Merge tag 'cleanup-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / recv.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define SKB_CB_ATHBUF(__skb) (*((struct ath_rxbuf **)__skb->cb))
22
23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25 return sc->ps_enabled &&
26 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28
29 /*
30 * Setup and link descriptors.
31 *
32 * 11N: we can no longer afford to self link the last descriptor.
33 * MAC acknowledges BA status as long as it copies frames to host
34 * buffer (or rx fifo). This can incorrectly acknowledge packets
35 * to a sender if last desc is self-linked.
36 */
37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf)
38 {
39 struct ath_hw *ah = sc->sc_ah;
40 struct ath_common *common = ath9k_hw_common(ah);
41 struct ath_desc *ds;
42 struct sk_buff *skb;
43
44 ds = bf->bf_desc;
45 ds->ds_link = 0; /* link to null */
46 ds->ds_data = bf->bf_buf_addr;
47
48 /* virtual addr of the beginning of the buffer. */
49 skb = bf->bf_mpdu;
50 BUG_ON(skb == NULL);
51 ds->ds_vdata = skb->data;
52
53 /*
54 * setup rx descriptors. The rx_bufsize here tells the hardware
55 * how much data it can DMA to us and that we are prepared
56 * to process
57 */
58 ath9k_hw_setuprxdesc(ah, ds,
59 common->rx_bufsize,
60 0);
61
62 if (sc->rx.rxlink == NULL)
63 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
64 else
65 *sc->rx.rxlink = bf->bf_daddr;
66
67 sc->rx.rxlink = &ds->ds_link;
68 }
69
70 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf)
71 {
72 if (sc->rx.buf_hold)
73 ath_rx_buf_link(sc, sc->rx.buf_hold);
74
75 sc->rx.buf_hold = bf;
76 }
77
78 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
79 {
80 /* XXX block beacon interrupts */
81 ath9k_hw_setantenna(sc->sc_ah, antenna);
82 sc->rx.defant = antenna;
83 sc->rx.rxotherant = 0;
84 }
85
86 static void ath_opmode_init(struct ath_softc *sc)
87 {
88 struct ath_hw *ah = sc->sc_ah;
89 struct ath_common *common = ath9k_hw_common(ah);
90
91 u32 rfilt, mfilt[2];
92
93 /* configure rx filter */
94 rfilt = ath_calcrxfilter(sc);
95 ath9k_hw_setrxfilter(ah, rfilt);
96
97 /* configure bssid mask */
98 ath_hw_setbssidmask(common);
99
100 /* configure operational mode */
101 ath9k_hw_setopmode(ah);
102
103 /* calculate and install multicast filter */
104 mfilt[0] = mfilt[1] = ~0;
105 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
106 }
107
108 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
109 enum ath9k_rx_qtype qtype)
110 {
111 struct ath_hw *ah = sc->sc_ah;
112 struct ath_rx_edma *rx_edma;
113 struct sk_buff *skb;
114 struct ath_rxbuf *bf;
115
116 rx_edma = &sc->rx.rx_edma[qtype];
117 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
118 return false;
119
120 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
121 list_del_init(&bf->list);
122
123 skb = bf->bf_mpdu;
124
125 memset(skb->data, 0, ah->caps.rx_status_len);
126 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
127 ah->caps.rx_status_len, DMA_TO_DEVICE);
128
129 SKB_CB_ATHBUF(skb) = bf;
130 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
131 __skb_queue_tail(&rx_edma->rx_fifo, skb);
132
133 return true;
134 }
135
136 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
137 enum ath9k_rx_qtype qtype)
138 {
139 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
140 struct ath_rxbuf *bf, *tbf;
141
142 if (list_empty(&sc->rx.rxbuf)) {
143 ath_dbg(common, QUEUE, "No free rx buf available\n");
144 return;
145 }
146
147 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
148 if (!ath_rx_edma_buf_link(sc, qtype))
149 break;
150
151 }
152
153 static void ath_rx_remove_buffer(struct ath_softc *sc,
154 enum ath9k_rx_qtype qtype)
155 {
156 struct ath_rxbuf *bf;
157 struct ath_rx_edma *rx_edma;
158 struct sk_buff *skb;
159
160 rx_edma = &sc->rx.rx_edma[qtype];
161
162 while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
163 bf = SKB_CB_ATHBUF(skb);
164 BUG_ON(!bf);
165 list_add_tail(&bf->list, &sc->rx.rxbuf);
166 }
167 }
168
169 static void ath_rx_edma_cleanup(struct ath_softc *sc)
170 {
171 struct ath_hw *ah = sc->sc_ah;
172 struct ath_common *common = ath9k_hw_common(ah);
173 struct ath_rxbuf *bf;
174
175 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
176 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
177
178 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
179 if (bf->bf_mpdu) {
180 dma_unmap_single(sc->dev, bf->bf_buf_addr,
181 common->rx_bufsize,
182 DMA_BIDIRECTIONAL);
183 dev_kfree_skb_any(bf->bf_mpdu);
184 bf->bf_buf_addr = 0;
185 bf->bf_mpdu = NULL;
186 }
187 }
188 }
189
190 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
191 {
192 __skb_queue_head_init(&rx_edma->rx_fifo);
193 rx_edma->rx_fifo_hwsize = size;
194 }
195
196 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
197 {
198 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
199 struct ath_hw *ah = sc->sc_ah;
200 struct sk_buff *skb;
201 struct ath_rxbuf *bf;
202 int error = 0, i;
203 u32 size;
204
205 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
206 ah->caps.rx_status_len);
207
208 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
209 ah->caps.rx_lp_qdepth);
210 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
211 ah->caps.rx_hp_qdepth);
212
213 size = sizeof(struct ath_rxbuf) * nbufs;
214 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
215 if (!bf)
216 return -ENOMEM;
217
218 INIT_LIST_HEAD(&sc->rx.rxbuf);
219
220 for (i = 0; i < nbufs; i++, bf++) {
221 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
222 if (!skb) {
223 error = -ENOMEM;
224 goto rx_init_fail;
225 }
226
227 memset(skb->data, 0, common->rx_bufsize);
228 bf->bf_mpdu = skb;
229
230 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
231 common->rx_bufsize,
232 DMA_BIDIRECTIONAL);
233 if (unlikely(dma_mapping_error(sc->dev,
234 bf->bf_buf_addr))) {
235 dev_kfree_skb_any(skb);
236 bf->bf_mpdu = NULL;
237 bf->bf_buf_addr = 0;
238 ath_err(common,
239 "dma_mapping_error() on RX init\n");
240 error = -ENOMEM;
241 goto rx_init_fail;
242 }
243
244 list_add_tail(&bf->list, &sc->rx.rxbuf);
245 }
246
247 return 0;
248
249 rx_init_fail:
250 ath_rx_edma_cleanup(sc);
251 return error;
252 }
253
254 static void ath_edma_start_recv(struct ath_softc *sc)
255 {
256 ath9k_hw_rxena(sc->sc_ah);
257 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
258 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
259 ath_opmode_init(sc);
260 ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
261 }
262
263 static void ath_edma_stop_recv(struct ath_softc *sc)
264 {
265 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
266 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
267 }
268
269 int ath_rx_init(struct ath_softc *sc, int nbufs)
270 {
271 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
272 struct sk_buff *skb;
273 struct ath_rxbuf *bf;
274 int error = 0;
275
276 spin_lock_init(&sc->sc_pcu_lock);
277
278 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
279 sc->sc_ah->caps.rx_status_len;
280
281 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
282 return ath_rx_edma_init(sc, nbufs);
283
284 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
285 common->cachelsz, common->rx_bufsize);
286
287 /* Initialize rx descriptors */
288
289 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
290 "rx", nbufs, 1, 0);
291 if (error != 0) {
292 ath_err(common,
293 "failed to allocate rx descriptors: %d\n",
294 error);
295 goto err;
296 }
297
298 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
299 skb = ath_rxbuf_alloc(common, common->rx_bufsize,
300 GFP_KERNEL);
301 if (skb == NULL) {
302 error = -ENOMEM;
303 goto err;
304 }
305
306 bf->bf_mpdu = skb;
307 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
308 common->rx_bufsize,
309 DMA_FROM_DEVICE);
310 if (unlikely(dma_mapping_error(sc->dev,
311 bf->bf_buf_addr))) {
312 dev_kfree_skb_any(skb);
313 bf->bf_mpdu = NULL;
314 bf->bf_buf_addr = 0;
315 ath_err(common,
316 "dma_mapping_error() on RX init\n");
317 error = -ENOMEM;
318 goto err;
319 }
320 }
321 sc->rx.rxlink = NULL;
322 err:
323 if (error)
324 ath_rx_cleanup(sc);
325
326 return error;
327 }
328
329 void ath_rx_cleanup(struct ath_softc *sc)
330 {
331 struct ath_hw *ah = sc->sc_ah;
332 struct ath_common *common = ath9k_hw_common(ah);
333 struct sk_buff *skb;
334 struct ath_rxbuf *bf;
335
336 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
337 ath_rx_edma_cleanup(sc);
338 return;
339 }
340
341 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
342 skb = bf->bf_mpdu;
343 if (skb) {
344 dma_unmap_single(sc->dev, bf->bf_buf_addr,
345 common->rx_bufsize,
346 DMA_FROM_DEVICE);
347 dev_kfree_skb(skb);
348 bf->bf_buf_addr = 0;
349 bf->bf_mpdu = NULL;
350 }
351 }
352 }
353
354 /*
355 * Calculate the receive filter according to the
356 * operating mode and state:
357 *
358 * o always accept unicast, broadcast, and multicast traffic
359 * o maintain current state of phy error reception (the hal
360 * may enable phy error frames for noise immunity work)
361 * o probe request frames are accepted only when operating in
362 * hostap, adhoc, or monitor modes
363 * o enable promiscuous mode according to the interface state
364 * o accept beacons:
365 * - when operating in adhoc mode so the 802.11 layer creates
366 * node table entries for peers,
367 * - when operating in station mode for collecting rssi data when
368 * the station is otherwise quiet, or
369 * - when operating as a repeater so we see repeater-sta beacons
370 * - when scanning
371 */
372
373 u32 ath_calcrxfilter(struct ath_softc *sc)
374 {
375 u32 rfilt;
376
377 if (config_enabled(CONFIG_ATH9K_TX99))
378 return 0;
379
380 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
381 | ATH9K_RX_FILTER_MCAST;
382
383 /* if operating on a DFS channel, enable radar pulse detection */
384 if (sc->hw->conf.radar_enabled)
385 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
386
387 if (sc->rx.rxfilter & FIF_PROBE_REQ)
388 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
389
390 /*
391 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
392 * mode interface or when in monitor mode. AP mode does not need this
393 * since it receives all in-BSS frames anyway.
394 */
395 if (sc->sc_ah->is_monitoring)
396 rfilt |= ATH9K_RX_FILTER_PROM;
397
398 if (sc->rx.rxfilter & FIF_CONTROL)
399 rfilt |= ATH9K_RX_FILTER_CONTROL;
400
401 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
402 (sc->nvifs <= 1) &&
403 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
404 rfilt |= ATH9K_RX_FILTER_MYBEACON;
405 else
406 rfilt |= ATH9K_RX_FILTER_BEACON;
407
408 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
409 (sc->rx.rxfilter & FIF_PSPOLL))
410 rfilt |= ATH9K_RX_FILTER_PSPOLL;
411
412 if (conf_is_ht(&sc->hw->conf))
413 rfilt |= ATH9K_RX_FILTER_COMP_BAR;
414
415 if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
416 /* This is needed for older chips */
417 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
418 rfilt |= ATH9K_RX_FILTER_PROM;
419 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
420 }
421
422 if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah))
423 rfilt |= ATH9K_RX_FILTER_4ADDRESS;
424
425 return rfilt;
426
427 }
428
429 int ath_startrecv(struct ath_softc *sc)
430 {
431 struct ath_hw *ah = sc->sc_ah;
432 struct ath_rxbuf *bf, *tbf;
433
434 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
435 ath_edma_start_recv(sc);
436 return 0;
437 }
438
439 if (list_empty(&sc->rx.rxbuf))
440 goto start_recv;
441
442 sc->rx.buf_hold = NULL;
443 sc->rx.rxlink = NULL;
444 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
445 ath_rx_buf_link(sc, bf);
446 }
447
448 /* We could have deleted elements so the list may be empty now */
449 if (list_empty(&sc->rx.rxbuf))
450 goto start_recv;
451
452 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
453 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
454 ath9k_hw_rxena(ah);
455
456 start_recv:
457 ath_opmode_init(sc);
458 ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
459
460 return 0;
461 }
462
463 static void ath_flushrecv(struct ath_softc *sc)
464 {
465 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
466 ath_rx_tasklet(sc, 1, true);
467 ath_rx_tasklet(sc, 1, false);
468 }
469
470 bool ath_stoprecv(struct ath_softc *sc)
471 {
472 struct ath_hw *ah = sc->sc_ah;
473 bool stopped, reset = false;
474
475 ath9k_hw_abortpcurecv(ah);
476 ath9k_hw_setrxfilter(ah, 0);
477 stopped = ath9k_hw_stopdmarecv(ah, &reset);
478
479 ath_flushrecv(sc);
480
481 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
482 ath_edma_stop_recv(sc);
483 else
484 sc->rx.rxlink = NULL;
485
486 if (!(ah->ah_flags & AH_UNPLUGGED) &&
487 unlikely(!stopped)) {
488 ath_err(ath9k_hw_common(sc->sc_ah),
489 "Could not stop RX, we could be "
490 "confusing the DMA engine when we start RX up\n");
491 ATH_DBG_WARN_ON_ONCE(!stopped);
492 }
493 return stopped && !reset;
494 }
495
496 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
497 {
498 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
499 struct ieee80211_mgmt *mgmt;
500 u8 *pos, *end, id, elen;
501 struct ieee80211_tim_ie *tim;
502
503 mgmt = (struct ieee80211_mgmt *)skb->data;
504 pos = mgmt->u.beacon.variable;
505 end = skb->data + skb->len;
506
507 while (pos + 2 < end) {
508 id = *pos++;
509 elen = *pos++;
510 if (pos + elen > end)
511 break;
512
513 if (id == WLAN_EID_TIM) {
514 if (elen < sizeof(*tim))
515 break;
516 tim = (struct ieee80211_tim_ie *) pos;
517 if (tim->dtim_count != 0)
518 break;
519 return tim->bitmap_ctrl & 0x01;
520 }
521
522 pos += elen;
523 }
524
525 return false;
526 }
527
528 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
529 {
530 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
531
532 if (skb->len < 24 + 8 + 2 + 2)
533 return;
534
535 sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
536
537 if (sc->ps_flags & PS_BEACON_SYNC) {
538 sc->ps_flags &= ~PS_BEACON_SYNC;
539 ath_dbg(common, PS,
540 "Reconfigure beacon timers based on synchronized timestamp\n");
541 ath9k_set_beacon(sc);
542 }
543
544 if (ath_beacon_dtim_pending_cab(skb)) {
545 /*
546 * Remain awake waiting for buffered broadcast/multicast
547 * frames. If the last broadcast/multicast frame is not
548 * received properly, the next beacon frame will work as
549 * a backup trigger for returning into NETWORK SLEEP state,
550 * so we are waiting for it as well.
551 */
552 ath_dbg(common, PS,
553 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
554 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
555 return;
556 }
557
558 if (sc->ps_flags & PS_WAIT_FOR_CAB) {
559 /*
560 * This can happen if a broadcast frame is dropped or the AP
561 * fails to send a frame indicating that all CAB frames have
562 * been delivered.
563 */
564 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
565 ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
566 }
567 }
568
569 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
570 {
571 struct ieee80211_hdr *hdr;
572 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
573
574 hdr = (struct ieee80211_hdr *)skb->data;
575
576 /* Process Beacon and CAB receive in PS state */
577 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
578 && mybeacon) {
579 ath_rx_ps_beacon(sc, skb);
580 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
581 (ieee80211_is_data(hdr->frame_control) ||
582 ieee80211_is_action(hdr->frame_control)) &&
583 is_multicast_ether_addr(hdr->addr1) &&
584 !ieee80211_has_moredata(hdr->frame_control)) {
585 /*
586 * No more broadcast/multicast frames to be received at this
587 * point.
588 */
589 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
590 ath_dbg(common, PS,
591 "All PS CAB frames received, back to sleep\n");
592 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
593 !is_multicast_ether_addr(hdr->addr1) &&
594 !ieee80211_has_morefrags(hdr->frame_control)) {
595 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
596 ath_dbg(common, PS,
597 "Going back to sleep after having received PS-Poll data (0x%lx)\n",
598 sc->ps_flags & (PS_WAIT_FOR_BEACON |
599 PS_WAIT_FOR_CAB |
600 PS_WAIT_FOR_PSPOLL_DATA |
601 PS_WAIT_FOR_TX_ACK));
602 }
603 }
604
605 static bool ath_edma_get_buffers(struct ath_softc *sc,
606 enum ath9k_rx_qtype qtype,
607 struct ath_rx_status *rs,
608 struct ath_rxbuf **dest)
609 {
610 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
611 struct ath_hw *ah = sc->sc_ah;
612 struct ath_common *common = ath9k_hw_common(ah);
613 struct sk_buff *skb;
614 struct ath_rxbuf *bf;
615 int ret;
616
617 skb = skb_peek(&rx_edma->rx_fifo);
618 if (!skb)
619 return false;
620
621 bf = SKB_CB_ATHBUF(skb);
622 BUG_ON(!bf);
623
624 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
625 common->rx_bufsize, DMA_FROM_DEVICE);
626
627 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
628 if (ret == -EINPROGRESS) {
629 /*let device gain the buffer again*/
630 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
631 common->rx_bufsize, DMA_FROM_DEVICE);
632 return false;
633 }
634
635 __skb_unlink(skb, &rx_edma->rx_fifo);
636 if (ret == -EINVAL) {
637 /* corrupt descriptor, skip this one and the following one */
638 list_add_tail(&bf->list, &sc->rx.rxbuf);
639 ath_rx_edma_buf_link(sc, qtype);
640
641 skb = skb_peek(&rx_edma->rx_fifo);
642 if (skb) {
643 bf = SKB_CB_ATHBUF(skb);
644 BUG_ON(!bf);
645
646 __skb_unlink(skb, &rx_edma->rx_fifo);
647 list_add_tail(&bf->list, &sc->rx.rxbuf);
648 ath_rx_edma_buf_link(sc, qtype);
649 }
650
651 bf = NULL;
652 }
653
654 *dest = bf;
655 return true;
656 }
657
658 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
659 struct ath_rx_status *rs,
660 enum ath9k_rx_qtype qtype)
661 {
662 struct ath_rxbuf *bf = NULL;
663
664 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
665 if (!bf)
666 continue;
667
668 return bf;
669 }
670 return NULL;
671 }
672
673 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
674 struct ath_rx_status *rs)
675 {
676 struct ath_hw *ah = sc->sc_ah;
677 struct ath_common *common = ath9k_hw_common(ah);
678 struct ath_desc *ds;
679 struct ath_rxbuf *bf;
680 int ret;
681
682 if (list_empty(&sc->rx.rxbuf)) {
683 sc->rx.rxlink = NULL;
684 return NULL;
685 }
686
687 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
688 if (bf == sc->rx.buf_hold)
689 return NULL;
690
691 ds = bf->bf_desc;
692
693 /*
694 * Must provide the virtual address of the current
695 * descriptor, the physical address, and the virtual
696 * address of the next descriptor in the h/w chain.
697 * This allows the HAL to look ahead to see if the
698 * hardware is done with a descriptor by checking the
699 * done bit in the following descriptor and the address
700 * of the current descriptor the DMA engine is working
701 * on. All this is necessary because of our use of
702 * a self-linked list to avoid rx overruns.
703 */
704 ret = ath9k_hw_rxprocdesc(ah, ds, rs);
705 if (ret == -EINPROGRESS) {
706 struct ath_rx_status trs;
707 struct ath_rxbuf *tbf;
708 struct ath_desc *tds;
709
710 memset(&trs, 0, sizeof(trs));
711 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
712 sc->rx.rxlink = NULL;
713 return NULL;
714 }
715
716 tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
717
718 /*
719 * On some hardware the descriptor status words could
720 * get corrupted, including the done bit. Because of
721 * this, check if the next descriptor's done bit is
722 * set or not.
723 *
724 * If the next descriptor's done bit is set, the current
725 * descriptor has been corrupted. Force s/w to discard
726 * this descriptor and continue...
727 */
728
729 tds = tbf->bf_desc;
730 ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
731 if (ret == -EINPROGRESS)
732 return NULL;
733
734 /*
735 * Re-check previous descriptor, in case it has been filled
736 * in the mean time.
737 */
738 ret = ath9k_hw_rxprocdesc(ah, ds, rs);
739 if (ret == -EINPROGRESS) {
740 /*
741 * mark descriptor as zero-length and set the 'more'
742 * flag to ensure that both buffers get discarded
743 */
744 rs->rs_datalen = 0;
745 rs->rs_more = true;
746 }
747 }
748
749 list_del(&bf->list);
750 if (!bf->bf_mpdu)
751 return bf;
752
753 /*
754 * Synchronize the DMA transfer with CPU before
755 * 1. accessing the frame
756 * 2. requeueing the same buffer to h/w
757 */
758 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
759 common->rx_bufsize,
760 DMA_FROM_DEVICE);
761
762 return bf;
763 }
764
765 static void ath9k_process_tsf(struct ath_rx_status *rs,
766 struct ieee80211_rx_status *rxs,
767 u64 tsf)
768 {
769 u32 tsf_lower = tsf & 0xffffffff;
770
771 rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
772 if (rs->rs_tstamp > tsf_lower &&
773 unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
774 rxs->mactime -= 0x100000000ULL;
775
776 if (rs->rs_tstamp < tsf_lower &&
777 unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
778 rxs->mactime += 0x100000000ULL;
779 }
780
781 /*
782 * For Decrypt or Demic errors, we only mark packet status here and always push
783 * up the frame up to let mac80211 handle the actual error case, be it no
784 * decryption key or real decryption error. This let us keep statistics there.
785 */
786 static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
787 struct sk_buff *skb,
788 struct ath_rx_status *rx_stats,
789 struct ieee80211_rx_status *rx_status,
790 bool *decrypt_error, u64 tsf)
791 {
792 struct ieee80211_hw *hw = sc->hw;
793 struct ath_hw *ah = sc->sc_ah;
794 struct ath_common *common = ath9k_hw_common(ah);
795 struct ieee80211_hdr *hdr;
796 bool discard_current = sc->rx.discard_next;
797
798 /*
799 * Discard corrupt descriptors which are marked in
800 * ath_get_next_rx_buf().
801 */
802 if (discard_current)
803 goto corrupt;
804
805 sc->rx.discard_next = false;
806
807 /*
808 * Discard zero-length packets.
809 */
810 if (!rx_stats->rs_datalen) {
811 RX_STAT_INC(rx_len_err);
812 goto corrupt;
813 }
814
815 /*
816 * rs_status follows rs_datalen so if rs_datalen is too large
817 * we can take a hint that hardware corrupted it, so ignore
818 * those frames.
819 */
820 if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
821 RX_STAT_INC(rx_len_err);
822 goto corrupt;
823 }
824
825 /* Only use status info from the last fragment */
826 if (rx_stats->rs_more)
827 return 0;
828
829 /*
830 * Return immediately if the RX descriptor has been marked
831 * as corrupt based on the various error bits.
832 *
833 * This is different from the other corrupt descriptor
834 * condition handled above.
835 */
836 if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
837 goto corrupt;
838
839 hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
840
841 ath9k_process_tsf(rx_stats, rx_status, tsf);
842 ath_debug_stat_rx(sc, rx_stats);
843
844 /*
845 * Process PHY errors and return so that the packet
846 * can be dropped.
847 */
848 if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
849 ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime);
850 if (ath_process_fft(sc, hdr, rx_stats, rx_status->mactime))
851 RX_STAT_INC(rx_spectral);
852
853 return -EINVAL;
854 }
855
856 /*
857 * everything but the rate is checked here, the rate check is done
858 * separately to avoid doing two lookups for a rate for each frame.
859 */
860 if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error, sc->rx.rxfilter))
861 return -EINVAL;
862
863 if (ath_is_mybeacon(common, hdr)) {
864 RX_STAT_INC(rx_beacons);
865 rx_stats->is_mybeacon = true;
866 }
867
868 /*
869 * This shouldn't happen, but have a safety check anyway.
870 */
871 if (WARN_ON(!ah->curchan))
872 return -EINVAL;
873
874 if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
875 /*
876 * No valid hardware bitrate found -- we should not get here
877 * because hardware has already validated this frame as OK.
878 */
879 ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
880 rx_stats->rs_rate);
881 RX_STAT_INC(rx_rate_err);
882 return -EINVAL;
883 }
884
885 ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
886
887 rx_status->band = ah->curchan->chan->band;
888 rx_status->freq = ah->curchan->chan->center_freq;
889 rx_status->antenna = rx_stats->rs_antenna;
890 rx_status->flag |= RX_FLAG_MACTIME_END;
891
892 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
893 if (ieee80211_is_data_present(hdr->frame_control) &&
894 !ieee80211_is_qos_nullfunc(hdr->frame_control))
895 sc->rx.num_pkts++;
896 #endif
897
898 return 0;
899
900 corrupt:
901 sc->rx.discard_next = rx_stats->rs_more;
902 return -EINVAL;
903 }
904
905 /*
906 * Run the LNA combining algorithm only in these cases:
907 *
908 * Standalone WLAN cards with both LNA/Antenna diversity
909 * enabled in the EEPROM.
910 *
911 * WLAN+BT cards which are in the supported card list
912 * in ath_pci_id_table and the user has loaded the
913 * driver with "bt_ant_diversity" set to true.
914 */
915 static void ath9k_antenna_check(struct ath_softc *sc,
916 struct ath_rx_status *rs)
917 {
918 struct ath_hw *ah = sc->sc_ah;
919 struct ath9k_hw_capabilities *pCap = &ah->caps;
920 struct ath_common *common = ath9k_hw_common(ah);
921
922 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
923 return;
924
925 /*
926 * Change the default rx antenna if rx diversity
927 * chooses the other antenna 3 times in a row.
928 */
929 if (sc->rx.defant != rs->rs_antenna) {
930 if (++sc->rx.rxotherant >= 3)
931 ath_setdefantenna(sc, rs->rs_antenna);
932 } else {
933 sc->rx.rxotherant = 0;
934 }
935
936 if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
937 if (common->bt_ant_diversity)
938 ath_ant_comb_scan(sc, rs);
939 } else {
940 ath_ant_comb_scan(sc, rs);
941 }
942 }
943
944 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
945 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
946 {
947 if (rs->rs_isaggr) {
948 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
949
950 rxs->ampdu_reference = sc->rx.ampdu_ref;
951
952 if (!rs->rs_moreaggr) {
953 rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
954 sc->rx.ampdu_ref++;
955 }
956
957 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
958 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
959 }
960 }
961
962 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
963 {
964 struct ath_rxbuf *bf;
965 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
966 struct ieee80211_rx_status *rxs;
967 struct ath_hw *ah = sc->sc_ah;
968 struct ath_common *common = ath9k_hw_common(ah);
969 struct ieee80211_hw *hw = sc->hw;
970 int retval;
971 struct ath_rx_status rs;
972 enum ath9k_rx_qtype qtype;
973 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
974 int dma_type;
975 u64 tsf = 0;
976 unsigned long flags;
977 dma_addr_t new_buf_addr;
978
979 if (edma)
980 dma_type = DMA_BIDIRECTIONAL;
981 else
982 dma_type = DMA_FROM_DEVICE;
983
984 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
985
986 tsf = ath9k_hw_gettsf64(ah);
987
988 do {
989 bool decrypt_error = false;
990
991 memset(&rs, 0, sizeof(rs));
992 if (edma)
993 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
994 else
995 bf = ath_get_next_rx_buf(sc, &rs);
996
997 if (!bf)
998 break;
999
1000 skb = bf->bf_mpdu;
1001 if (!skb)
1002 continue;
1003
1004 /*
1005 * Take frame header from the first fragment and RX status from
1006 * the last one.
1007 */
1008 if (sc->rx.frag)
1009 hdr_skb = sc->rx.frag;
1010 else
1011 hdr_skb = skb;
1012
1013 rxs = IEEE80211_SKB_RXCB(hdr_skb);
1014 memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1015
1016 retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1017 &decrypt_error, tsf);
1018 if (retval)
1019 goto requeue_drop_frag;
1020
1021 /* Ensure we always have an skb to requeue once we are done
1022 * processing the current buffer's skb */
1023 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1024
1025 /* If there is no memory we ignore the current RX'd frame,
1026 * tell hardware it can give us a new frame using the old
1027 * skb and put it at the tail of the sc->rx.rxbuf list for
1028 * processing. */
1029 if (!requeue_skb) {
1030 RX_STAT_INC(rx_oom_err);
1031 goto requeue_drop_frag;
1032 }
1033
1034 /* We will now give hardware our shiny new allocated skb */
1035 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1036 common->rx_bufsize, dma_type);
1037 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1038 dev_kfree_skb_any(requeue_skb);
1039 goto requeue_drop_frag;
1040 }
1041
1042 /* Unmap the frame */
1043 dma_unmap_single(sc->dev, bf->bf_buf_addr,
1044 common->rx_bufsize, dma_type);
1045
1046 bf->bf_mpdu = requeue_skb;
1047 bf->bf_buf_addr = new_buf_addr;
1048
1049 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1050 if (ah->caps.rx_status_len)
1051 skb_pull(skb, ah->caps.rx_status_len);
1052
1053 if (!rs.rs_more)
1054 ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1055 rxs, decrypt_error);
1056
1057 if (rs.rs_more) {
1058 RX_STAT_INC(rx_frags);
1059 /*
1060 * rs_more indicates chained descriptors which can be
1061 * used to link buffers together for a sort of
1062 * scatter-gather operation.
1063 */
1064 if (sc->rx.frag) {
1065 /* too many fragments - cannot handle frame */
1066 dev_kfree_skb_any(sc->rx.frag);
1067 dev_kfree_skb_any(skb);
1068 RX_STAT_INC(rx_too_many_frags_err);
1069 skb = NULL;
1070 }
1071 sc->rx.frag = skb;
1072 goto requeue;
1073 }
1074
1075 if (sc->rx.frag) {
1076 int space = skb->len - skb_tailroom(hdr_skb);
1077
1078 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1079 dev_kfree_skb(skb);
1080 RX_STAT_INC(rx_oom_err);
1081 goto requeue_drop_frag;
1082 }
1083
1084 sc->rx.frag = NULL;
1085
1086 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1087 skb->len);
1088 dev_kfree_skb_any(skb);
1089 skb = hdr_skb;
1090 }
1091
1092 if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1093 skb_trim(skb, skb->len - 8);
1094
1095 spin_lock_irqsave(&sc->sc_pm_lock, flags);
1096 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1097 PS_WAIT_FOR_CAB |
1098 PS_WAIT_FOR_PSPOLL_DATA)) ||
1099 ath9k_check_auto_sleep(sc))
1100 ath_rx_ps(sc, skb, rs.is_mybeacon);
1101 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1102
1103 ath9k_antenna_check(sc, &rs);
1104 ath9k_apply_ampdu_details(sc, &rs, rxs);
1105 ath_debug_rate_stats(sc, &rs, skb);
1106
1107 ieee80211_rx(hw, skb);
1108
1109 requeue_drop_frag:
1110 if (sc->rx.frag) {
1111 dev_kfree_skb_any(sc->rx.frag);
1112 sc->rx.frag = NULL;
1113 }
1114 requeue:
1115 list_add_tail(&bf->list, &sc->rx.rxbuf);
1116 if (flush)
1117 continue;
1118
1119 if (edma) {
1120 ath_rx_edma_buf_link(sc, qtype);
1121 } else {
1122 ath_rx_buf_relink(sc, bf);
1123 ath9k_hw_rxena(ah);
1124 }
1125 } while (1);
1126
1127 if (!(ah->imask & ATH9K_INT_RXEOL)) {
1128 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1129 ath9k_hw_set_interrupts(ah);
1130 }
1131
1132 return 0;
1133 }
This page took 0.063897 seconds and 6 git commands to generate.