_hw_disable(struct ath_hw *ah)
2460 {
2461 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2462 return false;
2463
2464 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2465 return false;
2466
2467 ath9k_hw_init_pll(ah, NULL);
2468 return true;
2469 }
2470 EXPORT_SYMBOL(ath9k_hw_disable);
2471
2472 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
2473 {
2474 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2475 struct ath9k_channel *chan = ah->curchan;
2476 struct ieee80211_channel *channel = chan->chan;
2477
2478 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2479
2480 ah->eep_ops->set_txpower(ah, chan,
2481 ath9k_regd_get_ctl(regulatory, chan),
2482 channel->max_antenna_gain * 2,
2483 channel->max_power * 2,
2484 min((u32) MAX_RATE_POWER,
2485 (u32) regulatory->power_limit));
2486 }
2487 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2488
2489 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
2490 {
2491 memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
2492 }
2493 EXPORT_SYMBOL(ath9k_hw_setmac);
2494
2495 void ath9k_hw_setopmode(struct ath_hw *ah)
2496 {
2497 ath9k_hw_set_operating_mode(ah, ah->opmode);
2498 }
2499 EXPORT_SYMBOL(ath9k_hw_setopmode);
2500
2501 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2502 {
2503 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2504 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2505 }
2506 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2507
2508 void ath9k_hw_write_associd(struct ath_hw *ah)
2509 {
2510 struct ath_common *common = ath9k_hw_common(ah);
2511
2512 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2513 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2514 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2515 }
2516 EXPORT_SYMBOL(ath9k_hw_write_associd);
2517
2518 #define ATH9K_MAX_TSF_READ 10
2519
2520 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2521 {
2522 u32 tsf_lower, tsf_upper1, tsf_upper2;
2523 int i;
2524
2525 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2526 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2527 tsf_lower = REG_READ(ah, AR_TSF_L32);
2528 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2529 if (tsf_upper2 == tsf_upper1)
2530 break;
2531 tsf_upper1 = tsf_upper2;
2532 }
2533
2534 WARN_ON( i == ATH9K_MAX_TSF_READ );
2535
2536 return (((u64)tsf_upper1 << 32) | tsf_lower);
2537 }
2538 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2539
2540 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2541 {
2542 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2543 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2544 }
2545 EXPORT_SYMBOL(ath9k_hw_settsf64);
2546
2547 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2548 {
2549 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2550 AH_TSF_WRITE_TIMEOUT))
2551 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
2552 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2553
2554 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2555 }
2556 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2557
2558 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2559 {
2560 if (setting)
2561 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2562 else
2563 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2564 }
2565 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2566
2567 /*
2568 * Extend 15-bit time stamp from rx descriptor to
2569 * a full 64-bit TSF using the current h/w TSF.
2570 */
2571 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
2572 {
2573 u64 tsf;
2574
2575 tsf = ath9k_hw_gettsf64(ah);
2576 if ((tsf & 0x7fff) < rstamp)
2577 tsf -= 0x8000;
2578 return (tsf & ~0x7fff) | rstamp;
2579 }
2580 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
2581
2582 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2583 {
2584 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2585 u32 macmode;
2586
2587 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2588 macmode = AR_2040_JOINED_RX_CLEAR;
2589 else
2590 macmode = 0;
2591
2592 REG_WRITE(ah, AR_2040_MODE, macmode);
2593 }
2594
2595 /* HW Generic timers configuration */
2596
2597 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2598 {
2599 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2600 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2601 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2602 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2603 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2604 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2605 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2606 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2607 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2608 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2609 AR_NDP2_TIMER_MODE, 0x0002},
2610 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2611 AR_NDP2_TIMER_MODE, 0x0004},
2612 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2613 AR_NDP2_TIMER_MODE, 0x0008},
2614 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2615 AR_NDP2_TIMER_MODE, 0x0010},
2616 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2617 AR_NDP2_TIMER_MODE, 0x0020},
2618 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2619 AR_NDP2_TIMER_MODE, 0x0040},
2620 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2621 AR_NDP2_TIMER_MODE, 0x0080}
2622 };
2623
2624 /* HW generic timer primitives */
2625
2626 /* compute and clear index of rightmost 1 */
2627 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2628 {
2629 u32 b;
2630
2631 b = *mask;
2632 b &= (0-b);
2633 *mask &= ~b;
2634 b *= debruijn32;
2635 b >>= 27;
2636
2637 return timer_table->gen_timer_index[b];
2638 }
2639
2640 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2641 {
2642 return REG_READ(ah, AR_TSF_L32);
2643 }
2644 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2645
2646 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2647 void (*trigger)(void *),
2648 void (*overflow)(void *),
2649 void *arg,
2650 u8 timer_index)
2651 {
2652 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2653 struct ath_gen_timer *timer;
2654
2655 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2656
2657 if (timer == NULL) {
2658 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2659 "Failed to allocate memory"
2660 "for hw timer[%d]\n", timer_index);
2661 return NULL;
2662 }
2663
2664 /* allocate a hardware generic timer slot */
2665 timer_table->timers[timer_index] = timer;
2666 timer->index = timer_index;
2667 timer->trigger = trigger;
2668 timer->overflow = overflow;
2669 timer->arg = arg;
2670
2671 return timer;
2672 }
2673 EXPORT_SYMBOL(ath_gen_timer_alloc);
2674
2675 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2676 struct ath_gen_timer *timer,
2677 u32 timer_next,
2678 u32 timer_period)
2679 {
2680 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2681 u32 tsf;
2682
2683 BUG_ON(!timer_period);
2684
2685 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2686
2687 tsf = ath9k_hw_gettsf32(ah);
2688
2689 ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2690 "curent tsf %x period %x"
2691 "timer_next %x\n", tsf, timer_period, timer_next);
2692
2693 /*
2694 * Pull timer_next forward if the current TSF already passed it
2695 * because of software latency
2696 */
2697 if (timer_next < tsf)
2698 timer_next = tsf + timer_period;
2699
2700 /*
2701 * Program generic timer registers
2702 */
2703 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2704 timer_next);
2705 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2706 timer_period);
2707 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2708 gen_tmr_configuration[timer->index].mode_mask);
2709
2710 /* Enable both trigger and thresh interrupt masks */
2711 REG_SET_BIT(ah, AR_IMR_S5,
2712 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2713 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2714 }
2715 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2716
2717 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2718 {
2719 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2720
2721 if ((timer->index < AR_FIRST_NDP_TIMER) ||
2722 (timer->index >= ATH_MAX_GEN_TIMER)) {
2723 return;
2724 }
2725
2726 /* Clear generic timer enable bits. */
2727 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2728 gen_tmr_configuration[timer->index].mode_mask);
2729
2730 /* Disable both trigger and thresh interrupt masks */
2731 REG_CLR_BIT(ah, AR_IMR_S5,
2732 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2733 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2734
2735 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2736 }
2737 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2738
2739 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2740 {
2741 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2742
2743 /* free the hardware generic timer slot */
2744 timer_table->timers[timer->index] = NULL;
2745 kfree(timer);
2746 }
2747 EXPORT_SYMBOL(ath_gen_timer_free);
2748
2749 /*
2750 * Generic Timer Interrupts handling
2751 */
2752 void ath_gen_timer_isr(struct ath_hw *ah)
2753 {
2754 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2755 struct ath_gen_timer *timer;
2756 struct ath_common *common = ath9k_hw_common(ah);
2757 u32 trigger_mask, thresh_mask, index;
2758
2759 /* get hardware generic timer interrupt status */
2760 trigger_mask = ah->intr_gen_timer_trigger;
2761 thresh_mask = ah->intr_gen_timer_thresh;
2762 trigger_mask &= timer_table->timer_mask.val;
2763 thresh_mask &= timer_table->timer_mask.val;
2764
2765 trigger_mask &= ~thresh_mask;
2766
2767 while (thresh_mask) {
2768 index = rightmost_index(timer_table, &thresh_mask);
2769 timer = timer_table->timers[index];
2770 BUG_ON(!timer);
2771 ath_print(common, ATH_DBG_HWTIMER,
2772 "TSF overflow for Gen timer %d\n", index);
2773 timer->overflow(timer->arg);
2774 }
2775
2776 while (trigger_mask) {
2777 index = rightmost_index(timer_table, &trigger_mask);
2778 timer = timer_table->timers[index];
2779 BUG_ON(!timer);
2780 ath_print(common, ATH_DBG_HWTIMER,
2781 "Gen timer[%d] trigger\n", index);
2782 timer->trigger(timer->arg);
2783 }
2784 }
2785 EXPORT_SYMBOL(ath_gen_timer_isr);
2786
2787 /********/
2788 /* HTC */
2789 /********/
2790
2791 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2792 {
2793 ah->htc_reset_init = true;
2794 }
2795 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2796
2797 static struct {
2798 u32 version;
2799 const char * name;
2800 } ath_mac_bb_names[] = {
2801 /* Devices with external radios */
2802 { AR_SREV_VERSION_5416_PCI, "5416" },
2803 { AR_SREV_VERSION_5416_PCIE, "5418" },
2804 { AR_SREV_VERSION_9100, "9100" },
2805 { AR_SREV_VERSION_9160, "9160" },
2806 /* Single-chip solutions */
2807 { AR_SREV_VERSION_9280, "9280" },
2808 { AR_SREV_VERSION_9285, "9285" },
2809 { AR_SREV_VERSION_9287, "9287" },
2810 { AR_SREV_VERSION_9271, "9271" },
2811 { AR_SREV_VERSION_9300, "9300" },
2812 };
2813
2814 /* For devices with external radios */
2815 static struct {
2816 u16 version;
2817 const char * name;
2818 } ath_rf_names[] = {
2819 { 0, "5133" },
2820 { AR_RAD5133_SREV_MAJOR, "5133" },
2821 { AR_RAD5122_SREV_MAJOR, "5122" },
2822 { AR_RAD2133_SREV_MAJOR, "2133" },
2823 { AR_RAD2122_SREV_MAJOR, "2122" }
2824 };
2825
2826 /*
2827 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2828 */
2829 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2830 {
2831 int i;
2832
2833 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2834 if (ath_mac_bb_names[i].version == mac_bb_version) {
2835 return ath_mac_bb_names[i].name;
2836 }
2837 }
2838
2839 return "????";
2840 }
2841
2842 /*
2843 * Return the RF name. "????" is returned if the RF is unknown.
2844 * Used for devices with external radios.
2845 */
2846 static const char *ath9k_hw_rf_name(u16 rf_version)
2847 {
2848 int i;
2849
2850 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2851 if (ath_rf_names[i].version == rf_version) {
2852 return ath_rf_names[i].name;
2853 }
2854 }
2855
2856 return "????";
2857 }
2858
2859 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2860 {
2861 int used;
2862
2863 /* chipsets >= AR9280 are single-chip */
2864 if (AR_SREV_9280_10_OR_LATER(ah)) {
2865 used = snprintf(hw_name, len,
2866 "Atheros AR%s Rev:%x",
2867 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2868 ah->hw_version.macRev);
2869 }
2870 else {
2871 used = snprintf(hw_name, len,
2872 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2873 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2874 ah->hw_version.macRev,
2875 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2876 AR_RADIO_SREV_MAJOR)),
2877 ah->hw_version.phyRev);
2878 }
2879
2880 hw_name[used] = '\0';
2881 }
2882 EXPORT_SYMBOL(ath9k_hw_name);
This page took 0.087741 seconds and 6 git commands to generate.