ath9k: content DMA start / stop through the PCU lock
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18 #include "ar9003_mac.h"
19
20 #define BITS_PER_BYTE 8
21 #define OFDM_PLCP_BITS 22
22 #define HT_RC_2_MCS(_rc) ((_rc) & 0x1f)
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34
35 #define OFDM_SIFS_TIME 16
36
37 static u16 bits_per_symbol[][2] = {
38 /* 20MHz 40MHz */
39 { 26, 54 }, /* 0: BPSK */
40 { 52, 108 }, /* 1: QPSK 1/2 */
41 { 78, 162 }, /* 2: QPSK 3/4 */
42 { 104, 216 }, /* 3: 16-QAM 1/2 */
43 { 156, 324 }, /* 4: 16-QAM 3/4 */
44 { 208, 432 }, /* 5: 64-QAM 2/3 */
45 { 234, 486 }, /* 6: 64-QAM 3/4 */
46 { 260, 540 }, /* 7: 64-QAM 5/6 */
47 };
48
49 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
50
51 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
52 struct ath_atx_tid *tid,
53 struct list_head *bf_head);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok, int sendbar);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head);
59 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
60 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
61 struct ath_tx_status *ts, int txok);
62 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
63 int nbad, int txok, bool update_rc);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 int seqno);
66
67 enum {
68 MCS_HT20,
69 MCS_HT20_SGI,
70 MCS_HT40,
71 MCS_HT40_SGI,
72 };
73
74 static int ath_max_4ms_framelen[4][32] = {
75 [MCS_HT20] = {
76 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
77 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
78 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
79 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
80 },
81 [MCS_HT20_SGI] = {
82 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
83 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
84 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
85 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
86 },
87 [MCS_HT40] = {
88 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
89 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
90 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
91 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
92 },
93 [MCS_HT40_SGI] = {
94 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
95 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
96 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
97 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
98 }
99 };
100
101 /*********************/
102 /* Aggregation logic */
103 /*********************/
104
105 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
106 {
107 struct ath_atx_ac *ac = tid->ac;
108
109 if (tid->paused)
110 return;
111
112 if (tid->sched)
113 return;
114
115 tid->sched = true;
116 list_add_tail(&tid->list, &ac->tid_q);
117
118 if (ac->sched)
119 return;
120
121 ac->sched = true;
122 list_add_tail(&ac->list, &txq->axq_acq);
123 }
124
125 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
126 {
127 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
128
129 WARN_ON(!tid->paused);
130
131 spin_lock_bh(&txq->axq_lock);
132 tid->paused = false;
133
134 if (list_empty(&tid->buf_q))
135 goto unlock;
136
137 ath_tx_queue_tid(txq, tid);
138 ath_txq_schedule(sc, txq);
139 unlock:
140 spin_unlock_bh(&txq->axq_lock);
141 }
142
143 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
144 {
145 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
146 struct ath_buf *bf;
147 struct list_head bf_head;
148 struct ath_tx_status ts;
149
150 INIT_LIST_HEAD(&bf_head);
151
152 memset(&ts, 0, sizeof(ts));
153 spin_lock_bh(&txq->axq_lock);
154
155 while (!list_empty(&tid->buf_q)) {
156 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
157 list_move_tail(&bf->list, &bf_head);
158
159 if (bf_isretried(bf)) {
160 ath_tx_update_baw(sc, tid, bf->bf_seqno);
161 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
162 } else {
163 ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
164 }
165 }
166
167 spin_unlock_bh(&txq->axq_lock);
168 }
169
170 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
171 int seqno)
172 {
173 int index, cindex;
174
175 index = ATH_BA_INDEX(tid->seq_start, seqno);
176 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
177
178 __clear_bit(cindex, tid->tx_buf);
179
180 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
181 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
182 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
183 }
184 }
185
186 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
187 struct ath_buf *bf)
188 {
189 int index, cindex;
190
191 if (bf_isretried(bf))
192 return;
193
194 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
195 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
196 __set_bit(cindex, tid->tx_buf);
197
198 if (index >= ((tid->baw_tail - tid->baw_head) &
199 (ATH_TID_MAX_BUFS - 1))) {
200 tid->baw_tail = cindex;
201 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
202 }
203 }
204
205 /*
206 * TODO: For frame(s) that are in the retry state, we will reuse the
207 * sequence number(s) without setting the retry bit. The
208 * alternative is to give up on these and BAR the receiver's window
209 * forward.
210 */
211 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
212 struct ath_atx_tid *tid)
213
214 {
215 struct ath_buf *bf;
216 struct list_head bf_head;
217 struct ath_tx_status ts;
218
219 memset(&ts, 0, sizeof(ts));
220 INIT_LIST_HEAD(&bf_head);
221
222 for (;;) {
223 if (list_empty(&tid->buf_q))
224 break;
225
226 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
227 list_move_tail(&bf->list, &bf_head);
228
229 if (bf_isretried(bf))
230 ath_tx_update_baw(sc, tid, bf->bf_seqno);
231
232 spin_unlock(&txq->axq_lock);
233 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
234 spin_lock(&txq->axq_lock);
235 }
236
237 tid->seq_next = tid->seq_start;
238 tid->baw_tail = tid->baw_head;
239 }
240
241 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
242 struct ath_buf *bf)
243 {
244 struct sk_buff *skb;
245 struct ieee80211_hdr *hdr;
246
247 bf->bf_state.bf_type |= BUF_RETRY;
248 bf->bf_retries++;
249 TX_STAT_INC(txq->axq_qnum, a_retries);
250
251 skb = bf->bf_mpdu;
252 hdr = (struct ieee80211_hdr *)skb->data;
253 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
254 }
255
256 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
257 {
258 struct ath_buf *bf = NULL;
259
260 spin_lock_bh(&sc->tx.txbuflock);
261
262 if (unlikely(list_empty(&sc->tx.txbuf))) {
263 spin_unlock_bh(&sc->tx.txbuflock);
264 return NULL;
265 }
266
267 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
268 list_del(&bf->list);
269
270 spin_unlock_bh(&sc->tx.txbuflock);
271
272 return bf;
273 }
274
275 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
276 {
277 spin_lock_bh(&sc->tx.txbuflock);
278 list_add_tail(&bf->list, &sc->tx.txbuf);
279 spin_unlock_bh(&sc->tx.txbuflock);
280 }
281
282 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
283 {
284 struct ath_buf *tbf;
285
286 tbf = ath_tx_get_buffer(sc);
287 if (WARN_ON(!tbf))
288 return NULL;
289
290 ATH_TXBUF_RESET(tbf);
291
292 tbf->aphy = bf->aphy;
293 tbf->bf_mpdu = bf->bf_mpdu;
294 tbf->bf_buf_addr = bf->bf_buf_addr;
295 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
296 tbf->bf_state = bf->bf_state;
297
298 return tbf;
299 }
300
301 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
302 struct ath_buf *bf, struct list_head *bf_q,
303 struct ath_tx_status *ts, int txok)
304 {
305 struct ath_node *an = NULL;
306 struct sk_buff *skb;
307 struct ieee80211_sta *sta;
308 struct ieee80211_hw *hw;
309 struct ieee80211_hdr *hdr;
310 struct ieee80211_tx_info *tx_info;
311 struct ath_atx_tid *tid = NULL;
312 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
313 struct list_head bf_head, bf_pending;
314 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
315 u32 ba[WME_BA_BMP_SIZE >> 5];
316 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
317 bool rc_update = true;
318 struct ieee80211_tx_rate rates[4];
319 int nframes;
320
321 skb = bf->bf_mpdu;
322 hdr = (struct ieee80211_hdr *)skb->data;
323
324 tx_info = IEEE80211_SKB_CB(skb);
325 hw = bf->aphy->hw;
326
327 memcpy(rates, tx_info->control.rates, sizeof(rates));
328 nframes = bf->bf_nframes;
329
330 rcu_read_lock();
331
332 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
333 if (!sta) {
334 rcu_read_unlock();
335
336 INIT_LIST_HEAD(&bf_head);
337 while (bf) {
338 bf_next = bf->bf_next;
339
340 bf->bf_state.bf_type |= BUF_XRETRY;
341 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
342 !bf->bf_stale || bf_next != NULL)
343 list_move_tail(&bf->list, &bf_head);
344
345 ath_tx_rc_status(bf, ts, 1, 0, false);
346 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
347 0, 0);
348
349 bf = bf_next;
350 }
351 return;
352 }
353
354 an = (struct ath_node *)sta->drv_priv;
355 tid = ATH_AN_2_TID(an, bf->bf_tidno);
356
357 /*
358 * The hardware occasionally sends a tx status for the wrong TID.
359 * In this case, the BA status cannot be considered valid and all
360 * subframes need to be retransmitted
361 */
362 if (bf->bf_tidno != ts->tid)
363 txok = false;
364
365 isaggr = bf_isaggr(bf);
366 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
367
368 if (isaggr && txok) {
369 if (ts->ts_flags & ATH9K_TX_BA) {
370 seq_st = ts->ts_seqnum;
371 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
372 } else {
373 /*
374 * AR5416 can become deaf/mute when BA
375 * issue happens. Chip needs to be reset.
376 * But AP code may have sychronization issues
377 * when perform internal reset in this routine.
378 * Only enable reset in STA mode for now.
379 */
380 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
381 needreset = 1;
382 }
383 }
384
385 INIT_LIST_HEAD(&bf_pending);
386 INIT_LIST_HEAD(&bf_head);
387
388 nbad = ath_tx_num_badfrms(sc, bf, ts, txok);
389 while (bf) {
390 txfail = txpending = 0;
391 bf_next = bf->bf_next;
392
393 skb = bf->bf_mpdu;
394 tx_info = IEEE80211_SKB_CB(skb);
395
396 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
397 /* transmit completion, subframe is
398 * acked by block ack */
399 acked_cnt++;
400 } else if (!isaggr && txok) {
401 /* transmit completion */
402 acked_cnt++;
403 } else {
404 if (!(tid->state & AGGR_CLEANUP) &&
405 !bf_last->bf_tx_aborted) {
406 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
407 ath_tx_set_retry(sc, txq, bf);
408 txpending = 1;
409 } else {
410 bf->bf_state.bf_type |= BUF_XRETRY;
411 txfail = 1;
412 sendbar = 1;
413 txfail_cnt++;
414 }
415 } else {
416 /*
417 * cleanup in progress, just fail
418 * the un-acked sub-frames
419 */
420 txfail = 1;
421 }
422 }
423
424 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
425 bf_next == NULL) {
426 /*
427 * Make sure the last desc is reclaimed if it
428 * not a holding desc.
429 */
430 if (!bf_last->bf_stale)
431 list_move_tail(&bf->list, &bf_head);
432 else
433 INIT_LIST_HEAD(&bf_head);
434 } else {
435 BUG_ON(list_empty(bf_q));
436 list_move_tail(&bf->list, &bf_head);
437 }
438
439 if (!txpending || (tid->state & AGGR_CLEANUP)) {
440 /*
441 * complete the acked-ones/xretried ones; update
442 * block-ack window
443 */
444 spin_lock_bh(&txq->axq_lock);
445 ath_tx_update_baw(sc, tid, bf->bf_seqno);
446 spin_unlock_bh(&txq->axq_lock);
447
448 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
449 memcpy(tx_info->control.rates, rates, sizeof(rates));
450 bf->bf_nframes = nframes;
451 ath_tx_rc_status(bf, ts, nbad, txok, true);
452 rc_update = false;
453 } else {
454 ath_tx_rc_status(bf, ts, nbad, txok, false);
455 }
456
457 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
458 !txfail, sendbar);
459 } else {
460 /* retry the un-acked ones */
461 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
462 if (bf->bf_next == NULL && bf_last->bf_stale) {
463 struct ath_buf *tbf;
464
465 tbf = ath_clone_txbuf(sc, bf_last);
466 /*
467 * Update tx baw and complete the
468 * frame with failed status if we
469 * run out of tx buf.
470 */
471 if (!tbf) {
472 spin_lock_bh(&txq->axq_lock);
473 ath_tx_update_baw(sc, tid,
474 bf->bf_seqno);
475 spin_unlock_bh(&txq->axq_lock);
476
477 bf->bf_state.bf_type |=
478 BUF_XRETRY;
479 ath_tx_rc_status(bf, ts, nbad,
480 0, false);
481 ath_tx_complete_buf(sc, bf, txq,
482 &bf_head,
483 ts, 0, 0);
484 break;
485 }
486
487 ath9k_hw_cleartxdesc(sc->sc_ah,
488 tbf->bf_desc);
489 list_add_tail(&tbf->list, &bf_head);
490 } else {
491 /*
492 * Clear descriptor status words for
493 * software retry
494 */
495 ath9k_hw_cleartxdesc(sc->sc_ah,
496 bf->bf_desc);
497 }
498 }
499
500 /*
501 * Put this buffer to the temporary pending
502 * queue to retain ordering
503 */
504 list_splice_tail_init(&bf_head, &bf_pending);
505 }
506
507 bf = bf_next;
508 }
509
510 /* prepend un-acked frames to the beginning of the pending frame queue */
511 if (!list_empty(&bf_pending)) {
512 spin_lock_bh(&txq->axq_lock);
513 list_splice(&bf_pending, &tid->buf_q);
514 ath_tx_queue_tid(txq, tid);
515 spin_unlock_bh(&txq->axq_lock);
516 }
517
518 if (tid->state & AGGR_CLEANUP) {
519 ath_tx_flush_tid(sc, tid);
520
521 if (tid->baw_head == tid->baw_tail) {
522 tid->state &= ~AGGR_ADDBA_COMPLETE;
523 tid->state &= ~AGGR_CLEANUP;
524 }
525 }
526
527 rcu_read_unlock();
528
529 if (needreset)
530 ath_reset(sc, false);
531 }
532
533 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
534 struct ath_atx_tid *tid)
535 {
536 struct sk_buff *skb;
537 struct ieee80211_tx_info *tx_info;
538 struct ieee80211_tx_rate *rates;
539 u32 max_4ms_framelen, frmlen;
540 u16 aggr_limit, legacy = 0;
541 int i;
542
543 skb = bf->bf_mpdu;
544 tx_info = IEEE80211_SKB_CB(skb);
545 rates = tx_info->control.rates;
546
547 /*
548 * Find the lowest frame length among the rate series that will have a
549 * 4ms transmit duration.
550 * TODO - TXOP limit needs to be considered.
551 */
552 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
553
554 for (i = 0; i < 4; i++) {
555 if (rates[i].count) {
556 int modeidx;
557 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
558 legacy = 1;
559 break;
560 }
561
562 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
563 modeidx = MCS_HT40;
564 else
565 modeidx = MCS_HT20;
566
567 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
568 modeidx++;
569
570 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
571 max_4ms_framelen = min(max_4ms_framelen, frmlen);
572 }
573 }
574
575 /*
576 * limit aggregate size by the minimum rate if rate selected is
577 * not a probe rate, if rate selected is a probe rate then
578 * avoid aggregation of this packet.
579 */
580 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
581 return 0;
582
583 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
584 aggr_limit = min((max_4ms_framelen * 3) / 8,
585 (u32)ATH_AMPDU_LIMIT_MAX);
586 else
587 aggr_limit = min(max_4ms_framelen,
588 (u32)ATH_AMPDU_LIMIT_MAX);
589
590 /*
591 * h/w can accept aggregates upto 16 bit lengths (65535).
592 * The IE, however can hold upto 65536, which shows up here
593 * as zero. Ignore 65536 since we are constrained by hw.
594 */
595 if (tid->an->maxampdu)
596 aggr_limit = min(aggr_limit, tid->an->maxampdu);
597
598 return aggr_limit;
599 }
600
601 /*
602 * Returns the number of delimiters to be added to
603 * meet the minimum required mpdudensity.
604 */
605 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
606 struct ath_buf *bf, u16 frmlen)
607 {
608 struct sk_buff *skb = bf->bf_mpdu;
609 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
610 u32 nsymbits, nsymbols;
611 u16 minlen;
612 u8 flags, rix;
613 int width, streams, half_gi, ndelim, mindelim;
614
615 /* Select standard number of delimiters based on frame length alone */
616 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
617
618 /*
619 * If encryption enabled, hardware requires some more padding between
620 * subframes.
621 * TODO - this could be improved to be dependent on the rate.
622 * The hardware can keep up at lower rates, but not higher rates
623 */
624 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
625 ndelim += ATH_AGGR_ENCRYPTDELIM;
626
627 /*
628 * Convert desired mpdu density from microeconds to bytes based
629 * on highest rate in rate series (i.e. first rate) to determine
630 * required minimum length for subframe. Take into account
631 * whether high rate is 20 or 40Mhz and half or full GI.
632 *
633 * If there is no mpdu density restriction, no further calculation
634 * is needed.
635 */
636
637 if (tid->an->mpdudensity == 0)
638 return ndelim;
639
640 rix = tx_info->control.rates[0].idx;
641 flags = tx_info->control.rates[0].flags;
642 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
643 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
644
645 if (half_gi)
646 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
647 else
648 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
649
650 if (nsymbols == 0)
651 nsymbols = 1;
652
653 streams = HT_RC_2_STREAMS(rix);
654 nsymbits = bits_per_symbol[rix % 8][width] * streams;
655 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
656
657 if (frmlen < minlen) {
658 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
659 ndelim = max(mindelim, ndelim);
660 }
661
662 return ndelim;
663 }
664
665 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
666 struct ath_txq *txq,
667 struct ath_atx_tid *tid,
668 struct list_head *bf_q)
669 {
670 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
671 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
672 int rl = 0, nframes = 0, ndelim, prev_al = 0;
673 u16 aggr_limit = 0, al = 0, bpad = 0,
674 al_delta, h_baw = tid->baw_size / 2;
675 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
676 struct ieee80211_tx_info *tx_info;
677
678 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
679
680 do {
681 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
682
683 /* do not step over block-ack window */
684 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
685 status = ATH_AGGR_BAW_CLOSED;
686 break;
687 }
688
689 if (!rl) {
690 aggr_limit = ath_lookup_rate(sc, bf, tid);
691 rl = 1;
692 }
693
694 /* do not exceed aggregation limit */
695 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
696
697 if (nframes &&
698 (aggr_limit < (al + bpad + al_delta + prev_al))) {
699 status = ATH_AGGR_LIMITED;
700 break;
701 }
702
703 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
704 if (nframes && ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
705 !(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS)))
706 break;
707
708 /* do not exceed subframe limit */
709 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
710 status = ATH_AGGR_LIMITED;
711 break;
712 }
713 nframes++;
714
715 /* add padding for previous frame to aggregation length */
716 al += bpad + al_delta;
717
718 /*
719 * Get the delimiters needed to meet the MPDU
720 * density for this node.
721 */
722 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
723 bpad = PADBYTES(al_delta) + (ndelim << 2);
724
725 bf->bf_next = NULL;
726 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
727
728 /* link buffers of this frame to the aggregate */
729 ath_tx_addto_baw(sc, tid, bf);
730 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
731 list_move_tail(&bf->list, bf_q);
732 if (bf_prev) {
733 bf_prev->bf_next = bf;
734 ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
735 bf->bf_daddr);
736 }
737 bf_prev = bf;
738
739 } while (!list_empty(&tid->buf_q));
740
741 bf_first->bf_al = al;
742 bf_first->bf_nframes = nframes;
743
744 return status;
745 #undef PADBYTES
746 }
747
748 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
749 struct ath_atx_tid *tid)
750 {
751 struct ath_buf *bf;
752 enum ATH_AGGR_STATUS status;
753 struct list_head bf_q;
754
755 do {
756 if (list_empty(&tid->buf_q))
757 return;
758
759 INIT_LIST_HEAD(&bf_q);
760
761 status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
762
763 /*
764 * no frames picked up to be aggregated;
765 * block-ack window is not open.
766 */
767 if (list_empty(&bf_q))
768 break;
769
770 bf = list_first_entry(&bf_q, struct ath_buf, list);
771 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
772
773 /* if only one frame, send as non-aggregate */
774 if (bf->bf_nframes == 1) {
775 bf->bf_state.bf_type &= ~BUF_AGGR;
776 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
777 ath_buf_set_rate(sc, bf);
778 ath_tx_txqaddbuf(sc, txq, &bf_q);
779 continue;
780 }
781
782 /* setup first desc of aggregate */
783 bf->bf_state.bf_type |= BUF_AGGR;
784 ath_buf_set_rate(sc, bf);
785 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
786
787 /* anchor last desc of aggregate */
788 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
789
790 ath_tx_txqaddbuf(sc, txq, &bf_q);
791 TX_STAT_INC(txq->axq_qnum, a_aggr);
792
793 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
794 status != ATH_AGGR_BAW_CLOSED);
795 }
796
797 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
798 u16 tid, u16 *ssn)
799 {
800 struct ath_atx_tid *txtid;
801 struct ath_node *an;
802
803 an = (struct ath_node *)sta->drv_priv;
804 txtid = ATH_AN_2_TID(an, tid);
805
806 if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
807 return -EAGAIN;
808
809 txtid->state |= AGGR_ADDBA_PROGRESS;
810 txtid->paused = true;
811 *ssn = txtid->seq_start;
812
813 return 0;
814 }
815
816 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
817 {
818 struct ath_node *an = (struct ath_node *)sta->drv_priv;
819 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
820 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
821
822 if (txtid->state & AGGR_CLEANUP)
823 return;
824
825 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
826 txtid->state &= ~AGGR_ADDBA_PROGRESS;
827 return;
828 }
829
830 spin_lock_bh(&txq->axq_lock);
831 txtid->paused = true;
832
833 /*
834 * If frames are still being transmitted for this TID, they will be
835 * cleaned up during tx completion. To prevent race conditions, this
836 * TID can only be reused after all in-progress subframes have been
837 * completed.
838 */
839 if (txtid->baw_head != txtid->baw_tail)
840 txtid->state |= AGGR_CLEANUP;
841 else
842 txtid->state &= ~AGGR_ADDBA_COMPLETE;
843 spin_unlock_bh(&txq->axq_lock);
844
845 ath_tx_flush_tid(sc, txtid);
846 }
847
848 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
849 {
850 struct ath_atx_tid *txtid;
851 struct ath_node *an;
852
853 an = (struct ath_node *)sta->drv_priv;
854
855 if (sc->sc_flags & SC_OP_TXAGGR) {
856 txtid = ATH_AN_2_TID(an, tid);
857 txtid->baw_size =
858 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
859 txtid->state |= AGGR_ADDBA_COMPLETE;
860 txtid->state &= ~AGGR_ADDBA_PROGRESS;
861 ath_tx_resume_tid(sc, txtid);
862 }
863 }
864
865 /********************/
866 /* Queue Management */
867 /********************/
868
869 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
870 struct ath_txq *txq)
871 {
872 struct ath_atx_ac *ac, *ac_tmp;
873 struct ath_atx_tid *tid, *tid_tmp;
874
875 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
876 list_del(&ac->list);
877 ac->sched = false;
878 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
879 list_del(&tid->list);
880 tid->sched = false;
881 ath_tid_drain(sc, txq, tid);
882 }
883 }
884 }
885
886 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
887 {
888 struct ath_hw *ah = sc->sc_ah;
889 struct ath_common *common = ath9k_hw_common(ah);
890 struct ath9k_tx_queue_info qi;
891 int qnum, i;
892
893 memset(&qi, 0, sizeof(qi));
894 qi.tqi_subtype = subtype;
895 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
896 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
897 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
898 qi.tqi_physCompBuf = 0;
899
900 /*
901 * Enable interrupts only for EOL and DESC conditions.
902 * We mark tx descriptors to receive a DESC interrupt
903 * when a tx queue gets deep; otherwise waiting for the
904 * EOL to reap descriptors. Note that this is done to
905 * reduce interrupt load and this only defers reaping
906 * descriptors, never transmitting frames. Aside from
907 * reducing interrupts this also permits more concurrency.
908 * The only potential downside is if the tx queue backs
909 * up in which case the top half of the kernel may backup
910 * due to a lack of tx descriptors.
911 *
912 * The UAPSD queue is an exception, since we take a desc-
913 * based intr on the EOSP frames.
914 */
915 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
916 qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
917 TXQ_FLAG_TXERRINT_ENABLE;
918 } else {
919 if (qtype == ATH9K_TX_QUEUE_UAPSD)
920 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
921 else
922 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
923 TXQ_FLAG_TXDESCINT_ENABLE;
924 }
925 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
926 if (qnum == -1) {
927 /*
928 * NB: don't print a message, this happens
929 * normally on parts with too few tx queues
930 */
931 return NULL;
932 }
933 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
934 ath_print(common, ATH_DBG_FATAL,
935 "qnum %u out of range, max %u!\n",
936 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
937 ath9k_hw_releasetxqueue(ah, qnum);
938 return NULL;
939 }
940 if (!ATH_TXQ_SETUP(sc, qnum)) {
941 struct ath_txq *txq = &sc->tx.txq[qnum];
942
943 txq->axq_class = subtype;
944 txq->axq_qnum = qnum;
945 txq->axq_link = NULL;
946 INIT_LIST_HEAD(&txq->axq_q);
947 INIT_LIST_HEAD(&txq->axq_acq);
948 spin_lock_init(&txq->axq_lock);
949 txq->axq_depth = 0;
950 txq->axq_tx_inprogress = false;
951 sc->tx.txqsetup |= 1<<qnum;
952
953 txq->txq_headidx = txq->txq_tailidx = 0;
954 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
955 INIT_LIST_HEAD(&txq->txq_fifo[i]);
956 INIT_LIST_HEAD(&txq->txq_fifo_pending);
957 }
958 return &sc->tx.txq[qnum];
959 }
960
961 int ath_txq_update(struct ath_softc *sc, int qnum,
962 struct ath9k_tx_queue_info *qinfo)
963 {
964 struct ath_hw *ah = sc->sc_ah;
965 int error = 0;
966 struct ath9k_tx_queue_info qi;
967
968 if (qnum == sc->beacon.beaconq) {
969 /*
970 * XXX: for beacon queue, we just save the parameter.
971 * It will be picked up by ath_beaconq_config when
972 * it's necessary.
973 */
974 sc->beacon.beacon_qi = *qinfo;
975 return 0;
976 }
977
978 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
979
980 ath9k_hw_get_txq_props(ah, qnum, &qi);
981 qi.tqi_aifs = qinfo->tqi_aifs;
982 qi.tqi_cwmin = qinfo->tqi_cwmin;
983 qi.tqi_cwmax = qinfo->tqi_cwmax;
984 qi.tqi_burstTime = qinfo->tqi_burstTime;
985 qi.tqi_readyTime = qinfo->tqi_readyTime;
986
987 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
988 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
989 "Unable to update hardware queue %u!\n", qnum);
990 error = -EIO;
991 } else {
992 ath9k_hw_resettxqueue(ah, qnum);
993 }
994
995 return error;
996 }
997
998 int ath_cabq_update(struct ath_softc *sc)
999 {
1000 struct ath9k_tx_queue_info qi;
1001 int qnum = sc->beacon.cabq->axq_qnum;
1002
1003 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1004 /*
1005 * Ensure the readytime % is within the bounds.
1006 */
1007 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1008 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1009 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1010 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1011
1012 qi.tqi_readyTime = (sc->beacon_interval *
1013 sc->config.cabqReadytime) / 100;
1014 ath_txq_update(sc, qnum, &qi);
1015
1016 return 0;
1017 }
1018
1019 /*
1020 * Drain a given TX queue (could be Beacon or Data)
1021 *
1022 * This assumes output has been stopped and
1023 * we do not need to block ath_tx_tasklet.
1024 */
1025 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1026 {
1027 struct ath_buf *bf, *lastbf;
1028 struct list_head bf_head;
1029 struct ath_tx_status ts;
1030
1031 memset(&ts, 0, sizeof(ts));
1032 INIT_LIST_HEAD(&bf_head);
1033
1034 for (;;) {
1035 spin_lock_bh(&txq->axq_lock);
1036
1037 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1038 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
1039 txq->txq_headidx = txq->txq_tailidx = 0;
1040 spin_unlock_bh(&txq->axq_lock);
1041 break;
1042 } else {
1043 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
1044 struct ath_buf, list);
1045 }
1046 } else {
1047 if (list_empty(&txq->axq_q)) {
1048 txq->axq_link = NULL;
1049 spin_unlock_bh(&txq->axq_lock);
1050 break;
1051 }
1052 bf = list_first_entry(&txq->axq_q, struct ath_buf,
1053 list);
1054
1055 if (bf->bf_stale) {
1056 list_del(&bf->list);
1057 spin_unlock_bh(&txq->axq_lock);
1058
1059 ath_tx_return_buffer(sc, bf);
1060 continue;
1061 }
1062 }
1063
1064 lastbf = bf->bf_lastbf;
1065 if (!retry_tx)
1066 lastbf->bf_tx_aborted = true;
1067
1068 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1069 list_cut_position(&bf_head,
1070 &txq->txq_fifo[txq->txq_tailidx],
1071 &lastbf->list);
1072 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
1073 } else {
1074 /* remove ath_buf's of the same mpdu from txq */
1075 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1076 }
1077
1078 txq->axq_depth--;
1079
1080 spin_unlock_bh(&txq->axq_lock);
1081
1082 if (bf_isampdu(bf))
1083 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0);
1084 else
1085 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
1086 }
1087
1088 spin_lock_bh(&txq->axq_lock);
1089 txq->axq_tx_inprogress = false;
1090 spin_unlock_bh(&txq->axq_lock);
1091
1092 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1093 spin_lock_bh(&txq->axq_lock);
1094 while (!list_empty(&txq->txq_fifo_pending)) {
1095 bf = list_first_entry(&txq->txq_fifo_pending,
1096 struct ath_buf, list);
1097 list_cut_position(&bf_head,
1098 &txq->txq_fifo_pending,
1099 &bf->bf_lastbf->list);
1100 spin_unlock_bh(&txq->axq_lock);
1101
1102 if (bf_isampdu(bf))
1103 ath_tx_complete_aggr(sc, txq, bf, &bf_head,
1104 &ts, 0);
1105 else
1106 ath_tx_complete_buf(sc, bf, txq, &bf_head,
1107 &ts, 0, 0);
1108 spin_lock_bh(&txq->axq_lock);
1109 }
1110 spin_unlock_bh(&txq->axq_lock);
1111 }
1112
1113 /* flush any pending frames if aggregation is enabled */
1114 if (sc->sc_flags & SC_OP_TXAGGR) {
1115 if (!retry_tx) {
1116 spin_lock_bh(&txq->axq_lock);
1117 ath_txq_drain_pending_buffers(sc, txq);
1118 spin_unlock_bh(&txq->axq_lock);
1119 }
1120 }
1121 }
1122
1123 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1124 {
1125 struct ath_hw *ah = sc->sc_ah;
1126 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1127 struct ath_txq *txq;
1128 int i, npend = 0;
1129
1130 if (sc->sc_flags & SC_OP_INVALID)
1131 return;
1132
1133 /* Stop beacon queue */
1134 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1135
1136 /* Stop data queues */
1137 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1138 if (ATH_TXQ_SETUP(sc, i)) {
1139 txq = &sc->tx.txq[i];
1140 ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1141 npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1142 }
1143 }
1144
1145 if (npend) {
1146 int r;
1147
1148 ath_print(common, ATH_DBG_FATAL,
1149 "Failed to stop TX DMA. Resetting hardware!\n");
1150
1151 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, ah->caldata, false);
1152 if (r)
1153 ath_print(common, ATH_DBG_FATAL,
1154 "Unable to reset hardware; reset status %d\n",
1155 r);
1156 }
1157
1158 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1159 if (ATH_TXQ_SETUP(sc, i))
1160 ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1161 }
1162 }
1163
1164 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1165 {
1166 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1167 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1168 }
1169
1170 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1171 {
1172 struct ath_atx_ac *ac;
1173 struct ath_atx_tid *tid;
1174
1175 if (list_empty(&txq->axq_acq))
1176 return;
1177
1178 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1179 list_del(&ac->list);
1180 ac->sched = false;
1181
1182 do {
1183 if (list_empty(&ac->tid_q))
1184 return;
1185
1186 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1187 list_del(&tid->list);
1188 tid->sched = false;
1189
1190 if (tid->paused)
1191 continue;
1192
1193 ath_tx_sched_aggr(sc, txq, tid);
1194
1195 /*
1196 * add tid to round-robin queue if more frames
1197 * are pending for the tid
1198 */
1199 if (!list_empty(&tid->buf_q))
1200 ath_tx_queue_tid(txq, tid);
1201
1202 break;
1203 } while (!list_empty(&ac->tid_q));
1204
1205 if (!list_empty(&ac->tid_q)) {
1206 if (!ac->sched) {
1207 ac->sched = true;
1208 list_add_tail(&ac->list, &txq->axq_acq);
1209 }
1210 }
1211 }
1212
1213 int ath_tx_setup(struct ath_softc *sc, int haltype)
1214 {
1215 struct ath_txq *txq;
1216
1217 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1218 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1219 "HAL AC %u out of range, max %zu!\n",
1220 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1221 return 0;
1222 }
1223 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1224 if (txq != NULL) {
1225 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1226 return 1;
1227 } else
1228 return 0;
1229 }
1230
1231 /***********/
1232 /* TX, DMA */
1233 /***********/
1234
1235 /*
1236 * Insert a chain of ath_buf (descriptors) on a txq and
1237 * assume the descriptors are already chained together by caller.
1238 */
1239 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1240 struct list_head *head)
1241 {
1242 struct ath_hw *ah = sc->sc_ah;
1243 struct ath_common *common = ath9k_hw_common(ah);
1244 struct ath_buf *bf;
1245
1246 /*
1247 * Insert the frame on the outbound list and
1248 * pass it on to the hardware.
1249 */
1250
1251 if (list_empty(head))
1252 return;
1253
1254 bf = list_first_entry(head, struct ath_buf, list);
1255
1256 ath_print(common, ATH_DBG_QUEUE,
1257 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1258
1259 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1260 if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
1261 list_splice_tail_init(head, &txq->txq_fifo_pending);
1262 return;
1263 }
1264 if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
1265 ath_print(common, ATH_DBG_XMIT,
1266 "Initializing tx fifo %d which "
1267 "is non-empty\n",
1268 txq->txq_headidx);
1269 INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
1270 list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
1271 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1272 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1273 ath_print(common, ATH_DBG_XMIT,
1274 "TXDP[%u] = %llx (%p)\n",
1275 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1276 } else {
1277 list_splice_tail_init(head, &txq->axq_q);
1278
1279 if (txq->axq_link == NULL) {
1280 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1281 ath_print(common, ATH_DBG_XMIT,
1282 "TXDP[%u] = %llx (%p)\n",
1283 txq->axq_qnum, ito64(bf->bf_daddr),
1284 bf->bf_desc);
1285 } else {
1286 *txq->axq_link = bf->bf_daddr;
1287 ath_print(common, ATH_DBG_XMIT,
1288 "link[%u] (%p)=%llx (%p)\n",
1289 txq->axq_qnum, txq->axq_link,
1290 ito64(bf->bf_daddr), bf->bf_desc);
1291 }
1292 ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
1293 &txq->axq_link);
1294 ath9k_hw_txstart(ah, txq->axq_qnum);
1295 }
1296 txq->axq_depth++;
1297 }
1298
1299 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1300 struct list_head *bf_head,
1301 struct ath_tx_control *txctl)
1302 {
1303 struct ath_buf *bf;
1304
1305 bf = list_first_entry(bf_head, struct ath_buf, list);
1306 bf->bf_state.bf_type |= BUF_AMPDU;
1307 TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
1308
1309 /*
1310 * Do not queue to h/w when any of the following conditions is true:
1311 * - there are pending frames in software queue
1312 * - the TID is currently paused for ADDBA/BAR request
1313 * - seqno is not within block-ack window
1314 * - h/w queue depth exceeds low water mark
1315 */
1316 if (!list_empty(&tid->buf_q) || tid->paused ||
1317 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1318 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1319 /*
1320 * Add this frame to software queue for scheduling later
1321 * for aggregation.
1322 */
1323 list_move_tail(&bf->list, &tid->buf_q);
1324 ath_tx_queue_tid(txctl->txq, tid);
1325 return;
1326 }
1327
1328 /* Add sub-frame to BAW */
1329 ath_tx_addto_baw(sc, tid, bf);
1330
1331 /* Queue to h/w without aggregation */
1332 bf->bf_nframes = 1;
1333 bf->bf_lastbf = bf;
1334 ath_buf_set_rate(sc, bf);
1335 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1336 }
1337
1338 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
1339 struct ath_atx_tid *tid,
1340 struct list_head *bf_head)
1341 {
1342 struct ath_buf *bf;
1343
1344 bf = list_first_entry(bf_head, struct ath_buf, list);
1345 bf->bf_state.bf_type &= ~BUF_AMPDU;
1346
1347 /* update starting sequence number for subsequent ADDBA request */
1348 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1349
1350 bf->bf_nframes = 1;
1351 bf->bf_lastbf = bf;
1352 ath_buf_set_rate(sc, bf);
1353 ath_tx_txqaddbuf(sc, txq, bf_head);
1354 TX_STAT_INC(txq->axq_qnum, queued);
1355 }
1356
1357 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1358 struct list_head *bf_head)
1359 {
1360 struct ath_buf *bf;
1361
1362 bf = list_first_entry(bf_head, struct ath_buf, list);
1363
1364 bf->bf_lastbf = bf;
1365 bf->bf_nframes = 1;
1366 ath_buf_set_rate(sc, bf);
1367 ath_tx_txqaddbuf(sc, txq, bf_head);
1368 TX_STAT_INC(txq->axq_qnum, queued);
1369 }
1370
1371 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1372 {
1373 struct ieee80211_hdr *hdr;
1374 enum ath9k_pkt_type htype;
1375 __le16 fc;
1376
1377 hdr = (struct ieee80211_hdr *)skb->data;
1378 fc = hdr->frame_control;
1379
1380 if (ieee80211_is_beacon(fc))
1381 htype = ATH9K_PKT_TYPE_BEACON;
1382 else if (ieee80211_is_probe_resp(fc))
1383 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1384 else if (ieee80211_is_atim(fc))
1385 htype = ATH9K_PKT_TYPE_ATIM;
1386 else if (ieee80211_is_pspoll(fc))
1387 htype = ATH9K_PKT_TYPE_PSPOLL;
1388 else
1389 htype = ATH9K_PKT_TYPE_NORMAL;
1390
1391 return htype;
1392 }
1393
1394 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1395 struct ath_buf *bf)
1396 {
1397 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1398 struct ieee80211_hdr *hdr;
1399 struct ath_node *an;
1400 struct ath_atx_tid *tid;
1401 __le16 fc;
1402 u8 *qc;
1403
1404 if (!tx_info->control.sta)
1405 return;
1406
1407 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1408 hdr = (struct ieee80211_hdr *)skb->data;
1409 fc = hdr->frame_control;
1410
1411 if (ieee80211_is_data_qos(fc)) {
1412 qc = ieee80211_get_qos_ctl(hdr);
1413 bf->bf_tidno = qc[0] & 0xf;
1414 }
1415
1416 /*
1417 * For HT capable stations, we save tidno for later use.
1418 * We also override seqno set by upper layer with the one
1419 * in tx aggregation state.
1420 */
1421 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1422 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1423 bf->bf_seqno = tid->seq_next;
1424 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1425 }
1426
1427 static int setup_tx_flags(struct sk_buff *skb, bool use_ldpc)
1428 {
1429 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1430 int flags = 0;
1431
1432 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1433 flags |= ATH9K_TXDESC_INTREQ;
1434
1435 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1436 flags |= ATH9K_TXDESC_NOACK;
1437
1438 if (use_ldpc)
1439 flags |= ATH9K_TXDESC_LDPC;
1440
1441 return flags;
1442 }
1443
1444 /*
1445 * rix - rate index
1446 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1447 * width - 0 for 20 MHz, 1 for 40 MHz
1448 * half_gi - to use 4us v/s 3.6 us for symbol time
1449 */
1450 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1451 int width, int half_gi, bool shortPreamble)
1452 {
1453 u32 nbits, nsymbits, duration, nsymbols;
1454 int streams, pktlen;
1455
1456 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1457
1458 /* find number of symbols: PLCP + data */
1459 streams = HT_RC_2_STREAMS(rix);
1460 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1461 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1462 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1463
1464 if (!half_gi)
1465 duration = SYMBOL_TIME(nsymbols);
1466 else
1467 duration = SYMBOL_TIME_HALFGI(nsymbols);
1468
1469 /* addup duration for legacy/ht training and signal fields */
1470 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1471
1472 return duration;
1473 }
1474
1475 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1476 {
1477 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1478 struct ath9k_11n_rate_series series[4];
1479 struct sk_buff *skb;
1480 struct ieee80211_tx_info *tx_info;
1481 struct ieee80211_tx_rate *rates;
1482 const struct ieee80211_rate *rate;
1483 struct ieee80211_hdr *hdr;
1484 int i, flags = 0;
1485 u8 rix = 0, ctsrate = 0;
1486 bool is_pspoll;
1487
1488 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1489
1490 skb = bf->bf_mpdu;
1491 tx_info = IEEE80211_SKB_CB(skb);
1492 rates = tx_info->control.rates;
1493 hdr = (struct ieee80211_hdr *)skb->data;
1494 is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
1495
1496 /*
1497 * We check if Short Preamble is needed for the CTS rate by
1498 * checking the BSS's global flag.
1499 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1500 */
1501 rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
1502 ctsrate = rate->hw_value;
1503 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1504 ctsrate |= rate->hw_value_short;
1505
1506 for (i = 0; i < 4; i++) {
1507 bool is_40, is_sgi, is_sp;
1508 int phy;
1509
1510 if (!rates[i].count || (rates[i].idx < 0))
1511 continue;
1512
1513 rix = rates[i].idx;
1514 series[i].Tries = rates[i].count;
1515 series[i].ChSel = common->tx_chainmask;
1516
1517 if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
1518 (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
1519 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1520 flags |= ATH9K_TXDESC_RTSENA;
1521 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1522 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1523 flags |= ATH9K_TXDESC_CTSENA;
1524 }
1525
1526 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1527 series[i].RateFlags |= ATH9K_RATESERIES_2040;
1528 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1529 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1530
1531 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1532 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1533 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1534
1535 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1536 /* MCS rates */
1537 series[i].Rate = rix | 0x80;
1538 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1539 is_40, is_sgi, is_sp);
1540 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1541 series[i].RateFlags |= ATH9K_RATESERIES_STBC;
1542 continue;
1543 }
1544
1545 /* legcay rates */
1546 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1547 !(rate->flags & IEEE80211_RATE_ERP_G))
1548 phy = WLAN_RC_PHY_CCK;
1549 else
1550 phy = WLAN_RC_PHY_OFDM;
1551
1552 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1553 series[i].Rate = rate->hw_value;
1554 if (rate->hw_value_short) {
1555 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1556 series[i].Rate |= rate->hw_value_short;
1557 } else {
1558 is_sp = false;
1559 }
1560
1561 series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1562 phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
1563 }
1564
1565 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1566 if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
1567 flags &= ~ATH9K_TXDESC_RTSENA;
1568
1569 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1570 if (flags & ATH9K_TXDESC_RTSENA)
1571 flags &= ~ATH9K_TXDESC_CTSENA;
1572
1573 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1574 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
1575 bf->bf_lastbf->bf_desc,
1576 !is_pspoll, ctsrate,
1577 0, series, 4, flags);
1578
1579 if (sc->config.ath_aggr_prot && flags)
1580 ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
1581 }
1582
1583 static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
1584 struct sk_buff *skb,
1585 struct ath_tx_control *txctl)
1586 {
1587 struct ath_wiphy *aphy = hw->priv;
1588 struct ath_softc *sc = aphy->sc;
1589 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1590 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1591 int hdrlen;
1592 __le16 fc;
1593 int padpos, padsize;
1594 bool use_ldpc = false;
1595
1596 tx_info->pad[0] = 0;
1597 switch (txctl->frame_type) {
1598 case ATH9K_IFT_NOT_INTERNAL:
1599 break;
1600 case ATH9K_IFT_PAUSE:
1601 tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
1602 /* fall through */
1603 case ATH9K_IFT_UNPAUSE:
1604 tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
1605 break;
1606 }
1607 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1608 fc = hdr->frame_control;
1609
1610 ATH_TXBUF_RESET(bf);
1611
1612 bf->aphy = aphy;
1613 bf->bf_frmlen = skb->len + FCS_LEN;
1614 /* Remove the padding size from bf_frmlen, if any */
1615 padpos = ath9k_cmn_padpos(hdr->frame_control);
1616 padsize = padpos & 3;
1617 if (padsize && skb->len>padpos+padsize) {
1618 bf->bf_frmlen -= padsize;
1619 }
1620
1621 if (!txctl->paprd && conf_is_ht(&hw->conf)) {
1622 bf->bf_state.bf_type |= BUF_HT;
1623 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1624 use_ldpc = true;
1625 }
1626
1627 bf->bf_state.bfs_paprd = txctl->paprd;
1628 if (txctl->paprd)
1629 bf->bf_state.bfs_paprd_timestamp = jiffies;
1630 bf->bf_flags = setup_tx_flags(skb, use_ldpc);
1631
1632 bf->bf_keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1633 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1634 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1635 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1636 } else {
1637 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1638 }
1639
1640 if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
1641 (sc->sc_flags & SC_OP_TXAGGR))
1642 assign_aggr_tid_seqno(skb, bf);
1643
1644 bf->bf_mpdu = skb;
1645
1646 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1647 skb->len, DMA_TO_DEVICE);
1648 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1649 bf->bf_mpdu = NULL;
1650 bf->bf_buf_addr = 0;
1651 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1652 "dma_mapping_error() on TX\n");
1653 return -ENOMEM;
1654 }
1655
1656 bf->bf_tx_aborted = false;
1657
1658 return 0;
1659 }
1660
1661 /* FIXME: tx power */
1662 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1663 struct ath_tx_control *txctl)
1664 {
1665 struct sk_buff *skb = bf->bf_mpdu;
1666 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1667 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1668 struct ath_node *an = NULL;
1669 struct list_head bf_head;
1670 struct ath_desc *ds;
1671 struct ath_atx_tid *tid;
1672 struct ath_hw *ah = sc->sc_ah;
1673 int frm_type;
1674 __le16 fc;
1675
1676 frm_type = get_hw_packet_type(skb);
1677 fc = hdr->frame_control;
1678
1679 INIT_LIST_HEAD(&bf_head);
1680 list_add_tail(&bf->list, &bf_head);
1681
1682 ds = bf->bf_desc;
1683 ath9k_hw_set_desc_link(ah, ds, 0);
1684
1685 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1686 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1687
1688 ath9k_hw_filltxdesc(ah, ds,
1689 skb->len, /* segment length */
1690 true, /* first segment */
1691 true, /* last segment */
1692 ds, /* first descriptor */
1693 bf->bf_buf_addr,
1694 txctl->txq->axq_qnum);
1695
1696 if (bf->bf_state.bfs_paprd)
1697 ar9003_hw_set_paprd_txdesc(ah, ds, bf->bf_state.bfs_paprd);
1698
1699 spin_lock_bh(&txctl->txq->axq_lock);
1700
1701 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1702 tx_info->control.sta) {
1703 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1704 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1705
1706 if (!ieee80211_is_data_qos(fc)) {
1707 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1708 goto tx_done;
1709 }
1710
1711 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1712 /*
1713 * Try aggregation if it's a unicast data frame
1714 * and the destination is HT capable.
1715 */
1716 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1717 } else {
1718 /*
1719 * Send this frame as regular when ADDBA
1720 * exchange is neither complete nor pending.
1721 */
1722 ath_tx_send_ht_normal(sc, txctl->txq,
1723 tid, &bf_head);
1724 }
1725 } else {
1726 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1727 }
1728
1729 tx_done:
1730 spin_unlock_bh(&txctl->txq->axq_lock);
1731 }
1732
1733 /* Upon failure caller should free skb */
1734 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1735 struct ath_tx_control *txctl)
1736 {
1737 struct ath_wiphy *aphy = hw->priv;
1738 struct ath_softc *sc = aphy->sc;
1739 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1740 struct ath_txq *txq = txctl->txq;
1741 struct ath_buf *bf;
1742 int q, r;
1743
1744 bf = ath_tx_get_buffer(sc);
1745 if (!bf) {
1746 ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
1747 return -1;
1748 }
1749
1750 r = ath_tx_setup_buffer(hw, bf, skb, txctl);
1751 if (unlikely(r)) {
1752 ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
1753
1754 /* upon ath_tx_processq() this TX queue will be resumed, we
1755 * guarantee this will happen by knowing beforehand that
1756 * we will at least have to run TX completionon one buffer
1757 * on the queue */
1758 spin_lock_bh(&txq->axq_lock);
1759 if (!txq->stopped && txq->axq_depth > 1) {
1760 ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
1761 txq->stopped = 1;
1762 }
1763 spin_unlock_bh(&txq->axq_lock);
1764
1765 ath_tx_return_buffer(sc, bf);
1766
1767 return r;
1768 }
1769
1770 q = skb_get_queue_mapping(skb);
1771 if (q >= 4)
1772 q = 0;
1773
1774 spin_lock_bh(&txq->axq_lock);
1775 if (++sc->tx.pending_frames[q] > ATH_MAX_QDEPTH && !txq->stopped) {
1776 ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
1777 txq->stopped = 1;
1778 }
1779 spin_unlock_bh(&txq->axq_lock);
1780
1781 ath_tx_start_dma(sc, bf, txctl);
1782
1783 return 0;
1784 }
1785
1786 void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
1787 {
1788 struct ath_wiphy *aphy = hw->priv;
1789 struct ath_softc *sc = aphy->sc;
1790 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1791 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1792 int padpos, padsize;
1793 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1794 struct ath_tx_control txctl;
1795
1796 memset(&txctl, 0, sizeof(struct ath_tx_control));
1797
1798 /*
1799 * As a temporary workaround, assign seq# here; this will likely need
1800 * to be cleaned up to work better with Beacon transmission and virtual
1801 * BSSes.
1802 */
1803 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1804 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1805 sc->tx.seq_no += 0x10;
1806 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1807 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1808 }
1809
1810 /* Add the padding after the header if this is not already done */
1811 padpos = ath9k_cmn_padpos(hdr->frame_control);
1812 padsize = padpos & 3;
1813 if (padsize && skb->len>padpos) {
1814 if (skb_headroom(skb) < padsize) {
1815 ath_print(common, ATH_DBG_XMIT,
1816 "TX CABQ padding failed\n");
1817 dev_kfree_skb_any(skb);
1818 return;
1819 }
1820 skb_push(skb, padsize);
1821 memmove(skb->data, skb->data + padsize, padpos);
1822 }
1823
1824 txctl.txq = sc->beacon.cabq;
1825
1826 ath_print(common, ATH_DBG_XMIT,
1827 "transmitting CABQ packet, skb: %p\n", skb);
1828
1829 if (ath_tx_start(hw, skb, &txctl) != 0) {
1830 ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
1831 goto exit;
1832 }
1833
1834 return;
1835 exit:
1836 dev_kfree_skb_any(skb);
1837 }
1838
1839 /*****************/
1840 /* TX Completion */
1841 /*****************/
1842
1843 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1844 struct ath_wiphy *aphy, int tx_flags)
1845 {
1846 struct ieee80211_hw *hw = sc->hw;
1847 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1848 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1849 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1850 int q, padpos, padsize;
1851
1852 ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1853
1854 if (aphy)
1855 hw = aphy->hw;
1856
1857 if (tx_flags & ATH_TX_BAR)
1858 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1859
1860 if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1861 /* Frame was ACKed */
1862 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1863 }
1864
1865 padpos = ath9k_cmn_padpos(hdr->frame_control);
1866 padsize = padpos & 3;
1867 if (padsize && skb->len>padpos+padsize) {
1868 /*
1869 * Remove MAC header padding before giving the frame back to
1870 * mac80211.
1871 */
1872 memmove(skb->data + padsize, skb->data, padpos);
1873 skb_pull(skb, padsize);
1874 }
1875
1876 if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
1877 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
1878 ath_print(common, ATH_DBG_PS,
1879 "Going back to sleep after having "
1880 "received TX status (0x%lx)\n",
1881 sc->ps_flags & (PS_WAIT_FOR_BEACON |
1882 PS_WAIT_FOR_CAB |
1883 PS_WAIT_FOR_PSPOLL_DATA |
1884 PS_WAIT_FOR_TX_ACK));
1885 }
1886
1887 if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
1888 ath9k_tx_status(hw, skb);
1889 else {
1890 q = skb_get_queue_mapping(skb);
1891 if (q >= 4)
1892 q = 0;
1893
1894 if (--sc->tx.pending_frames[q] < 0)
1895 sc->tx.pending_frames[q] = 0;
1896
1897 ieee80211_tx_status(hw, skb);
1898 }
1899 }
1900
1901 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1902 struct ath_txq *txq, struct list_head *bf_q,
1903 struct ath_tx_status *ts, int txok, int sendbar)
1904 {
1905 struct sk_buff *skb = bf->bf_mpdu;
1906 unsigned long flags;
1907 int tx_flags = 0;
1908
1909 if (sendbar)
1910 tx_flags = ATH_TX_BAR;
1911
1912 if (!txok) {
1913 tx_flags |= ATH_TX_ERROR;
1914
1915 if (bf_isxretried(bf))
1916 tx_flags |= ATH_TX_XRETRY;
1917 }
1918
1919 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
1920 bf->bf_buf_addr = 0;
1921
1922 if (bf->bf_state.bfs_paprd) {
1923 if (time_after(jiffies,
1924 bf->bf_state.bfs_paprd_timestamp +
1925 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
1926 dev_kfree_skb_any(skb);
1927 else
1928 complete(&sc->paprd_complete);
1929 } else {
1930 ath_debug_stat_tx(sc, txq, bf, ts);
1931 ath_tx_complete(sc, skb, bf->aphy, tx_flags);
1932 }
1933 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
1934 * accidentally reference it later.
1935 */
1936 bf->bf_mpdu = NULL;
1937
1938 /*
1939 * Return the list of ath_buf of this mpdu to free queue
1940 */
1941 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1942 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1943 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1944 }
1945
1946 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1947 struct ath_tx_status *ts, int txok)
1948 {
1949 u16 seq_st = 0;
1950 u32 ba[WME_BA_BMP_SIZE >> 5];
1951 int ba_index;
1952 int nbad = 0;
1953 int isaggr = 0;
1954
1955 if (bf->bf_lastbf->bf_tx_aborted)
1956 return 0;
1957
1958 isaggr = bf_isaggr(bf);
1959 if (isaggr) {
1960 seq_st = ts->ts_seqnum;
1961 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
1962 }
1963
1964 while (bf) {
1965 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1966 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1967 nbad++;
1968
1969 bf = bf->bf_next;
1970 }
1971
1972 return nbad;
1973 }
1974
1975 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
1976 int nbad, int txok, bool update_rc)
1977 {
1978 struct sk_buff *skb = bf->bf_mpdu;
1979 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1980 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1981 struct ieee80211_hw *hw = bf->aphy->hw;
1982 u8 i, tx_rateindex;
1983
1984 if (txok)
1985 tx_info->status.ack_signal = ts->ts_rssi;
1986
1987 tx_rateindex = ts->ts_rateindex;
1988 WARN_ON(tx_rateindex >= hw->max_rates);
1989
1990 if (ts->ts_status & ATH9K_TXERR_FILT)
1991 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1992 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc) {
1993 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
1994
1995 BUG_ON(nbad > bf->bf_nframes);
1996
1997 tx_info->status.ampdu_len = bf->bf_nframes;
1998 tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
1999 }
2000
2001 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2002 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
2003 if (ieee80211_is_data(hdr->frame_control)) {
2004 if (ts->ts_flags &
2005 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
2006 tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
2007 if ((ts->ts_status & ATH9K_TXERR_XRETRY) ||
2008 (ts->ts_status & ATH9K_TXERR_FIFO))
2009 tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
2010 }
2011 }
2012
2013 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2014 tx_info->status.rates[i].count = 0;
2015 tx_info->status.rates[i].idx = -1;
2016 }
2017
2018 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2019 }
2020
2021 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
2022 {
2023 int qnum;
2024
2025 qnum = ath_get_mac80211_qnum(txq->axq_class, sc);
2026 if (qnum == -1)
2027 return;
2028
2029 spin_lock_bh(&txq->axq_lock);
2030 if (txq->stopped && sc->tx.pending_frames[qnum] < ATH_MAX_QDEPTH) {
2031 if (ath_mac80211_start_queue(sc, qnum))
2032 txq->stopped = 0;
2033 }
2034 spin_unlock_bh(&txq->axq_lock);
2035 }
2036
2037 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2038 {
2039 struct ath_hw *ah = sc->sc_ah;
2040 struct ath_common *common = ath9k_hw_common(ah);
2041 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2042 struct list_head bf_head;
2043 struct ath_desc *ds;
2044 struct ath_tx_status ts;
2045 int txok;
2046 int status;
2047
2048 ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
2049 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2050 txq->axq_link);
2051
2052 for (;;) {
2053 spin_lock_bh(&txq->axq_lock);
2054 if (list_empty(&txq->axq_q)) {
2055 txq->axq_link = NULL;
2056 spin_unlock_bh(&txq->axq_lock);
2057 break;
2058 }
2059 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2060
2061 /*
2062 * There is a race condition that a BH gets scheduled
2063 * after sw writes TxE and before hw re-load the last
2064 * descriptor to get the newly chained one.
2065 * Software must keep the last DONE descriptor as a
2066 * holding descriptor - software does so by marking
2067 * it with the STALE flag.
2068 */
2069 bf_held = NULL;
2070 if (bf->bf_stale) {
2071 bf_held = bf;
2072 if (list_is_last(&bf_held->list, &txq->axq_q)) {
2073 spin_unlock_bh(&txq->axq_lock);
2074 break;
2075 } else {
2076 bf = list_entry(bf_held->list.next,
2077 struct ath_buf, list);
2078 }
2079 }
2080
2081 lastbf = bf->bf_lastbf;
2082 ds = lastbf->bf_desc;
2083
2084 memset(&ts, 0, sizeof(ts));
2085 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2086 if (status == -EINPROGRESS) {
2087 spin_unlock_bh(&txq->axq_lock);
2088 break;
2089 }
2090
2091 /*
2092 * Remove ath_buf's of the same transmit unit from txq,
2093 * however leave the last descriptor back as the holding
2094 * descriptor for hw.
2095 */
2096 lastbf->bf_stale = true;
2097 INIT_LIST_HEAD(&bf_head);
2098 if (!list_is_singular(&lastbf->list))
2099 list_cut_position(&bf_head,
2100 &txq->axq_q, lastbf->list.prev);
2101
2102 txq->axq_depth--;
2103 txok = !(ts.ts_status & ATH9K_TXERR_MASK);
2104 txq->axq_tx_inprogress = false;
2105 if (bf_held)
2106 list_del(&bf_held->list);
2107 spin_unlock_bh(&txq->axq_lock);
2108
2109 if (bf_held)
2110 ath_tx_return_buffer(sc, bf_held);
2111
2112 if (!bf_isampdu(bf)) {
2113 /*
2114 * This frame is sent out as a single frame.
2115 * Use hardware retry status for this frame.
2116 */
2117 if (ts.ts_status & ATH9K_TXERR_XRETRY)
2118 bf->bf_state.bf_type |= BUF_XRETRY;
2119 ath_tx_rc_status(bf, &ts, txok ? 0 : 1, txok, true);
2120 }
2121
2122 if (bf_isampdu(bf))
2123 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok);
2124 else
2125 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
2126
2127 ath_wake_mac80211_queue(sc, txq);
2128
2129 spin_lock_bh(&txq->axq_lock);
2130 if (sc->sc_flags & SC_OP_TXAGGR)
2131 ath_txq_schedule(sc, txq);
2132 spin_unlock_bh(&txq->axq_lock);
2133 }
2134 }
2135
2136 static void ath_tx_complete_poll_work(struct work_struct *work)
2137 {
2138 struct ath_softc *sc = container_of(work, struct ath_softc,
2139 tx_complete_work.work);
2140 struct ath_txq *txq;
2141 int i;
2142 bool needreset = false;
2143
2144 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2145 if (ATH_TXQ_SETUP(sc, i)) {
2146 txq = &sc->tx.txq[i];
2147 spin_lock_bh(&txq->axq_lock);
2148 if (txq->axq_depth) {
2149 if (txq->axq_tx_inprogress) {
2150 needreset = true;
2151 spin_unlock_bh(&txq->axq_lock);
2152 break;
2153 } else {
2154 txq->axq_tx_inprogress = true;
2155 }
2156 }
2157 spin_unlock_bh(&txq->axq_lock);
2158 }
2159
2160 if (needreset) {
2161 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
2162 "tx hung, resetting the chip\n");
2163 ath9k_ps_wakeup(sc);
2164 ath_reset(sc, true);
2165 ath9k_ps_restore(sc);
2166 }
2167
2168 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2169 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2170 }
2171
2172
2173
2174 void ath_tx_tasklet(struct ath_softc *sc)
2175 {
2176 int i;
2177 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2178
2179 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2180
2181 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2182 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2183 ath_tx_processq(sc, &sc->tx.txq[i]);
2184 }
2185 }
2186
2187 void ath_tx_edma_tasklet(struct ath_softc *sc)
2188 {
2189 struct ath_tx_status txs;
2190 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2191 struct ath_hw *ah = sc->sc_ah;
2192 struct ath_txq *txq;
2193 struct ath_buf *bf, *lastbf;
2194 struct list_head bf_head;
2195 int status;
2196 int txok;
2197
2198 for (;;) {
2199 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
2200 if (status == -EINPROGRESS)
2201 break;
2202 if (status == -EIO) {
2203 ath_print(common, ATH_DBG_XMIT,
2204 "Error processing tx status\n");
2205 break;
2206 }
2207
2208 /* Skip beacon completions */
2209 if (txs.qid == sc->beacon.beaconq)
2210 continue;
2211
2212 txq = &sc->tx.txq[txs.qid];
2213
2214 spin_lock_bh(&txq->axq_lock);
2215 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2216 spin_unlock_bh(&txq->axq_lock);
2217 return;
2218 }
2219
2220 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2221 struct ath_buf, list);
2222 lastbf = bf->bf_lastbf;
2223
2224 INIT_LIST_HEAD(&bf_head);
2225 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2226 &lastbf->list);
2227 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2228 txq->axq_depth--;
2229 txq->axq_tx_inprogress = false;
2230 spin_unlock_bh(&txq->axq_lock);
2231
2232 txok = !(txs.ts_status & ATH9K_TXERR_MASK);
2233
2234 if (!bf_isampdu(bf)) {
2235 if (txs.ts_status & ATH9K_TXERR_XRETRY)
2236 bf->bf_state.bf_type |= BUF_XRETRY;
2237 ath_tx_rc_status(bf, &txs, txok ? 0 : 1, txok, true);
2238 }
2239
2240 if (bf_isampdu(bf))
2241 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs, txok);
2242 else
2243 ath_tx_complete_buf(sc, bf, txq, &bf_head,
2244 &txs, txok, 0);
2245
2246 ath_wake_mac80211_queue(sc, txq);
2247
2248 spin_lock_bh(&txq->axq_lock);
2249 if (!list_empty(&txq->txq_fifo_pending)) {
2250 INIT_LIST_HEAD(&bf_head);
2251 bf = list_first_entry(&txq->txq_fifo_pending,
2252 struct ath_buf, list);
2253 list_cut_position(&bf_head, &txq->txq_fifo_pending,
2254 &bf->bf_lastbf->list);
2255 ath_tx_txqaddbuf(sc, txq, &bf_head);
2256 } else if (sc->sc_flags & SC_OP_TXAGGR)
2257 ath_txq_schedule(sc, txq);
2258 spin_unlock_bh(&txq->axq_lock);
2259 }
2260 }
2261
2262 /*****************/
2263 /* Init, Cleanup */
2264 /*****************/
2265
2266 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2267 {
2268 struct ath_descdma *dd = &sc->txsdma;
2269 u8 txs_len = sc->sc_ah->caps.txs_len;
2270
2271 dd->dd_desc_len = size * txs_len;
2272 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2273 &dd->dd_desc_paddr, GFP_KERNEL);
2274 if (!dd->dd_desc)
2275 return -ENOMEM;
2276
2277 return 0;
2278 }
2279
2280 static int ath_tx_edma_init(struct ath_softc *sc)
2281 {
2282 int err;
2283
2284 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2285 if (!err)
2286 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2287 sc->txsdma.dd_desc_paddr,
2288 ATH_TXSTATUS_RING_SIZE);
2289
2290 return err;
2291 }
2292
2293 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2294 {
2295 struct ath_descdma *dd = &sc->txsdma;
2296
2297 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2298 dd->dd_desc_paddr);
2299 }
2300
2301 int ath_tx_init(struct ath_softc *sc, int nbufs)
2302 {
2303 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2304 int error = 0;
2305
2306 spin_lock_init(&sc->tx.txbuflock);
2307
2308 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2309 "tx", nbufs, 1, 1);
2310 if (error != 0) {
2311 ath_print(common, ATH_DBG_FATAL,
2312 "Failed to allocate tx descriptors: %d\n", error);
2313 goto err;
2314 }
2315
2316 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2317 "beacon", ATH_BCBUF, 1, 1);
2318 if (error != 0) {
2319 ath_print(common, ATH_DBG_FATAL,
2320 "Failed to allocate beacon descriptors: %d\n", error);
2321 goto err;
2322 }
2323
2324 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2325
2326 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2327 error = ath_tx_edma_init(sc);
2328 if (error)
2329 goto err;
2330 }
2331
2332 err:
2333 if (error != 0)
2334 ath_tx_cleanup(sc);
2335
2336 return error;
2337 }
2338
2339 void ath_tx_cleanup(struct ath_softc *sc)
2340 {
2341 if (sc->beacon.bdma.dd_desc_len != 0)
2342 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2343
2344 if (sc->tx.txdma.dd_desc_len != 0)
2345 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2346
2347 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2348 ath_tx_edma_cleanup(sc);
2349 }
2350
2351 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2352 {
2353 struct ath_atx_tid *tid;
2354 struct ath_atx_ac *ac;
2355 int tidno, acno;
2356
2357 for (tidno = 0, tid = &an->tid[tidno];
2358 tidno < WME_NUM_TID;
2359 tidno++, tid++) {
2360 tid->an = an;
2361 tid->tidno = tidno;
2362 tid->seq_start = tid->seq_next = 0;
2363 tid->baw_size = WME_MAX_BA;
2364 tid->baw_head = tid->baw_tail = 0;
2365 tid->sched = false;
2366 tid->paused = false;
2367 tid->state &= ~AGGR_CLEANUP;
2368 INIT_LIST_HEAD(&tid->buf_q);
2369 acno = TID_TO_WME_AC(tidno);
2370 tid->ac = &an->ac[acno];
2371 tid->state &= ~AGGR_ADDBA_COMPLETE;
2372 tid->state &= ~AGGR_ADDBA_PROGRESS;
2373 }
2374
2375 for (acno = 0, ac = &an->ac[acno];
2376 acno < WME_NUM_AC; acno++, ac++) {
2377 ac->sched = false;
2378 ac->qnum = sc->tx.hwq_map[acno];
2379 INIT_LIST_HEAD(&ac->tid_q);
2380 }
2381 }
2382
2383 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2384 {
2385 struct ath_atx_ac *ac;
2386 struct ath_atx_tid *tid;
2387 struct ath_txq *txq;
2388 int i, tidno;
2389
2390 for (tidno = 0, tid = &an->tid[tidno];
2391 tidno < WME_NUM_TID; tidno++, tid++) {
2392 i = tid->ac->qnum;
2393
2394 if (!ATH_TXQ_SETUP(sc, i))
2395 continue;
2396
2397 txq = &sc->tx.txq[i];
2398 ac = tid->ac;
2399
2400 spin_lock_bh(&txq->axq_lock);
2401
2402 if (tid->sched) {
2403 list_del(&tid->list);
2404 tid->sched = false;
2405 }
2406
2407 if (ac->sched) {
2408 list_del(&ac->list);
2409 tid->ac->sched = false;
2410 }
2411
2412 ath_tid_drain(sc, txq, tid);
2413 tid->state &= ~AGGR_ADDBA_COMPLETE;
2414 tid->state &= ~AGGR_CLEANUP;
2415
2416 spin_unlock_bh(&txq->axq_lock);
2417 }
2418 }
This page took 0.116204 seconds and 5 git commands to generate.