Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / rc.c
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2009 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include "ath9k.h"
19
20 static const struct ath_rate_table ar5416_11na_ratetable = {
21 42,
22 {
23 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
24 5400, 0x0b, 0x00, 12,
25 0, 0, 0, 0, 0, 0 },
26 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
27 7800, 0x0f, 0x00, 18,
28 0, 1, 1, 1, 1, 0 },
29 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
30 10000, 0x0a, 0x00, 24,
31 2, 2, 2, 2, 2, 0 },
32 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
33 13900, 0x0e, 0x00, 36,
34 2, 3, 3, 3, 3, 0 },
35 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
36 17300, 0x09, 0x00, 48,
37 4, 4, 4, 4, 4, 0 },
38 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
39 23000, 0x0d, 0x00, 72,
40 4, 5, 5, 5, 5, 0 },
41 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
42 27400, 0x08, 0x00, 96,
43 4, 6, 6, 6, 6, 0 },
44 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
45 29300, 0x0c, 0x00, 108,
46 4, 7, 7, 7, 7, 0 },
47 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
48 6400, 0x80, 0x00, 0,
49 0, 8, 24, 8, 24, 3216 },
50 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
51 12700, 0x81, 0x00, 1,
52 2, 9, 25, 9, 25, 6434 },
53 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
54 18800, 0x82, 0x00, 2,
55 2, 10, 26, 10, 26, 9650 },
56 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
57 25000, 0x83, 0x00, 3,
58 4, 11, 27, 11, 27, 12868 },
59 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
60 36700, 0x84, 0x00, 4,
61 4, 12, 28, 12, 28, 19304 },
62 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
63 48100, 0x85, 0x00, 5,
64 4, 13, 29, 13, 29, 25740 },
65 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
66 53500, 0x86, 0x00, 6,
67 4, 14, 30, 14, 30, 28956 },
68 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
69 59000, 0x87, 0x00, 7,
70 4, 15, 31, 15, 32, 32180 },
71 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
72 12700, 0x88, 0x00,
73 8, 3, 16, 33, 16, 33, 6430 },
74 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
75 24800, 0x89, 0x00, 9,
76 2, 17, 34, 17, 34, 12860 },
77 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
78 36600, 0x8a, 0x00, 10,
79 2, 18, 35, 18, 35, 19300 },
80 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
81 48100, 0x8b, 0x00, 11,
82 4, 19, 36, 19, 36, 25736 },
83 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
84 69500, 0x8c, 0x00, 12,
85 4, 20, 37, 20, 37, 38600 },
86 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
87 89500, 0x8d, 0x00, 13,
88 4, 21, 38, 21, 38, 51472 },
89 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
90 98900, 0x8e, 0x00, 14,
91 4, 22, 39, 22, 39, 57890 },
92 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
93 108300, 0x8f, 0x00, 15,
94 4, 23, 40, 23, 41, 64320 },
95 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
96 13200, 0x80, 0x00, 0,
97 0, 8, 24, 24, 24, 6684 },
98 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
99 25900, 0x81, 0x00, 1,
100 2, 9, 25, 25, 25, 13368 },
101 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
102 38600, 0x82, 0x00, 2,
103 2, 10, 26, 26, 26, 20052 },
104 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
105 49800, 0x83, 0x00, 3,
106 4, 11, 27, 27, 27, 26738 },
107 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
108 72200, 0x84, 0x00, 4,
109 4, 12, 28, 28, 28, 40104 },
110 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
111 92900, 0x85, 0x00, 5,
112 4, 13, 29, 29, 29, 53476 },
113 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
114 102700, 0x86, 0x00, 6,
115 4, 14, 30, 30, 30, 60156 },
116 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
117 112000, 0x87, 0x00, 7,
118 4, 15, 31, 32, 32, 66840 },
119 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
120 122000, 0x87, 0x00, 7,
121 4, 15, 31, 32, 32, 74200 },
122 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
123 25800, 0x88, 0x00, 8,
124 0, 16, 33, 33, 33, 13360 },
125 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
126 49800, 0x89, 0x00, 9,
127 2, 17, 34, 34, 34, 26720 },
128 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
129 71900, 0x8a, 0x00, 10,
130 2, 18, 35, 35, 35, 40080 },
131 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
132 92500, 0x8b, 0x00, 11,
133 4, 19, 36, 36, 36, 53440 },
134 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
135 130300, 0x8c, 0x00, 12,
136 4, 20, 37, 37, 37, 80160 },
137 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
138 162800, 0x8d, 0x00, 13,
139 4, 21, 38, 38, 38, 106880 },
140 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
141 178200, 0x8e, 0x00, 14,
142 4, 22, 39, 39, 39, 120240 },
143 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
144 192100, 0x8f, 0x00, 15,
145 4, 23, 40, 41, 41, 133600 },
146 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
147 207000, 0x8f, 0x00, 15,
148 4, 23, 40, 41, 41, 148400 },
149 },
150 50, /* probe interval */
151 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
152 };
153
154 /* 4ms frame limit not used for NG mode. The values filled
155 * for HT are the 64K max aggregate limit */
156
157 static const struct ath_rate_table ar5416_11ng_ratetable = {
158 46,
159 {
160 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
161 900, 0x1b, 0x00, 2,
162 0, 0, 0, 0, 0, 0 },
163 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
164 1900, 0x1a, 0x04, 4,
165 1, 1, 1, 1, 1, 0 },
166 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
167 4900, 0x19, 0x04, 11,
168 2, 2, 2, 2, 2, 0 },
169 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
170 8100, 0x18, 0x04, 22,
171 3, 3, 3, 3, 3, 0 },
172 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
173 5400, 0x0b, 0x00, 12,
174 4, 4, 4, 4, 4, 0 },
175 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
176 7800, 0x0f, 0x00, 18,
177 4, 5, 5, 5, 5, 0 },
178 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
179 10100, 0x0a, 0x00, 24,
180 6, 6, 6, 6, 6, 0 },
181 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
182 14100, 0x0e, 0x00, 36,
183 6, 7, 7, 7, 7, 0 },
184 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
185 17700, 0x09, 0x00, 48,
186 8, 8, 8, 8, 8, 0 },
187 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
188 23700, 0x0d, 0x00, 72,
189 8, 9, 9, 9, 9, 0 },
190 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
191 27400, 0x08, 0x00, 96,
192 8, 10, 10, 10, 10, 0 },
193 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
194 30900, 0x0c, 0x00, 108,
195 8, 11, 11, 11, 11, 0 },
196 { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
197 6400, 0x80, 0x00, 0,
198 4, 12, 28, 12, 28, 3216 },
199 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
200 12700, 0x81, 0x00, 1,
201 6, 13, 29, 13, 29, 6434 },
202 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
203 18800, 0x82, 0x00, 2,
204 6, 14, 30, 14, 30, 9650 },
205 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
206 25000, 0x83, 0x00, 3,
207 8, 15, 31, 15, 31, 12868 },
208 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
209 36700, 0x84, 0x00, 4,
210 8, 16, 32, 16, 32, 19304 },
211 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
212 48100, 0x85, 0x00, 5,
213 8, 17, 33, 17, 33, 25740 },
214 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
215 53500, 0x86, 0x00, 6,
216 8, 18, 34, 18, 34, 28956 },
217 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
218 59000, 0x87, 0x00, 7,
219 8, 19, 35, 19, 36, 32180 },
220 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
221 12700, 0x88, 0x00, 8,
222 4, 20, 37, 20, 37, 6430 },
223 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
224 24800, 0x89, 0x00, 9,
225 6, 21, 38, 21, 38, 12860 },
226 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
227 36600, 0x8a, 0x00, 10,
228 6, 22, 39, 22, 39, 19300 },
229 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
230 48100, 0x8b, 0x00, 11,
231 8, 23, 40, 23, 40, 25736 },
232 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
233 69500, 0x8c, 0x00, 12,
234 8, 24, 41, 24, 41, 38600 },
235 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
236 89500, 0x8d, 0x00, 13,
237 8, 25, 42, 25, 42, 51472 },
238 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
239 98900, 0x8e, 0x00, 14,
240 8, 26, 43, 26, 44, 57890 },
241 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
242 108300, 0x8f, 0x00, 15,
243 8, 27, 44, 27, 45, 64320 },
244 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
245 13200, 0x80, 0x00, 0,
246 8, 12, 28, 28, 28, 6684 },
247 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
248 25900, 0x81, 0x00, 1,
249 8, 13, 29, 29, 29, 13368 },
250 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
251 38600, 0x82, 0x00, 2,
252 8, 14, 30, 30, 30, 20052 },
253 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
254 49800, 0x83, 0x00, 3,
255 8, 15, 31, 31, 31, 26738 },
256 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
257 72200, 0x84, 0x00, 4,
258 8, 16, 32, 32, 32, 40104 },
259 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
260 92900, 0x85, 0x00, 5,
261 8, 17, 33, 33, 33, 53476 },
262 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
263 102700, 0x86, 0x00, 6,
264 8, 18, 34, 34, 34, 60156 },
265 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
266 112000, 0x87, 0x00, 7,
267 8, 19, 35, 36, 36, 66840 },
268 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
269 122000, 0x87, 0x00, 7,
270 8, 19, 35, 36, 36, 74200 },
271 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
272 25800, 0x88, 0x00, 8,
273 8, 20, 37, 37, 37, 13360 },
274 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
275 49800, 0x89, 0x00, 9,
276 8, 21, 38, 38, 38, 26720 },
277 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
278 71900, 0x8a, 0x00, 10,
279 8, 22, 39, 39, 39, 40080 },
280 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
281 92500, 0x8b, 0x00, 11,
282 8, 23, 40, 40, 40, 53440 },
283 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
284 130300, 0x8c, 0x00, 12,
285 8, 24, 41, 41, 41, 80160 },
286 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
287 162800, 0x8d, 0x00, 13,
288 8, 25, 42, 42, 42, 106880 },
289 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
290 178200, 0x8e, 0x00, 14,
291 8, 26, 43, 43, 43, 120240 },
292 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
293 192100, 0x8f, 0x00, 15,
294 8, 27, 44, 45, 45, 133600 },
295 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
296 207000, 0x8f, 0x00, 15,
297 8, 27, 44, 45, 45, 148400 },
298 },
299 50, /* probe interval */
300 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
301 };
302
303 static const struct ath_rate_table ar5416_11a_ratetable = {
304 8,
305 {
306 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
307 5400, 0x0b, 0x00, (0x80|12),
308 0, 0, 0 },
309 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
310 7800, 0x0f, 0x00, 18,
311 0, 1, 0 },
312 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
313 10000, 0x0a, 0x00, (0x80|24),
314 2, 2, 0 },
315 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
316 13900, 0x0e, 0x00, 36,
317 2, 3, 0 },
318 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
319 17300, 0x09, 0x00, (0x80|48),
320 4, 4, 0 },
321 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
322 23000, 0x0d, 0x00, 72,
323 4, 5, 0 },
324 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
325 27400, 0x08, 0x00, 96,
326 4, 6, 0 },
327 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
328 29300, 0x0c, 0x00, 108,
329 4, 7, 0 },
330 },
331 50, /* probe interval */
332 0, /* Phy rates allowed initially */
333 };
334
335 static const struct ath_rate_table ar5416_11g_ratetable = {
336 12,
337 {
338 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
339 900, 0x1b, 0x00, 2,
340 0, 0, 0 },
341 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
342 1900, 0x1a, 0x04, 4,
343 1, 1, 0 },
344 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
345 4900, 0x19, 0x04, 11,
346 2, 2, 0 },
347 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
348 8100, 0x18, 0x04, 22,
349 3, 3, 0 },
350 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
351 5400, 0x0b, 0x00, 12,
352 4, 4, 0 },
353 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
354 7800, 0x0f, 0x00, 18,
355 4, 5, 0 },
356 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
357 10000, 0x0a, 0x00, 24,
358 6, 6, 0 },
359 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
360 13900, 0x0e, 0x00, 36,
361 6, 7, 0 },
362 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
363 17300, 0x09, 0x00, 48,
364 8, 8, 0 },
365 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
366 23000, 0x0d, 0x00, 72,
367 8, 9, 0 },
368 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
369 27400, 0x08, 0x00, 96,
370 8, 10, 0 },
371 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
372 29300, 0x0c, 0x00, 108,
373 8, 11, 0 },
374 },
375 50, /* probe interval */
376 0, /* Phy rates allowed initially */
377 };
378
379 static inline int8_t median(int8_t a, int8_t b, int8_t c)
380 {
381 if (a >= b) {
382 if (b >= c)
383 return b;
384 else if (a > c)
385 return c;
386 else
387 return a;
388 } else {
389 if (a >= c)
390 return a;
391 else if (b >= c)
392 return c;
393 else
394 return b;
395 }
396 }
397
398 static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
399 struct ath_rate_priv *ath_rc_priv)
400 {
401 u8 i, j, idx, idx_next;
402
403 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
404 for (j = 0; j <= i-1; j++) {
405 idx = ath_rc_priv->valid_rate_index[j];
406 idx_next = ath_rc_priv->valid_rate_index[j+1];
407
408 if (rate_table->info[idx].ratekbps >
409 rate_table->info[idx_next].ratekbps) {
410 ath_rc_priv->valid_rate_index[j] = idx_next;
411 ath_rc_priv->valid_rate_index[j+1] = idx;
412 }
413 }
414 }
415 }
416
417 static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
418 {
419 u8 i;
420
421 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
422 ath_rc_priv->valid_rate_index[i] = 0;
423 }
424
425 static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
426 u8 index, int valid_tx_rate)
427 {
428 ASSERT(index <= ath_rc_priv->rate_table_size);
429 ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
430 }
431
432 static inline
433 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
434 struct ath_rate_priv *ath_rc_priv,
435 u8 cur_valid_txrate,
436 u8 *next_idx)
437 {
438 u8 i;
439
440 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
441 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
442 *next_idx = ath_rc_priv->valid_rate_index[i+1];
443 return 1;
444 }
445 }
446
447 /* No more valid rates */
448 *next_idx = 0;
449
450 return 0;
451 }
452
453 /* Return true only for single stream */
454
455 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
456 {
457 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
458 return 0;
459 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
460 return 0;
461 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
462 return 0;
463 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
464 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
465 return 0;
466 if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
467 return 0;
468 return 1;
469 }
470
471 static inline int
472 ath_rc_get_lower_rix(const struct ath_rate_table *rate_table,
473 struct ath_rate_priv *ath_rc_priv,
474 u8 cur_valid_txrate, u8 *next_idx)
475 {
476 int8_t i;
477
478 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
479 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
480 *next_idx = ath_rc_priv->valid_rate_index[i-1];
481 return 1;
482 }
483 }
484
485 return 0;
486 }
487
488 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
489 const struct ath_rate_table *rate_table,
490 u32 capflag)
491 {
492 u8 i, hi = 0;
493 u32 valid;
494
495 for (i = 0; i < rate_table->rate_cnt; i++) {
496 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
497 rate_table->info[i].valid_single_stream :
498 rate_table->info[i].valid);
499 if (valid == 1) {
500 u32 phy = rate_table->info[i].phy;
501 u8 valid_rate_count = 0;
502
503 if (!ath_rc_valid_phyrate(phy, capflag, 0))
504 continue;
505
506 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
507
508 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
509 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
510 ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
511 hi = A_MAX(hi, i);
512 }
513 }
514
515 return hi;
516 }
517
518 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
519 const struct ath_rate_table *rate_table,
520 struct ath_rateset *rateset,
521 u32 capflag)
522 {
523 u8 i, j, hi = 0;
524
525 /* Use intersection of working rates and valid rates */
526 for (i = 0; i < rateset->rs_nrates; i++) {
527 for (j = 0; j < rate_table->rate_cnt; j++) {
528 u32 phy = rate_table->info[j].phy;
529 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
530 rate_table->info[j].valid_single_stream :
531 rate_table->info[j].valid);
532 u8 rate = rateset->rs_rates[i];
533 u8 dot11rate = rate_table->info[j].dot11rate;
534
535 /* We allow a rate only if its valid and the
536 * capflag matches one of the validity
537 * (VALID/VALID_20/VALID_40) flags */
538
539 if (((rate & 0x7F) == (dot11rate & 0x7F)) &&
540 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
541 WLAN_RC_CAP_MODE(capflag)) &&
542 !WLAN_RC_PHY_HT(phy)) {
543 u8 valid_rate_count = 0;
544
545 if (!ath_rc_valid_phyrate(phy, capflag, 0))
546 continue;
547
548 valid_rate_count =
549 ath_rc_priv->valid_phy_ratecnt[phy];
550
551 ath_rc_priv->valid_phy_rateidx[phy]
552 [valid_rate_count] = j;
553 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
554 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
555 hi = A_MAX(hi, j);
556 }
557 }
558 }
559
560 return hi;
561 }
562
563 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
564 const struct ath_rate_table *rate_table,
565 u8 *mcs_set, u32 capflag)
566 {
567 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
568
569 u8 i, j, hi = 0;
570
571 /* Use intersection of working rates and valid rates */
572 for (i = 0; i < rateset->rs_nrates; i++) {
573 for (j = 0; j < rate_table->rate_cnt; j++) {
574 u32 phy = rate_table->info[j].phy;
575 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
576 rate_table->info[j].valid_single_stream :
577 rate_table->info[j].valid);
578 u8 rate = rateset->rs_rates[i];
579 u8 dot11rate = rate_table->info[j].dot11rate;
580
581 if (((rate & 0x7F) != (dot11rate & 0x7F)) ||
582 !WLAN_RC_PHY_HT(phy) ||
583 !WLAN_RC_PHY_HT_VALID(valid, capflag))
584 continue;
585
586 if (!ath_rc_valid_phyrate(phy, capflag, 0))
587 continue;
588
589 ath_rc_priv->valid_phy_rateidx[phy]
590 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
591 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
592 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
593 hi = A_MAX(hi, j);
594 }
595 }
596
597 return hi;
598 }
599
600 /* Finds the highest rate index we can use */
601 static u8 ath_rc_get_highest_rix(struct ath_softc *sc,
602 struct ath_rate_priv *ath_rc_priv,
603 const struct ath_rate_table *rate_table,
604 int *is_probing)
605 {
606 u32 best_thruput, this_thruput, now_msec;
607 u8 rate, next_rate, best_rate, maxindex, minindex;
608 int8_t index = 0;
609
610 now_msec = jiffies_to_msecs(jiffies);
611 *is_probing = 0;
612 best_thruput = 0;
613 maxindex = ath_rc_priv->max_valid_rate-1;
614 minindex = 0;
615 best_rate = minindex;
616
617 /*
618 * Try the higher rate first. It will reduce memory moving time
619 * if we have very good channel characteristics.
620 */
621 for (index = maxindex; index >= minindex ; index--) {
622 u8 per_thres;
623
624 rate = ath_rc_priv->valid_rate_index[index];
625 if (rate > ath_rc_priv->rate_max_phy)
626 continue;
627
628 /*
629 * For TCP the average collision rate is around 11%,
630 * so we ignore PERs less than this. This is to
631 * prevent the rate we are currently using (whose
632 * PER might be in the 10-15 range because of TCP
633 * collisions) looking worse than the next lower
634 * rate whose PER has decayed close to 0. If we
635 * used to next lower rate, its PER would grow to
636 * 10-15 and we would be worse off then staying
637 * at the current rate.
638 */
639 per_thres = ath_rc_priv->per[rate];
640 if (per_thres < 12)
641 per_thres = 12;
642
643 this_thruput = rate_table->info[rate].user_ratekbps *
644 (100 - per_thres);
645
646 if (best_thruput <= this_thruput) {
647 best_thruput = this_thruput;
648 best_rate = rate;
649 }
650 }
651
652 rate = best_rate;
653
654 /*
655 * Must check the actual rate (ratekbps) to account for
656 * non-monoticity of 11g's rate table
657 */
658
659 if (rate >= ath_rc_priv->rate_max_phy) {
660 rate = ath_rc_priv->rate_max_phy;
661
662 /* Probe the next allowed phy state */
663 if (ath_rc_get_nextvalid_txrate(rate_table,
664 ath_rc_priv, rate, &next_rate) &&
665 (now_msec - ath_rc_priv->probe_time >
666 rate_table->probe_interval) &&
667 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
668 rate = next_rate;
669 ath_rc_priv->probe_rate = rate;
670 ath_rc_priv->probe_time = now_msec;
671 ath_rc_priv->hw_maxretry_pktcnt = 0;
672 *is_probing = 1;
673 }
674 }
675
676 if (rate > (ath_rc_priv->rate_table_size - 1))
677 rate = ath_rc_priv->rate_table_size - 1;
678
679 if (rate_table->info[rate].valid &&
680 (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG))
681 return rate;
682
683 if (rate_table->info[rate].valid_single_stream &&
684 !(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG));
685 return rate;
686
687 /* This should not happen */
688 WARN_ON(1);
689
690 rate = ath_rc_priv->valid_rate_index[0];
691
692 return rate;
693 }
694
695 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
696 struct ieee80211_tx_rate *rate,
697 struct ieee80211_tx_rate_control *txrc,
698 u8 tries, u8 rix, int rtsctsenable)
699 {
700 rate->count = tries;
701 rate->idx = rix;
702
703 if (txrc->short_preamble)
704 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
705 if (txrc->rts || rtsctsenable)
706 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
707 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
708 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
709 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
710 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
711 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy))
712 rate->flags |= IEEE80211_TX_RC_MCS;
713 }
714
715 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
716 const struct ath_rate_table *rate_table,
717 struct ieee80211_tx_info *tx_info)
718 {
719 struct ieee80211_tx_rate *rates = tx_info->control.rates;
720 int i = 0, rix = 0, cix, enable_g_protection = 0;
721
722 /* get the cix for the lowest valid rix */
723 for (i = 3; i >= 0; i--) {
724 if (rates[i].count && (rates[i].idx >= 0)) {
725 rix = rates[i].idx;
726 break;
727 }
728 }
729 cix = rate_table->info[rix].ctrl_rate;
730
731 /* All protection frames are transmited at 2Mb/s for 802.11g,
732 * otherwise we transmit them at 1Mb/s */
733 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
734 !conf_is_ht(&sc->hw->conf))
735 enable_g_protection = 1;
736
737 /*
738 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
739 * just CTS. Note that this is only done for OFDM/HT unicast frames.
740 */
741 if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
742 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
743 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
744 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
745 cix = rate_table->info[enable_g_protection].ctrl_rate;
746 }
747
748 tx_info->control.rts_cts_rate_idx = cix;
749 }
750
751 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
752 struct ieee80211_tx_rate_control *txrc)
753 {
754 struct ath_softc *sc = priv;
755 struct ath_rate_priv *ath_rc_priv = priv_sta;
756 const struct ath_rate_table *rate_table;
757 struct sk_buff *skb = txrc->skb;
758 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
759 struct ieee80211_tx_rate *rates = tx_info->control.rates;
760 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
761 __le16 fc = hdr->frame_control;
762 u8 try_per_rate, i = 0, rix, nrix;
763 int is_probe = 0;
764
765 if (rate_control_send_low(sta, priv_sta, txrc))
766 return;
767
768 /*
769 * For Multi Rate Retry we use a different number of
770 * retry attempt counts. This ends up looking like this:
771 *
772 * MRR[0] = 2
773 * MRR[1] = 2
774 * MRR[2] = 2
775 * MRR[3] = 4
776 *
777 */
778 try_per_rate = sc->hw->max_rate_tries;
779
780 rate_table = sc->cur_rate_table;
781 rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table, &is_probe);
782 nrix = rix;
783
784 if (is_probe) {
785 /* set one try for probe rates. For the
786 * probes don't enable rts */
787 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
788 1, nrix, 0);
789
790 /* Get the next tried/allowed rate. No RTS for the next series
791 * after the probe rate
792 */
793 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &nrix);
794 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
795 try_per_rate, nrix, 0);
796
797 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
798 } else {
799 /* Set the choosen rate. No RTS for first series entry. */
800 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
801 try_per_rate, nrix, 0);
802 }
803
804 /* Fill in the other rates for multirate retry */
805 for ( ; i < 4; i++) {
806 /* Use twice the number of tries for the last MRR segment. */
807 if (i + 1 == 4)
808 try_per_rate = 4;
809
810 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &nrix);
811 /* All other rates in the series have RTS enabled */
812 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
813 try_per_rate, nrix, 1);
814 }
815
816 /*
817 * NB:Change rate series to enable aggregation when operating
818 * at lower MCS rates. When first rate in series is MCS2
819 * in HT40 @ 2.4GHz, series should look like:
820 *
821 * {MCS2, MCS1, MCS0, MCS0}.
822 *
823 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
824 * look like:
825 *
826 * {MCS3, MCS2, MCS1, MCS1}
827 *
828 * So, set fourth rate in series to be same as third one for
829 * above conditions.
830 */
831 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
832 (conf_is_ht(&sc->hw->conf))) {
833 u8 dot11rate = rate_table->info[rix].dot11rate;
834 u8 phy = rate_table->info[rix].phy;
835 if (i == 4 &&
836 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
837 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
838 rates[3].idx = rates[2].idx;
839 rates[3].flags = rates[2].flags;
840 }
841 }
842
843 /*
844 * Force hardware to use computed duration for next
845 * fragment by disabling multi-rate retry, which
846 * updates duration based on the multi-rate duration table.
847 *
848 * FIXME: Fix duration
849 */
850 if (ieee80211_has_morefrags(fc) ||
851 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
852 rates[1].count = rates[2].count = rates[3].count = 0;
853 rates[1].idx = rates[2].idx = rates[3].idx = 0;
854 rates[0].count = ATH_TXMAXTRY;
855 }
856
857 /* Setup RTS/CTS */
858 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
859 }
860
861 static bool ath_rc_update_per(struct ath_softc *sc,
862 const struct ath_rate_table *rate_table,
863 struct ath_rate_priv *ath_rc_priv,
864 struct ath_tx_info_priv *tx_info_priv,
865 int tx_rate, int xretries, int retries,
866 u32 now_msec)
867 {
868 bool state_change = false;
869 int count;
870 u8 last_per;
871 static u32 nretry_to_per_lookup[10] = {
872 100 * 0 / 1,
873 100 * 1 / 4,
874 100 * 1 / 2,
875 100 * 3 / 4,
876 100 * 4 / 5,
877 100 * 5 / 6,
878 100 * 6 / 7,
879 100 * 7 / 8,
880 100 * 8 / 9,
881 100 * 9 / 10
882 };
883
884 last_per = ath_rc_priv->per[tx_rate];
885
886 if (xretries) {
887 if (xretries == 1) {
888 ath_rc_priv->per[tx_rate] += 30;
889 if (ath_rc_priv->per[tx_rate] > 100)
890 ath_rc_priv->per[tx_rate] = 100;
891 } else {
892 /* xretries == 2 */
893 count = ARRAY_SIZE(nretry_to_per_lookup);
894 if (retries >= count)
895 retries = count - 1;
896
897 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
898 ath_rc_priv->per[tx_rate] =
899 (u8)(last_per - (last_per >> 3) + (100 >> 3));
900 }
901
902 /* xretries == 1 or 2 */
903
904 if (ath_rc_priv->probe_rate == tx_rate)
905 ath_rc_priv->probe_rate = 0;
906
907 } else { /* xretries == 0 */
908 count = ARRAY_SIZE(nretry_to_per_lookup);
909 if (retries >= count)
910 retries = count - 1;
911
912 if (tx_info_priv->n_bad_frames) {
913 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
914 * Assuming that n_frames is not 0. The current PER
915 * from the retries is 100 * retries / (retries+1),
916 * since the first retries attempts failed, and the
917 * next one worked. For the one that worked,
918 * n_bad_frames subframes out of n_frames wored,
919 * so the PER for that part is
920 * 100 * n_bad_frames / n_frames, and it contributes
921 * 100 * n_bad_frames / (n_frames * (retries+1)) to
922 * the above PER. The expression below is a
923 * simplified version of the sum of these two terms.
924 */
925 if (tx_info_priv->n_frames > 0) {
926 int n_frames, n_bad_frames;
927 u8 cur_per, new_per;
928
929 n_bad_frames = retries * tx_info_priv->n_frames +
930 tx_info_priv->n_bad_frames;
931 n_frames = tx_info_priv->n_frames * (retries + 1);
932 cur_per = (100 * n_bad_frames / n_frames) >> 3;
933 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
934 ath_rc_priv->per[tx_rate] = new_per;
935 }
936 } else {
937 ath_rc_priv->per[tx_rate] =
938 (u8)(last_per - (last_per >> 3) +
939 (nretry_to_per_lookup[retries] >> 3));
940 }
941
942
943 /*
944 * If we got at most one retry then increase the max rate if
945 * this was a probe. Otherwise, ignore the probe.
946 */
947 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
948 if (retries > 0 || 2 * tx_info_priv->n_bad_frames >
949 tx_info_priv->n_frames) {
950 /*
951 * Since we probed with just a single attempt,
952 * any retries means the probe failed. Also,
953 * if the attempt worked, but more than half
954 * the subframes were bad then also consider
955 * the probe a failure.
956 */
957 ath_rc_priv->probe_rate = 0;
958 } else {
959 u8 probe_rate = 0;
960
961 ath_rc_priv->rate_max_phy =
962 ath_rc_priv->probe_rate;
963 probe_rate = ath_rc_priv->probe_rate;
964
965 if (ath_rc_priv->per[probe_rate] > 30)
966 ath_rc_priv->per[probe_rate] = 20;
967
968 ath_rc_priv->probe_rate = 0;
969
970 /*
971 * Since this probe succeeded, we allow the next
972 * probe twice as soon. This allows the maxRate
973 * to move up faster if the probes are
974 * succesful.
975 */
976 ath_rc_priv->probe_time =
977 now_msec - rate_table->probe_interval / 2;
978 }
979 }
980
981 if (retries > 0) {
982 /*
983 * Don't update anything. We don't know if
984 * this was because of collisions or poor signal.
985 */
986 ath_rc_priv->hw_maxretry_pktcnt = 0;
987 } else {
988 /*
989 * It worked with no retries. First ignore bogus (small)
990 * rssi_ack values.
991 */
992 if (tx_rate == ath_rc_priv->rate_max_phy &&
993 ath_rc_priv->hw_maxretry_pktcnt < 255) {
994 ath_rc_priv->hw_maxretry_pktcnt++;
995 }
996
997 }
998 }
999
1000 return state_change;
1001 }
1002
1003 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1004 If you can make sense of all this, you really need to go out more. */
1005
1006 static void ath_rc_update_ht(struct ath_softc *sc,
1007 struct ath_rate_priv *ath_rc_priv,
1008 struct ath_tx_info_priv *tx_info_priv,
1009 int tx_rate, int xretries, int retries)
1010 {
1011 u32 now_msec = jiffies_to_msecs(jiffies);
1012 int rate;
1013 u8 last_per;
1014 bool state_change = false;
1015 const struct ath_rate_table *rate_table = sc->cur_rate_table;
1016 int size = ath_rc_priv->rate_table_size;
1017
1018 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1019 return;
1020
1021 last_per = ath_rc_priv->per[tx_rate];
1022
1023 /* Update PER first */
1024 state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
1025 tx_info_priv, tx_rate, xretries,
1026 retries, now_msec);
1027
1028 /*
1029 * If this rate looks bad (high PER) then stop using it for
1030 * a while (except if we are probing).
1031 */
1032 if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
1033 rate_table->info[tx_rate].ratekbps <=
1034 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1035 ath_rc_get_lower_rix(rate_table, ath_rc_priv,
1036 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1037
1038 /* Don't probe for a little while. */
1039 ath_rc_priv->probe_time = now_msec;
1040 }
1041
1042 /* Make sure the rates below this have lower PER */
1043 /* Monotonicity is kept only for rates below the current rate. */
1044 if (ath_rc_priv->per[tx_rate] < last_per) {
1045 for (rate = tx_rate - 1; rate >= 0; rate--) {
1046 if (rate_table->info[rate].phy !=
1047 rate_table->info[tx_rate].phy)
1048 break;
1049
1050 if (ath_rc_priv->per[rate] >
1051 ath_rc_priv->per[rate+1]) {
1052 ath_rc_priv->per[rate] =
1053 ath_rc_priv->per[rate+1];
1054 }
1055 }
1056 }
1057
1058 /* Maintain monotonicity for rates above the current rate */
1059 for (rate = tx_rate; rate < size - 1; rate++) {
1060 if (ath_rc_priv->per[rate+1] <
1061 ath_rc_priv->per[rate])
1062 ath_rc_priv->per[rate+1] =
1063 ath_rc_priv->per[rate];
1064 }
1065
1066 /* Every so often, we reduce the thresholds
1067 * and PER (different for CCK and OFDM). */
1068 if (now_msec - ath_rc_priv->per_down_time >=
1069 rate_table->probe_interval) {
1070 for (rate = 0; rate < size; rate++) {
1071 ath_rc_priv->per[rate] =
1072 7 * ath_rc_priv->per[rate] / 8;
1073 }
1074
1075 ath_rc_priv->per_down_time = now_msec;
1076 }
1077
1078 ath_debug_stat_retries(sc, tx_rate, xretries, retries,
1079 ath_rc_priv->per[tx_rate]);
1080
1081 }
1082
1083 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
1084 struct ieee80211_tx_rate *rate)
1085 {
1086 int rix;
1087
1088 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1089 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
1090 rix = rate_table->info[rate->idx].ht_index;
1091 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1092 rix = rate_table->info[rate->idx].sgi_index;
1093 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1094 rix = rate_table->info[rate->idx].cw40index;
1095 else
1096 rix = rate_table->info[rate->idx].base_index;
1097
1098 return rix;
1099 }
1100
1101 static void ath_rc_tx_status(struct ath_softc *sc,
1102 struct ath_rate_priv *ath_rc_priv,
1103 struct ieee80211_tx_info *tx_info,
1104 int final_ts_idx, int xretries, int long_retry)
1105 {
1106 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1107 const struct ath_rate_table *rate_table;
1108 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1109 u8 flags;
1110 u32 i = 0, rix;
1111
1112 rate_table = sc->cur_rate_table;
1113
1114 /*
1115 * If the first rate is not the final index, there
1116 * are intermediate rate failures to be processed.
1117 */
1118 if (final_ts_idx != 0) {
1119 /* Process intermediate rates that failed.*/
1120 for (i = 0; i < final_ts_idx ; i++) {
1121 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1122 flags = rates[i].flags;
1123
1124 /* If HT40 and we have switched mode from
1125 * 40 to 20 => don't update */
1126
1127 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1128 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1129 return;
1130
1131 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1132 ath_rc_update_ht(sc, ath_rc_priv,
1133 tx_info_priv, rix,
1134 xretries ? 1 : 2,
1135 rates[i].count);
1136 }
1137 }
1138 } else {
1139 /*
1140 * Handle the special case of MIMO PS burst, where the second
1141 * aggregate is sent out with only one rate and one try.
1142 * Treating it as an excessive retry penalizes the rate
1143 * inordinately.
1144 */
1145 if (rates[0].count == 1 && xretries == 1)
1146 xretries = 2;
1147 }
1148
1149 flags = rates[i].flags;
1150
1151 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1152 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1153 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1154 return;
1155
1156 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1157 ath_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix,
1158 xretries, long_retry);
1159 }
1160
1161 static const
1162 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1163 enum ieee80211_band band,
1164 bool is_ht,
1165 bool is_cw_40)
1166 {
1167 int mode = 0;
1168
1169 switch(band) {
1170 case IEEE80211_BAND_2GHZ:
1171 mode = ATH9K_MODE_11G;
1172 if (is_ht)
1173 mode = ATH9K_MODE_11NG_HT20;
1174 if (is_cw_40)
1175 mode = ATH9K_MODE_11NG_HT40PLUS;
1176 break;
1177 case IEEE80211_BAND_5GHZ:
1178 mode = ATH9K_MODE_11A;
1179 if (is_ht)
1180 mode = ATH9K_MODE_11NA_HT20;
1181 if (is_cw_40)
1182 mode = ATH9K_MODE_11NA_HT40PLUS;
1183 break;
1184 default:
1185 DPRINTF(sc, ATH_DBG_CONFIG, "Invalid band\n");
1186 return NULL;
1187 }
1188
1189 BUG_ON(mode >= ATH9K_MODE_MAX);
1190
1191 DPRINTF(sc, ATH_DBG_CONFIG, "Choosing rate table for mode: %d\n", mode);
1192 return sc->hw_rate_table[mode];
1193 }
1194
1195 static void ath_rc_init(struct ath_softc *sc,
1196 struct ath_rate_priv *ath_rc_priv,
1197 struct ieee80211_supported_band *sband,
1198 struct ieee80211_sta *sta,
1199 const struct ath_rate_table *rate_table)
1200 {
1201 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1202 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1203 u8 i, j, k, hi = 0, hthi = 0;
1204
1205 if (!rate_table) {
1206 DPRINTF(sc, ATH_DBG_FATAL, "Rate table not initialized\n");
1207 return;
1208 }
1209
1210 /* Initial rate table size. Will change depending
1211 * on the working rate set */
1212 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1213
1214 /* Initialize thresholds according to the global rate table */
1215 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1216 ath_rc_priv->per[i] = 0;
1217 }
1218
1219 /* Determine the valid rates */
1220 ath_rc_init_valid_txmask(ath_rc_priv);
1221
1222 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1223 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1224 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1225 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1226 }
1227
1228 if (!rateset->rs_nrates) {
1229 /* No working rate, just initialize valid rates */
1230 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1231 ath_rc_priv->ht_cap);
1232 } else {
1233 /* Use intersection of working rates and valid rates */
1234 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1235 rateset, ath_rc_priv->ht_cap);
1236 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1237 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1238 rate_table,
1239 ht_mcs,
1240 ath_rc_priv->ht_cap);
1241 }
1242 hi = A_MAX(hi, hthi);
1243 }
1244
1245 ath_rc_priv->rate_table_size = hi + 1;
1246 ath_rc_priv->rate_max_phy = 0;
1247 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1248
1249 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1250 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1251 ath_rc_priv->valid_rate_index[k++] =
1252 ath_rc_priv->valid_phy_rateidx[i][j];
1253 }
1254
1255 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1256 || !ath_rc_priv->valid_phy_ratecnt[i])
1257 continue;
1258
1259 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1260 }
1261 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1262 ASSERT(k <= RATE_TABLE_SIZE);
1263
1264 ath_rc_priv->max_valid_rate = k;
1265 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1266 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1267 sc->cur_rate_table = rate_table;
1268
1269 DPRINTF(sc, ATH_DBG_CONFIG, "RC Initialized with capabilities: 0x%x\n",
1270 ath_rc_priv->ht_cap);
1271 }
1272
1273 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
1274 bool is_cw40, bool is_sgi40)
1275 {
1276 u8 caps = 0;
1277
1278 if (sta->ht_cap.ht_supported) {
1279 caps = WLAN_RC_HT_FLAG;
1280 if (sc->sc_ah->caps.tx_chainmask != 1 &&
1281 ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_DS, 0, NULL)) {
1282 if (sta->ht_cap.mcs.rx_mask[1])
1283 caps |= WLAN_RC_DS_FLAG;
1284 }
1285 if (is_cw40)
1286 caps |= WLAN_RC_40_FLAG;
1287 if (is_sgi40)
1288 caps |= WLAN_RC_SGI_FLAG;
1289 }
1290
1291 return caps;
1292 }
1293
1294 /***********************************/
1295 /* mac80211 Rate Control callbacks */
1296 /***********************************/
1297
1298 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1299 struct ieee80211_sta *sta, void *priv_sta,
1300 struct sk_buff *skb)
1301 {
1302 struct ath_softc *sc = priv;
1303 struct ath_rate_priv *ath_rc_priv = priv_sta;
1304 struct ath_tx_info_priv *tx_info_priv = NULL;
1305 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1306 struct ieee80211_hdr *hdr;
1307 int final_ts_idx, tx_status = 0, is_underrun = 0;
1308 __le16 fc;
1309
1310 hdr = (struct ieee80211_hdr *)skb->data;
1311 fc = hdr->frame_control;
1312 tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1313 final_ts_idx = tx_info_priv->tx.ts_rateindex;
1314
1315 if (!priv_sta || !ieee80211_is_data(fc) ||
1316 !tx_info_priv->update_rc)
1317 goto exit;
1318
1319 if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT)
1320 goto exit;
1321
1322 /*
1323 * If underrun error is seen assume it as an excessive retry only
1324 * if prefetch trigger level have reached the max (0x3f for 5416)
1325 * Adjust the long retry as if the frame was tried hw->max_rate_tries
1326 * times. This affects how ratectrl updates PER for the failed rate.
1327 */
1328 if (tx_info_priv->tx.ts_flags &
1329 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
1330 ((sc->sc_ah->tx_trig_level) >= ath_rc_priv->tx_triglevel_max)) {
1331 tx_status = 1;
1332 is_underrun = 1;
1333 }
1334
1335 if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
1336 (tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
1337 tx_status = 1;
1338
1339 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1340 (is_underrun) ? sc->hw->max_rate_tries :
1341 tx_info_priv->tx.ts_longretry);
1342
1343 /* Check if aggregation has to be enabled for this tid */
1344 if (conf_is_ht(&sc->hw->conf) &&
1345 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1346 if (ieee80211_is_data_qos(fc)) {
1347 u8 *qc, tid;
1348 struct ath_node *an;
1349
1350 qc = ieee80211_get_qos_ctl(hdr);
1351 tid = qc[0] & 0xf;
1352 an = (struct ath_node *)sta->drv_priv;
1353
1354 if(ath_tx_aggr_check(sc, an, tid))
1355 ieee80211_start_tx_ba_session(sc->hw, hdr->addr1, tid);
1356 }
1357 }
1358
1359 ath_debug_stat_rc(sc, skb);
1360 exit:
1361 kfree(tx_info_priv);
1362 }
1363
1364 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1365 struct ieee80211_sta *sta, void *priv_sta)
1366 {
1367 struct ath_softc *sc = priv;
1368 struct ath_rate_priv *ath_rc_priv = priv_sta;
1369 const struct ath_rate_table *rate_table = NULL;
1370 bool is_cw40, is_sgi40;
1371 int i, j = 0;
1372
1373 for (i = 0; i < sband->n_bitrates; i++) {
1374 if (sta->supp_rates[sband->band] & BIT(i)) {
1375 ath_rc_priv->neg_rates.rs_rates[j]
1376 = (sband->bitrates[i].bitrate * 2) / 10;
1377 j++;
1378 }
1379 }
1380 ath_rc_priv->neg_rates.rs_nrates = j;
1381
1382 if (sta->ht_cap.ht_supported) {
1383 for (i = 0, j = 0; i < 77; i++) {
1384 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1385 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1386 if (j == ATH_RATE_MAX)
1387 break;
1388 }
1389 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1390 }
1391
1392 is_cw40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1393 is_sgi40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
1394
1395 /* Choose rate table first */
1396
1397 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) ||
1398 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT) ||
1399 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)) {
1400 rate_table = ath_choose_rate_table(sc, sband->band,
1401 sta->ht_cap.ht_supported,
1402 is_cw40);
1403 } else if (sc->sc_ah->opmode == NL80211_IFTYPE_AP) {
1404 /* cur_rate_table would be set on init through config() */
1405 rate_table = sc->cur_rate_table;
1406 }
1407
1408 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi40);
1409 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1410 }
1411
1412 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1413 struct ieee80211_sta *sta, void *priv_sta,
1414 u32 changed)
1415 {
1416 struct ath_softc *sc = priv;
1417 struct ath_rate_priv *ath_rc_priv = priv_sta;
1418 const struct ath_rate_table *rate_table = NULL;
1419 bool oper_cw40 = false, oper_sgi40;
1420 bool local_cw40 = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ?
1421 true : false;
1422 bool local_sgi40 = (ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ?
1423 true : false;
1424
1425 /* FIXME: Handle AP mode later when we support CWM */
1426
1427 if (changed & IEEE80211_RC_HT_CHANGED) {
1428 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
1429 return;
1430
1431 if (sc->hw->conf.channel_type == NL80211_CHAN_HT40MINUS ||
1432 sc->hw->conf.channel_type == NL80211_CHAN_HT40PLUS)
1433 oper_cw40 = true;
1434
1435 oper_sgi40 = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1436 true : false;
1437
1438 if ((local_cw40 != oper_cw40) || (local_sgi40 != oper_sgi40)) {
1439 rate_table = ath_choose_rate_table(sc, sband->band,
1440 sta->ht_cap.ht_supported,
1441 oper_cw40);
1442 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
1443 oper_cw40, oper_sgi40);
1444 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1445
1446 DPRINTF(sc, ATH_DBG_CONFIG,
1447 "Operating HT Bandwidth changed to: %d\n",
1448 sc->hw->conf.channel_type);
1449 }
1450 }
1451 }
1452
1453 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1454 {
1455 struct ath_wiphy *aphy = hw->priv;
1456 return aphy->sc;
1457 }
1458
1459 static void ath_rate_free(void *priv)
1460 {
1461 return;
1462 }
1463
1464 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1465 {
1466 struct ath_softc *sc = priv;
1467 struct ath_rate_priv *rate_priv;
1468
1469 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1470 if (!rate_priv) {
1471 DPRINTF(sc, ATH_DBG_FATAL,
1472 "Unable to allocate private rc structure\n");
1473 return NULL;
1474 }
1475
1476 rate_priv->tx_triglevel_max = sc->sc_ah->caps.tx_triglevel_max;
1477
1478 return rate_priv;
1479 }
1480
1481 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1482 void *priv_sta)
1483 {
1484 struct ath_rate_priv *rate_priv = priv_sta;
1485 kfree(rate_priv);
1486 }
1487
1488 static struct rate_control_ops ath_rate_ops = {
1489 .module = NULL,
1490 .name = "ath9k_rate_control",
1491 .tx_status = ath_tx_status,
1492 .get_rate = ath_get_rate,
1493 .rate_init = ath_rate_init,
1494 .rate_update = ath_rate_update,
1495 .alloc = ath_rate_alloc,
1496 .free = ath_rate_free,
1497 .alloc_sta = ath_rate_alloc_sta,
1498 .free_sta = ath_rate_free_sta,
1499 };
1500
1501 void ath_rate_attach(struct ath_softc *sc)
1502 {
1503 sc->hw_rate_table[ATH9K_MODE_11A] =
1504 &ar5416_11a_ratetable;
1505 sc->hw_rate_table[ATH9K_MODE_11G] =
1506 &ar5416_11g_ratetable;
1507 sc->hw_rate_table[ATH9K_MODE_11NA_HT20] =
1508 &ar5416_11na_ratetable;
1509 sc->hw_rate_table[ATH9K_MODE_11NG_HT20] =
1510 &ar5416_11ng_ratetable;
1511 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
1512 &ar5416_11na_ratetable;
1513 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
1514 &ar5416_11na_ratetable;
1515 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
1516 &ar5416_11ng_ratetable;
1517 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
1518 &ar5416_11ng_ratetable;
1519 }
1520
1521 int ath_rate_control_register(void)
1522 {
1523 return ieee80211_rate_control_register(&ath_rate_ops);
1524 }
1525
1526 void ath_rate_control_unregister(void)
1527 {
1528 ieee80211_rate_control_unregister(&ath_rate_ops);
1529 }
This page took 0.689215 seconds and 6 git commands to generate.