phonet: remove the unused variable pn
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / rc.c
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2009 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/slab.h>
19
20 #include "ath9k.h"
21
22 static const struct ath_rate_table ar5416_11na_ratetable = {
23 68,
24 8, /* MCS start */
25 {
26 [0] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000,
27 5400, 0, 12, 0, 0, 0, 0 }, /* 6 Mb */
28 [1] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000,
29 7800, 1, 18, 0, 1, 1, 1 }, /* 9 Mb */
30 [2] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
31 10000, 2, 24, 2, 2, 2, 2 }, /* 12 Mb */
32 [3] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
33 13900, 3, 36, 2, 3, 3, 3 }, /* 18 Mb */
34 [4] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
35 17300, 4, 48, 4, 4, 4, 4 }, /* 24 Mb */
36 [5] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
37 23000, 5, 72, 4, 5, 5, 5 }, /* 36 Mb */
38 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
39 27400, 6, 96, 4, 6, 6, 6 }, /* 48 Mb */
40 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
41 29300, 7, 108, 4, 7, 7, 7 }, /* 54 Mb */
42 [8] = { RC_HT_SDT_2040, WLAN_RC_PHY_HT_20_SS, 6500,
43 6400, 0, 0, 0, 38, 8, 38 }, /* 6.5 Mb */
44 [9] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
45 12700, 1, 1, 2, 39, 9, 39 }, /* 13 Mb */
46 [10] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
47 18800, 2, 2, 2, 40, 10, 40 }, /* 19.5 Mb */
48 [11] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
49 25000, 3, 3, 4, 41, 11, 41 }, /* 26 Mb */
50 [12] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
51 36700, 4, 4, 4, 42, 12, 42 }, /* 39 Mb */
52 [13] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
53 48100, 5, 5, 4, 43, 13, 43 }, /* 52 Mb */
54 [14] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
55 53500, 6, 6, 4, 44, 14, 44 }, /* 58.5 Mb */
56 [15] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
57 59000, 7, 7, 4, 45, 16, 46 }, /* 65 Mb */
58 [16] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
59 65400, 7, 7, 4, 45, 16, 46 }, /* 75 Mb */
60 [17] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
61 12700, 8, 8, 0, 47, 17, 47 }, /* 13 Mb */
62 [18] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
63 24800, 9, 9, 2, 48, 18, 48 }, /* 26 Mb */
64 [19] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
65 36600, 10, 10, 2, 49, 19, 49 }, /* 39 Mb */
66 [20] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
67 48100, 11, 11, 4, 50, 20, 50 }, /* 52 Mb */
68 [21] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
69 69500, 12, 12, 4, 51, 21, 51 }, /* 78 Mb */
70 [22] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
71 89500, 13, 13, 4, 52, 22, 52 }, /* 104 Mb */
72 [23] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
73 98900, 14, 14, 4, 53, 23, 53 }, /* 117 Mb */
74 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
75 108300, 15, 15, 4, 54, 25, 55 }, /* 130 Mb */
76 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
77 120000, 15, 15, 4, 54, 25, 55 }, /* 144.4 Mb */
78 [26] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
79 17400, 16, 16, 0, 56, 26, 56 }, /* 19.5 Mb */
80 [27] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
81 35100, 17, 17, 2, 57, 27, 57 }, /* 39 Mb */
82 [28] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
83 52600, 18, 18, 2, 58, 28, 58 }, /* 58.5 Mb */
84 [29] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
85 70400, 19, 19, 4, 59, 29, 59 }, /* 78 Mb */
86 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
87 104900, 20, 20, 4, 60, 31, 61 }, /* 117 Mb */
88 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
89 115800, 20, 20, 4, 60, 31, 61 }, /* 130 Mb*/
90 [32] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
91 137200, 21, 21, 4, 62, 33, 63 }, /* 156 Mb */
92 [33] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
93 151100, 21, 21, 4, 62, 33, 63 }, /* 173.3 Mb */
94 [34] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
95 152800, 22, 22, 4, 64, 35, 65 }, /* 175.5 Mb */
96 [35] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
97 168400, 22, 22, 4, 64, 35, 65 }, /* 195 Mb*/
98 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
99 168400, 23, 23, 4, 66, 37, 67 }, /* 195 Mb */
100 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
101 185000, 23, 23, 4, 66, 37, 67 }, /* 216.7 Mb */
102 [38] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
103 13200, 0, 0, 0, 38, 38, 38 }, /* 13.5 Mb*/
104 [39] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
105 25900, 1, 1, 2, 39, 39, 39 }, /* 27.0 Mb*/
106 [40] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
107 38600, 2, 2, 2, 40, 40, 40 }, /* 40.5 Mb*/
108 [41] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
109 49800, 3, 3, 4, 41, 41, 41 }, /* 54 Mb */
110 [42] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
111 72200, 4, 4, 4, 42, 42, 42 }, /* 81 Mb */
112 [43] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 108000,
113 92900, 5, 5, 4, 43, 43, 43 }, /* 108 Mb */
114 [44] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
115 102700, 6, 6, 4, 44, 44, 44 }, /* 121.5 Mb*/
116 [45] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
117 112000, 7, 7, 4, 45, 46, 46 }, /* 135 Mb */
118 [46] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
119 122000, 7, 7, 4, 45, 46, 46 }, /* 150 Mb */
120 [47] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
121 25800, 8, 8, 0, 47, 47, 47 }, /* 27 Mb */
122 [48] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
123 49800, 9, 9, 2, 48, 48, 48 }, /* 54 Mb */
124 [49] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
125 71900, 10, 10, 2, 49, 49, 49 }, /* 81 Mb */
126 [50] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
127 92500, 11, 11, 4, 50, 50, 50 }, /* 108 Mb */
128 [51] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
129 130300, 12, 12, 4, 51, 51, 51 }, /* 162 Mb */
130 [52] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
131 162800, 13, 13, 4, 52, 52, 52 }, /* 216 Mb */
132 [53] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
133 178200, 14, 14, 4, 53, 53, 53 }, /* 243 Mb */
134 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
135 192100, 15, 15, 4, 54, 55, 55 }, /* 270 Mb */
136 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
137 207000, 15, 15, 4, 54, 55, 55 }, /* 300 Mb */
138 [56] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
139 36100, 16, 16, 0, 56, 56, 56 }, /* 40.5 Mb */
140 [57] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
141 72900, 17, 17, 2, 57, 57, 57 }, /* 81 Mb */
142 [58] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
143 108300, 18, 18, 2, 58, 58, 58 }, /* 121.5 Mb */
144 [59] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
145 142000, 19, 19, 4, 59, 59, 59 }, /* 162 Mb */
146 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
147 205100, 20, 20, 4, 60, 61, 61 }, /* 243 Mb */
148 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
149 224700, 20, 20, 4, 60, 61, 61 }, /* 270 Mb */
150 [62] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
151 263100, 21, 21, 4, 62, 63, 63 }, /* 324 Mb */
152 [63] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
153 288000, 21, 21, 4, 62, 63, 63 }, /* 360 Mb */
154 [64] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
155 290700, 22, 22, 4, 64, 65, 65 }, /* 364.5 Mb */
156 [65] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
157 317200, 22, 22, 4, 64, 65, 65 }, /* 405 Mb */
158 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
159 317200, 23, 23, 4, 66, 67, 67 }, /* 405 Mb */
160 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
161 346400, 23, 23, 4, 66, 67, 67 }, /* 450 Mb */
162 },
163 50, /* probe interval */
164 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
165 };
166
167 /* 4ms frame limit not used for NG mode. The values filled
168 * for HT are the 64K max aggregate limit */
169
170 static const struct ath_rate_table ar5416_11ng_ratetable = {
171 72,
172 12, /* MCS start */
173 {
174 [0] = { RC_ALL, WLAN_RC_PHY_CCK, 1000,
175 900, 0, 2, 0, 0, 0, 0 }, /* 1 Mb */
176 [1] = { RC_ALL, WLAN_RC_PHY_CCK, 2000,
177 1900, 1, 4, 1, 1, 1, 1 }, /* 2 Mb */
178 [2] = { RC_ALL, WLAN_RC_PHY_CCK, 5500,
179 4900, 2, 11, 2, 2, 2, 2 }, /* 5.5 Mb */
180 [3] = { RC_ALL, WLAN_RC_PHY_CCK, 11000,
181 8100, 3, 22, 3, 3, 3, 3 }, /* 11 Mb */
182 [4] = { RC_INVALID, WLAN_RC_PHY_OFDM, 6000,
183 5400, 4, 12, 4, 4, 4, 4 }, /* 6 Mb */
184 [5] = { RC_INVALID, WLAN_RC_PHY_OFDM, 9000,
185 7800, 5, 18, 4, 5, 5, 5 }, /* 9 Mb */
186 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
187 10100, 6, 24, 6, 6, 6, 6 }, /* 12 Mb */
188 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
189 14100, 7, 36, 6, 7, 7, 7 }, /* 18 Mb */
190 [8] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
191 17700, 8, 48, 8, 8, 8, 8 }, /* 24 Mb */
192 [9] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
193 23700, 9, 72, 8, 9, 9, 9 }, /* 36 Mb */
194 [10] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
195 27400, 10, 96, 8, 10, 10, 10 }, /* 48 Mb */
196 [11] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
197 30900, 11, 108, 8, 11, 11, 11 }, /* 54 Mb */
198 [12] = { RC_INVALID, WLAN_RC_PHY_HT_20_SS, 6500,
199 6400, 0, 0, 4, 42, 12, 42 }, /* 6.5 Mb */
200 [13] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
201 12700, 1, 1, 6, 43, 13, 43 }, /* 13 Mb */
202 [14] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
203 18800, 2, 2, 6, 44, 14, 44 }, /* 19.5 Mb*/
204 [15] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
205 25000, 3, 3, 8, 45, 15, 45 }, /* 26 Mb */
206 [16] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
207 36700, 4, 4, 8, 46, 16, 46 }, /* 39 Mb */
208 [17] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
209 48100, 5, 5, 8, 47, 17, 47 }, /* 52 Mb */
210 [18] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
211 53500, 6, 6, 8, 48, 18, 48 }, /* 58.5 Mb */
212 [19] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
213 59000, 7, 7, 8, 49, 20, 50 }, /* 65 Mb */
214 [20] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
215 65400, 7, 7, 8, 49, 20, 50 }, /* 65 Mb*/
216 [21] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
217 12700, 8, 8, 4, 51, 21, 51 }, /* 13 Mb */
218 [22] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
219 24800, 9, 9, 6, 52, 22, 52 }, /* 26 Mb */
220 [23] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
221 36600, 10, 10, 6, 53, 23, 53 }, /* 39 Mb */
222 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
223 48100, 11, 11, 8, 54, 24, 54 }, /* 52 Mb */
224 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
225 69500, 12, 12, 8, 55, 25, 55 }, /* 78 Mb */
226 [26] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
227 89500, 13, 13, 8, 56, 26, 56 }, /* 104 Mb */
228 [27] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
229 98900, 14, 14, 8, 57, 27, 57 }, /* 117 Mb */
230 [28] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
231 108300, 15, 15, 8, 58, 29, 59 }, /* 130 Mb */
232 [29] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
233 120000, 15, 15, 8, 58, 29, 59 }, /* 144.4 Mb */
234 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
235 17400, 16, 16, 4, 60, 30, 60 }, /* 19.5 Mb */
236 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
237 35100, 17, 17, 6, 61, 31, 61 }, /* 39 Mb */
238 [32] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
239 52600, 18, 18, 6, 62, 32, 62 }, /* 58.5 Mb */
240 [33] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
241 70400, 19, 19, 8, 63, 33, 63 }, /* 78 Mb */
242 [34] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
243 104900, 20, 20, 8, 64, 35, 65 }, /* 117 Mb */
244 [35] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
245 115800, 20, 20, 8, 64, 35, 65 }, /* 130 Mb */
246 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
247 137200, 21, 21, 8, 66, 37, 67 }, /* 156 Mb */
248 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
249 151100, 21, 21, 8, 66, 37, 67 }, /* 173.3 Mb */
250 [38] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
251 152800, 22, 22, 8, 68, 39, 69 }, /* 175.5 Mb */
252 [39] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
253 168400, 22, 22, 8, 68, 39, 69 }, /* 195 Mb */
254 [40] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
255 168400, 23, 23, 8, 70, 41, 71 }, /* 195 Mb */
256 [41] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
257 185000, 23, 23, 8, 70, 41, 71 }, /* 216.7 Mb */
258 [42] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
259 13200, 0, 0, 8, 42, 42, 42 }, /* 13.5 Mb */
260 [43] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
261 25900, 1, 1, 8, 43, 43, 43 }, /* 27.0 Mb */
262 [44] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
263 38600, 2, 2, 8, 44, 44, 44 }, /* 40.5 Mb */
264 [45] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
265 49800, 3, 3, 8, 45, 45, 45 }, /* 54 Mb */
266 [46] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
267 72200, 4, 4, 8, 46, 46, 46 }, /* 81 Mb */
268 [47] = { RC_HT_S_40 , WLAN_RC_PHY_HT_40_SS, 108000,
269 92900, 5, 5, 8, 47, 47, 47 }, /* 108 Mb */
270 [48] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
271 102700, 6, 6, 8, 48, 48, 48 }, /* 121.5 Mb */
272 [49] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
273 112000, 7, 7, 8, 49, 50, 50 }, /* 135 Mb */
274 [50] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
275 122000, 7, 7, 8, 49, 50, 50 }, /* 150 Mb */
276 [51] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
277 25800, 8, 8, 8, 51, 51, 51 }, /* 27 Mb */
278 [52] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
279 49800, 9, 9, 8, 52, 52, 52 }, /* 54 Mb */
280 [53] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
281 71900, 10, 10, 8, 53, 53, 53 }, /* 81 Mb */
282 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
283 92500, 11, 11, 8, 54, 54, 54 }, /* 108 Mb */
284 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
285 130300, 12, 12, 8, 55, 55, 55 }, /* 162 Mb */
286 [56] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
287 162800, 13, 13, 8, 56, 56, 56 }, /* 216 Mb */
288 [57] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
289 178200, 14, 14, 8, 57, 57, 57 }, /* 243 Mb */
290 [58] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
291 192100, 15, 15, 8, 58, 59, 59 }, /* 270 Mb */
292 [59] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
293 207000, 15, 15, 8, 58, 59, 59 }, /* 300 Mb */
294 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
295 36100, 16, 16, 8, 60, 60, 60 }, /* 40.5 Mb */
296 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
297 72900, 17, 17, 8, 61, 61, 61 }, /* 81 Mb */
298 [62] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
299 108300, 18, 18, 8, 62, 62, 62 }, /* 121.5 Mb */
300 [63] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
301 142000, 19, 19, 8, 63, 63, 63 }, /* 162 Mb */
302 [64] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
303 205100, 20, 20, 8, 64, 65, 65 }, /* 243 Mb */
304 [65] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
305 224700, 20, 20, 8, 64, 65, 65 }, /* 170 Mb */
306 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
307 263100, 21, 21, 8, 66, 67, 67 }, /* 324 Mb */
308 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
309 288000, 21, 21, 8, 66, 67, 67 }, /* 360 Mb */
310 [68] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
311 290700, 22, 22, 8, 68, 69, 69 }, /* 364.5 Mb */
312 [69] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
313 317200, 22, 22, 8, 68, 69, 69 }, /* 405 Mb */
314 [70] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
315 317200, 23, 23, 8, 70, 71, 71 }, /* 405 Mb */
316 [71] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
317 346400, 23, 23, 8, 70, 71, 71 }, /* 450 Mb */
318 },
319 50, /* probe interval */
320 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
321 };
322
323 static const struct ath_rate_table ar5416_11a_ratetable = {
324 8,
325 0,
326 {
327 { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
328 5400, 0, 12, 0},
329 { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
330 7800, 1, 18, 0},
331 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
332 10000, 2, 24, 2},
333 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
334 13900, 3, 36, 2},
335 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
336 17300, 4, 48, 4},
337 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
338 23000, 5, 72, 4},
339 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
340 27400, 6, 96, 4},
341 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
342 29300, 7, 108, 4},
343 },
344 50, /* probe interval */
345 0, /* Phy rates allowed initially */
346 };
347
348 static const struct ath_rate_table ar5416_11g_ratetable = {
349 12,
350 0,
351 {
352 { RC_L_SDT, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
353 900, 0, 2, 0},
354 { RC_L_SDT, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
355 1900, 1, 4, 1},
356 { RC_L_SDT, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
357 4900, 2, 11, 2},
358 { RC_L_SDT, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
359 8100, 3, 22, 3},
360 { RC_INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
361 5400, 4, 12, 4},
362 { RC_INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
363 7800, 5, 18, 4},
364 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
365 10000, 6, 24, 6},
366 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
367 13900, 7, 36, 6},
368 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
369 17300, 8, 48, 8},
370 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
371 23000, 9, 72, 8},
372 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
373 27400, 10, 96, 8},
374 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
375 29300, 11, 108, 8},
376 },
377 50, /* probe interval */
378 0, /* Phy rates allowed initially */
379 };
380
381 static const struct ath_rate_table *hw_rate_table[ATH9K_MODE_MAX] = {
382 [ATH9K_MODE_11A] = &ar5416_11a_ratetable,
383 [ATH9K_MODE_11G] = &ar5416_11g_ratetable,
384 [ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable,
385 [ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable,
386 [ATH9K_MODE_11NA_HT40PLUS] = &ar5416_11na_ratetable,
387 [ATH9K_MODE_11NA_HT40MINUS] = &ar5416_11na_ratetable,
388 [ATH9K_MODE_11NG_HT40PLUS] = &ar5416_11ng_ratetable,
389 [ATH9K_MODE_11NG_HT40MINUS] = &ar5416_11ng_ratetable,
390 };
391
392 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
393 struct ieee80211_tx_rate *rate);
394
395 static inline int8_t median(int8_t a, int8_t b, int8_t c)
396 {
397 if (a >= b) {
398 if (b >= c)
399 return b;
400 else if (a > c)
401 return c;
402 else
403 return a;
404 } else {
405 if (a >= c)
406 return a;
407 else if (b >= c)
408 return c;
409 else
410 return b;
411 }
412 }
413
414 static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
415 struct ath_rate_priv *ath_rc_priv)
416 {
417 u8 i, j, idx, idx_next;
418
419 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
420 for (j = 0; j <= i-1; j++) {
421 idx = ath_rc_priv->valid_rate_index[j];
422 idx_next = ath_rc_priv->valid_rate_index[j+1];
423
424 if (rate_table->info[idx].ratekbps >
425 rate_table->info[idx_next].ratekbps) {
426 ath_rc_priv->valid_rate_index[j] = idx_next;
427 ath_rc_priv->valid_rate_index[j+1] = idx;
428 }
429 }
430 }
431 }
432
433 static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
434 {
435 u8 i;
436
437 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
438 ath_rc_priv->valid_rate_index[i] = 0;
439 }
440
441 static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
442 u8 index, int valid_tx_rate)
443 {
444 BUG_ON(index > ath_rc_priv->rate_table_size);
445 ath_rc_priv->valid_rate_index[index] = !!valid_tx_rate;
446 }
447
448 static inline
449 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
450 struct ath_rate_priv *ath_rc_priv,
451 u8 cur_valid_txrate,
452 u8 *next_idx)
453 {
454 u8 i;
455
456 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
457 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
458 *next_idx = ath_rc_priv->valid_rate_index[i+1];
459 return 1;
460 }
461 }
462
463 /* No more valid rates */
464 *next_idx = 0;
465
466 return 0;
467 }
468
469 /* Return true only for single stream */
470
471 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
472 {
473 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
474 return 0;
475 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
476 return 0;
477 if (WLAN_RC_PHY_TS(phy) && !(capflag & WLAN_RC_TS_FLAG))
478 return 0;
479 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
480 return 0;
481 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
482 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
483 return 0;
484 return 1;
485 }
486
487 static inline int
488 ath_rc_get_lower_rix(const struct ath_rate_table *rate_table,
489 struct ath_rate_priv *ath_rc_priv,
490 u8 cur_valid_txrate, u8 *next_idx)
491 {
492 int8_t i;
493
494 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
495 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
496 *next_idx = ath_rc_priv->valid_rate_index[i-1];
497 return 1;
498 }
499 }
500
501 return 0;
502 }
503
504 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
505 const struct ath_rate_table *rate_table,
506 u32 capflag)
507 {
508 u8 i, hi = 0;
509
510 for (i = 0; i < rate_table->rate_cnt; i++) {
511 if (rate_table->info[i].rate_flags & RC_LEGACY) {
512 u32 phy = rate_table->info[i].phy;
513 u8 valid_rate_count = 0;
514
515 if (!ath_rc_valid_phyrate(phy, capflag, 0))
516 continue;
517
518 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
519
520 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
521 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
522 ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
523 hi = i;
524 }
525 }
526
527 return hi;
528 }
529
530 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
531 const struct ath_rate_table *rate_table,
532 struct ath_rateset *rateset,
533 u32 capflag)
534 {
535 u8 i, j, hi = 0;
536
537 /* Use intersection of working rates and valid rates */
538 for (i = 0; i < rateset->rs_nrates; i++) {
539 for (j = 0; j < rate_table->rate_cnt; j++) {
540 u32 phy = rate_table->info[j].phy;
541 u16 rate_flags = rate_table->info[i].rate_flags;
542 u8 rate = rateset->rs_rates[i];
543 u8 dot11rate = rate_table->info[j].dot11rate;
544
545 /* We allow a rate only if its valid and the
546 * capflag matches one of the validity
547 * (VALID/VALID_20/VALID_40) flags */
548
549 if ((rate == dot11rate) &&
550 (rate_flags & WLAN_RC_CAP_MODE(capflag)) ==
551 WLAN_RC_CAP_MODE(capflag) &&
552 (rate_flags & WLAN_RC_CAP_STREAM(capflag)) &&
553 !WLAN_RC_PHY_HT(phy)) {
554 u8 valid_rate_count = 0;
555
556 if (!ath_rc_valid_phyrate(phy, capflag, 0))
557 continue;
558
559 valid_rate_count =
560 ath_rc_priv->valid_phy_ratecnt[phy];
561
562 ath_rc_priv->valid_phy_rateidx[phy]
563 [valid_rate_count] = j;
564 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
565 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
566 hi = A_MAX(hi, j);
567 }
568 }
569 }
570
571 return hi;
572 }
573
574 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
575 const struct ath_rate_table *rate_table,
576 u8 *mcs_set, u32 capflag)
577 {
578 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
579
580 u8 i, j, hi = 0;
581
582 /* Use intersection of working rates and valid rates */
583 for (i = 0; i < rateset->rs_nrates; i++) {
584 for (j = 0; j < rate_table->rate_cnt; j++) {
585 u32 phy = rate_table->info[j].phy;
586 u16 rate_flags = rate_table->info[j].rate_flags;
587 u8 rate = rateset->rs_rates[i];
588 u8 dot11rate = rate_table->info[j].dot11rate;
589
590 if ((rate != dot11rate) || !WLAN_RC_PHY_HT(phy) ||
591 !(rate_flags & WLAN_RC_CAP_STREAM(capflag)) ||
592 !WLAN_RC_PHY_HT_VALID(rate_flags, capflag))
593 continue;
594
595 if (!ath_rc_valid_phyrate(phy, capflag, 0))
596 continue;
597
598 ath_rc_priv->valid_phy_rateidx[phy]
599 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
600 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
601 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
602 hi = A_MAX(hi, j);
603 }
604 }
605
606 return hi;
607 }
608
609 /* Finds the highest rate index we can use */
610 static u8 ath_rc_get_highest_rix(struct ath_softc *sc,
611 struct ath_rate_priv *ath_rc_priv,
612 const struct ath_rate_table *rate_table,
613 int *is_probing)
614 {
615 u32 best_thruput, this_thruput, now_msec;
616 u8 rate, next_rate, best_rate, maxindex, minindex;
617 int8_t index = 0;
618
619 now_msec = jiffies_to_msecs(jiffies);
620 *is_probing = 0;
621 best_thruput = 0;
622 maxindex = ath_rc_priv->max_valid_rate-1;
623 minindex = 0;
624 best_rate = minindex;
625
626 /*
627 * Try the higher rate first. It will reduce memory moving time
628 * if we have very good channel characteristics.
629 */
630 for (index = maxindex; index >= minindex ; index--) {
631 u8 per_thres;
632
633 rate = ath_rc_priv->valid_rate_index[index];
634 if (rate > ath_rc_priv->rate_max_phy)
635 continue;
636
637 /*
638 * For TCP the average collision rate is around 11%,
639 * so we ignore PERs less than this. This is to
640 * prevent the rate we are currently using (whose
641 * PER might be in the 10-15 range because of TCP
642 * collisions) looking worse than the next lower
643 * rate whose PER has decayed close to 0. If we
644 * used to next lower rate, its PER would grow to
645 * 10-15 and we would be worse off then staying
646 * at the current rate.
647 */
648 per_thres = ath_rc_priv->per[rate];
649 if (per_thres < 12)
650 per_thres = 12;
651
652 this_thruput = rate_table->info[rate].user_ratekbps *
653 (100 - per_thres);
654
655 if (best_thruput <= this_thruput) {
656 best_thruput = this_thruput;
657 best_rate = rate;
658 }
659 }
660
661 rate = best_rate;
662
663 /*
664 * Must check the actual rate (ratekbps) to account for
665 * non-monoticity of 11g's rate table
666 */
667
668 if (rate >= ath_rc_priv->rate_max_phy) {
669 rate = ath_rc_priv->rate_max_phy;
670
671 /* Probe the next allowed phy state */
672 if (ath_rc_get_nextvalid_txrate(rate_table,
673 ath_rc_priv, rate, &next_rate) &&
674 (now_msec - ath_rc_priv->probe_time >
675 rate_table->probe_interval) &&
676 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
677 rate = next_rate;
678 ath_rc_priv->probe_rate = rate;
679 ath_rc_priv->probe_time = now_msec;
680 ath_rc_priv->hw_maxretry_pktcnt = 0;
681 *is_probing = 1;
682 }
683 }
684
685 if (rate > (ath_rc_priv->rate_table_size - 1))
686 rate = ath_rc_priv->rate_table_size - 1;
687
688 if (RC_TS_ONLY(rate_table->info[rate].rate_flags) &&
689 (ath_rc_priv->ht_cap & WLAN_RC_TS_FLAG))
690 return rate;
691
692 if (RC_DS_OR_LATER(rate_table->info[rate].rate_flags) &&
693 (ath_rc_priv->ht_cap & (WLAN_RC_DS_FLAG | WLAN_RC_TS_FLAG)))
694 return rate;
695
696 if (RC_SS_OR_LEGACY(rate_table->info[rate].rate_flags))
697 return rate;
698
699 /* This should not happen */
700 WARN_ON(1);
701
702 rate = ath_rc_priv->valid_rate_index[0];
703
704 return rate;
705 }
706
707 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
708 struct ieee80211_tx_rate *rate,
709 struct ieee80211_tx_rate_control *txrc,
710 u8 tries, u8 rix, int rtsctsenable)
711 {
712 rate->count = tries;
713 rate->idx = rate_table->info[rix].ratecode;
714
715 if (txrc->short_preamble)
716 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
717 if (txrc->rts || rtsctsenable)
718 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
719
720 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
721 rate->flags |= IEEE80211_TX_RC_MCS;
722 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
723 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
724 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
725 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
726 }
727 }
728
729 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
730 const struct ath_rate_table *rate_table,
731 struct ieee80211_tx_info *tx_info)
732 {
733 struct ieee80211_tx_rate *rates = tx_info->control.rates;
734 int i = 0, rix = 0, cix, enable_g_protection = 0;
735
736 /* get the cix for the lowest valid rix */
737 for (i = 3; i >= 0; i--) {
738 if (rates[i].count && (rates[i].idx >= 0)) {
739 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
740 break;
741 }
742 }
743 cix = rate_table->info[rix].ctrl_rate;
744
745 /* All protection frames are transmited at 2Mb/s for 802.11g,
746 * otherwise we transmit them at 1Mb/s */
747 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
748 !conf_is_ht(&sc->hw->conf))
749 enable_g_protection = 1;
750
751 /*
752 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
753 * just CTS. Note that this is only done for OFDM/HT unicast frames.
754 */
755 if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
756 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
757 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
758 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
759 cix = rate_table->info[enable_g_protection].ctrl_rate;
760 }
761
762 tx_info->control.rts_cts_rate_idx = cix;
763 }
764
765 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
766 struct ieee80211_tx_rate_control *txrc)
767 {
768 struct ath_softc *sc = priv;
769 struct ath_rate_priv *ath_rc_priv = priv_sta;
770 const struct ath_rate_table *rate_table;
771 struct sk_buff *skb = txrc->skb;
772 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
773 struct ieee80211_tx_rate *rates = tx_info->control.rates;
774 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
775 __le16 fc = hdr->frame_control;
776 u8 try_per_rate, i = 0, rix;
777 int is_probe = 0;
778
779 if (rate_control_send_low(sta, priv_sta, txrc))
780 return;
781
782 /*
783 * For Multi Rate Retry we use a different number of
784 * retry attempt counts. This ends up looking like this:
785 *
786 * MRR[0] = 4
787 * MRR[1] = 4
788 * MRR[2] = 4
789 * MRR[3] = 8
790 *
791 */
792 try_per_rate = 4;
793
794 rate_table = sc->cur_rate_table;
795 rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table, &is_probe);
796
797 /*
798 * If we're in HT mode and both us and our peer supports LDPC.
799 * We don't need to check our own device's capabilities as our own
800 * ht capabilities would have already been intersected with our peer's.
801 */
802 if (conf_is_ht(&sc->hw->conf) &&
803 (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING))
804 tx_info->flags |= IEEE80211_TX_CTL_LDPC;
805
806 if (conf_is_ht(&sc->hw->conf) &&
807 (sta->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC))
808 tx_info->flags |= (1 << IEEE80211_TX_CTL_STBC_SHIFT);
809
810 if (is_probe) {
811 /* set one try for probe rates. For the
812 * probes don't enable rts */
813 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
814 1, rix, 0);
815
816 /* Get the next tried/allowed rate. No RTS for the next series
817 * after the probe rate
818 */
819 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
820 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
821 try_per_rate, rix, 0);
822
823 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
824 } else {
825 /* Set the choosen rate. No RTS for first series entry. */
826 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
827 try_per_rate, rix, 0);
828 }
829
830 /* Fill in the other rates for multirate retry */
831 for ( ; i < 4; i++) {
832 /* Use twice the number of tries for the last MRR segment. */
833 if (i + 1 == 4)
834 try_per_rate = 8;
835
836 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
837 /* All other rates in the series have RTS enabled */
838 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
839 try_per_rate, rix, 1);
840 }
841
842 /*
843 * NB:Change rate series to enable aggregation when operating
844 * at lower MCS rates. When first rate in series is MCS2
845 * in HT40 @ 2.4GHz, series should look like:
846 *
847 * {MCS2, MCS1, MCS0, MCS0}.
848 *
849 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
850 * look like:
851 *
852 * {MCS3, MCS2, MCS1, MCS1}
853 *
854 * So, set fourth rate in series to be same as third one for
855 * above conditions.
856 */
857 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
858 (conf_is_ht(&sc->hw->conf))) {
859 u8 dot11rate = rate_table->info[rix].dot11rate;
860 u8 phy = rate_table->info[rix].phy;
861 if (i == 4 &&
862 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
863 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
864 rates[3].idx = rates[2].idx;
865 rates[3].flags = rates[2].flags;
866 }
867 }
868
869 /*
870 * Force hardware to use computed duration for next
871 * fragment by disabling multi-rate retry, which
872 * updates duration based on the multi-rate duration table.
873 *
874 * FIXME: Fix duration
875 */
876 if (ieee80211_has_morefrags(fc) ||
877 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
878 rates[1].count = rates[2].count = rates[3].count = 0;
879 rates[1].idx = rates[2].idx = rates[3].idx = 0;
880 rates[0].count = ATH_TXMAXTRY;
881 }
882
883 /* Setup RTS/CTS */
884 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
885 }
886
887 static bool ath_rc_update_per(struct ath_softc *sc,
888 const struct ath_rate_table *rate_table,
889 struct ath_rate_priv *ath_rc_priv,
890 struct ieee80211_tx_info *tx_info,
891 int tx_rate, int xretries, int retries,
892 u32 now_msec)
893 {
894 bool state_change = false;
895 int count, n_bad_frames;
896 u8 last_per;
897 static u32 nretry_to_per_lookup[10] = {
898 100 * 0 / 1,
899 100 * 1 / 4,
900 100 * 1 / 2,
901 100 * 3 / 4,
902 100 * 4 / 5,
903 100 * 5 / 6,
904 100 * 6 / 7,
905 100 * 7 / 8,
906 100 * 8 / 9,
907 100 * 9 / 10
908 };
909
910 last_per = ath_rc_priv->per[tx_rate];
911 n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
912
913 if (xretries) {
914 if (xretries == 1) {
915 ath_rc_priv->per[tx_rate] += 30;
916 if (ath_rc_priv->per[tx_rate] > 100)
917 ath_rc_priv->per[tx_rate] = 100;
918 } else {
919 /* xretries == 2 */
920 count = ARRAY_SIZE(nretry_to_per_lookup);
921 if (retries >= count)
922 retries = count - 1;
923
924 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
925 ath_rc_priv->per[tx_rate] =
926 (u8)(last_per - (last_per >> 3) + (100 >> 3));
927 }
928
929 /* xretries == 1 or 2 */
930
931 if (ath_rc_priv->probe_rate == tx_rate)
932 ath_rc_priv->probe_rate = 0;
933
934 } else { /* xretries == 0 */
935 count = ARRAY_SIZE(nretry_to_per_lookup);
936 if (retries >= count)
937 retries = count - 1;
938
939 if (n_bad_frames) {
940 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
941 * Assuming that n_frames is not 0. The current PER
942 * from the retries is 100 * retries / (retries+1),
943 * since the first retries attempts failed, and the
944 * next one worked. For the one that worked,
945 * n_bad_frames subframes out of n_frames wored,
946 * so the PER for that part is
947 * 100 * n_bad_frames / n_frames, and it contributes
948 * 100 * n_bad_frames / (n_frames * (retries+1)) to
949 * the above PER. The expression below is a
950 * simplified version of the sum of these two terms.
951 */
952 if (tx_info->status.ampdu_len > 0) {
953 int n_frames, n_bad_tries;
954 u8 cur_per, new_per;
955
956 n_bad_tries = retries * tx_info->status.ampdu_len +
957 n_bad_frames;
958 n_frames = tx_info->status.ampdu_len * (retries + 1);
959 cur_per = (100 * n_bad_tries / n_frames) >> 3;
960 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
961 ath_rc_priv->per[tx_rate] = new_per;
962 }
963 } else {
964 ath_rc_priv->per[tx_rate] =
965 (u8)(last_per - (last_per >> 3) +
966 (nretry_to_per_lookup[retries] >> 3));
967 }
968
969
970 /*
971 * If we got at most one retry then increase the max rate if
972 * this was a probe. Otherwise, ignore the probe.
973 */
974 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
975 if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
976 /*
977 * Since we probed with just a single attempt,
978 * any retries means the probe failed. Also,
979 * if the attempt worked, but more than half
980 * the subframes were bad then also consider
981 * the probe a failure.
982 */
983 ath_rc_priv->probe_rate = 0;
984 } else {
985 u8 probe_rate = 0;
986
987 ath_rc_priv->rate_max_phy =
988 ath_rc_priv->probe_rate;
989 probe_rate = ath_rc_priv->probe_rate;
990
991 if (ath_rc_priv->per[probe_rate] > 30)
992 ath_rc_priv->per[probe_rate] = 20;
993
994 ath_rc_priv->probe_rate = 0;
995
996 /*
997 * Since this probe succeeded, we allow the next
998 * probe twice as soon. This allows the maxRate
999 * to move up faster if the probes are
1000 * successful.
1001 */
1002 ath_rc_priv->probe_time =
1003 now_msec - rate_table->probe_interval / 2;
1004 }
1005 }
1006
1007 if (retries > 0) {
1008 /*
1009 * Don't update anything. We don't know if
1010 * this was because of collisions or poor signal.
1011 */
1012 ath_rc_priv->hw_maxretry_pktcnt = 0;
1013 } else {
1014 /*
1015 * It worked with no retries. First ignore bogus (small)
1016 * rssi_ack values.
1017 */
1018 if (tx_rate == ath_rc_priv->rate_max_phy &&
1019 ath_rc_priv->hw_maxretry_pktcnt < 255) {
1020 ath_rc_priv->hw_maxretry_pktcnt++;
1021 }
1022
1023 }
1024 }
1025
1026 return state_change;
1027 }
1028
1029 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1030 If you can make sense of all this, you really need to go out more. */
1031
1032 static void ath_rc_update_ht(struct ath_softc *sc,
1033 struct ath_rate_priv *ath_rc_priv,
1034 struct ieee80211_tx_info *tx_info,
1035 int tx_rate, int xretries, int retries)
1036 {
1037 u32 now_msec = jiffies_to_msecs(jiffies);
1038 int rate;
1039 u8 last_per;
1040 bool state_change = false;
1041 const struct ath_rate_table *rate_table = sc->cur_rate_table;
1042 int size = ath_rc_priv->rate_table_size;
1043
1044 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1045 return;
1046
1047 last_per = ath_rc_priv->per[tx_rate];
1048
1049 /* Update PER first */
1050 state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
1051 tx_info, tx_rate, xretries,
1052 retries, now_msec);
1053
1054 /*
1055 * If this rate looks bad (high PER) then stop using it for
1056 * a while (except if we are probing).
1057 */
1058 if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
1059 rate_table->info[tx_rate].ratekbps <=
1060 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1061 ath_rc_get_lower_rix(rate_table, ath_rc_priv,
1062 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1063
1064 /* Don't probe for a little while. */
1065 ath_rc_priv->probe_time = now_msec;
1066 }
1067
1068 /* Make sure the rates below this have lower PER */
1069 /* Monotonicity is kept only for rates below the current rate. */
1070 if (ath_rc_priv->per[tx_rate] < last_per) {
1071 for (rate = tx_rate - 1; rate >= 0; rate--) {
1072
1073 if (ath_rc_priv->per[rate] >
1074 ath_rc_priv->per[rate+1]) {
1075 ath_rc_priv->per[rate] =
1076 ath_rc_priv->per[rate+1];
1077 }
1078 }
1079 }
1080
1081 /* Maintain monotonicity for rates above the current rate */
1082 for (rate = tx_rate; rate < size - 1; rate++) {
1083 if (ath_rc_priv->per[rate+1] <
1084 ath_rc_priv->per[rate])
1085 ath_rc_priv->per[rate+1] =
1086 ath_rc_priv->per[rate];
1087 }
1088
1089 /* Every so often, we reduce the thresholds
1090 * and PER (different for CCK and OFDM). */
1091 if (now_msec - ath_rc_priv->per_down_time >=
1092 rate_table->probe_interval) {
1093 for (rate = 0; rate < size; rate++) {
1094 ath_rc_priv->per[rate] =
1095 7 * ath_rc_priv->per[rate] / 8;
1096 }
1097
1098 ath_rc_priv->per_down_time = now_msec;
1099 }
1100
1101 ath_debug_stat_retries(sc, tx_rate, xretries, retries,
1102 ath_rc_priv->per[tx_rate]);
1103
1104 }
1105
1106 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
1107 struct ieee80211_tx_rate *rate)
1108 {
1109 int rix = 0, i = 0;
1110 int mcs_rix_off[] = { 7, 15, 20, 21, 22, 23 };
1111
1112 if (!(rate->flags & IEEE80211_TX_RC_MCS))
1113 return rate->idx;
1114
1115 while (rate->idx > mcs_rix_off[i] &&
1116 i < sizeof(mcs_rix_off)/sizeof(int)) {
1117 rix++; i++;
1118 }
1119
1120 rix += rate->idx + rate_table->mcs_start;
1121
1122 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1123 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
1124 rix = rate_table->info[rix].ht_index;
1125 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1126 rix = rate_table->info[rix].sgi_index;
1127 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1128 rix = rate_table->info[rix].cw40index;
1129
1130 return rix;
1131 }
1132
1133 static void ath_rc_tx_status(struct ath_softc *sc,
1134 struct ath_rate_priv *ath_rc_priv,
1135 struct ieee80211_tx_info *tx_info,
1136 int final_ts_idx, int xretries, int long_retry)
1137 {
1138 const struct ath_rate_table *rate_table;
1139 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1140 u8 flags;
1141 u32 i = 0, rix;
1142
1143 rate_table = sc->cur_rate_table;
1144
1145 /*
1146 * If the first rate is not the final index, there
1147 * are intermediate rate failures to be processed.
1148 */
1149 if (final_ts_idx != 0) {
1150 /* Process intermediate rates that failed.*/
1151 for (i = 0; i < final_ts_idx ; i++) {
1152 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1153 flags = rates[i].flags;
1154
1155 /* If HT40 and we have switched mode from
1156 * 40 to 20 => don't update */
1157
1158 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1159 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1160 return;
1161
1162 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1163 ath_rc_update_ht(sc, ath_rc_priv, tx_info,
1164 rix, xretries ? 1 : 2,
1165 rates[i].count);
1166 }
1167 }
1168 } else {
1169 /*
1170 * Handle the special case of MIMO PS burst, where the second
1171 * aggregate is sent out with only one rate and one try.
1172 * Treating it as an excessive retry penalizes the rate
1173 * inordinately.
1174 */
1175 if (rates[0].count == 1 && xretries == 1)
1176 xretries = 2;
1177 }
1178
1179 flags = rates[i].flags;
1180
1181 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1182 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1183 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1184 return;
1185
1186 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1187 ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
1188 }
1189
1190 static const
1191 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1192 enum ieee80211_band band,
1193 bool is_ht,
1194 bool is_cw_40)
1195 {
1196 int mode = 0;
1197 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1198
1199 switch(band) {
1200 case IEEE80211_BAND_2GHZ:
1201 mode = ATH9K_MODE_11G;
1202 if (is_ht)
1203 mode = ATH9K_MODE_11NG_HT20;
1204 if (is_cw_40)
1205 mode = ATH9K_MODE_11NG_HT40PLUS;
1206 break;
1207 case IEEE80211_BAND_5GHZ:
1208 mode = ATH9K_MODE_11A;
1209 if (is_ht)
1210 mode = ATH9K_MODE_11NA_HT20;
1211 if (is_cw_40)
1212 mode = ATH9K_MODE_11NA_HT40PLUS;
1213 break;
1214 default:
1215 ath_print(common, ATH_DBG_CONFIG, "Invalid band\n");
1216 return NULL;
1217 }
1218
1219 BUG_ON(mode >= ATH9K_MODE_MAX);
1220
1221 ath_print(common, ATH_DBG_CONFIG,
1222 "Choosing rate table for mode: %d\n", mode);
1223
1224 sc->cur_rate_mode = mode;
1225 return hw_rate_table[mode];
1226 }
1227
1228 static void ath_rc_init(struct ath_softc *sc,
1229 struct ath_rate_priv *ath_rc_priv,
1230 struct ieee80211_supported_band *sband,
1231 struct ieee80211_sta *sta,
1232 const struct ath_rate_table *rate_table)
1233 {
1234 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1235 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1236 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1237 u8 i, j, k, hi = 0, hthi = 0;
1238
1239 /* Initial rate table size. Will change depending
1240 * on the working rate set */
1241 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1242
1243 /* Initialize thresholds according to the global rate table */
1244 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1245 ath_rc_priv->per[i] = 0;
1246 }
1247
1248 /* Determine the valid rates */
1249 ath_rc_init_valid_txmask(ath_rc_priv);
1250
1251 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1252 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1253 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1254 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1255 }
1256
1257 if (!rateset->rs_nrates) {
1258 /* No working rate, just initialize valid rates */
1259 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1260 ath_rc_priv->ht_cap);
1261 } else {
1262 /* Use intersection of working rates and valid rates */
1263 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1264 rateset, ath_rc_priv->ht_cap);
1265 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1266 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1267 rate_table,
1268 ht_mcs,
1269 ath_rc_priv->ht_cap);
1270 }
1271 hi = A_MAX(hi, hthi);
1272 }
1273
1274 ath_rc_priv->rate_table_size = hi + 1;
1275 ath_rc_priv->rate_max_phy = 0;
1276 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1277
1278 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1279 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1280 ath_rc_priv->valid_rate_index[k++] =
1281 ath_rc_priv->valid_phy_rateidx[i][j];
1282 }
1283
1284 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1285 || !ath_rc_priv->valid_phy_ratecnt[i])
1286 continue;
1287
1288 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1289 }
1290 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1291 BUG_ON(k > RATE_TABLE_SIZE);
1292
1293 ath_rc_priv->max_valid_rate = k;
1294 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1295 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1296 sc->cur_rate_table = rate_table;
1297
1298 ath_print(common, ATH_DBG_CONFIG,
1299 "RC Initialized with capabilities: 0x%x\n",
1300 ath_rc_priv->ht_cap);
1301 }
1302
1303 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
1304 bool is_cw40, bool is_sgi)
1305 {
1306 u8 caps = 0;
1307
1308 if (sta->ht_cap.ht_supported) {
1309 caps = WLAN_RC_HT_FLAG;
1310 if (sta->ht_cap.mcs.rx_mask[1] && sta->ht_cap.mcs.rx_mask[2])
1311 caps |= WLAN_RC_TS_FLAG | WLAN_RC_DS_FLAG;
1312 else if (sta->ht_cap.mcs.rx_mask[1])
1313 caps |= WLAN_RC_DS_FLAG;
1314 if (is_cw40)
1315 caps |= WLAN_RC_40_FLAG;
1316 if (is_sgi)
1317 caps |= WLAN_RC_SGI_FLAG;
1318 }
1319
1320 return caps;
1321 }
1322
1323 static bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an,
1324 u8 tidno)
1325 {
1326 struct ath_atx_tid *txtid;
1327
1328 if (!(sc->sc_flags & SC_OP_TXAGGR))
1329 return false;
1330
1331 txtid = ATH_AN_2_TID(an, tidno);
1332
1333 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
1334 return true;
1335 return false;
1336 }
1337
1338
1339 /***********************************/
1340 /* mac80211 Rate Control callbacks */
1341 /***********************************/
1342
1343 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1344 struct ieee80211_sta *sta, void *priv_sta,
1345 struct sk_buff *skb)
1346 {
1347 struct ath_softc *sc = priv;
1348 struct ath_rate_priv *ath_rc_priv = priv_sta;
1349 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1350 struct ieee80211_hdr *hdr;
1351 int final_ts_idx = 0, tx_status = 0, is_underrun = 0;
1352 int long_retry = 0;
1353 __le16 fc;
1354 int i;
1355
1356 hdr = (struct ieee80211_hdr *)skb->data;
1357 fc = hdr->frame_control;
1358 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
1359 struct ieee80211_tx_rate *rate = &tx_info->status.rates[i];
1360 if (!rate->count)
1361 break;
1362
1363 final_ts_idx = i;
1364 long_retry = rate->count - 1;
1365 }
1366
1367 if (!priv_sta || !ieee80211_is_data(fc))
1368 return;
1369
1370 /* This packet was aggregated but doesn't carry status info */
1371 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
1372 !(tx_info->flags & IEEE80211_TX_STAT_AMPDU))
1373 return;
1374
1375 if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
1376 return;
1377
1378 /*
1379 * If an underrun error is seen assume it as an excessive retry only
1380 * if max frame trigger level has been reached (2 KB for singel stream,
1381 * and 4 KB for dual stream). Adjust the long retry as if the frame was
1382 * tried hw->max_rate_tries times to affect how ratectrl updates PER for
1383 * the failed rate. In case of congestion on the bus penalizing these
1384 * type of underruns should help hardware actually transmit new frames
1385 * successfully by eventually preferring slower rates. This itself
1386 * should also alleviate congestion on the bus.
1387 */
1388 if ((tx_info->pad[0] & ATH_TX_INFO_UNDERRUN) &&
1389 (sc->sc_ah->tx_trig_level >= ath_rc_priv->tx_triglevel_max)) {
1390 tx_status = 1;
1391 is_underrun = 1;
1392 }
1393
1394 if (tx_info->pad[0] & ATH_TX_INFO_XRETRY)
1395 tx_status = 1;
1396
1397 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1398 (is_underrun) ? sc->hw->max_rate_tries : long_retry);
1399
1400 /* Check if aggregation has to be enabled for this tid */
1401 if (conf_is_ht(&sc->hw->conf) &&
1402 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1403 if (ieee80211_is_data_qos(fc)) {
1404 u8 *qc, tid;
1405 struct ath_node *an;
1406
1407 qc = ieee80211_get_qos_ctl(hdr);
1408 tid = qc[0] & 0xf;
1409 an = (struct ath_node *)sta->drv_priv;
1410
1411 if(ath_tx_aggr_check(sc, an, tid))
1412 ieee80211_start_tx_ba_session(sta, tid);
1413 }
1414 }
1415
1416 ath_debug_stat_rc(sc, ath_rc_get_rateindex(sc->cur_rate_table,
1417 &tx_info->status.rates[final_ts_idx]));
1418 }
1419
1420 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1421 struct ieee80211_sta *sta, void *priv_sta)
1422 {
1423 struct ath_softc *sc = priv;
1424 struct ath_rate_priv *ath_rc_priv = priv_sta;
1425 const struct ath_rate_table *rate_table;
1426 bool is_cw40, is_sgi = false;
1427 int i, j = 0;
1428
1429 for (i = 0; i < sband->n_bitrates; i++) {
1430 if (sta->supp_rates[sband->band] & BIT(i)) {
1431 ath_rc_priv->neg_rates.rs_rates[j]
1432 = (sband->bitrates[i].bitrate * 2) / 10;
1433 j++;
1434 }
1435 }
1436 ath_rc_priv->neg_rates.rs_nrates = j;
1437
1438 if (sta->ht_cap.ht_supported) {
1439 for (i = 0, j = 0; i < 77; i++) {
1440 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1441 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1442 if (j == ATH_RATE_MAX)
1443 break;
1444 }
1445 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1446 }
1447
1448 is_cw40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1449
1450 if (is_cw40)
1451 is_sgi = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
1452 else if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
1453 is_sgi = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20;
1454
1455 /* Choose rate table first */
1456
1457 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) ||
1458 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT) ||
1459 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)) {
1460 rate_table = ath_choose_rate_table(sc, sband->band,
1461 sta->ht_cap.ht_supported, is_cw40);
1462 } else {
1463 rate_table = hw_rate_table[sc->cur_rate_mode];
1464 }
1465
1466 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi);
1467 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1468 }
1469
1470 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1471 struct ieee80211_sta *sta, void *priv_sta,
1472 u32 changed, enum nl80211_channel_type oper_chan_type)
1473 {
1474 struct ath_softc *sc = priv;
1475 struct ath_rate_priv *ath_rc_priv = priv_sta;
1476 const struct ath_rate_table *rate_table = NULL;
1477 bool oper_cw40 = false, oper_sgi;
1478 bool local_cw40 = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ?
1479 true : false;
1480 bool local_sgi = (ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ?
1481 true : false;
1482
1483 /* FIXME: Handle AP mode later when we support CWM */
1484
1485 if (changed & IEEE80211_RC_HT_CHANGED) {
1486 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
1487 return;
1488
1489 if (oper_chan_type == NL80211_CHAN_HT40MINUS ||
1490 oper_chan_type == NL80211_CHAN_HT40PLUS)
1491 oper_cw40 = true;
1492
1493 if (oper_cw40)
1494 oper_sgi = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1495 true : false;
1496 else if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
1497 oper_sgi = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1498 true : false;
1499 else
1500 oper_sgi = false;
1501
1502 if ((local_cw40 != oper_cw40) || (local_sgi != oper_sgi)) {
1503 rate_table = ath_choose_rate_table(sc, sband->band,
1504 sta->ht_cap.ht_supported,
1505 oper_cw40);
1506 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
1507 oper_cw40, oper_sgi);
1508 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1509
1510 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
1511 "Operating HT Bandwidth changed to: %d\n",
1512 sc->hw->conf.channel_type);
1513 sc->cur_rate_table = hw_rate_table[sc->cur_rate_mode];
1514 }
1515 }
1516 }
1517
1518 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1519 {
1520 struct ath_wiphy *aphy = hw->priv;
1521 return aphy->sc;
1522 }
1523
1524 static void ath_rate_free(void *priv)
1525 {
1526 return;
1527 }
1528
1529 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1530 {
1531 struct ath_softc *sc = priv;
1532 struct ath_rate_priv *rate_priv;
1533
1534 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1535 if (!rate_priv) {
1536 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1537 "Unable to allocate private rc structure\n");
1538 return NULL;
1539 }
1540
1541 rate_priv->tx_triglevel_max = sc->sc_ah->caps.tx_triglevel_max;
1542
1543 return rate_priv;
1544 }
1545
1546 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1547 void *priv_sta)
1548 {
1549 struct ath_rate_priv *rate_priv = priv_sta;
1550 kfree(rate_priv);
1551 }
1552
1553 static struct rate_control_ops ath_rate_ops = {
1554 .module = NULL,
1555 .name = "ath9k_rate_control",
1556 .tx_status = ath_tx_status,
1557 .get_rate = ath_get_rate,
1558 .rate_init = ath_rate_init,
1559 .rate_update = ath_rate_update,
1560 .alloc = ath_rate_alloc,
1561 .free = ath_rate_free,
1562 .alloc_sta = ath_rate_alloc_sta,
1563 .free_sta = ath_rate_free_sta,
1564 };
1565
1566 int ath_rate_control_register(void)
1567 {
1568 return ieee80211_rate_control_register(&ath_rate_ops);
1569 }
1570
1571 void ath_rate_control_unregister(void)
1572 {
1573 ieee80211_rate_control_unregister(&ath_rate_ops);
1574 }
This page took 0.101767 seconds and 5 git commands to generate.