ath9k: Only add fix_rssi_inv_only when spectral code is used
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / recv.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include <linux/relay.h>
19 #include "ath9k.h"
20 #include "ar9003_mac.h"
21
22 #define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb))
23
24 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
25 {
26 return sc->ps_enabled &&
27 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
28 }
29
30 /*
31 * Setup and link descriptors.
32 *
33 * 11N: we can no longer afford to self link the last descriptor.
34 * MAC acknowledges BA status as long as it copies frames to host
35 * buffer (or rx fifo). This can incorrectly acknowledge packets
36 * to a sender if last desc is self-linked.
37 */
38 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
39 {
40 struct ath_hw *ah = sc->sc_ah;
41 struct ath_common *common = ath9k_hw_common(ah);
42 struct ath_desc *ds;
43 struct sk_buff *skb;
44
45 ATH_RXBUF_RESET(bf);
46
47 ds = bf->bf_desc;
48 ds->ds_link = 0; /* link to null */
49 ds->ds_data = bf->bf_buf_addr;
50
51 /* virtual addr of the beginning of the buffer. */
52 skb = bf->bf_mpdu;
53 BUG_ON(skb == NULL);
54 ds->ds_vdata = skb->data;
55
56 /*
57 * setup rx descriptors. The rx_bufsize here tells the hardware
58 * how much data it can DMA to us and that we are prepared
59 * to process
60 */
61 ath9k_hw_setuprxdesc(ah, ds,
62 common->rx_bufsize,
63 0);
64
65 if (sc->rx.rxlink == NULL)
66 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
67 else
68 *sc->rx.rxlink = bf->bf_daddr;
69
70 sc->rx.rxlink = &ds->ds_link;
71 }
72
73 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
74 {
75 /* XXX block beacon interrupts */
76 ath9k_hw_setantenna(sc->sc_ah, antenna);
77 sc->rx.defant = antenna;
78 sc->rx.rxotherant = 0;
79 }
80
81 static void ath_opmode_init(struct ath_softc *sc)
82 {
83 struct ath_hw *ah = sc->sc_ah;
84 struct ath_common *common = ath9k_hw_common(ah);
85
86 u32 rfilt, mfilt[2];
87
88 /* configure rx filter */
89 rfilt = ath_calcrxfilter(sc);
90 ath9k_hw_setrxfilter(ah, rfilt);
91
92 /* configure bssid mask */
93 ath_hw_setbssidmask(common);
94
95 /* configure operational mode */
96 ath9k_hw_setopmode(ah);
97
98 /* calculate and install multicast filter */
99 mfilt[0] = mfilt[1] = ~0;
100 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
101 }
102
103 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
104 enum ath9k_rx_qtype qtype)
105 {
106 struct ath_hw *ah = sc->sc_ah;
107 struct ath_rx_edma *rx_edma;
108 struct sk_buff *skb;
109 struct ath_buf *bf;
110
111 rx_edma = &sc->rx.rx_edma[qtype];
112 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
113 return false;
114
115 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
116 list_del_init(&bf->list);
117
118 skb = bf->bf_mpdu;
119
120 ATH_RXBUF_RESET(bf);
121 memset(skb->data, 0, ah->caps.rx_status_len);
122 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
123 ah->caps.rx_status_len, DMA_TO_DEVICE);
124
125 SKB_CB_ATHBUF(skb) = bf;
126 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
127 skb_queue_tail(&rx_edma->rx_fifo, skb);
128
129 return true;
130 }
131
132 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
133 enum ath9k_rx_qtype qtype, int size)
134 {
135 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
136 struct ath_buf *bf, *tbf;
137
138 if (list_empty(&sc->rx.rxbuf)) {
139 ath_dbg(common, QUEUE, "No free rx buf available\n");
140 return;
141 }
142
143 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
144 if (!ath_rx_edma_buf_link(sc, qtype))
145 break;
146
147 }
148
149 static void ath_rx_remove_buffer(struct ath_softc *sc,
150 enum ath9k_rx_qtype qtype)
151 {
152 struct ath_buf *bf;
153 struct ath_rx_edma *rx_edma;
154 struct sk_buff *skb;
155
156 rx_edma = &sc->rx.rx_edma[qtype];
157
158 while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
159 bf = SKB_CB_ATHBUF(skb);
160 BUG_ON(!bf);
161 list_add_tail(&bf->list, &sc->rx.rxbuf);
162 }
163 }
164
165 static void ath_rx_edma_cleanup(struct ath_softc *sc)
166 {
167 struct ath_hw *ah = sc->sc_ah;
168 struct ath_common *common = ath9k_hw_common(ah);
169 struct ath_buf *bf;
170
171 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
172 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
173
174 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
175 if (bf->bf_mpdu) {
176 dma_unmap_single(sc->dev, bf->bf_buf_addr,
177 common->rx_bufsize,
178 DMA_BIDIRECTIONAL);
179 dev_kfree_skb_any(bf->bf_mpdu);
180 bf->bf_buf_addr = 0;
181 bf->bf_mpdu = NULL;
182 }
183 }
184 }
185
186 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
187 {
188 skb_queue_head_init(&rx_edma->rx_fifo);
189 rx_edma->rx_fifo_hwsize = size;
190 }
191
192 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
193 {
194 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
195 struct ath_hw *ah = sc->sc_ah;
196 struct sk_buff *skb;
197 struct ath_buf *bf;
198 int error = 0, i;
199 u32 size;
200
201 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
202 ah->caps.rx_status_len);
203
204 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
205 ah->caps.rx_lp_qdepth);
206 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
207 ah->caps.rx_hp_qdepth);
208
209 size = sizeof(struct ath_buf) * nbufs;
210 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
211 if (!bf)
212 return -ENOMEM;
213
214 INIT_LIST_HEAD(&sc->rx.rxbuf);
215
216 for (i = 0; i < nbufs; i++, bf++) {
217 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
218 if (!skb) {
219 error = -ENOMEM;
220 goto rx_init_fail;
221 }
222
223 memset(skb->data, 0, common->rx_bufsize);
224 bf->bf_mpdu = skb;
225
226 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
227 common->rx_bufsize,
228 DMA_BIDIRECTIONAL);
229 if (unlikely(dma_mapping_error(sc->dev,
230 bf->bf_buf_addr))) {
231 dev_kfree_skb_any(skb);
232 bf->bf_mpdu = NULL;
233 bf->bf_buf_addr = 0;
234 ath_err(common,
235 "dma_mapping_error() on RX init\n");
236 error = -ENOMEM;
237 goto rx_init_fail;
238 }
239
240 list_add_tail(&bf->list, &sc->rx.rxbuf);
241 }
242
243 return 0;
244
245 rx_init_fail:
246 ath_rx_edma_cleanup(sc);
247 return error;
248 }
249
250 static void ath_edma_start_recv(struct ath_softc *sc)
251 {
252 ath9k_hw_rxena(sc->sc_ah);
253
254 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
255 sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
256
257 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
258 sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
259
260 ath_opmode_init(sc);
261
262 ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
263 }
264
265 static void ath_edma_stop_recv(struct ath_softc *sc)
266 {
267 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
268 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
269 }
270
271 int ath_rx_init(struct ath_softc *sc, int nbufs)
272 {
273 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
274 struct sk_buff *skb;
275 struct ath_buf *bf;
276 int error = 0;
277
278 spin_lock_init(&sc->sc_pcu_lock);
279
280 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
281 sc->sc_ah->caps.rx_status_len;
282
283 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
284 return ath_rx_edma_init(sc, nbufs);
285 } else {
286 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
287 common->cachelsz, common->rx_bufsize);
288
289 /* Initialize rx descriptors */
290
291 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
292 "rx", nbufs, 1, 0);
293 if (error != 0) {
294 ath_err(common,
295 "failed to allocate rx descriptors: %d\n",
296 error);
297 goto err;
298 }
299
300 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
301 skb = ath_rxbuf_alloc(common, common->rx_bufsize,
302 GFP_KERNEL);
303 if (skb == NULL) {
304 error = -ENOMEM;
305 goto err;
306 }
307
308 bf->bf_mpdu = skb;
309 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
310 common->rx_bufsize,
311 DMA_FROM_DEVICE);
312 if (unlikely(dma_mapping_error(sc->dev,
313 bf->bf_buf_addr))) {
314 dev_kfree_skb_any(skb);
315 bf->bf_mpdu = NULL;
316 bf->bf_buf_addr = 0;
317 ath_err(common,
318 "dma_mapping_error() on RX init\n");
319 error = -ENOMEM;
320 goto err;
321 }
322 }
323 sc->rx.rxlink = NULL;
324 }
325
326 err:
327 if (error)
328 ath_rx_cleanup(sc);
329
330 return error;
331 }
332
333 void ath_rx_cleanup(struct ath_softc *sc)
334 {
335 struct ath_hw *ah = sc->sc_ah;
336 struct ath_common *common = ath9k_hw_common(ah);
337 struct sk_buff *skb;
338 struct ath_buf *bf;
339
340 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
341 ath_rx_edma_cleanup(sc);
342 return;
343 } else {
344 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
345 skb = bf->bf_mpdu;
346 if (skb) {
347 dma_unmap_single(sc->dev, bf->bf_buf_addr,
348 common->rx_bufsize,
349 DMA_FROM_DEVICE);
350 dev_kfree_skb(skb);
351 bf->bf_buf_addr = 0;
352 bf->bf_mpdu = NULL;
353 }
354 }
355 }
356 }
357
358 /*
359 * Calculate the receive filter according to the
360 * operating mode and state:
361 *
362 * o always accept unicast, broadcast, and multicast traffic
363 * o maintain current state of phy error reception (the hal
364 * may enable phy error frames for noise immunity work)
365 * o probe request frames are accepted only when operating in
366 * hostap, adhoc, or monitor modes
367 * o enable promiscuous mode according to the interface state
368 * o accept beacons:
369 * - when operating in adhoc mode so the 802.11 layer creates
370 * node table entries for peers,
371 * - when operating in station mode for collecting rssi data when
372 * the station is otherwise quiet, or
373 * - when operating as a repeater so we see repeater-sta beacons
374 * - when scanning
375 */
376
377 u32 ath_calcrxfilter(struct ath_softc *sc)
378 {
379 u32 rfilt;
380
381 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
382 | ATH9K_RX_FILTER_MCAST;
383
384 if (sc->rx.rxfilter & FIF_PROBE_REQ)
385 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
386
387 /*
388 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
389 * mode interface or when in monitor mode. AP mode does not need this
390 * since it receives all in-BSS frames anyway.
391 */
392 if (sc->sc_ah->is_monitoring)
393 rfilt |= ATH9K_RX_FILTER_PROM;
394
395 if (sc->rx.rxfilter & FIF_CONTROL)
396 rfilt |= ATH9K_RX_FILTER_CONTROL;
397
398 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
399 (sc->nvifs <= 1) &&
400 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
401 rfilt |= ATH9K_RX_FILTER_MYBEACON;
402 else
403 rfilt |= ATH9K_RX_FILTER_BEACON;
404
405 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
406 (sc->rx.rxfilter & FIF_PSPOLL))
407 rfilt |= ATH9K_RX_FILTER_PSPOLL;
408
409 if (conf_is_ht(&sc->hw->conf))
410 rfilt |= ATH9K_RX_FILTER_COMP_BAR;
411
412 if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
413 /* This is needed for older chips */
414 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
415 rfilt |= ATH9K_RX_FILTER_PROM;
416 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
417 }
418
419 if (AR_SREV_9550(sc->sc_ah))
420 rfilt |= ATH9K_RX_FILTER_4ADDRESS;
421
422 return rfilt;
423
424 }
425
426 int ath_startrecv(struct ath_softc *sc)
427 {
428 struct ath_hw *ah = sc->sc_ah;
429 struct ath_buf *bf, *tbf;
430
431 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
432 ath_edma_start_recv(sc);
433 return 0;
434 }
435
436 if (list_empty(&sc->rx.rxbuf))
437 goto start_recv;
438
439 sc->rx.rxlink = NULL;
440 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
441 ath_rx_buf_link(sc, bf);
442 }
443
444 /* We could have deleted elements so the list may be empty now */
445 if (list_empty(&sc->rx.rxbuf))
446 goto start_recv;
447
448 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
449 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
450 ath9k_hw_rxena(ah);
451
452 start_recv:
453 ath_opmode_init(sc);
454 ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
455
456 return 0;
457 }
458
459 static void ath_flushrecv(struct ath_softc *sc)
460 {
461 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
462 ath_rx_tasklet(sc, 1, true);
463 ath_rx_tasklet(sc, 1, false);
464 }
465
466 bool ath_stoprecv(struct ath_softc *sc)
467 {
468 struct ath_hw *ah = sc->sc_ah;
469 bool stopped, reset = false;
470
471 ath9k_hw_abortpcurecv(ah);
472 ath9k_hw_setrxfilter(ah, 0);
473 stopped = ath9k_hw_stopdmarecv(ah, &reset);
474
475 ath_flushrecv(sc);
476
477 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
478 ath_edma_stop_recv(sc);
479 else
480 sc->rx.rxlink = NULL;
481
482 if (!(ah->ah_flags & AH_UNPLUGGED) &&
483 unlikely(!stopped)) {
484 ath_err(ath9k_hw_common(sc->sc_ah),
485 "Could not stop RX, we could be "
486 "confusing the DMA engine when we start RX up\n");
487 ATH_DBG_WARN_ON_ONCE(!stopped);
488 }
489 return stopped && !reset;
490 }
491
492 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
493 {
494 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
495 struct ieee80211_mgmt *mgmt;
496 u8 *pos, *end, id, elen;
497 struct ieee80211_tim_ie *tim;
498
499 mgmt = (struct ieee80211_mgmt *)skb->data;
500 pos = mgmt->u.beacon.variable;
501 end = skb->data + skb->len;
502
503 while (pos + 2 < end) {
504 id = *pos++;
505 elen = *pos++;
506 if (pos + elen > end)
507 break;
508
509 if (id == WLAN_EID_TIM) {
510 if (elen < sizeof(*tim))
511 break;
512 tim = (struct ieee80211_tim_ie *) pos;
513 if (tim->dtim_count != 0)
514 break;
515 return tim->bitmap_ctrl & 0x01;
516 }
517
518 pos += elen;
519 }
520
521 return false;
522 }
523
524 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
525 {
526 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
527
528 if (skb->len < 24 + 8 + 2 + 2)
529 return;
530
531 sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
532
533 if (sc->ps_flags & PS_BEACON_SYNC) {
534 sc->ps_flags &= ~PS_BEACON_SYNC;
535 ath_dbg(common, PS,
536 "Reconfigure Beacon timers based on timestamp from the AP\n");
537 ath9k_set_beacon(sc);
538 }
539
540 if (ath_beacon_dtim_pending_cab(skb)) {
541 /*
542 * Remain awake waiting for buffered broadcast/multicast
543 * frames. If the last broadcast/multicast frame is not
544 * received properly, the next beacon frame will work as
545 * a backup trigger for returning into NETWORK SLEEP state,
546 * so we are waiting for it as well.
547 */
548 ath_dbg(common, PS,
549 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
550 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
551 return;
552 }
553
554 if (sc->ps_flags & PS_WAIT_FOR_CAB) {
555 /*
556 * This can happen if a broadcast frame is dropped or the AP
557 * fails to send a frame indicating that all CAB frames have
558 * been delivered.
559 */
560 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
561 ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
562 }
563 }
564
565 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
566 {
567 struct ieee80211_hdr *hdr;
568 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
569
570 hdr = (struct ieee80211_hdr *)skb->data;
571
572 /* Process Beacon and CAB receive in PS state */
573 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
574 && mybeacon) {
575 ath_rx_ps_beacon(sc, skb);
576 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
577 (ieee80211_is_data(hdr->frame_control) ||
578 ieee80211_is_action(hdr->frame_control)) &&
579 is_multicast_ether_addr(hdr->addr1) &&
580 !ieee80211_has_moredata(hdr->frame_control)) {
581 /*
582 * No more broadcast/multicast frames to be received at this
583 * point.
584 */
585 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
586 ath_dbg(common, PS,
587 "All PS CAB frames received, back to sleep\n");
588 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
589 !is_multicast_ether_addr(hdr->addr1) &&
590 !ieee80211_has_morefrags(hdr->frame_control)) {
591 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
592 ath_dbg(common, PS,
593 "Going back to sleep after having received PS-Poll data (0x%lx)\n",
594 sc->ps_flags & (PS_WAIT_FOR_BEACON |
595 PS_WAIT_FOR_CAB |
596 PS_WAIT_FOR_PSPOLL_DATA |
597 PS_WAIT_FOR_TX_ACK));
598 }
599 }
600
601 static bool ath_edma_get_buffers(struct ath_softc *sc,
602 enum ath9k_rx_qtype qtype,
603 struct ath_rx_status *rs,
604 struct ath_buf **dest)
605 {
606 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
607 struct ath_hw *ah = sc->sc_ah;
608 struct ath_common *common = ath9k_hw_common(ah);
609 struct sk_buff *skb;
610 struct ath_buf *bf;
611 int ret;
612
613 skb = skb_peek(&rx_edma->rx_fifo);
614 if (!skb)
615 return false;
616
617 bf = SKB_CB_ATHBUF(skb);
618 BUG_ON(!bf);
619
620 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
621 common->rx_bufsize, DMA_FROM_DEVICE);
622
623 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
624 if (ret == -EINPROGRESS) {
625 /*let device gain the buffer again*/
626 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
627 common->rx_bufsize, DMA_FROM_DEVICE);
628 return false;
629 }
630
631 __skb_unlink(skb, &rx_edma->rx_fifo);
632 if (ret == -EINVAL) {
633 /* corrupt descriptor, skip this one and the following one */
634 list_add_tail(&bf->list, &sc->rx.rxbuf);
635 ath_rx_edma_buf_link(sc, qtype);
636
637 skb = skb_peek(&rx_edma->rx_fifo);
638 if (skb) {
639 bf = SKB_CB_ATHBUF(skb);
640 BUG_ON(!bf);
641
642 __skb_unlink(skb, &rx_edma->rx_fifo);
643 list_add_tail(&bf->list, &sc->rx.rxbuf);
644 ath_rx_edma_buf_link(sc, qtype);
645 }
646
647 bf = NULL;
648 }
649
650 *dest = bf;
651 return true;
652 }
653
654 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
655 struct ath_rx_status *rs,
656 enum ath9k_rx_qtype qtype)
657 {
658 struct ath_buf *bf = NULL;
659
660 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
661 if (!bf)
662 continue;
663
664 return bf;
665 }
666 return NULL;
667 }
668
669 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
670 struct ath_rx_status *rs)
671 {
672 struct ath_hw *ah = sc->sc_ah;
673 struct ath_common *common = ath9k_hw_common(ah);
674 struct ath_desc *ds;
675 struct ath_buf *bf;
676 int ret;
677
678 if (list_empty(&sc->rx.rxbuf)) {
679 sc->rx.rxlink = NULL;
680 return NULL;
681 }
682
683 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
684 ds = bf->bf_desc;
685
686 /*
687 * Must provide the virtual address of the current
688 * descriptor, the physical address, and the virtual
689 * address of the next descriptor in the h/w chain.
690 * This allows the HAL to look ahead to see if the
691 * hardware is done with a descriptor by checking the
692 * done bit in the following descriptor and the address
693 * of the current descriptor the DMA engine is working
694 * on. All this is necessary because of our use of
695 * a self-linked list to avoid rx overruns.
696 */
697 ret = ath9k_hw_rxprocdesc(ah, ds, rs);
698 if (ret == -EINPROGRESS) {
699 struct ath_rx_status trs;
700 struct ath_buf *tbf;
701 struct ath_desc *tds;
702
703 memset(&trs, 0, sizeof(trs));
704 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
705 sc->rx.rxlink = NULL;
706 return NULL;
707 }
708
709 tbf = list_entry(bf->list.next, struct ath_buf, list);
710
711 /*
712 * On some hardware the descriptor status words could
713 * get corrupted, including the done bit. Because of
714 * this, check if the next descriptor's done bit is
715 * set or not.
716 *
717 * If the next descriptor's done bit is set, the current
718 * descriptor has been corrupted. Force s/w to discard
719 * this descriptor and continue...
720 */
721
722 tds = tbf->bf_desc;
723 ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
724 if (ret == -EINPROGRESS)
725 return NULL;
726 }
727
728 list_del(&bf->list);
729 if (!bf->bf_mpdu)
730 return bf;
731
732 /*
733 * Synchronize the DMA transfer with CPU before
734 * 1. accessing the frame
735 * 2. requeueing the same buffer to h/w
736 */
737 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
738 common->rx_bufsize,
739 DMA_FROM_DEVICE);
740
741 return bf;
742 }
743
744 /* Assumes you've already done the endian to CPU conversion */
745 static bool ath9k_rx_accept(struct ath_common *common,
746 struct ieee80211_hdr *hdr,
747 struct ieee80211_rx_status *rxs,
748 struct ath_rx_status *rx_stats,
749 bool *decrypt_error)
750 {
751 struct ath_softc *sc = (struct ath_softc *) common->priv;
752 bool is_mc, is_valid_tkip, strip_mic, mic_error;
753 struct ath_hw *ah = common->ah;
754 __le16 fc;
755 u8 rx_status_len = ah->caps.rx_status_len;
756
757 fc = hdr->frame_control;
758
759 is_mc = !!is_multicast_ether_addr(hdr->addr1);
760 is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID &&
761 test_bit(rx_stats->rs_keyix, common->tkip_keymap);
762 strip_mic = is_valid_tkip && ieee80211_is_data(fc) &&
763 ieee80211_has_protected(fc) &&
764 !(rx_stats->rs_status &
765 (ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC |
766 ATH9K_RXERR_KEYMISS));
767
768 /*
769 * Key miss events are only relevant for pairwise keys where the
770 * descriptor does contain a valid key index. This has been observed
771 * mostly with CCMP encryption.
772 */
773 if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID ||
774 !test_bit(rx_stats->rs_keyix, common->ccmp_keymap))
775 rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS;
776
777 if (!rx_stats->rs_datalen) {
778 RX_STAT_INC(rx_len_err);
779 return false;
780 }
781
782 /*
783 * rs_status follows rs_datalen so if rs_datalen is too large
784 * we can take a hint that hardware corrupted it, so ignore
785 * those frames.
786 */
787 if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) {
788 RX_STAT_INC(rx_len_err);
789 return false;
790 }
791
792 /* Only use error bits from the last fragment */
793 if (rx_stats->rs_more)
794 return true;
795
796 mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) &&
797 !ieee80211_has_morefrags(fc) &&
798 !(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) &&
799 (rx_stats->rs_status & ATH9K_RXERR_MIC);
800
801 /*
802 * The rx_stats->rs_status will not be set until the end of the
803 * chained descriptors so it can be ignored if rs_more is set. The
804 * rs_more will be false at the last element of the chained
805 * descriptors.
806 */
807 if (rx_stats->rs_status != 0) {
808 u8 status_mask;
809
810 if (rx_stats->rs_status & ATH9K_RXERR_CRC) {
811 rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
812 mic_error = false;
813 }
814 if (rx_stats->rs_status & ATH9K_RXERR_PHY)
815 return false;
816
817 if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) ||
818 (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) {
819 *decrypt_error = true;
820 mic_error = false;
821 }
822
823 /*
824 * Reject error frames with the exception of
825 * decryption and MIC failures. For monitor mode,
826 * we also ignore the CRC error.
827 */
828 status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
829 ATH9K_RXERR_KEYMISS;
830
831 if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL))
832 status_mask |= ATH9K_RXERR_CRC;
833
834 if (rx_stats->rs_status & ~status_mask)
835 return false;
836 }
837
838 /*
839 * For unicast frames the MIC error bit can have false positives,
840 * so all MIC error reports need to be validated in software.
841 * False negatives are not common, so skip software verification
842 * if the hardware considers the MIC valid.
843 */
844 if (strip_mic)
845 rxs->flag |= RX_FLAG_MMIC_STRIPPED;
846 else if (is_mc && mic_error)
847 rxs->flag |= RX_FLAG_MMIC_ERROR;
848
849 return true;
850 }
851
852 static int ath9k_process_rate(struct ath_common *common,
853 struct ieee80211_hw *hw,
854 struct ath_rx_status *rx_stats,
855 struct ieee80211_rx_status *rxs)
856 {
857 struct ieee80211_supported_band *sband;
858 enum ieee80211_band band;
859 unsigned int i = 0;
860 struct ath_softc __maybe_unused *sc = common->priv;
861
862 band = hw->conf.channel->band;
863 sband = hw->wiphy->bands[band];
864
865 if (rx_stats->rs_rate & 0x80) {
866 /* HT rate */
867 rxs->flag |= RX_FLAG_HT;
868 if (rx_stats->rs_flags & ATH9K_RX_2040)
869 rxs->flag |= RX_FLAG_40MHZ;
870 if (rx_stats->rs_flags & ATH9K_RX_GI)
871 rxs->flag |= RX_FLAG_SHORT_GI;
872 rxs->rate_idx = rx_stats->rs_rate & 0x7f;
873 return 0;
874 }
875
876 for (i = 0; i < sband->n_bitrates; i++) {
877 if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
878 rxs->rate_idx = i;
879 return 0;
880 }
881 if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
882 rxs->flag |= RX_FLAG_SHORTPRE;
883 rxs->rate_idx = i;
884 return 0;
885 }
886 }
887
888 /*
889 * No valid hardware bitrate found -- we should not get here
890 * because hardware has already validated this frame as OK.
891 */
892 ath_dbg(common, ANY,
893 "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
894 rx_stats->rs_rate);
895 RX_STAT_INC(rx_rate_err);
896 return -EINVAL;
897 }
898
899 static void ath9k_process_rssi(struct ath_common *common,
900 struct ieee80211_hw *hw,
901 struct ieee80211_hdr *hdr,
902 struct ath_rx_status *rx_stats)
903 {
904 struct ath_softc *sc = hw->priv;
905 struct ath_hw *ah = common->ah;
906 int last_rssi;
907 int rssi = rx_stats->rs_rssi;
908
909 if (!rx_stats->is_mybeacon ||
910 ((ah->opmode != NL80211_IFTYPE_STATION) &&
911 (ah->opmode != NL80211_IFTYPE_ADHOC)))
912 return;
913
914 if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr)
915 ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi);
916
917 last_rssi = sc->last_rssi;
918 if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
919 rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER);
920 if (rssi < 0)
921 rssi = 0;
922
923 /* Update Beacon RSSI, this is used by ANI. */
924 ah->stats.avgbrssi = rssi;
925 }
926
927 /*
928 * For Decrypt or Demic errors, we only mark packet status here and always push
929 * up the frame up to let mac80211 handle the actual error case, be it no
930 * decryption key or real decryption error. This let us keep statistics there.
931 */
932 static int ath9k_rx_skb_preprocess(struct ath_common *common,
933 struct ieee80211_hw *hw,
934 struct ieee80211_hdr *hdr,
935 struct ath_rx_status *rx_stats,
936 struct ieee80211_rx_status *rx_status,
937 bool *decrypt_error)
938 {
939 struct ath_hw *ah = common->ah;
940
941 /*
942 * everything but the rate is checked here, the rate check is done
943 * separately to avoid doing two lookups for a rate for each frame.
944 */
945 if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
946 return -EINVAL;
947
948 /* Only use status info from the last fragment */
949 if (rx_stats->rs_more)
950 return 0;
951
952 ath9k_process_rssi(common, hw, hdr, rx_stats);
953
954 if (ath9k_process_rate(common, hw, rx_stats, rx_status))
955 return -EINVAL;
956
957 rx_status->band = hw->conf.channel->band;
958 rx_status->freq = hw->conf.channel->center_freq;
959 rx_status->signal = ah->noise + rx_stats->rs_rssi;
960 rx_status->antenna = rx_stats->rs_antenna;
961 rx_status->flag |= RX_FLAG_MACTIME_END;
962 if (rx_stats->rs_moreaggr)
963 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
964
965 return 0;
966 }
967
968 static void ath9k_rx_skb_postprocess(struct ath_common *common,
969 struct sk_buff *skb,
970 struct ath_rx_status *rx_stats,
971 struct ieee80211_rx_status *rxs,
972 bool decrypt_error)
973 {
974 struct ath_hw *ah = common->ah;
975 struct ieee80211_hdr *hdr;
976 int hdrlen, padpos, padsize;
977 u8 keyix;
978 __le16 fc;
979
980 /* see if any padding is done by the hw and remove it */
981 hdr = (struct ieee80211_hdr *) skb->data;
982 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
983 fc = hdr->frame_control;
984 padpos = ath9k_cmn_padpos(hdr->frame_control);
985
986 /* The MAC header is padded to have 32-bit boundary if the
987 * packet payload is non-zero. The general calculation for
988 * padsize would take into account odd header lengths:
989 * padsize = (4 - padpos % 4) % 4; However, since only
990 * even-length headers are used, padding can only be 0 or 2
991 * bytes and we can optimize this a bit. In addition, we must
992 * not try to remove padding from short control frames that do
993 * not have payload. */
994 padsize = padpos & 3;
995 if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
996 memmove(skb->data + padsize, skb->data, padpos);
997 skb_pull(skb, padsize);
998 }
999
1000 keyix = rx_stats->rs_keyix;
1001
1002 if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
1003 ieee80211_has_protected(fc)) {
1004 rxs->flag |= RX_FLAG_DECRYPTED;
1005 } else if (ieee80211_has_protected(fc)
1006 && !decrypt_error && skb->len >= hdrlen + 4) {
1007 keyix = skb->data[hdrlen + 3] >> 6;
1008
1009 if (test_bit(keyix, common->keymap))
1010 rxs->flag |= RX_FLAG_DECRYPTED;
1011 }
1012 if (ah->sw_mgmt_crypto &&
1013 (rxs->flag & RX_FLAG_DECRYPTED) &&
1014 ieee80211_is_mgmt(fc))
1015 /* Use software decrypt for management frames. */
1016 rxs->flag &= ~RX_FLAG_DECRYPTED;
1017 }
1018
1019 #ifdef CONFIG_ATH9K_DEBUGFS
1020 static s8 fix_rssi_inv_only(u8 rssi_val)
1021 {
1022 if (rssi_val == 128)
1023 rssi_val = 0;
1024 return (s8) rssi_val;
1025 }
1026 #endif
1027
1028 /* returns 1 if this was a spectral frame, even if not handled. */
1029 static int ath_process_fft(struct ath_softc *sc, struct ieee80211_hdr *hdr,
1030 struct ath_rx_status *rs, u64 tsf)
1031 {
1032 #ifdef CONFIG_ATH9K_DEBUGFS
1033 struct ath_hw *ah = sc->sc_ah;
1034 u8 bins[SPECTRAL_HT20_NUM_BINS];
1035 u8 *vdata = (u8 *)hdr;
1036 struct fft_sample_ht20 fft_sample;
1037 struct ath_radar_info *radar_info;
1038 struct ath_ht20_mag_info *mag_info;
1039 int len = rs->rs_datalen;
1040 int dc_pos;
1041
1042 /* AR9280 and before report via ATH9K_PHYERR_RADAR, AR93xx and newer
1043 * via ATH9K_PHYERR_SPECTRAL. Haven't seen ATH9K_PHYERR_FALSE_RADAR_EXT
1044 * yet, but this is supposed to be possible as well.
1045 */
1046 if (rs->rs_phyerr != ATH9K_PHYERR_RADAR &&
1047 rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT &&
1048 rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL)
1049 return 0;
1050
1051 /* check if spectral scan bit is set. This does not have to be checked
1052 * if received through a SPECTRAL phy error, but shouldn't hurt.
1053 */
1054 radar_info = ((struct ath_radar_info *)&vdata[len]) - 1;
1055 if (!(radar_info->pulse_bw_info & SPECTRAL_SCAN_BITMASK))
1056 return 0;
1057
1058 /* Variation in the data length is possible and will be fixed later.
1059 * Note that we only support HT20 for now.
1060 *
1061 * TODO: add HT20_40 support as well.
1062 */
1063 if ((len > SPECTRAL_HT20_TOTAL_DATA_LEN + 2) ||
1064 (len < SPECTRAL_HT20_TOTAL_DATA_LEN - 1))
1065 return 1;
1066
1067 fft_sample.tlv.type = ATH_FFT_SAMPLE_HT20;
1068 fft_sample.tlv.length = sizeof(fft_sample) - sizeof(fft_sample.tlv);
1069 fft_sample.tlv.length = __cpu_to_be16(fft_sample.tlv.length);
1070
1071 fft_sample.freq = __cpu_to_be16(ah->curchan->chan->center_freq);
1072 fft_sample.rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0);
1073 fft_sample.noise = ah->noise;
1074
1075 switch (len - SPECTRAL_HT20_TOTAL_DATA_LEN) {
1076 case 0:
1077 /* length correct, nothing to do. */
1078 memcpy(bins, vdata, SPECTRAL_HT20_NUM_BINS);
1079 break;
1080 case -1:
1081 /* first byte missing, duplicate it. */
1082 memcpy(&bins[1], vdata, SPECTRAL_HT20_NUM_BINS - 1);
1083 bins[0] = vdata[0];
1084 break;
1085 case 2:
1086 /* MAC added 2 extra bytes at bin 30 and 32, remove them. */
1087 memcpy(bins, vdata, 30);
1088 bins[30] = vdata[31];
1089 memcpy(&bins[31], &vdata[33], SPECTRAL_HT20_NUM_BINS - 31);
1090 break;
1091 case 1:
1092 /* MAC added 2 extra bytes AND first byte is missing. */
1093 bins[0] = vdata[0];
1094 memcpy(&bins[0], vdata, 30);
1095 bins[31] = vdata[31];
1096 memcpy(&bins[32], &vdata[33], SPECTRAL_HT20_NUM_BINS - 32);
1097 break;
1098 default:
1099 return 1;
1100 }
1101
1102 /* DC value (value in the middle) is the blind spot of the spectral
1103 * sample and invalid, interpolate it.
1104 */
1105 dc_pos = SPECTRAL_HT20_NUM_BINS / 2;
1106 bins[dc_pos] = (bins[dc_pos + 1] + bins[dc_pos - 1]) / 2;
1107
1108 /* mag data is at the end of the frame, in front of radar_info */
1109 mag_info = ((struct ath_ht20_mag_info *)radar_info) - 1;
1110
1111 /* copy raw bins without scaling them */
1112 memcpy(fft_sample.data, bins, SPECTRAL_HT20_NUM_BINS);
1113 fft_sample.max_exp = mag_info->max_exp & 0xf;
1114
1115 fft_sample.max_magnitude = spectral_max_magnitude(mag_info->all_bins);
1116 fft_sample.max_magnitude = __cpu_to_be16(fft_sample.max_magnitude);
1117 fft_sample.max_index = spectral_max_index(mag_info->all_bins);
1118 fft_sample.bitmap_weight = spectral_bitmap_weight(mag_info->all_bins);
1119 fft_sample.tsf = __cpu_to_be64(tsf);
1120
1121 ath_debug_send_fft_sample(sc, &fft_sample.tlv);
1122 return 1;
1123 #else
1124 return 0;
1125 #endif
1126 }
1127
1128 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
1129 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
1130 {
1131 if (rs->rs_isaggr) {
1132 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1133
1134 rxs->ampdu_reference = sc->rx.ampdu_ref;
1135
1136 if (!rs->rs_moreaggr) {
1137 rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
1138 sc->rx.ampdu_ref++;
1139 }
1140
1141 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
1142 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
1143 }
1144 }
1145
1146 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1147 {
1148 struct ath_buf *bf;
1149 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1150 struct ieee80211_rx_status *rxs;
1151 struct ath_hw *ah = sc->sc_ah;
1152 struct ath_common *common = ath9k_hw_common(ah);
1153 struct ieee80211_hw *hw = sc->hw;
1154 struct ieee80211_hdr *hdr;
1155 int retval;
1156 struct ath_rx_status rs;
1157 enum ath9k_rx_qtype qtype;
1158 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1159 int dma_type;
1160 u8 rx_status_len = ah->caps.rx_status_len;
1161 u64 tsf = 0;
1162 u32 tsf_lower = 0;
1163 unsigned long flags;
1164
1165 if (edma)
1166 dma_type = DMA_BIDIRECTIONAL;
1167 else
1168 dma_type = DMA_FROM_DEVICE;
1169
1170 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1171
1172 tsf = ath9k_hw_gettsf64(ah);
1173 tsf_lower = tsf & 0xffffffff;
1174
1175 do {
1176 bool decrypt_error = false;
1177
1178 memset(&rs, 0, sizeof(rs));
1179 if (edma)
1180 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1181 else
1182 bf = ath_get_next_rx_buf(sc, &rs);
1183
1184 if (!bf)
1185 break;
1186
1187 skb = bf->bf_mpdu;
1188 if (!skb)
1189 continue;
1190
1191 /*
1192 * Take frame header from the first fragment and RX status from
1193 * the last one.
1194 */
1195 if (sc->rx.frag)
1196 hdr_skb = sc->rx.frag;
1197 else
1198 hdr_skb = skb;
1199
1200 hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len);
1201 rxs = IEEE80211_SKB_RXCB(hdr_skb);
1202 if (ieee80211_is_beacon(hdr->frame_control)) {
1203 RX_STAT_INC(rx_beacons);
1204 if (!is_zero_ether_addr(common->curbssid) &&
1205 ether_addr_equal(hdr->addr3, common->curbssid))
1206 rs.is_mybeacon = true;
1207 else
1208 rs.is_mybeacon = false;
1209 }
1210 else
1211 rs.is_mybeacon = false;
1212
1213 if (ieee80211_is_data_present(hdr->frame_control) &&
1214 !ieee80211_is_qos_nullfunc(hdr->frame_control))
1215 sc->rx.num_pkts++;
1216
1217 ath_debug_stat_rx(sc, &rs);
1218
1219 memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1220
1221 rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp;
1222 if (rs.rs_tstamp > tsf_lower &&
1223 unlikely(rs.rs_tstamp - tsf_lower > 0x10000000))
1224 rxs->mactime -= 0x100000000ULL;
1225
1226 if (rs.rs_tstamp < tsf_lower &&
1227 unlikely(tsf_lower - rs.rs_tstamp > 0x10000000))
1228 rxs->mactime += 0x100000000ULL;
1229
1230 if (rs.rs_status & ATH9K_RXERR_PHY) {
1231 if (ath_process_fft(sc, hdr, &rs, rxs->mactime)) {
1232 RX_STAT_INC(rx_spectral);
1233 goto requeue_drop_frag;
1234 }
1235 }
1236
1237 retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
1238 rxs, &decrypt_error);
1239 if (retval)
1240 goto requeue_drop_frag;
1241
1242 if (rs.is_mybeacon) {
1243 sc->hw_busy_count = 0;
1244 ath_start_rx_poll(sc, 3);
1245 }
1246 /* Ensure we always have an skb to requeue once we are done
1247 * processing the current buffer's skb */
1248 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1249
1250 /* If there is no memory we ignore the current RX'd frame,
1251 * tell hardware it can give us a new frame using the old
1252 * skb and put it at the tail of the sc->rx.rxbuf list for
1253 * processing. */
1254 if (!requeue_skb) {
1255 RX_STAT_INC(rx_oom_err);
1256 goto requeue_drop_frag;
1257 }
1258
1259 /* Unmap the frame */
1260 dma_unmap_single(sc->dev, bf->bf_buf_addr,
1261 common->rx_bufsize,
1262 dma_type);
1263
1264 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1265 if (ah->caps.rx_status_len)
1266 skb_pull(skb, ah->caps.rx_status_len);
1267
1268 if (!rs.rs_more)
1269 ath9k_rx_skb_postprocess(common, hdr_skb, &rs,
1270 rxs, decrypt_error);
1271
1272 /* We will now give hardware our shiny new allocated skb */
1273 bf->bf_mpdu = requeue_skb;
1274 bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1275 common->rx_bufsize,
1276 dma_type);
1277 if (unlikely(dma_mapping_error(sc->dev,
1278 bf->bf_buf_addr))) {
1279 dev_kfree_skb_any(requeue_skb);
1280 bf->bf_mpdu = NULL;
1281 bf->bf_buf_addr = 0;
1282 ath_err(common, "dma_mapping_error() on RX\n");
1283 ieee80211_rx(hw, skb);
1284 break;
1285 }
1286
1287 if (rs.rs_more) {
1288 RX_STAT_INC(rx_frags);
1289 /*
1290 * rs_more indicates chained descriptors which can be
1291 * used to link buffers together for a sort of
1292 * scatter-gather operation.
1293 */
1294 if (sc->rx.frag) {
1295 /* too many fragments - cannot handle frame */
1296 dev_kfree_skb_any(sc->rx.frag);
1297 dev_kfree_skb_any(skb);
1298 RX_STAT_INC(rx_too_many_frags_err);
1299 skb = NULL;
1300 }
1301 sc->rx.frag = skb;
1302 goto requeue;
1303 }
1304
1305 if (sc->rx.frag) {
1306 int space = skb->len - skb_tailroom(hdr_skb);
1307
1308 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1309 dev_kfree_skb(skb);
1310 RX_STAT_INC(rx_oom_err);
1311 goto requeue_drop_frag;
1312 }
1313
1314 sc->rx.frag = NULL;
1315
1316 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1317 skb->len);
1318 dev_kfree_skb_any(skb);
1319 skb = hdr_skb;
1320 }
1321
1322
1323 if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
1324
1325 /*
1326 * change the default rx antenna if rx diversity
1327 * chooses the other antenna 3 times in a row.
1328 */
1329 if (sc->rx.defant != rs.rs_antenna) {
1330 if (++sc->rx.rxotherant >= 3)
1331 ath_setdefantenna(sc, rs.rs_antenna);
1332 } else {
1333 sc->rx.rxotherant = 0;
1334 }
1335
1336 }
1337
1338 if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1339 skb_trim(skb, skb->len - 8);
1340
1341 spin_lock_irqsave(&sc->sc_pm_lock, flags);
1342 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1343 PS_WAIT_FOR_CAB |
1344 PS_WAIT_FOR_PSPOLL_DATA)) ||
1345 ath9k_check_auto_sleep(sc))
1346 ath_rx_ps(sc, skb, rs.is_mybeacon);
1347 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1348
1349 if ((ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) && sc->ant_rx == 3)
1350 ath_ant_comb_scan(sc, &rs);
1351
1352 ath9k_apply_ampdu_details(sc, &rs, rxs);
1353
1354 ieee80211_rx(hw, skb);
1355
1356 requeue_drop_frag:
1357 if (sc->rx.frag) {
1358 dev_kfree_skb_any(sc->rx.frag);
1359 sc->rx.frag = NULL;
1360 }
1361 requeue:
1362 list_add_tail(&bf->list, &sc->rx.rxbuf);
1363 if (flush)
1364 continue;
1365
1366 if (edma) {
1367 ath_rx_edma_buf_link(sc, qtype);
1368 } else {
1369 ath_rx_buf_link(sc, bf);
1370 ath9k_hw_rxena(ah);
1371 }
1372 } while (1);
1373
1374 if (!(ah->imask & ATH9K_INT_RXEOL)) {
1375 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1376 ath9k_hw_set_interrupts(ah);
1377 }
1378
1379 return 0;
1380 }
This page took 0.083938 seconds and 5 git commands to generate.