Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-3.0-fixes
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
51
52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
53 struct ath_atx_tid *tid, struct sk_buff *skb);
54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
55 int tx_flags, struct ath_txq *txq);
56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
57 struct ath_txq *txq, struct list_head *bf_q,
58 struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_tx_status *ts, int nframes, int nbad,
63 int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 struct ath_txq *txq,
68 struct ath_atx_tid *tid,
69 struct sk_buff *skb);
70
71 enum {
72 MCS_HT20,
73 MCS_HT20_SGI,
74 MCS_HT40,
75 MCS_HT40_SGI,
76 };
77
78 /*********************/
79 /* Aggregation logic */
80 /*********************/
81
82 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
83 __acquires(&txq->axq_lock)
84 {
85 spin_lock_bh(&txq->axq_lock);
86 }
87
88 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
89 __releases(&txq->axq_lock)
90 {
91 spin_unlock_bh(&txq->axq_lock);
92 }
93
94 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
95 __releases(&txq->axq_lock)
96 {
97 struct sk_buff_head q;
98 struct sk_buff *skb;
99
100 __skb_queue_head_init(&q);
101 skb_queue_splice_init(&txq->complete_q, &q);
102 spin_unlock_bh(&txq->axq_lock);
103
104 while ((skb = __skb_dequeue(&q)))
105 ieee80211_tx_status(sc->hw, skb);
106 }
107
108 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
109 {
110 struct ath_atx_ac *ac = tid->ac;
111
112 if (tid->paused)
113 return;
114
115 if (tid->sched)
116 return;
117
118 tid->sched = true;
119 list_add_tail(&tid->list, &ac->tid_q);
120
121 if (ac->sched)
122 return;
123
124 ac->sched = true;
125 list_add_tail(&ac->list, &txq->axq_acq);
126 }
127
128 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
129 {
130 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
131 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
132 sizeof(tx_info->rate_driver_data));
133 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
134 }
135
136 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
137 {
138 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
139 seqno << IEEE80211_SEQ_SEQ_SHIFT);
140 }
141
142 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
143 struct ath_buf *bf)
144 {
145 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
146 ARRAY_SIZE(bf->rates));
147 }
148
149 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
150 struct sk_buff *skb)
151 {
152 int q;
153
154 q = skb_get_queue_mapping(skb);
155 if (txq == sc->tx.uapsdq)
156 txq = sc->tx.txq_map[q];
157
158 if (txq != sc->tx.txq_map[q])
159 return;
160
161 if (WARN_ON(--txq->pending_frames < 0))
162 txq->pending_frames = 0;
163
164 if (txq->stopped &&
165 txq->pending_frames < sc->tx.txq_max_pending[q]) {
166 ieee80211_wake_queue(sc->hw, q);
167 txq->stopped = false;
168 }
169 }
170
171 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
172 {
173 struct ath_txq *txq = tid->ac->txq;
174 struct sk_buff *skb;
175 struct ath_buf *bf;
176 struct list_head bf_head;
177 struct ath_tx_status ts;
178 struct ath_frame_info *fi;
179 bool sendbar = false;
180
181 INIT_LIST_HEAD(&bf_head);
182
183 memset(&ts, 0, sizeof(ts));
184
185 while ((skb = __skb_dequeue(&tid->buf_q))) {
186 fi = get_frame_info(skb);
187 bf = fi->bf;
188
189 if (!bf) {
190 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
191 if (!bf) {
192 ath_txq_skb_done(sc, txq, skb);
193 ieee80211_free_txskb(sc->hw, skb);
194 continue;
195 }
196 }
197
198 if (fi->retries) {
199 list_add_tail(&bf->list, &bf_head);
200 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
201 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
202 sendbar = true;
203 } else {
204 ath_set_rates(tid->an->vif, tid->an->sta, bf);
205 ath_tx_send_normal(sc, txq, NULL, skb);
206 }
207 }
208
209 if (sendbar) {
210 ath_txq_unlock(sc, txq);
211 ath_send_bar(tid, tid->seq_start);
212 ath_txq_lock(sc, txq);
213 }
214 }
215
216 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
217 int seqno)
218 {
219 int index, cindex;
220
221 index = ATH_BA_INDEX(tid->seq_start, seqno);
222 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
223
224 __clear_bit(cindex, tid->tx_buf);
225
226 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
227 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
228 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
229 if (tid->bar_index >= 0)
230 tid->bar_index--;
231 }
232 }
233
234 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
235 u16 seqno)
236 {
237 int index, cindex;
238
239 index = ATH_BA_INDEX(tid->seq_start, seqno);
240 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
241 __set_bit(cindex, tid->tx_buf);
242
243 if (index >= ((tid->baw_tail - tid->baw_head) &
244 (ATH_TID_MAX_BUFS - 1))) {
245 tid->baw_tail = cindex;
246 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
247 }
248 }
249
250 /*
251 * TODO: For frame(s) that are in the retry state, we will reuse the
252 * sequence number(s) without setting the retry bit. The
253 * alternative is to give up on these and BAR the receiver's window
254 * forward.
255 */
256 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
257 struct ath_atx_tid *tid)
258
259 {
260 struct sk_buff *skb;
261 struct ath_buf *bf;
262 struct list_head bf_head;
263 struct ath_tx_status ts;
264 struct ath_frame_info *fi;
265
266 memset(&ts, 0, sizeof(ts));
267 INIT_LIST_HEAD(&bf_head);
268
269 while ((skb = __skb_dequeue(&tid->buf_q))) {
270 fi = get_frame_info(skb);
271 bf = fi->bf;
272
273 if (!bf) {
274 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
275 continue;
276 }
277
278 list_add_tail(&bf->list, &bf_head);
279
280 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
281 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
282 }
283
284 tid->seq_next = tid->seq_start;
285 tid->baw_tail = tid->baw_head;
286 tid->bar_index = -1;
287 }
288
289 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
290 struct sk_buff *skb, int count)
291 {
292 struct ath_frame_info *fi = get_frame_info(skb);
293 struct ath_buf *bf = fi->bf;
294 struct ieee80211_hdr *hdr;
295 int prev = fi->retries;
296
297 TX_STAT_INC(txq->axq_qnum, a_retries);
298 fi->retries += count;
299
300 if (prev > 0)
301 return;
302
303 hdr = (struct ieee80211_hdr *)skb->data;
304 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
305 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
306 sizeof(*hdr), DMA_TO_DEVICE);
307 }
308
309 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
310 {
311 struct ath_buf *bf = NULL;
312
313 spin_lock_bh(&sc->tx.txbuflock);
314
315 if (unlikely(list_empty(&sc->tx.txbuf))) {
316 spin_unlock_bh(&sc->tx.txbuflock);
317 return NULL;
318 }
319
320 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
321 list_del(&bf->list);
322
323 spin_unlock_bh(&sc->tx.txbuflock);
324
325 return bf;
326 }
327
328 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
329 {
330 spin_lock_bh(&sc->tx.txbuflock);
331 list_add_tail(&bf->list, &sc->tx.txbuf);
332 spin_unlock_bh(&sc->tx.txbuflock);
333 }
334
335 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
336 {
337 struct ath_buf *tbf;
338
339 tbf = ath_tx_get_buffer(sc);
340 if (WARN_ON(!tbf))
341 return NULL;
342
343 ATH_TXBUF_RESET(tbf);
344
345 tbf->bf_mpdu = bf->bf_mpdu;
346 tbf->bf_buf_addr = bf->bf_buf_addr;
347 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
348 tbf->bf_state = bf->bf_state;
349
350 return tbf;
351 }
352
353 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
354 struct ath_tx_status *ts, int txok,
355 int *nframes, int *nbad)
356 {
357 struct ath_frame_info *fi;
358 u16 seq_st = 0;
359 u32 ba[WME_BA_BMP_SIZE >> 5];
360 int ba_index;
361 int isaggr = 0;
362
363 *nbad = 0;
364 *nframes = 0;
365
366 isaggr = bf_isaggr(bf);
367 if (isaggr) {
368 seq_st = ts->ts_seqnum;
369 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
370 }
371
372 while (bf) {
373 fi = get_frame_info(bf->bf_mpdu);
374 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
375
376 (*nframes)++;
377 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
378 (*nbad)++;
379
380 bf = bf->bf_next;
381 }
382 }
383
384
385 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
386 struct ath_buf *bf, struct list_head *bf_q,
387 struct ath_tx_status *ts, int txok)
388 {
389 struct ath_node *an = NULL;
390 struct sk_buff *skb;
391 struct ieee80211_sta *sta;
392 struct ieee80211_hw *hw = sc->hw;
393 struct ieee80211_hdr *hdr;
394 struct ieee80211_tx_info *tx_info;
395 struct ath_atx_tid *tid = NULL;
396 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
397 struct list_head bf_head;
398 struct sk_buff_head bf_pending;
399 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
400 u32 ba[WME_BA_BMP_SIZE >> 5];
401 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
402 bool rc_update = true, isba;
403 struct ieee80211_tx_rate rates[4];
404 struct ath_frame_info *fi;
405 int nframes;
406 u8 tidno;
407 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
408 int i, retries;
409 int bar_index = -1;
410
411 skb = bf->bf_mpdu;
412 hdr = (struct ieee80211_hdr *)skb->data;
413
414 tx_info = IEEE80211_SKB_CB(skb);
415
416 memcpy(rates, bf->rates, sizeof(rates));
417
418 retries = ts->ts_longretry + 1;
419 for (i = 0; i < ts->ts_rateindex; i++)
420 retries += rates[i].count;
421
422 rcu_read_lock();
423
424 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
425 if (!sta) {
426 rcu_read_unlock();
427
428 INIT_LIST_HEAD(&bf_head);
429 while (bf) {
430 bf_next = bf->bf_next;
431
432 if (!bf->bf_stale || bf_next != NULL)
433 list_move_tail(&bf->list, &bf_head);
434
435 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
436
437 bf = bf_next;
438 }
439 return;
440 }
441
442 an = (struct ath_node *)sta->drv_priv;
443 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
444 tid = ATH_AN_2_TID(an, tidno);
445 seq_first = tid->seq_start;
446 isba = ts->ts_flags & ATH9K_TX_BA;
447
448 /*
449 * The hardware occasionally sends a tx status for the wrong TID.
450 * In this case, the BA status cannot be considered valid and all
451 * subframes need to be retransmitted
452 *
453 * Only BlockAcks have a TID and therefore normal Acks cannot be
454 * checked
455 */
456 if (isba && tidno != ts->tid)
457 txok = false;
458
459 isaggr = bf_isaggr(bf);
460 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
461
462 if (isaggr && txok) {
463 if (ts->ts_flags & ATH9K_TX_BA) {
464 seq_st = ts->ts_seqnum;
465 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
466 } else {
467 /*
468 * AR5416 can become deaf/mute when BA
469 * issue happens. Chip needs to be reset.
470 * But AP code may have sychronization issues
471 * when perform internal reset in this routine.
472 * Only enable reset in STA mode for now.
473 */
474 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
475 needreset = 1;
476 }
477 }
478
479 __skb_queue_head_init(&bf_pending);
480
481 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
482 while (bf) {
483 u16 seqno = bf->bf_state.seqno;
484
485 txfail = txpending = sendbar = 0;
486 bf_next = bf->bf_next;
487
488 skb = bf->bf_mpdu;
489 tx_info = IEEE80211_SKB_CB(skb);
490 fi = get_frame_info(skb);
491
492 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
493 /*
494 * Outside of the current BlockAck window,
495 * maybe part of a previous session
496 */
497 txfail = 1;
498 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
499 /* transmit completion, subframe is
500 * acked by block ack */
501 acked_cnt++;
502 } else if (!isaggr && txok) {
503 /* transmit completion */
504 acked_cnt++;
505 } else if (flush) {
506 txpending = 1;
507 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
508 if (txok || !an->sleeping)
509 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
510 retries);
511
512 txpending = 1;
513 } else {
514 txfail = 1;
515 txfail_cnt++;
516 bar_index = max_t(int, bar_index,
517 ATH_BA_INDEX(seq_first, seqno));
518 }
519
520 /*
521 * Make sure the last desc is reclaimed if it
522 * not a holding desc.
523 */
524 INIT_LIST_HEAD(&bf_head);
525 if (bf_next != NULL || !bf_last->bf_stale)
526 list_move_tail(&bf->list, &bf_head);
527
528 if (!txpending) {
529 /*
530 * complete the acked-ones/xretried ones; update
531 * block-ack window
532 */
533 ath_tx_update_baw(sc, tid, seqno);
534
535 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
536 memcpy(tx_info->control.rates, rates, sizeof(rates));
537 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
538 rc_update = false;
539 }
540
541 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
542 !txfail);
543 } else {
544 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
545 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
546 ieee80211_sta_eosp(sta);
547 }
548 /* retry the un-acked ones */
549 if (bf->bf_next == NULL && bf_last->bf_stale) {
550 struct ath_buf *tbf;
551
552 tbf = ath_clone_txbuf(sc, bf_last);
553 /*
554 * Update tx baw and complete the
555 * frame with failed status if we
556 * run out of tx buf.
557 */
558 if (!tbf) {
559 ath_tx_update_baw(sc, tid, seqno);
560
561 ath_tx_complete_buf(sc, bf, txq,
562 &bf_head, ts, 0);
563 bar_index = max_t(int, bar_index,
564 ATH_BA_INDEX(seq_first, seqno));
565 break;
566 }
567
568 fi->bf = tbf;
569 }
570
571 /*
572 * Put this buffer to the temporary pending
573 * queue to retain ordering
574 */
575 __skb_queue_tail(&bf_pending, skb);
576 }
577
578 bf = bf_next;
579 }
580
581 /* prepend un-acked frames to the beginning of the pending frame queue */
582 if (!skb_queue_empty(&bf_pending)) {
583 if (an->sleeping)
584 ieee80211_sta_set_buffered(sta, tid->tidno, true);
585
586 skb_queue_splice(&bf_pending, &tid->buf_q);
587 if (!an->sleeping) {
588 ath_tx_queue_tid(txq, tid);
589
590 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
591 tid->ac->clear_ps_filter = true;
592 }
593 }
594
595 if (bar_index >= 0) {
596 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
597
598 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
599 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
600
601 ath_txq_unlock(sc, txq);
602 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
603 ath_txq_lock(sc, txq);
604 }
605
606 rcu_read_unlock();
607
608 if (needreset)
609 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
610 }
611
612 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
613 {
614 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
615 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
616 }
617
618 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
619 struct ath_tx_status *ts, struct ath_buf *bf,
620 struct list_head *bf_head)
621 {
622 struct ieee80211_tx_info *info;
623 bool txok, flush;
624
625 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
626 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
627 txq->axq_tx_inprogress = false;
628
629 txq->axq_depth--;
630 if (bf_is_ampdu_not_probing(bf))
631 txq->axq_ampdu_depth--;
632
633 if (!bf_isampdu(bf)) {
634 if (!flush) {
635 info = IEEE80211_SKB_CB(bf->bf_mpdu);
636 memcpy(info->control.rates, bf->rates,
637 sizeof(info->control.rates));
638 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
639 }
640 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
641 } else
642 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
643
644 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
645 ath_txq_schedule(sc, txq);
646 }
647
648 static bool ath_lookup_legacy(struct ath_buf *bf)
649 {
650 struct sk_buff *skb;
651 struct ieee80211_tx_info *tx_info;
652 struct ieee80211_tx_rate *rates;
653 int i;
654
655 skb = bf->bf_mpdu;
656 tx_info = IEEE80211_SKB_CB(skb);
657 rates = tx_info->control.rates;
658
659 for (i = 0; i < 4; i++) {
660 if (!rates[i].count || rates[i].idx < 0)
661 break;
662
663 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
664 return true;
665 }
666
667 return false;
668 }
669
670 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
671 struct ath_atx_tid *tid)
672 {
673 struct sk_buff *skb;
674 struct ieee80211_tx_info *tx_info;
675 struct ieee80211_tx_rate *rates;
676 u32 max_4ms_framelen, frmlen;
677 u16 aggr_limit, bt_aggr_limit, legacy = 0;
678 int q = tid->ac->txq->mac80211_qnum;
679 int i;
680
681 skb = bf->bf_mpdu;
682 tx_info = IEEE80211_SKB_CB(skb);
683 rates = bf->rates;
684
685 /*
686 * Find the lowest frame length among the rate series that will have a
687 * 4ms (or TXOP limited) transmit duration.
688 */
689 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
690
691 for (i = 0; i < 4; i++) {
692 int modeidx;
693
694 if (!rates[i].count)
695 continue;
696
697 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
698 legacy = 1;
699 break;
700 }
701
702 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
703 modeidx = MCS_HT40;
704 else
705 modeidx = MCS_HT20;
706
707 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
708 modeidx++;
709
710 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
711 max_4ms_framelen = min(max_4ms_framelen, frmlen);
712 }
713
714 /*
715 * limit aggregate size by the minimum rate if rate selected is
716 * not a probe rate, if rate selected is a probe rate then
717 * avoid aggregation of this packet.
718 */
719 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
720 return 0;
721
722 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
723
724 /*
725 * Override the default aggregation limit for BTCOEX.
726 */
727 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
728 if (bt_aggr_limit)
729 aggr_limit = bt_aggr_limit;
730
731 /*
732 * h/w can accept aggregates up to 16 bit lengths (65535).
733 * The IE, however can hold up to 65536, which shows up here
734 * as zero. Ignore 65536 since we are constrained by hw.
735 */
736 if (tid->an->maxampdu)
737 aggr_limit = min(aggr_limit, tid->an->maxampdu);
738
739 return aggr_limit;
740 }
741
742 /*
743 * Returns the number of delimiters to be added to
744 * meet the minimum required mpdudensity.
745 */
746 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
747 struct ath_buf *bf, u16 frmlen,
748 bool first_subfrm)
749 {
750 #define FIRST_DESC_NDELIMS 60
751 u32 nsymbits, nsymbols;
752 u16 minlen;
753 u8 flags, rix;
754 int width, streams, half_gi, ndelim, mindelim;
755 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
756
757 /* Select standard number of delimiters based on frame length alone */
758 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
759
760 /*
761 * If encryption enabled, hardware requires some more padding between
762 * subframes.
763 * TODO - this could be improved to be dependent on the rate.
764 * The hardware can keep up at lower rates, but not higher rates
765 */
766 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
767 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
768 ndelim += ATH_AGGR_ENCRYPTDELIM;
769
770 /*
771 * Add delimiter when using RTS/CTS with aggregation
772 * and non enterprise AR9003 card
773 */
774 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
775 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
776 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
777
778 /*
779 * Convert desired mpdu density from microeconds to bytes based
780 * on highest rate in rate series (i.e. first rate) to determine
781 * required minimum length for subframe. Take into account
782 * whether high rate is 20 or 40Mhz and half or full GI.
783 *
784 * If there is no mpdu density restriction, no further calculation
785 * is needed.
786 */
787
788 if (tid->an->mpdudensity == 0)
789 return ndelim;
790
791 rix = bf->rates[0].idx;
792 flags = bf->rates[0].flags;
793 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
794 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
795
796 if (half_gi)
797 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
798 else
799 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
800
801 if (nsymbols == 0)
802 nsymbols = 1;
803
804 streams = HT_RC_2_STREAMS(rix);
805 nsymbits = bits_per_symbol[rix % 8][width] * streams;
806 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
807
808 if (frmlen < minlen) {
809 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
810 ndelim = max(mindelim, ndelim);
811 }
812
813 return ndelim;
814 }
815
816 static struct ath_buf *
817 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
818 struct ath_atx_tid *tid)
819 {
820 struct ath_frame_info *fi;
821 struct sk_buff *skb;
822 struct ath_buf *bf;
823 u16 seqno;
824
825 while (1) {
826 skb = skb_peek(&tid->buf_q);
827 if (!skb)
828 break;
829
830 fi = get_frame_info(skb);
831 bf = fi->bf;
832 if (!fi->bf)
833 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
834
835 if (!bf) {
836 __skb_unlink(skb, &tid->buf_q);
837 ath_txq_skb_done(sc, txq, skb);
838 ieee80211_free_txskb(sc->hw, skb);
839 continue;
840 }
841
842 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
843 seqno = bf->bf_state.seqno;
844
845 /* do not step over block-ack window */
846 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
847 break;
848
849 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
850 struct ath_tx_status ts = {};
851 struct list_head bf_head;
852
853 INIT_LIST_HEAD(&bf_head);
854 list_add(&bf->list, &bf_head);
855 __skb_unlink(skb, &tid->buf_q);
856 ath_tx_update_baw(sc, tid, seqno);
857 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
858 continue;
859 }
860
861 bf->bf_next = NULL;
862 bf->bf_lastbf = bf;
863 return bf;
864 }
865
866 return NULL;
867 }
868
869 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
870 struct ath_txq *txq,
871 struct ath_atx_tid *tid,
872 struct list_head *bf_q,
873 int *aggr_len)
874 {
875 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
876 struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
877 int rl = 0, nframes = 0, ndelim, prev_al = 0;
878 u16 aggr_limit = 0, al = 0, bpad = 0,
879 al_delta, h_baw = tid->baw_size / 2;
880 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
881 struct ieee80211_tx_info *tx_info;
882 struct ath_frame_info *fi;
883 struct sk_buff *skb;
884
885 do {
886 bf = ath_tx_get_tid_subframe(sc, txq, tid);
887 if (!bf) {
888 status = ATH_AGGR_BAW_CLOSED;
889 break;
890 }
891
892 skb = bf->bf_mpdu;
893 fi = get_frame_info(skb);
894
895 if (!bf_first)
896 bf_first = bf;
897
898 if (!rl) {
899 ath_set_rates(tid->an->vif, tid->an->sta, bf);
900 aggr_limit = ath_lookup_rate(sc, bf, tid);
901 rl = 1;
902 }
903
904 /* do not exceed aggregation limit */
905 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
906
907 if (nframes &&
908 ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
909 ath_lookup_legacy(bf))) {
910 status = ATH_AGGR_LIMITED;
911 break;
912 }
913
914 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
915 if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
916 break;
917
918 /* do not exceed subframe limit */
919 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
920 status = ATH_AGGR_LIMITED;
921 break;
922 }
923
924 /* add padding for previous frame to aggregation length */
925 al += bpad + al_delta;
926
927 /*
928 * Get the delimiters needed to meet the MPDU
929 * density for this node.
930 */
931 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
932 !nframes);
933 bpad = PADBYTES(al_delta) + (ndelim << 2);
934
935 nframes++;
936 bf->bf_next = NULL;
937
938 /* link buffers of this frame to the aggregate */
939 if (!fi->retries)
940 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
941 bf->bf_state.ndelim = ndelim;
942
943 __skb_unlink(skb, &tid->buf_q);
944 list_add_tail(&bf->list, bf_q);
945 if (bf_prev)
946 bf_prev->bf_next = bf;
947
948 bf_prev = bf;
949
950 } while (!skb_queue_empty(&tid->buf_q));
951
952 *aggr_len = al;
953
954 return status;
955 #undef PADBYTES
956 }
957
958 /*
959 * rix - rate index
960 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
961 * width - 0 for 20 MHz, 1 for 40 MHz
962 * half_gi - to use 4us v/s 3.6 us for symbol time
963 */
964 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
965 int width, int half_gi, bool shortPreamble)
966 {
967 u32 nbits, nsymbits, duration, nsymbols;
968 int streams;
969
970 /* find number of symbols: PLCP + data */
971 streams = HT_RC_2_STREAMS(rix);
972 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
973 nsymbits = bits_per_symbol[rix % 8][width] * streams;
974 nsymbols = (nbits + nsymbits - 1) / nsymbits;
975
976 if (!half_gi)
977 duration = SYMBOL_TIME(nsymbols);
978 else
979 duration = SYMBOL_TIME_HALFGI(nsymbols);
980
981 /* addup duration for legacy/ht training and signal fields */
982 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
983
984 return duration;
985 }
986
987 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
988 {
989 int streams = HT_RC_2_STREAMS(mcs);
990 int symbols, bits;
991 int bytes = 0;
992
993 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
994 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
995 bits -= OFDM_PLCP_BITS;
996 bytes = bits / 8;
997 bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
998 if (bytes > 65532)
999 bytes = 65532;
1000
1001 return bytes;
1002 }
1003
1004 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1005 {
1006 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1007 int mcs;
1008
1009 /* 4ms is the default (and maximum) duration */
1010 if (!txop || txop > 4096)
1011 txop = 4096;
1012
1013 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1014 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1015 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1016 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1017 for (mcs = 0; mcs < 32; mcs++) {
1018 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1019 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1020 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1021 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1022 }
1023 }
1024
1025 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1026 struct ath_tx_info *info, int len)
1027 {
1028 struct ath_hw *ah = sc->sc_ah;
1029 struct sk_buff *skb;
1030 struct ieee80211_tx_info *tx_info;
1031 struct ieee80211_tx_rate *rates;
1032 const struct ieee80211_rate *rate;
1033 struct ieee80211_hdr *hdr;
1034 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1035 int i;
1036 u8 rix = 0;
1037
1038 skb = bf->bf_mpdu;
1039 tx_info = IEEE80211_SKB_CB(skb);
1040 rates = bf->rates;
1041 hdr = (struct ieee80211_hdr *)skb->data;
1042
1043 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1044 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1045 info->rtscts_rate = fi->rtscts_rate;
1046
1047 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1048 bool is_40, is_sgi, is_sp;
1049 int phy;
1050
1051 if (!rates[i].count || (rates[i].idx < 0))
1052 continue;
1053
1054 rix = rates[i].idx;
1055 info->rates[i].Tries = rates[i].count;
1056
1057 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1058 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1059 info->flags |= ATH9K_TXDESC_RTSENA;
1060 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1061 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1062 info->flags |= ATH9K_TXDESC_CTSENA;
1063 }
1064
1065 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1066 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1067 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1068 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1069
1070 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1071 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1072 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1073
1074 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1075 /* MCS rates */
1076 info->rates[i].Rate = rix | 0x80;
1077 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1078 ah->txchainmask, info->rates[i].Rate);
1079 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1080 is_40, is_sgi, is_sp);
1081 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1082 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1083 continue;
1084 }
1085
1086 /* legacy rates */
1087 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1088 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1089 !(rate->flags & IEEE80211_RATE_ERP_G))
1090 phy = WLAN_RC_PHY_CCK;
1091 else
1092 phy = WLAN_RC_PHY_OFDM;
1093
1094 info->rates[i].Rate = rate->hw_value;
1095 if (rate->hw_value_short) {
1096 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1097 info->rates[i].Rate |= rate->hw_value_short;
1098 } else {
1099 is_sp = false;
1100 }
1101
1102 if (bf->bf_state.bfs_paprd)
1103 info->rates[i].ChSel = ah->txchainmask;
1104 else
1105 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1106 ah->txchainmask, info->rates[i].Rate);
1107
1108 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1109 phy, rate->bitrate * 100, len, rix, is_sp);
1110 }
1111
1112 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1113 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1114 info->flags &= ~ATH9K_TXDESC_RTSENA;
1115
1116 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1117 if (info->flags & ATH9K_TXDESC_RTSENA)
1118 info->flags &= ~ATH9K_TXDESC_CTSENA;
1119 }
1120
1121 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1122 {
1123 struct ieee80211_hdr *hdr;
1124 enum ath9k_pkt_type htype;
1125 __le16 fc;
1126
1127 hdr = (struct ieee80211_hdr *)skb->data;
1128 fc = hdr->frame_control;
1129
1130 if (ieee80211_is_beacon(fc))
1131 htype = ATH9K_PKT_TYPE_BEACON;
1132 else if (ieee80211_is_probe_resp(fc))
1133 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1134 else if (ieee80211_is_atim(fc))
1135 htype = ATH9K_PKT_TYPE_ATIM;
1136 else if (ieee80211_is_pspoll(fc))
1137 htype = ATH9K_PKT_TYPE_PSPOLL;
1138 else
1139 htype = ATH9K_PKT_TYPE_NORMAL;
1140
1141 return htype;
1142 }
1143
1144 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1145 struct ath_txq *txq, int len)
1146 {
1147 struct ath_hw *ah = sc->sc_ah;
1148 struct ath_buf *bf_first = NULL;
1149 struct ath_tx_info info;
1150
1151 memset(&info, 0, sizeof(info));
1152 info.is_first = true;
1153 info.is_last = true;
1154 info.txpower = MAX_RATE_POWER;
1155 info.qcu = txq->axq_qnum;
1156
1157 while (bf) {
1158 struct sk_buff *skb = bf->bf_mpdu;
1159 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1160 struct ath_frame_info *fi = get_frame_info(skb);
1161 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1162
1163 info.type = get_hw_packet_type(skb);
1164 if (bf->bf_next)
1165 info.link = bf->bf_next->bf_daddr;
1166 else
1167 info.link = 0;
1168
1169 if (!bf_first) {
1170 bf_first = bf;
1171
1172 info.flags = ATH9K_TXDESC_INTREQ;
1173 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1174 txq == sc->tx.uapsdq)
1175 info.flags |= ATH9K_TXDESC_CLRDMASK;
1176
1177 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1178 info.flags |= ATH9K_TXDESC_NOACK;
1179 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1180 info.flags |= ATH9K_TXDESC_LDPC;
1181
1182 if (bf->bf_state.bfs_paprd)
1183 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1184 ATH9K_TXDESC_PAPRD_S;
1185
1186 ath_buf_set_rate(sc, bf, &info, len);
1187 }
1188
1189 info.buf_addr[0] = bf->bf_buf_addr;
1190 info.buf_len[0] = skb->len;
1191 info.pkt_len = fi->framelen;
1192 info.keyix = fi->keyix;
1193 info.keytype = fi->keytype;
1194
1195 if (aggr) {
1196 if (bf == bf_first)
1197 info.aggr = AGGR_BUF_FIRST;
1198 else if (bf == bf_first->bf_lastbf)
1199 info.aggr = AGGR_BUF_LAST;
1200 else
1201 info.aggr = AGGR_BUF_MIDDLE;
1202
1203 info.ndelim = bf->bf_state.ndelim;
1204 info.aggr_len = len;
1205 }
1206
1207 if (bf == bf_first->bf_lastbf)
1208 bf_first = NULL;
1209
1210 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1211 bf = bf->bf_next;
1212 }
1213 }
1214
1215 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1216 struct ath_atx_tid *tid)
1217 {
1218 struct ath_buf *bf;
1219 enum ATH_AGGR_STATUS status;
1220 struct ieee80211_tx_info *tx_info;
1221 struct list_head bf_q;
1222 int aggr_len;
1223
1224 do {
1225 if (skb_queue_empty(&tid->buf_q))
1226 return;
1227
1228 INIT_LIST_HEAD(&bf_q);
1229
1230 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1231
1232 /*
1233 * no frames picked up to be aggregated;
1234 * block-ack window is not open.
1235 */
1236 if (list_empty(&bf_q))
1237 break;
1238
1239 bf = list_first_entry(&bf_q, struct ath_buf, list);
1240 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1241 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1242
1243 if (tid->ac->clear_ps_filter) {
1244 tid->ac->clear_ps_filter = false;
1245 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1246 } else {
1247 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1248 }
1249
1250 /* if only one frame, send as non-aggregate */
1251 if (bf == bf->bf_lastbf) {
1252 aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1253 bf->bf_state.bf_type = BUF_AMPDU;
1254 } else {
1255 TX_STAT_INC(txq->axq_qnum, a_aggr);
1256 }
1257
1258 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1259 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1260 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1261 status != ATH_AGGR_BAW_CLOSED);
1262 }
1263
1264 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1265 u16 tid, u16 *ssn)
1266 {
1267 struct ath_atx_tid *txtid;
1268 struct ath_node *an;
1269 u8 density;
1270
1271 an = (struct ath_node *)sta->drv_priv;
1272 txtid = ATH_AN_2_TID(an, tid);
1273
1274 /* update ampdu factor/density, they may have changed. This may happen
1275 * in HT IBSS when a beacon with HT-info is received after the station
1276 * has already been added.
1277 */
1278 if (sta->ht_cap.ht_supported) {
1279 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1280 sta->ht_cap.ampdu_factor);
1281 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1282 an->mpdudensity = density;
1283 }
1284
1285 txtid->active = true;
1286 txtid->paused = true;
1287 *ssn = txtid->seq_start = txtid->seq_next;
1288 txtid->bar_index = -1;
1289
1290 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1291 txtid->baw_head = txtid->baw_tail = 0;
1292
1293 return 0;
1294 }
1295
1296 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1297 {
1298 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1299 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1300 struct ath_txq *txq = txtid->ac->txq;
1301
1302 ath_txq_lock(sc, txq);
1303 txtid->active = false;
1304 txtid->paused = true;
1305 ath_tx_flush_tid(sc, txtid);
1306 ath_txq_unlock_complete(sc, txq);
1307 }
1308
1309 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1310 struct ath_node *an)
1311 {
1312 struct ath_atx_tid *tid;
1313 struct ath_atx_ac *ac;
1314 struct ath_txq *txq;
1315 bool buffered;
1316 int tidno;
1317
1318 for (tidno = 0, tid = &an->tid[tidno];
1319 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1320
1321 if (!tid->sched)
1322 continue;
1323
1324 ac = tid->ac;
1325 txq = ac->txq;
1326
1327 ath_txq_lock(sc, txq);
1328
1329 buffered = !skb_queue_empty(&tid->buf_q);
1330
1331 tid->sched = false;
1332 list_del(&tid->list);
1333
1334 if (ac->sched) {
1335 ac->sched = false;
1336 list_del(&ac->list);
1337 }
1338
1339 ath_txq_unlock(sc, txq);
1340
1341 ieee80211_sta_set_buffered(sta, tidno, buffered);
1342 }
1343 }
1344
1345 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1346 {
1347 struct ath_atx_tid *tid;
1348 struct ath_atx_ac *ac;
1349 struct ath_txq *txq;
1350 int tidno;
1351
1352 for (tidno = 0, tid = &an->tid[tidno];
1353 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1354
1355 ac = tid->ac;
1356 txq = ac->txq;
1357
1358 ath_txq_lock(sc, txq);
1359 ac->clear_ps_filter = true;
1360
1361 if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1362 ath_tx_queue_tid(txq, tid);
1363 ath_txq_schedule(sc, txq);
1364 }
1365
1366 ath_txq_unlock_complete(sc, txq);
1367 }
1368 }
1369
1370 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1371 u16 tidno)
1372 {
1373 struct ath_atx_tid *tid;
1374 struct ath_node *an;
1375 struct ath_txq *txq;
1376
1377 an = (struct ath_node *)sta->drv_priv;
1378 tid = ATH_AN_2_TID(an, tidno);
1379 txq = tid->ac->txq;
1380
1381 ath_txq_lock(sc, txq);
1382
1383 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1384 tid->paused = false;
1385
1386 if (!skb_queue_empty(&tid->buf_q)) {
1387 ath_tx_queue_tid(txq, tid);
1388 ath_txq_schedule(sc, txq);
1389 }
1390
1391 ath_txq_unlock_complete(sc, txq);
1392 }
1393
1394 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1395 struct ieee80211_sta *sta,
1396 u16 tids, int nframes,
1397 enum ieee80211_frame_release_type reason,
1398 bool more_data)
1399 {
1400 struct ath_softc *sc = hw->priv;
1401 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1402 struct ath_txq *txq = sc->tx.uapsdq;
1403 struct ieee80211_tx_info *info;
1404 struct list_head bf_q;
1405 struct ath_buf *bf_tail = NULL, *bf;
1406 int sent = 0;
1407 int i;
1408
1409 INIT_LIST_HEAD(&bf_q);
1410 for (i = 0; tids && nframes; i++, tids >>= 1) {
1411 struct ath_atx_tid *tid;
1412
1413 if (!(tids & 1))
1414 continue;
1415
1416 tid = ATH_AN_2_TID(an, i);
1417 if (tid->paused)
1418 continue;
1419
1420 ath_txq_lock(sc, tid->ac->txq);
1421 while (!skb_queue_empty(&tid->buf_q) && nframes > 0) {
1422 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid);
1423 if (!bf)
1424 break;
1425
1426 __skb_unlink(bf->bf_mpdu, &tid->buf_q);
1427 list_add_tail(&bf->list, &bf_q);
1428 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1429 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1430 bf->bf_state.bf_type &= ~BUF_AGGR;
1431 if (bf_tail)
1432 bf_tail->bf_next = bf;
1433
1434 bf_tail = bf;
1435 nframes--;
1436 sent++;
1437 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1438
1439 if (skb_queue_empty(&tid->buf_q))
1440 ieee80211_sta_set_buffered(an->sta, i, false);
1441 }
1442 ath_txq_unlock_complete(sc, tid->ac->txq);
1443 }
1444
1445 if (list_empty(&bf_q))
1446 return;
1447
1448 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1449 info->flags |= IEEE80211_TX_STATUS_EOSP;
1450
1451 bf = list_first_entry(&bf_q, struct ath_buf, list);
1452 ath_txq_lock(sc, txq);
1453 ath_tx_fill_desc(sc, bf, txq, 0);
1454 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1455 ath_txq_unlock(sc, txq);
1456 }
1457
1458 /********************/
1459 /* Queue Management */
1460 /********************/
1461
1462 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1463 {
1464 struct ath_hw *ah = sc->sc_ah;
1465 struct ath9k_tx_queue_info qi;
1466 static const int subtype_txq_to_hwq[] = {
1467 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1468 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1469 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1470 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1471 };
1472 int axq_qnum, i;
1473
1474 memset(&qi, 0, sizeof(qi));
1475 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1476 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1477 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1478 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1479 qi.tqi_physCompBuf = 0;
1480
1481 /*
1482 * Enable interrupts only for EOL and DESC conditions.
1483 * We mark tx descriptors to receive a DESC interrupt
1484 * when a tx queue gets deep; otherwise waiting for the
1485 * EOL to reap descriptors. Note that this is done to
1486 * reduce interrupt load and this only defers reaping
1487 * descriptors, never transmitting frames. Aside from
1488 * reducing interrupts this also permits more concurrency.
1489 * The only potential downside is if the tx queue backs
1490 * up in which case the top half of the kernel may backup
1491 * due to a lack of tx descriptors.
1492 *
1493 * The UAPSD queue is an exception, since we take a desc-
1494 * based intr on the EOSP frames.
1495 */
1496 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1497 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1498 } else {
1499 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1500 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1501 else
1502 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1503 TXQ_FLAG_TXDESCINT_ENABLE;
1504 }
1505 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1506 if (axq_qnum == -1) {
1507 /*
1508 * NB: don't print a message, this happens
1509 * normally on parts with too few tx queues
1510 */
1511 return NULL;
1512 }
1513 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1514 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1515
1516 txq->axq_qnum = axq_qnum;
1517 txq->mac80211_qnum = -1;
1518 txq->axq_link = NULL;
1519 __skb_queue_head_init(&txq->complete_q);
1520 INIT_LIST_HEAD(&txq->axq_q);
1521 INIT_LIST_HEAD(&txq->axq_acq);
1522 spin_lock_init(&txq->axq_lock);
1523 txq->axq_depth = 0;
1524 txq->axq_ampdu_depth = 0;
1525 txq->axq_tx_inprogress = false;
1526 sc->tx.txqsetup |= 1<<axq_qnum;
1527
1528 txq->txq_headidx = txq->txq_tailidx = 0;
1529 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1530 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1531 }
1532 return &sc->tx.txq[axq_qnum];
1533 }
1534
1535 int ath_txq_update(struct ath_softc *sc, int qnum,
1536 struct ath9k_tx_queue_info *qinfo)
1537 {
1538 struct ath_hw *ah = sc->sc_ah;
1539 int error = 0;
1540 struct ath9k_tx_queue_info qi;
1541
1542 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1543
1544 ath9k_hw_get_txq_props(ah, qnum, &qi);
1545 qi.tqi_aifs = qinfo->tqi_aifs;
1546 qi.tqi_cwmin = qinfo->tqi_cwmin;
1547 qi.tqi_cwmax = qinfo->tqi_cwmax;
1548 qi.tqi_burstTime = qinfo->tqi_burstTime;
1549 qi.tqi_readyTime = qinfo->tqi_readyTime;
1550
1551 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1552 ath_err(ath9k_hw_common(sc->sc_ah),
1553 "Unable to update hardware queue %u!\n", qnum);
1554 error = -EIO;
1555 } else {
1556 ath9k_hw_resettxqueue(ah, qnum);
1557 }
1558
1559 return error;
1560 }
1561
1562 int ath_cabq_update(struct ath_softc *sc)
1563 {
1564 struct ath9k_tx_queue_info qi;
1565 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1566 int qnum = sc->beacon.cabq->axq_qnum;
1567
1568 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1569 /*
1570 * Ensure the readytime % is within the bounds.
1571 */
1572 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1573 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1574 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1575 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1576
1577 qi.tqi_readyTime = (cur_conf->beacon_interval *
1578 sc->config.cabqReadytime) / 100;
1579 ath_txq_update(sc, qnum, &qi);
1580
1581 return 0;
1582 }
1583
1584 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1585 struct list_head *list)
1586 {
1587 struct ath_buf *bf, *lastbf;
1588 struct list_head bf_head;
1589 struct ath_tx_status ts;
1590
1591 memset(&ts, 0, sizeof(ts));
1592 ts.ts_status = ATH9K_TX_FLUSH;
1593 INIT_LIST_HEAD(&bf_head);
1594
1595 while (!list_empty(list)) {
1596 bf = list_first_entry(list, struct ath_buf, list);
1597
1598 if (bf->bf_stale) {
1599 list_del(&bf->list);
1600
1601 ath_tx_return_buffer(sc, bf);
1602 continue;
1603 }
1604
1605 lastbf = bf->bf_lastbf;
1606 list_cut_position(&bf_head, list, &lastbf->list);
1607 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1608 }
1609 }
1610
1611 /*
1612 * Drain a given TX queue (could be Beacon or Data)
1613 *
1614 * This assumes output has been stopped and
1615 * we do not need to block ath_tx_tasklet.
1616 */
1617 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1618 {
1619 ath_txq_lock(sc, txq);
1620
1621 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1622 int idx = txq->txq_tailidx;
1623
1624 while (!list_empty(&txq->txq_fifo[idx])) {
1625 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1626
1627 INCR(idx, ATH_TXFIFO_DEPTH);
1628 }
1629 txq->txq_tailidx = idx;
1630 }
1631
1632 txq->axq_link = NULL;
1633 txq->axq_tx_inprogress = false;
1634 ath_drain_txq_list(sc, txq, &txq->axq_q);
1635
1636 ath_txq_unlock_complete(sc, txq);
1637 }
1638
1639 bool ath_drain_all_txq(struct ath_softc *sc)
1640 {
1641 struct ath_hw *ah = sc->sc_ah;
1642 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1643 struct ath_txq *txq;
1644 int i;
1645 u32 npend = 0;
1646
1647 if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1648 return true;
1649
1650 ath9k_hw_abort_tx_dma(ah);
1651
1652 /* Check if any queue remains active */
1653 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1654 if (!ATH_TXQ_SETUP(sc, i))
1655 continue;
1656
1657 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1658 npend |= BIT(i);
1659 }
1660
1661 if (npend)
1662 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1663
1664 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1665 if (!ATH_TXQ_SETUP(sc, i))
1666 continue;
1667
1668 /*
1669 * The caller will resume queues with ieee80211_wake_queues.
1670 * Mark the queue as not stopped to prevent ath_tx_complete
1671 * from waking the queue too early.
1672 */
1673 txq = &sc->tx.txq[i];
1674 txq->stopped = false;
1675 ath_draintxq(sc, txq);
1676 }
1677
1678 return !npend;
1679 }
1680
1681 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1682 {
1683 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1684 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1685 }
1686
1687 /* For each axq_acq entry, for each tid, try to schedule packets
1688 * for transmit until ampdu_depth has reached min Q depth.
1689 */
1690 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1691 {
1692 struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1693 struct ath_atx_tid *tid, *last_tid;
1694
1695 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1696 list_empty(&txq->axq_acq) ||
1697 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1698 return;
1699
1700 rcu_read_lock();
1701
1702 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1703 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1704
1705 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1706 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1707 list_del(&ac->list);
1708 ac->sched = false;
1709
1710 while (!list_empty(&ac->tid_q)) {
1711 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1712 list);
1713 list_del(&tid->list);
1714 tid->sched = false;
1715
1716 if (tid->paused)
1717 continue;
1718
1719 ath_tx_sched_aggr(sc, txq, tid);
1720
1721 /*
1722 * add tid to round-robin queue if more frames
1723 * are pending for the tid
1724 */
1725 if (!skb_queue_empty(&tid->buf_q))
1726 ath_tx_queue_tid(txq, tid);
1727
1728 if (tid == last_tid ||
1729 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1730 break;
1731 }
1732
1733 if (!list_empty(&ac->tid_q) && !ac->sched) {
1734 ac->sched = true;
1735 list_add_tail(&ac->list, &txq->axq_acq);
1736 }
1737
1738 if (ac == last_ac ||
1739 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1740 break;
1741 }
1742
1743 rcu_read_unlock();
1744 }
1745
1746 /***********/
1747 /* TX, DMA */
1748 /***********/
1749
1750 /*
1751 * Insert a chain of ath_buf (descriptors) on a txq and
1752 * assume the descriptors are already chained together by caller.
1753 */
1754 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1755 struct list_head *head, bool internal)
1756 {
1757 struct ath_hw *ah = sc->sc_ah;
1758 struct ath_common *common = ath9k_hw_common(ah);
1759 struct ath_buf *bf, *bf_last;
1760 bool puttxbuf = false;
1761 bool edma;
1762
1763 /*
1764 * Insert the frame on the outbound list and
1765 * pass it on to the hardware.
1766 */
1767
1768 if (list_empty(head))
1769 return;
1770
1771 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1772 bf = list_first_entry(head, struct ath_buf, list);
1773 bf_last = list_entry(head->prev, struct ath_buf, list);
1774
1775 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1776 txq->axq_qnum, txq->axq_depth);
1777
1778 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1779 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1780 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1781 puttxbuf = true;
1782 } else {
1783 list_splice_tail_init(head, &txq->axq_q);
1784
1785 if (txq->axq_link) {
1786 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1787 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1788 txq->axq_qnum, txq->axq_link,
1789 ito64(bf->bf_daddr), bf->bf_desc);
1790 } else if (!edma)
1791 puttxbuf = true;
1792
1793 txq->axq_link = bf_last->bf_desc;
1794 }
1795
1796 if (puttxbuf) {
1797 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1798 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1799 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1800 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1801 }
1802
1803 if (!edma) {
1804 TX_STAT_INC(txq->axq_qnum, txstart);
1805 ath9k_hw_txstart(ah, txq->axq_qnum);
1806 }
1807
1808 if (!internal) {
1809 while (bf) {
1810 txq->axq_depth++;
1811 if (bf_is_ampdu_not_probing(bf))
1812 txq->axq_ampdu_depth++;
1813
1814 bf = bf->bf_lastbf->bf_next;
1815 }
1816 }
1817 }
1818
1819 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_txq *txq,
1820 struct ath_atx_tid *tid, struct sk_buff *skb,
1821 struct ath_tx_control *txctl)
1822 {
1823 struct ath_frame_info *fi = get_frame_info(skb);
1824 struct list_head bf_head;
1825 struct ath_buf *bf;
1826
1827 /*
1828 * Do not queue to h/w when any of the following conditions is true:
1829 * - there are pending frames in software queue
1830 * - the TID is currently paused for ADDBA/BAR request
1831 * - seqno is not within block-ack window
1832 * - h/w queue depth exceeds low water mark
1833 */
1834 if ((!skb_queue_empty(&tid->buf_q) || tid->paused ||
1835 !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1836 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) &&
1837 txq != sc->tx.uapsdq) {
1838 /*
1839 * Add this frame to software queue for scheduling later
1840 * for aggregation.
1841 */
1842 TX_STAT_INC(txq->axq_qnum, a_queued_sw);
1843 __skb_queue_tail(&tid->buf_q, skb);
1844 if (!txctl->an || !txctl->an->sleeping)
1845 ath_tx_queue_tid(txq, tid);
1846 return;
1847 }
1848
1849 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
1850 if (!bf) {
1851 ath_txq_skb_done(sc, txq, skb);
1852 ieee80211_free_txskb(sc->hw, skb);
1853 return;
1854 }
1855
1856 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1857 bf->bf_state.bf_type = BUF_AMPDU;
1858 INIT_LIST_HEAD(&bf_head);
1859 list_add(&bf->list, &bf_head);
1860
1861 /* Add sub-frame to BAW */
1862 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1863
1864 /* Queue to h/w without aggregation */
1865 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1866 bf->bf_lastbf = bf;
1867 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1868 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1869 }
1870
1871 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1872 struct ath_atx_tid *tid, struct sk_buff *skb)
1873 {
1874 struct ath_frame_info *fi = get_frame_info(skb);
1875 struct list_head bf_head;
1876 struct ath_buf *bf;
1877
1878 bf = fi->bf;
1879
1880 INIT_LIST_HEAD(&bf_head);
1881 list_add_tail(&bf->list, &bf_head);
1882 bf->bf_state.bf_type = 0;
1883
1884 bf->bf_next = NULL;
1885 bf->bf_lastbf = bf;
1886 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1887 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1888 TX_STAT_INC(txq->axq_qnum, queued);
1889 }
1890
1891 static void setup_frame_info(struct ieee80211_hw *hw,
1892 struct ieee80211_sta *sta,
1893 struct sk_buff *skb,
1894 int framelen)
1895 {
1896 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1897 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1898 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1899 const struct ieee80211_rate *rate;
1900 struct ath_frame_info *fi = get_frame_info(skb);
1901 struct ath_node *an = NULL;
1902 enum ath9k_key_type keytype;
1903 bool short_preamble = false;
1904
1905 /*
1906 * We check if Short Preamble is needed for the CTS rate by
1907 * checking the BSS's global flag.
1908 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1909 */
1910 if (tx_info->control.vif &&
1911 tx_info->control.vif->bss_conf.use_short_preamble)
1912 short_preamble = true;
1913
1914 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
1915 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1916
1917 if (sta)
1918 an = (struct ath_node *) sta->drv_priv;
1919
1920 memset(fi, 0, sizeof(*fi));
1921 if (hw_key)
1922 fi->keyix = hw_key->hw_key_idx;
1923 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1924 fi->keyix = an->ps_key;
1925 else
1926 fi->keyix = ATH9K_TXKEYIX_INVALID;
1927 fi->keytype = keytype;
1928 fi->framelen = framelen;
1929 fi->rtscts_rate = rate->hw_value;
1930 if (short_preamble)
1931 fi->rtscts_rate |= rate->hw_value_short;
1932 }
1933
1934 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1935 {
1936 struct ath_hw *ah = sc->sc_ah;
1937 struct ath9k_channel *curchan = ah->curchan;
1938
1939 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1940 (curchan->channelFlags & CHANNEL_5GHZ) &&
1941 (chainmask == 0x7) && (rate < 0x90))
1942 return 0x3;
1943 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
1944 IS_CCK_RATE(rate))
1945 return 0x2;
1946 else
1947 return chainmask;
1948 }
1949
1950 /*
1951 * Assign a descriptor (and sequence number if necessary,
1952 * and map buffer for DMA. Frees skb on error
1953 */
1954 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1955 struct ath_txq *txq,
1956 struct ath_atx_tid *tid,
1957 struct sk_buff *skb)
1958 {
1959 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1960 struct ath_frame_info *fi = get_frame_info(skb);
1961 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1962 struct ath_buf *bf;
1963 int fragno;
1964 u16 seqno;
1965
1966 bf = ath_tx_get_buffer(sc);
1967 if (!bf) {
1968 ath_dbg(common, XMIT, "TX buffers are full\n");
1969 return NULL;
1970 }
1971
1972 ATH_TXBUF_RESET(bf);
1973
1974 if (tid) {
1975 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1976 seqno = tid->seq_next;
1977 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1978
1979 if (fragno)
1980 hdr->seq_ctrl |= cpu_to_le16(fragno);
1981
1982 if (!ieee80211_has_morefrags(hdr->frame_control))
1983 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1984
1985 bf->bf_state.seqno = seqno;
1986 }
1987
1988 bf->bf_mpdu = skb;
1989
1990 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1991 skb->len, DMA_TO_DEVICE);
1992 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1993 bf->bf_mpdu = NULL;
1994 bf->bf_buf_addr = 0;
1995 ath_err(ath9k_hw_common(sc->sc_ah),
1996 "dma_mapping_error() on TX\n");
1997 ath_tx_return_buffer(sc, bf);
1998 return NULL;
1999 }
2000
2001 fi->bf = bf;
2002
2003 return bf;
2004 }
2005
2006 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2007 struct ath_tx_control *txctl)
2008 {
2009 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2010 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2011 struct ieee80211_sta *sta = txctl->sta;
2012 struct ieee80211_vif *vif = info->control.vif;
2013 struct ath_softc *sc = hw->priv;
2014 int frmlen = skb->len + FCS_LEN;
2015 int padpos, padsize;
2016
2017 /* NOTE: sta can be NULL according to net/mac80211.h */
2018 if (sta)
2019 txctl->an = (struct ath_node *)sta->drv_priv;
2020
2021 if (info->control.hw_key)
2022 frmlen += info->control.hw_key->icv_len;
2023
2024 /*
2025 * As a temporary workaround, assign seq# here; this will likely need
2026 * to be cleaned up to work better with Beacon transmission and virtual
2027 * BSSes.
2028 */
2029 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2030 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2031 sc->tx.seq_no += 0x10;
2032 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2033 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2034 }
2035
2036 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2037 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2038 !ieee80211_is_data(hdr->frame_control))
2039 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2040
2041 /* Add the padding after the header if this is not already done */
2042 padpos = ieee80211_hdrlen(hdr->frame_control);
2043 padsize = padpos & 3;
2044 if (padsize && skb->len > padpos) {
2045 if (skb_headroom(skb) < padsize)
2046 return -ENOMEM;
2047
2048 skb_push(skb, padsize);
2049 memmove(skb->data, skb->data + padsize, padpos);
2050 }
2051
2052 setup_frame_info(hw, sta, skb, frmlen);
2053 return 0;
2054 }
2055
2056
2057 /* Upon failure caller should free skb */
2058 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2059 struct ath_tx_control *txctl)
2060 {
2061 struct ieee80211_hdr *hdr;
2062 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2063 struct ieee80211_sta *sta = txctl->sta;
2064 struct ieee80211_vif *vif = info->control.vif;
2065 struct ath_softc *sc = hw->priv;
2066 struct ath_txq *txq = txctl->txq;
2067 struct ath_atx_tid *tid = NULL;
2068 struct ath_buf *bf;
2069 u8 tidno;
2070 int q;
2071 int ret;
2072
2073 ret = ath_tx_prepare(hw, skb, txctl);
2074 if (ret)
2075 return ret;
2076
2077 hdr = (struct ieee80211_hdr *) skb->data;
2078 /*
2079 * At this point, the vif, hw_key and sta pointers in the tx control
2080 * info are no longer valid (overwritten by the ath_frame_info data.
2081 */
2082
2083 q = skb_get_queue_mapping(skb);
2084
2085 ath_txq_lock(sc, txq);
2086 if (txq == sc->tx.txq_map[q] &&
2087 ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2088 !txq->stopped) {
2089 ieee80211_stop_queue(sc->hw, q);
2090 txq->stopped = true;
2091 }
2092
2093 if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
2094 ath_txq_unlock(sc, txq);
2095 txq = sc->tx.uapsdq;
2096 ath_txq_lock(sc, txq);
2097 }
2098
2099 if (txctl->an && ieee80211_is_data_qos(hdr->frame_control)) {
2100 tidno = ieee80211_get_qos_ctl(hdr)[0] &
2101 IEEE80211_QOS_CTL_TID_MASK;
2102 tid = ATH_AN_2_TID(txctl->an, tidno);
2103
2104 WARN_ON(tid->ac->txq != txctl->txq);
2105 }
2106
2107 if ((info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
2108 /*
2109 * Try aggregation if it's a unicast data frame
2110 * and the destination is HT capable.
2111 */
2112 ath_tx_send_ampdu(sc, txq, tid, skb, txctl);
2113 goto out;
2114 }
2115
2116 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2117 if (!bf) {
2118 ath_txq_skb_done(sc, txq, skb);
2119 if (txctl->paprd)
2120 dev_kfree_skb_any(skb);
2121 else
2122 ieee80211_free_txskb(sc->hw, skb);
2123 goto out;
2124 }
2125
2126 bf->bf_state.bfs_paprd = txctl->paprd;
2127
2128 if (txctl->paprd)
2129 bf->bf_state.bfs_paprd_timestamp = jiffies;
2130
2131 ath_set_rates(vif, sta, bf);
2132 ath_tx_send_normal(sc, txq, tid, skb);
2133
2134 out:
2135 ath_txq_unlock(sc, txq);
2136
2137 return 0;
2138 }
2139
2140 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2141 struct sk_buff *skb)
2142 {
2143 struct ath_softc *sc = hw->priv;
2144 struct ath_tx_control txctl = {
2145 .txq = sc->beacon.cabq
2146 };
2147 struct ath_tx_info info = {};
2148 struct ieee80211_hdr *hdr;
2149 struct ath_buf *bf_tail = NULL;
2150 struct ath_buf *bf;
2151 LIST_HEAD(bf_q);
2152 int duration = 0;
2153 int max_duration;
2154
2155 max_duration =
2156 sc->cur_beacon_conf.beacon_interval * 1000 *
2157 sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
2158
2159 do {
2160 struct ath_frame_info *fi = get_frame_info(skb);
2161
2162 if (ath_tx_prepare(hw, skb, &txctl))
2163 break;
2164
2165 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2166 if (!bf)
2167 break;
2168
2169 bf->bf_lastbf = bf;
2170 ath_set_rates(vif, NULL, bf);
2171 ath_buf_set_rate(sc, bf, &info, fi->framelen);
2172 duration += info.rates[0].PktDuration;
2173 if (bf_tail)
2174 bf_tail->bf_next = bf;
2175
2176 list_add_tail(&bf->list, &bf_q);
2177 bf_tail = bf;
2178 skb = NULL;
2179
2180 if (duration > max_duration)
2181 break;
2182
2183 skb = ieee80211_get_buffered_bc(hw, vif);
2184 } while(skb);
2185
2186 if (skb)
2187 ieee80211_free_txskb(hw, skb);
2188
2189 if (list_empty(&bf_q))
2190 return;
2191
2192 bf = list_first_entry(&bf_q, struct ath_buf, list);
2193 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2194
2195 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2196 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2197 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2198 sizeof(*hdr), DMA_TO_DEVICE);
2199 }
2200
2201 ath_txq_lock(sc, txctl.txq);
2202 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2203 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2204 TX_STAT_INC(txctl.txq->axq_qnum, queued);
2205 ath_txq_unlock(sc, txctl.txq);
2206 }
2207
2208 /*****************/
2209 /* TX Completion */
2210 /*****************/
2211
2212 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2213 int tx_flags, struct ath_txq *txq)
2214 {
2215 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2216 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2217 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2218 int padpos, padsize;
2219 unsigned long flags;
2220
2221 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2222
2223 if (sc->sc_ah->caldata)
2224 sc->sc_ah->caldata->paprd_packet_sent = true;
2225
2226 if (!(tx_flags & ATH_TX_ERROR))
2227 /* Frame was ACKed */
2228 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2229
2230 padpos = ieee80211_hdrlen(hdr->frame_control);
2231 padsize = padpos & 3;
2232 if (padsize && skb->len>padpos+padsize) {
2233 /*
2234 * Remove MAC header padding before giving the frame back to
2235 * mac80211.
2236 */
2237 memmove(skb->data + padsize, skb->data, padpos);
2238 skb_pull(skb, padsize);
2239 }
2240
2241 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2242 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2243 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2244 ath_dbg(common, PS,
2245 "Going back to sleep after having received TX status (0x%lx)\n",
2246 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2247 PS_WAIT_FOR_CAB |
2248 PS_WAIT_FOR_PSPOLL_DATA |
2249 PS_WAIT_FOR_TX_ACK));
2250 }
2251 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2252
2253 __skb_queue_tail(&txq->complete_q, skb);
2254 ath_txq_skb_done(sc, txq, skb);
2255 }
2256
2257 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2258 struct ath_txq *txq, struct list_head *bf_q,
2259 struct ath_tx_status *ts, int txok)
2260 {
2261 struct sk_buff *skb = bf->bf_mpdu;
2262 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2263 unsigned long flags;
2264 int tx_flags = 0;
2265
2266 if (!txok)
2267 tx_flags |= ATH_TX_ERROR;
2268
2269 if (ts->ts_status & ATH9K_TXERR_FILT)
2270 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2271
2272 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2273 bf->bf_buf_addr = 0;
2274
2275 if (bf->bf_state.bfs_paprd) {
2276 if (time_after(jiffies,
2277 bf->bf_state.bfs_paprd_timestamp +
2278 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2279 dev_kfree_skb_any(skb);
2280 else
2281 complete(&sc->paprd_complete);
2282 } else {
2283 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2284 ath_tx_complete(sc, skb, tx_flags, txq);
2285 }
2286 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2287 * accidentally reference it later.
2288 */
2289 bf->bf_mpdu = NULL;
2290
2291 /*
2292 * Return the list of ath_buf of this mpdu to free queue
2293 */
2294 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2295 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2296 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2297 }
2298
2299 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2300 struct ath_tx_status *ts, int nframes, int nbad,
2301 int txok)
2302 {
2303 struct sk_buff *skb = bf->bf_mpdu;
2304 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2305 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2306 struct ieee80211_hw *hw = sc->hw;
2307 struct ath_hw *ah = sc->sc_ah;
2308 u8 i, tx_rateindex;
2309
2310 if (txok)
2311 tx_info->status.ack_signal = ts->ts_rssi;
2312
2313 tx_rateindex = ts->ts_rateindex;
2314 WARN_ON(tx_rateindex >= hw->max_rates);
2315
2316 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2317 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2318
2319 BUG_ON(nbad > nframes);
2320 }
2321 tx_info->status.ampdu_len = nframes;
2322 tx_info->status.ampdu_ack_len = nframes - nbad;
2323
2324 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2325 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2326 /*
2327 * If an underrun error is seen assume it as an excessive
2328 * retry only if max frame trigger level has been reached
2329 * (2 KB for single stream, and 4 KB for dual stream).
2330 * Adjust the long retry as if the frame was tried
2331 * hw->max_rate_tries times to affect how rate control updates
2332 * PER for the failed rate.
2333 * In case of congestion on the bus penalizing this type of
2334 * underruns should help hardware actually transmit new frames
2335 * successfully by eventually preferring slower rates.
2336 * This itself should also alleviate congestion on the bus.
2337 */
2338 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2339 ATH9K_TX_DELIM_UNDERRUN)) &&
2340 ieee80211_is_data(hdr->frame_control) &&
2341 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2342 tx_info->status.rates[tx_rateindex].count =
2343 hw->max_rate_tries;
2344 }
2345
2346 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2347 tx_info->status.rates[i].count = 0;
2348 tx_info->status.rates[i].idx = -1;
2349 }
2350
2351 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2352 }
2353
2354 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2355 {
2356 struct ath_hw *ah = sc->sc_ah;
2357 struct ath_common *common = ath9k_hw_common(ah);
2358 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2359 struct list_head bf_head;
2360 struct ath_desc *ds;
2361 struct ath_tx_status ts;
2362 int status;
2363
2364 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2365 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2366 txq->axq_link);
2367
2368 ath_txq_lock(sc, txq);
2369 for (;;) {
2370 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2371 break;
2372
2373 if (list_empty(&txq->axq_q)) {
2374 txq->axq_link = NULL;
2375 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2376 ath_txq_schedule(sc, txq);
2377 break;
2378 }
2379 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2380
2381 /*
2382 * There is a race condition that a BH gets scheduled
2383 * after sw writes TxE and before hw re-load the last
2384 * descriptor to get the newly chained one.
2385 * Software must keep the last DONE descriptor as a
2386 * holding descriptor - software does so by marking
2387 * it with the STALE flag.
2388 */
2389 bf_held = NULL;
2390 if (bf->bf_stale) {
2391 bf_held = bf;
2392 if (list_is_last(&bf_held->list, &txq->axq_q))
2393 break;
2394
2395 bf = list_entry(bf_held->list.next, struct ath_buf,
2396 list);
2397 }
2398
2399 lastbf = bf->bf_lastbf;
2400 ds = lastbf->bf_desc;
2401
2402 memset(&ts, 0, sizeof(ts));
2403 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2404 if (status == -EINPROGRESS)
2405 break;
2406
2407 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2408
2409 /*
2410 * Remove ath_buf's of the same transmit unit from txq,
2411 * however leave the last descriptor back as the holding
2412 * descriptor for hw.
2413 */
2414 lastbf->bf_stale = true;
2415 INIT_LIST_HEAD(&bf_head);
2416 if (!list_is_singular(&lastbf->list))
2417 list_cut_position(&bf_head,
2418 &txq->axq_q, lastbf->list.prev);
2419
2420 if (bf_held) {
2421 list_del(&bf_held->list);
2422 ath_tx_return_buffer(sc, bf_held);
2423 }
2424
2425 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2426 }
2427 ath_txq_unlock_complete(sc, txq);
2428 }
2429
2430 void ath_tx_tasklet(struct ath_softc *sc)
2431 {
2432 struct ath_hw *ah = sc->sc_ah;
2433 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2434 int i;
2435
2436 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2437 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2438 ath_tx_processq(sc, &sc->tx.txq[i]);
2439 }
2440 }
2441
2442 void ath_tx_edma_tasklet(struct ath_softc *sc)
2443 {
2444 struct ath_tx_status ts;
2445 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2446 struct ath_hw *ah = sc->sc_ah;
2447 struct ath_txq *txq;
2448 struct ath_buf *bf, *lastbf;
2449 struct list_head bf_head;
2450 struct list_head *fifo_list;
2451 int status;
2452
2453 for (;;) {
2454 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2455 break;
2456
2457 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2458 if (status == -EINPROGRESS)
2459 break;
2460 if (status == -EIO) {
2461 ath_dbg(common, XMIT, "Error processing tx status\n");
2462 break;
2463 }
2464
2465 /* Process beacon completions separately */
2466 if (ts.qid == sc->beacon.beaconq) {
2467 sc->beacon.tx_processed = true;
2468 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2469 continue;
2470 }
2471
2472 txq = &sc->tx.txq[ts.qid];
2473
2474 ath_txq_lock(sc, txq);
2475
2476 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2477
2478 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2479 if (list_empty(fifo_list)) {
2480 ath_txq_unlock(sc, txq);
2481 return;
2482 }
2483
2484 bf = list_first_entry(fifo_list, struct ath_buf, list);
2485 if (bf->bf_stale) {
2486 list_del(&bf->list);
2487 ath_tx_return_buffer(sc, bf);
2488 bf = list_first_entry(fifo_list, struct ath_buf, list);
2489 }
2490
2491 lastbf = bf->bf_lastbf;
2492
2493 INIT_LIST_HEAD(&bf_head);
2494 if (list_is_last(&lastbf->list, fifo_list)) {
2495 list_splice_tail_init(fifo_list, &bf_head);
2496 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2497
2498 if (!list_empty(&txq->axq_q)) {
2499 struct list_head bf_q;
2500
2501 INIT_LIST_HEAD(&bf_q);
2502 txq->axq_link = NULL;
2503 list_splice_tail_init(&txq->axq_q, &bf_q);
2504 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2505 }
2506 } else {
2507 lastbf->bf_stale = true;
2508 if (bf != lastbf)
2509 list_cut_position(&bf_head, fifo_list,
2510 lastbf->list.prev);
2511 }
2512
2513 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2514 ath_txq_unlock_complete(sc, txq);
2515 }
2516 }
2517
2518 /*****************/
2519 /* Init, Cleanup */
2520 /*****************/
2521
2522 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2523 {
2524 struct ath_descdma *dd = &sc->txsdma;
2525 u8 txs_len = sc->sc_ah->caps.txs_len;
2526
2527 dd->dd_desc_len = size * txs_len;
2528 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2529 &dd->dd_desc_paddr, GFP_KERNEL);
2530 if (!dd->dd_desc)
2531 return -ENOMEM;
2532
2533 return 0;
2534 }
2535
2536 static int ath_tx_edma_init(struct ath_softc *sc)
2537 {
2538 int err;
2539
2540 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2541 if (!err)
2542 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2543 sc->txsdma.dd_desc_paddr,
2544 ATH_TXSTATUS_RING_SIZE);
2545
2546 return err;
2547 }
2548
2549 int ath_tx_init(struct ath_softc *sc, int nbufs)
2550 {
2551 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2552 int error = 0;
2553
2554 spin_lock_init(&sc->tx.txbuflock);
2555
2556 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2557 "tx", nbufs, 1, 1);
2558 if (error != 0) {
2559 ath_err(common,
2560 "Failed to allocate tx descriptors: %d\n", error);
2561 return error;
2562 }
2563
2564 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2565 "beacon", ATH_BCBUF, 1, 1);
2566 if (error != 0) {
2567 ath_err(common,
2568 "Failed to allocate beacon descriptors: %d\n", error);
2569 return error;
2570 }
2571
2572 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2573
2574 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2575 error = ath_tx_edma_init(sc);
2576
2577 return error;
2578 }
2579
2580 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2581 {
2582 struct ath_atx_tid *tid;
2583 struct ath_atx_ac *ac;
2584 int tidno, acno;
2585
2586 for (tidno = 0, tid = &an->tid[tidno];
2587 tidno < IEEE80211_NUM_TIDS;
2588 tidno++, tid++) {
2589 tid->an = an;
2590 tid->tidno = tidno;
2591 tid->seq_start = tid->seq_next = 0;
2592 tid->baw_size = WME_MAX_BA;
2593 tid->baw_head = tid->baw_tail = 0;
2594 tid->sched = false;
2595 tid->paused = false;
2596 tid->active = false;
2597 __skb_queue_head_init(&tid->buf_q);
2598 acno = TID_TO_WME_AC(tidno);
2599 tid->ac = &an->ac[acno];
2600 }
2601
2602 for (acno = 0, ac = &an->ac[acno];
2603 acno < IEEE80211_NUM_ACS; acno++, ac++) {
2604 ac->sched = false;
2605 ac->txq = sc->tx.txq_map[acno];
2606 INIT_LIST_HEAD(&ac->tid_q);
2607 }
2608 }
2609
2610 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2611 {
2612 struct ath_atx_ac *ac;
2613 struct ath_atx_tid *tid;
2614 struct ath_txq *txq;
2615 int tidno;
2616
2617 for (tidno = 0, tid = &an->tid[tidno];
2618 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2619
2620 ac = tid->ac;
2621 txq = ac->txq;
2622
2623 ath_txq_lock(sc, txq);
2624
2625 if (tid->sched) {
2626 list_del(&tid->list);
2627 tid->sched = false;
2628 }
2629
2630 if (ac->sched) {
2631 list_del(&ac->list);
2632 tid->ac->sched = false;
2633 }
2634
2635 ath_tid_drain(sc, txq, tid);
2636 tid->active = false;
2637
2638 ath_txq_unlock(sc, txq);
2639 }
2640 }
This page took 0.090606 seconds and 5 git commands to generate.