ath9k: Use a single opmode variable
[deliverable/linux.git] / drivers / net / wireless / ath9k / hw.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "core.h"
21 #include "hw.h"
22 #include "reg.h"
23 #include "phy.h"
24 #include "initvals.h"
25
26 static void ath9k_hw_iqcal_collect(struct ath_hal *ah);
27 static void ath9k_hw_iqcalibrate(struct ath_hal *ah, u8 numChains);
28 static void ath9k_hw_adc_gaincal_collect(struct ath_hal *ah);
29 static void ath9k_hw_adc_gaincal_calibrate(struct ath_hal *ah,
30 u8 numChains);
31 static void ath9k_hw_adc_dccal_collect(struct ath_hal *ah);
32 static void ath9k_hw_adc_dccal_calibrate(struct ath_hal *ah,
33 u8 numChains);
34
35 static const u8 CLOCK_RATE[] = { 40, 80, 22, 44, 88, 40 };
36 static const int16_t NOISE_FLOOR[] = { -96, -93, -98, -96, -93, -96 };
37
38 static const struct hal_percal_data iq_cal_multi_sample = {
39 IQ_MISMATCH_CAL,
40 MAX_CAL_SAMPLES,
41 PER_MIN_LOG_COUNT,
42 ath9k_hw_iqcal_collect,
43 ath9k_hw_iqcalibrate
44 };
45 static const struct hal_percal_data iq_cal_single_sample = {
46 IQ_MISMATCH_CAL,
47 MIN_CAL_SAMPLES,
48 PER_MAX_LOG_COUNT,
49 ath9k_hw_iqcal_collect,
50 ath9k_hw_iqcalibrate
51 };
52 static const struct hal_percal_data adc_gain_cal_multi_sample = {
53 ADC_GAIN_CAL,
54 MAX_CAL_SAMPLES,
55 PER_MIN_LOG_COUNT,
56 ath9k_hw_adc_gaincal_collect,
57 ath9k_hw_adc_gaincal_calibrate
58 };
59 static const struct hal_percal_data adc_gain_cal_single_sample = {
60 ADC_GAIN_CAL,
61 MIN_CAL_SAMPLES,
62 PER_MAX_LOG_COUNT,
63 ath9k_hw_adc_gaincal_collect,
64 ath9k_hw_adc_gaincal_calibrate
65 };
66 static const struct hal_percal_data adc_dc_cal_multi_sample = {
67 ADC_DC_CAL,
68 MAX_CAL_SAMPLES,
69 PER_MIN_LOG_COUNT,
70 ath9k_hw_adc_dccal_collect,
71 ath9k_hw_adc_dccal_calibrate
72 };
73 static const struct hal_percal_data adc_dc_cal_single_sample = {
74 ADC_DC_CAL,
75 MIN_CAL_SAMPLES,
76 PER_MAX_LOG_COUNT,
77 ath9k_hw_adc_dccal_collect,
78 ath9k_hw_adc_dccal_calibrate
79 };
80 static const struct hal_percal_data adc_init_dc_cal = {
81 ADC_DC_INIT_CAL,
82 MIN_CAL_SAMPLES,
83 INIT_LOG_COUNT,
84 ath9k_hw_adc_dccal_collect,
85 ath9k_hw_adc_dccal_calibrate
86 };
87
88 static struct ath9k_rate_table ar5416_11a_table = {
89 8,
90 {0},
91 {
92 {true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0},
93 {true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0},
94 {true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2},
95 {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2},
96 {true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4},
97 {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4},
98 {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4},
99 {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4}
100 },
101 };
102
103 static struct ath9k_rate_table ar5416_11b_table = {
104 4,
105 {0},
106 {
107 {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
108 {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
109 {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 1},
110 {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 1}
111 },
112 };
113
114 static struct ath9k_rate_table ar5416_11g_table = {
115 12,
116 {0},
117 {
118 {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
119 {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
120 {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2},
121 {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3},
122
123 {false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4},
124 {false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4},
125 {true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6},
126 {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6},
127 {true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8},
128 {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8},
129 {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8},
130 {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8}
131 },
132 };
133
134 static struct ath9k_rate_table ar5416_11ng_table = {
135 28,
136 {0},
137 {
138 {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
139 {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
140 {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2},
141 {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3},
142
143 {false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4},
144 {false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4},
145 {true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6},
146 {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6},
147 {true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8},
148 {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8},
149 {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8},
150 {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8},
151 {true, PHY_HT, 6500, 0x80, 0x00, 0, 4},
152 {true, PHY_HT, 13000, 0x81, 0x00, 1, 6},
153 {true, PHY_HT, 19500, 0x82, 0x00, 2, 6},
154 {true, PHY_HT, 26000, 0x83, 0x00, 3, 8},
155 {true, PHY_HT, 39000, 0x84, 0x00, 4, 8},
156 {true, PHY_HT, 52000, 0x85, 0x00, 5, 8},
157 {true, PHY_HT, 58500, 0x86, 0x00, 6, 8},
158 {true, PHY_HT, 65000, 0x87, 0x00, 7, 8},
159 {true, PHY_HT, 13000, 0x88, 0x00, 8, 4},
160 {true, PHY_HT, 26000, 0x89, 0x00, 9, 6},
161 {true, PHY_HT, 39000, 0x8a, 0x00, 10, 6},
162 {true, PHY_HT, 52000, 0x8b, 0x00, 11, 8},
163 {true, PHY_HT, 78000, 0x8c, 0x00, 12, 8},
164 {true, PHY_HT, 104000, 0x8d, 0x00, 13, 8},
165 {true, PHY_HT, 117000, 0x8e, 0x00, 14, 8},
166 {true, PHY_HT, 130000, 0x8f, 0x00, 15, 8},
167 },
168 };
169
170 static struct ath9k_rate_table ar5416_11na_table = {
171 24,
172 {0},
173 {
174 {true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0},
175 {true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0},
176 {true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2},
177 {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2},
178 {true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4},
179 {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4},
180 {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4},
181 {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4},
182 {true, PHY_HT, 6500, 0x80, 0x00, 0, 0},
183 {true, PHY_HT, 13000, 0x81, 0x00, 1, 2},
184 {true, PHY_HT, 19500, 0x82, 0x00, 2, 2},
185 {true, PHY_HT, 26000, 0x83, 0x00, 3, 4},
186 {true, PHY_HT, 39000, 0x84, 0x00, 4, 4},
187 {true, PHY_HT, 52000, 0x85, 0x00, 5, 4},
188 {true, PHY_HT, 58500, 0x86, 0x00, 6, 4},
189 {true, PHY_HT, 65000, 0x87, 0x00, 7, 4},
190 {true, PHY_HT, 13000, 0x88, 0x00, 8, 0},
191 {true, PHY_HT, 26000, 0x89, 0x00, 9, 2},
192 {true, PHY_HT, 39000, 0x8a, 0x00, 10, 2},
193 {true, PHY_HT, 52000, 0x8b, 0x00, 11, 4},
194 {true, PHY_HT, 78000, 0x8c, 0x00, 12, 4},
195 {true, PHY_HT, 104000, 0x8d, 0x00, 13, 4},
196 {true, PHY_HT, 117000, 0x8e, 0x00, 14, 4},
197 {true, PHY_HT, 130000, 0x8f, 0x00, 15, 4},
198 },
199 };
200
201 static enum wireless_mode ath9k_hw_chan2wmode(struct ath_hal *ah,
202 const struct ath9k_channel *chan)
203 {
204 if (IS_CHAN_CCK(chan))
205 return ATH9K_MODE_11A;
206 if (IS_CHAN_G(chan))
207 return ATH9K_MODE_11G;
208 return ATH9K_MODE_11A;
209 }
210
211 static bool ath9k_hw_wait(struct ath_hal *ah,
212 u32 reg,
213 u32 mask,
214 u32 val)
215 {
216 int i;
217
218 for (i = 0; i < (AH_TIMEOUT / AH_TIME_QUANTUM); i++) {
219 if ((REG_READ(ah, reg) & mask) == val)
220 return true;
221
222 udelay(AH_TIME_QUANTUM);
223 }
224 DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
225 "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
226 __func__, reg, REG_READ(ah, reg), mask, val);
227 return false;
228 }
229
230 static bool ath9k_hw_eeprom_read(struct ath_hal *ah, u32 off,
231 u16 *data)
232 {
233 (void) REG_READ(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S));
234
235 if (!ath9k_hw_wait(ah,
236 AR_EEPROM_STATUS_DATA,
237 AR_EEPROM_STATUS_DATA_BUSY |
238 AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) {
239 return false;
240 }
241
242 *data = MS(REG_READ(ah, AR_EEPROM_STATUS_DATA),
243 AR_EEPROM_STATUS_DATA_VAL);
244
245 return true;
246 }
247
248 static int ath9k_hw_flash_map(struct ath_hal *ah)
249 {
250 struct ath_hal_5416 *ahp = AH5416(ah);
251
252 ahp->ah_cal_mem = ioremap(AR5416_EEPROM_START_ADDR, AR5416_EEPROM_MAX);
253
254 if (!ahp->ah_cal_mem) {
255 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
256 "%s: cannot remap eeprom region \n", __func__);
257 return -EIO;
258 }
259
260 return 0;
261 }
262
263 static bool ath9k_hw_flash_read(struct ath_hal *ah, u32 off,
264 u16 *data)
265 {
266 struct ath_hal_5416 *ahp = AH5416(ah);
267
268 *data = ioread16(ahp->ah_cal_mem + off);
269 return true;
270 }
271
272 static void ath9k_hw_read_revisions(struct ath_hal *ah)
273 {
274 u32 val;
275
276 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
277
278 if (val == 0xFF) {
279 val = REG_READ(ah, AR_SREV);
280
281 ah->ah_macVersion =
282 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
283
284 ah->ah_macRev = MS(val, AR_SREV_REVISION2);
285 ah->ah_isPciExpress =
286 (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
287
288 } else {
289 if (!AR_SREV_9100(ah))
290 ah->ah_macVersion = MS(val, AR_SREV_VERSION);
291
292 ah->ah_macRev = val & AR_SREV_REVISION;
293
294 if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE)
295 ah->ah_isPciExpress = true;
296 }
297 }
298
299 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
300 {
301 u32 retval;
302 int i;
303
304 for (i = 0, retval = 0; i < n; i++) {
305 retval = (retval << 1) | (val & 1);
306 val >>= 1;
307 }
308 return retval;
309 }
310
311 static void ath9k_hw_set_defaults(struct ath_hal *ah)
312 {
313 int i;
314
315 ah->ah_config.dma_beacon_response_time = 2;
316 ah->ah_config.sw_beacon_response_time = 10;
317 ah->ah_config.additional_swba_backoff = 0;
318 ah->ah_config.ack_6mb = 0x0;
319 ah->ah_config.cwm_ignore_extcca = 0;
320 ah->ah_config.pcie_powersave_enable = 0;
321 ah->ah_config.pcie_l1skp_enable = 0;
322 ah->ah_config.pcie_clock_req = 0;
323 ah->ah_config.pcie_power_reset = 0x100;
324 ah->ah_config.pcie_restore = 0;
325 ah->ah_config.pcie_waen = 0;
326 ah->ah_config.analog_shiftreg = 1;
327 ah->ah_config.ht_enable = 1;
328 ah->ah_config.ofdm_trig_low = 200;
329 ah->ah_config.ofdm_trig_high = 500;
330 ah->ah_config.cck_trig_high = 200;
331 ah->ah_config.cck_trig_low = 100;
332 ah->ah_config.enable_ani = 0;
333 ah->ah_config.noise_immunity_level = 4;
334 ah->ah_config.ofdm_weaksignal_det = 1;
335 ah->ah_config.cck_weaksignal_thr = 0;
336 ah->ah_config.spur_immunity_level = 2;
337 ah->ah_config.firstep_level = 0;
338 ah->ah_config.rssi_thr_high = 40;
339 ah->ah_config.rssi_thr_low = 7;
340 ah->ah_config.diversity_control = 0;
341 ah->ah_config.antenna_switch_swap = 0;
342
343 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
344 ah->ah_config.spurchans[i][0] = AR_NO_SPUR;
345 ah->ah_config.spurchans[i][1] = AR_NO_SPUR;
346 }
347
348 ah->ah_config.intr_mitigation = 0;
349 }
350
351 static inline void ath9k_hw_override_ini(struct ath_hal *ah,
352 struct ath9k_channel *chan)
353 {
354 if (!AR_SREV_5416_V20_OR_LATER(ah)
355 || AR_SREV_9280_10_OR_LATER(ah))
356 return;
357
358 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
359 }
360
361 static inline void ath9k_hw_init_bb(struct ath_hal *ah,
362 struct ath9k_channel *chan)
363 {
364 u32 synthDelay;
365
366 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
367 if (IS_CHAN_CCK(chan))
368 synthDelay = (4 * synthDelay) / 22;
369 else
370 synthDelay /= 10;
371
372 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
373
374 udelay(synthDelay + BASE_ACTIVATE_DELAY);
375 }
376
377 static inline void ath9k_hw_init_interrupt_masks(struct ath_hal *ah,
378 enum ath9k_opmode opmode)
379 {
380 struct ath_hal_5416 *ahp = AH5416(ah);
381
382 ahp->ah_maskReg = AR_IMR_TXERR |
383 AR_IMR_TXURN |
384 AR_IMR_RXERR |
385 AR_IMR_RXORN |
386 AR_IMR_BCNMISC;
387
388 if (ahp->ah_intrMitigation)
389 ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
390 else
391 ahp->ah_maskReg |= AR_IMR_RXOK;
392
393 ahp->ah_maskReg |= AR_IMR_TXOK;
394
395 if (opmode == ATH9K_M_HOSTAP)
396 ahp->ah_maskReg |= AR_IMR_MIB;
397
398 REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
399 REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
400
401 if (!AR_SREV_9100(ah)) {
402 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
403 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
404 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
405 }
406 }
407
408 static inline void ath9k_hw_init_qos(struct ath_hal *ah)
409 {
410 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
411 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
412
413 REG_WRITE(ah, AR_QOS_NO_ACK,
414 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
415 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
416 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
417
418 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
419 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
420 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
421 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
422 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
423 }
424
425 static void ath9k_hw_analog_shift_rmw(struct ath_hal *ah,
426 u32 reg,
427 u32 mask,
428 u32 shift,
429 u32 val)
430 {
431 u32 regVal;
432
433 regVal = REG_READ(ah, reg) & ~mask;
434 regVal |= (val << shift) & mask;
435
436 REG_WRITE(ah, reg, regVal);
437
438 if (ah->ah_config.analog_shiftreg)
439 udelay(100);
440
441 return;
442 }
443
444 static u8 ath9k_hw_get_num_ant_config(struct ath_hal_5416 *ahp,
445 enum ieee80211_band freq_band)
446 {
447 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
448 struct modal_eep_header *pModal =
449 &(eep->modalHeader[IEEE80211_BAND_5GHZ == freq_band]);
450 struct base_eep_header *pBase = &eep->baseEepHeader;
451 u8 num_ant_config;
452
453 num_ant_config = 1;
454
455 if (pBase->version >= 0x0E0D)
456 if (pModal->useAnt1)
457 num_ant_config += 1;
458
459 return num_ant_config;
460 }
461
462 static int
463 ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal_5416 *ahp,
464 struct ath9k_channel *chan,
465 u8 index,
466 u16 *config)
467 {
468 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
469 struct modal_eep_header *pModal =
470 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
471 struct base_eep_header *pBase = &eep->baseEepHeader;
472
473 switch (index) {
474 case 0:
475 *config = pModal->antCtrlCommon & 0xFFFF;
476 return 0;
477 case 1:
478 if (pBase->version >= 0x0E0D) {
479 if (pModal->useAnt1) {
480 *config =
481 ((pModal->antCtrlCommon & 0xFFFF0000) >> 16);
482 return 0;
483 }
484 }
485 break;
486 default:
487 break;
488 }
489
490 return -EINVAL;
491 }
492
493 static inline bool ath9k_hw_nvram_read(struct ath_hal *ah,
494 u32 off,
495 u16 *data)
496 {
497 if (ath9k_hw_use_flash(ah))
498 return ath9k_hw_flash_read(ah, off, data);
499 else
500 return ath9k_hw_eeprom_read(ah, off, data);
501 }
502
503 static inline bool ath9k_hw_fill_eeprom(struct ath_hal *ah)
504 {
505 struct ath_hal_5416 *ahp = AH5416(ah);
506 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
507 u16 *eep_data;
508 int addr, ar5416_eep_start_loc = 0;
509
510 if (!ath9k_hw_use_flash(ah)) {
511 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
512 "%s: Reading from EEPROM, not flash\n", __func__);
513 ar5416_eep_start_loc = 256;
514 }
515 if (AR_SREV_9100(ah))
516 ar5416_eep_start_loc = 256;
517
518 eep_data = (u16 *) eep;
519 for (addr = 0;
520 addr < sizeof(struct ar5416_eeprom) / sizeof(u16);
521 addr++) {
522 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
523 eep_data)) {
524 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
525 "%s: Unable to read eeprom region \n",
526 __func__);
527 return false;
528 }
529 eep_data++;
530 }
531 return true;
532 }
533
534 /* XXX: Clean me up, make me more legible */
535 static bool
536 ath9k_hw_eeprom_set_board_values(struct ath_hal *ah,
537 struct ath9k_channel *chan)
538 {
539 struct modal_eep_header *pModal;
540 int i, regChainOffset;
541 struct ath_hal_5416 *ahp = AH5416(ah);
542 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
543 u8 txRxAttenLocal;
544 u16 ant_config;
545
546 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
547
548 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
549
550 ath9k_hw_get_eeprom_antenna_cfg(ahp, chan, 1, &ant_config);
551 REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
552
553 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
554 if (AR_SREV_9280(ah)) {
555 if (i >= 2)
556 break;
557 }
558
559 if (AR_SREV_5416_V20_OR_LATER(ah) &&
560 (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
561 && (i != 0))
562 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
563 else
564 regChainOffset = i * 0x1000;
565
566 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
567 pModal->antCtrlChain[i]);
568
569 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
570 (REG_READ(ah,
571 AR_PHY_TIMING_CTRL4(0) +
572 regChainOffset) &
573 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
574 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
575 SM(pModal->iqCalICh[i],
576 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
577 SM(pModal->iqCalQCh[i],
578 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
579
580 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
581 if ((eep->baseEepHeader.version &
582 AR5416_EEP_VER_MINOR_MASK) >=
583 AR5416_EEP_MINOR_VER_3) {
584 txRxAttenLocal = pModal->txRxAttenCh[i];
585 if (AR_SREV_9280_10_OR_LATER(ah)) {
586 REG_RMW_FIELD(ah,
587 AR_PHY_GAIN_2GHZ +
588 regChainOffset,
589 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
590 pModal->
591 bswMargin[i]);
592 REG_RMW_FIELD(ah,
593 AR_PHY_GAIN_2GHZ +
594 regChainOffset,
595 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
596 pModal->
597 bswAtten[i]);
598 REG_RMW_FIELD(ah,
599 AR_PHY_GAIN_2GHZ +
600 regChainOffset,
601 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
602 pModal->
603 xatten2Margin[i]);
604 REG_RMW_FIELD(ah,
605 AR_PHY_GAIN_2GHZ +
606 regChainOffset,
607 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
608 pModal->
609 xatten2Db[i]);
610 } else {
611 REG_WRITE(ah,
612 AR_PHY_GAIN_2GHZ +
613 regChainOffset,
614 (REG_READ(ah,
615 AR_PHY_GAIN_2GHZ +
616 regChainOffset) &
617 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
618 | SM(pModal->
619 bswMargin[i],
620 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
621 REG_WRITE(ah,
622 AR_PHY_GAIN_2GHZ +
623 regChainOffset,
624 (REG_READ(ah,
625 AR_PHY_GAIN_2GHZ +
626 regChainOffset) &
627 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
628 | SM(pModal->bswAtten[i],
629 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
630 }
631 }
632 if (AR_SREV_9280_10_OR_LATER(ah)) {
633 REG_RMW_FIELD(ah,
634 AR_PHY_RXGAIN +
635 regChainOffset,
636 AR9280_PHY_RXGAIN_TXRX_ATTEN,
637 txRxAttenLocal);
638 REG_RMW_FIELD(ah,
639 AR_PHY_RXGAIN +
640 regChainOffset,
641 AR9280_PHY_RXGAIN_TXRX_MARGIN,
642 pModal->rxTxMarginCh[i]);
643 } else {
644 REG_WRITE(ah,
645 AR_PHY_RXGAIN + regChainOffset,
646 (REG_READ(ah,
647 AR_PHY_RXGAIN +
648 regChainOffset) &
649 ~AR_PHY_RXGAIN_TXRX_ATTEN) |
650 SM(txRxAttenLocal,
651 AR_PHY_RXGAIN_TXRX_ATTEN));
652 REG_WRITE(ah,
653 AR_PHY_GAIN_2GHZ +
654 regChainOffset,
655 (REG_READ(ah,
656 AR_PHY_GAIN_2GHZ +
657 regChainOffset) &
658 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
659 SM(pModal->rxTxMarginCh[i],
660 AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
661 }
662 }
663 }
664
665 if (AR_SREV_9280_10_OR_LATER(ah)) {
666 if (IS_CHAN_2GHZ(chan)) {
667 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
668 AR_AN_RF2G1_CH0_OB,
669 AR_AN_RF2G1_CH0_OB_S,
670 pModal->ob);
671 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
672 AR_AN_RF2G1_CH0_DB,
673 AR_AN_RF2G1_CH0_DB_S,
674 pModal->db);
675 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
676 AR_AN_RF2G1_CH1_OB,
677 AR_AN_RF2G1_CH1_OB_S,
678 pModal->ob_ch1);
679 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
680 AR_AN_RF2G1_CH1_DB,
681 AR_AN_RF2G1_CH1_DB_S,
682 pModal->db_ch1);
683 } else {
684 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
685 AR_AN_RF5G1_CH0_OB5,
686 AR_AN_RF5G1_CH0_OB5_S,
687 pModal->ob);
688 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
689 AR_AN_RF5G1_CH0_DB5,
690 AR_AN_RF5G1_CH0_DB5_S,
691 pModal->db);
692 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
693 AR_AN_RF5G1_CH1_OB5,
694 AR_AN_RF5G1_CH1_OB5_S,
695 pModal->ob_ch1);
696 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
697 AR_AN_RF5G1_CH1_DB5,
698 AR_AN_RF5G1_CH1_DB5_S,
699 pModal->db_ch1);
700 }
701 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
702 AR_AN_TOP2_XPABIAS_LVL,
703 AR_AN_TOP2_XPABIAS_LVL_S,
704 pModal->xpaBiasLvl);
705 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
706 AR_AN_TOP2_LOCALBIAS,
707 AR_AN_TOP2_LOCALBIAS_S,
708 pModal->local_bias);
709 DPRINTF(ah->ah_sc, ATH_DBG_ANY, "ForceXPAon: %d\n",
710 pModal->force_xpaon);
711 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
712 pModal->force_xpaon);
713 }
714
715 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
716 pModal->switchSettling);
717 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
718 pModal->adcDesiredSize);
719
720 if (!AR_SREV_9280_10_OR_LATER(ah))
721 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
722 AR_PHY_DESIRED_SZ_PGA,
723 pModal->pgaDesiredSize);
724
725 REG_WRITE(ah, AR_PHY_RF_CTL4,
726 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
727 | SM(pModal->txEndToXpaOff,
728 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
729 | SM(pModal->txFrameToXpaOn,
730 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
731 | SM(pModal->txFrameToXpaOn,
732 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
733
734 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
735 pModal->txEndToRxOn);
736 if (AR_SREV_9280_10_OR_LATER(ah)) {
737 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
738 pModal->thresh62);
739 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
740 AR_PHY_EXT_CCA0_THRESH62,
741 pModal->thresh62);
742 } else {
743 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
744 pModal->thresh62);
745 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
746 AR_PHY_EXT_CCA_THRESH62,
747 pModal->thresh62);
748 }
749
750 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
751 AR5416_EEP_MINOR_VER_2) {
752 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
753 AR_PHY_TX_END_DATA_START,
754 pModal->txFrameToDataStart);
755 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
756 pModal->txFrameToPaOn);
757 }
758
759 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
760 AR5416_EEP_MINOR_VER_3) {
761 if (IS_CHAN_HT40(chan))
762 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
763 AR_PHY_SETTLING_SWITCH,
764 pModal->swSettleHt40);
765 }
766
767 return true;
768 }
769
770 static inline int ath9k_hw_check_eeprom(struct ath_hal *ah)
771 {
772 u32 sum = 0, el;
773 u16 *eepdata;
774 int i;
775 struct ath_hal_5416 *ahp = AH5416(ah);
776 bool need_swap = false;
777 struct ar5416_eeprom *eep =
778 (struct ar5416_eeprom *) &ahp->ah_eeprom;
779
780 if (!ath9k_hw_use_flash(ah)) {
781 u16 magic, magic2;
782 int addr;
783
784 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
785 &magic)) {
786 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
787 "%s: Reading Magic # failed\n", __func__);
788 return false;
789 }
790 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: Read Magic = 0x%04X\n",
791 __func__, magic);
792
793 if (magic != AR5416_EEPROM_MAGIC) {
794 magic2 = swab16(magic);
795
796 if (magic2 == AR5416_EEPROM_MAGIC) {
797 need_swap = true;
798 eepdata = (u16 *) (&ahp->ah_eeprom);
799
800 for (addr = 0;
801 addr <
802 sizeof(struct ar5416_eeprom) /
803 sizeof(u16); addr++) {
804 u16 temp;
805
806 temp = swab16(*eepdata);
807 *eepdata = temp;
808 eepdata++;
809
810 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
811 "0x%04X ", *eepdata);
812 if (((addr + 1) % 6) == 0)
813 DPRINTF(ah->ah_sc,
814 ATH_DBG_EEPROM,
815 "\n");
816 }
817 } else {
818 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
819 "Invalid EEPROM Magic. "
820 "endianness missmatch.\n");
821 return -EINVAL;
822 }
823 }
824 }
825 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
826 need_swap ? "True" : "False");
827
828 if (need_swap)
829 el = swab16(ahp->ah_eeprom.baseEepHeader.length);
830 else
831 el = ahp->ah_eeprom.baseEepHeader.length;
832
833 if (el > sizeof(struct ar5416_eeprom))
834 el = sizeof(struct ar5416_eeprom) / sizeof(u16);
835 else
836 el = el / sizeof(u16);
837
838 eepdata = (u16 *) (&ahp->ah_eeprom);
839
840 for (i = 0; i < el; i++)
841 sum ^= *eepdata++;
842
843 if (need_swap) {
844 u32 integer, j;
845 u16 word;
846
847 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
848 "EEPROM Endianness is not native.. Changing \n");
849
850 word = swab16(eep->baseEepHeader.length);
851 eep->baseEepHeader.length = word;
852
853 word = swab16(eep->baseEepHeader.checksum);
854 eep->baseEepHeader.checksum = word;
855
856 word = swab16(eep->baseEepHeader.version);
857 eep->baseEepHeader.version = word;
858
859 word = swab16(eep->baseEepHeader.regDmn[0]);
860 eep->baseEepHeader.regDmn[0] = word;
861
862 word = swab16(eep->baseEepHeader.regDmn[1]);
863 eep->baseEepHeader.regDmn[1] = word;
864
865 word = swab16(eep->baseEepHeader.rfSilent);
866 eep->baseEepHeader.rfSilent = word;
867
868 word = swab16(eep->baseEepHeader.blueToothOptions);
869 eep->baseEepHeader.blueToothOptions = word;
870
871 word = swab16(eep->baseEepHeader.deviceCap);
872 eep->baseEepHeader.deviceCap = word;
873
874 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
875 struct modal_eep_header *pModal =
876 &eep->modalHeader[j];
877 integer = swab32(pModal->antCtrlCommon);
878 pModal->antCtrlCommon = integer;
879
880 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
881 integer = swab32(pModal->antCtrlChain[i]);
882 pModal->antCtrlChain[i] = integer;
883 }
884
885 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
886 word = swab16(pModal->spurChans[i].spurChan);
887 pModal->spurChans[i].spurChan = word;
888 }
889 }
890 }
891
892 if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER ||
893 ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
894 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
895 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
896 sum, ar5416_get_eep_ver(ahp));
897 return -EINVAL;
898 }
899
900 return 0;
901 }
902
903 static bool ath9k_hw_chip_test(struct ath_hal *ah)
904 {
905 u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
906 u32 regHold[2];
907 u32 patternData[4] = { 0x55555555,
908 0xaaaaaaaa,
909 0x66666666,
910 0x99999999 };
911 int i, j;
912
913 for (i = 0; i < 2; i++) {
914 u32 addr = regAddr[i];
915 u32 wrData, rdData;
916
917 regHold[i] = REG_READ(ah, addr);
918 for (j = 0; j < 0x100; j++) {
919 wrData = (j << 16) | j;
920 REG_WRITE(ah, addr, wrData);
921 rdData = REG_READ(ah, addr);
922 if (rdData != wrData) {
923 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
924 "%s: address test failed "
925 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
926 __func__, addr, wrData, rdData);
927 return false;
928 }
929 }
930 for (j = 0; j < 4; j++) {
931 wrData = patternData[j];
932 REG_WRITE(ah, addr, wrData);
933 rdData = REG_READ(ah, addr);
934 if (wrData != rdData) {
935 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
936 "%s: address test failed "
937 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
938 __func__, addr, wrData, rdData);
939 return false;
940 }
941 }
942 REG_WRITE(ah, regAddr[i], regHold[i]);
943 }
944 udelay(100);
945 return true;
946 }
947
948 u32 ath9k_hw_getrxfilter(struct ath_hal *ah)
949 {
950 u32 bits = REG_READ(ah, AR_RX_FILTER);
951 u32 phybits = REG_READ(ah, AR_PHY_ERR);
952
953 if (phybits & AR_PHY_ERR_RADAR)
954 bits |= ATH9K_RX_FILTER_PHYRADAR;
955 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
956 bits |= ATH9K_RX_FILTER_PHYERR;
957 return bits;
958 }
959
960 void ath9k_hw_setrxfilter(struct ath_hal *ah, u32 bits)
961 {
962 u32 phybits;
963
964 REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
965 phybits = 0;
966 if (bits & ATH9K_RX_FILTER_PHYRADAR)
967 phybits |= AR_PHY_ERR_RADAR;
968 if (bits & ATH9K_RX_FILTER_PHYERR)
969 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
970 REG_WRITE(ah, AR_PHY_ERR, phybits);
971
972 if (phybits)
973 REG_WRITE(ah, AR_RXCFG,
974 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
975 else
976 REG_WRITE(ah, AR_RXCFG,
977 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
978 }
979
980 bool ath9k_hw_setcapability(struct ath_hal *ah,
981 enum ath9k_capability_type type,
982 u32 capability,
983 u32 setting,
984 int *status)
985 {
986 struct ath_hal_5416 *ahp = AH5416(ah);
987 u32 v;
988
989 switch (type) {
990 case ATH9K_CAP_TKIP_MIC:
991 if (setting)
992 ahp->ah_staId1Defaults |=
993 AR_STA_ID1_CRPT_MIC_ENABLE;
994 else
995 ahp->ah_staId1Defaults &=
996 ~AR_STA_ID1_CRPT_MIC_ENABLE;
997 return true;
998 case ATH9K_CAP_DIVERSITY:
999 v = REG_READ(ah, AR_PHY_CCK_DETECT);
1000 if (setting)
1001 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1002 else
1003 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1004 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
1005 return true;
1006 case ATH9K_CAP_MCAST_KEYSRCH:
1007 if (setting)
1008 ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
1009 else
1010 ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1011 return true;
1012 case ATH9K_CAP_TSF_ADJUST:
1013 if (setting)
1014 ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
1015 else
1016 ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
1017 return true;
1018 default:
1019 return false;
1020 }
1021 }
1022
1023 void ath9k_hw_dmaRegDump(struct ath_hal *ah)
1024 {
1025 u32 val[ATH9K_NUM_DMA_DEBUG_REGS];
1026 int qcuOffset = 0, dcuOffset = 0;
1027 u32 *qcuBase = &val[0], *dcuBase = &val[4];
1028 int i;
1029
1030 REG_WRITE(ah, AR_MACMISC,
1031 ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1032 (AR_MACMISC_MISC_OBS_BUS_1 <<
1033 AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1034
1035 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "Raw DMA Debug values:\n");
1036 for (i = 0; i < ATH9K_NUM_DMA_DEBUG_REGS; i++) {
1037 if (i % 4 == 0)
1038 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n");
1039
1040 val[i] = REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u32)));
1041 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%d: %08x ", i, val[i]);
1042 }
1043
1044 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n\n");
1045 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1046 "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1047
1048 for (i = 0; i < ATH9K_NUM_QUEUES;
1049 i++, qcuOffset += 4, dcuOffset += 5) {
1050 if (i == 8) {
1051 qcuOffset = 0;
1052 qcuBase++;
1053 }
1054
1055 if (i == 6) {
1056 dcuOffset = 0;
1057 dcuBase++;
1058 }
1059
1060 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1061 "%2d %2x %1x %2x %2x\n",
1062 i, (*qcuBase & (0x7 << qcuOffset)) >> qcuOffset,
1063 (*qcuBase & (0x8 << qcuOffset)) >> (qcuOffset +
1064 3),
1065 val[2] & (0x7 << (i * 3)) >> (i * 3),
1066 (*dcuBase & (0x1f << dcuOffset)) >> dcuOffset);
1067 }
1068
1069 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n");
1070 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1071 "qcu_stitch state: %2x qcu_fetch state: %2x\n",
1072 (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1073 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1074 "qcu_complete state: %2x dcu_complete state: %2x\n",
1075 (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1076 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1077 "dcu_arb state: %2x dcu_fp state: %2x\n",
1078 (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1079 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1080 "chan_idle_dur: %3d chan_idle_dur_valid: %1d\n",
1081 (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1082 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1083 "txfifo_valid_0: %1d txfifo_valid_1: %1d\n",
1084 (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1085 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1086 "txfifo_dcu_num_0: %2d txfifo_dcu_num_1: %2d\n",
1087 (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1088
1089 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "pcu observe 0x%x \n",
1090 REG_READ(ah, AR_OBS_BUS_1));
1091 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1092 "AR_CR 0x%x \n", REG_READ(ah, AR_CR));
1093 }
1094
1095 u32 ath9k_hw_GetMibCycleCountsPct(struct ath_hal *ah,
1096 u32 *rxc_pcnt,
1097 u32 *rxf_pcnt,
1098 u32 *txf_pcnt)
1099 {
1100 static u32 cycles, rx_clear, rx_frame, tx_frame;
1101 u32 good = 1;
1102
1103 u32 rc = REG_READ(ah, AR_RCCNT);
1104 u32 rf = REG_READ(ah, AR_RFCNT);
1105 u32 tf = REG_READ(ah, AR_TFCNT);
1106 u32 cc = REG_READ(ah, AR_CCCNT);
1107
1108 if (cycles == 0 || cycles > cc) {
1109 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1110 "%s: cycle counter wrap. ExtBusy = 0\n",
1111 __func__);
1112 good = 0;
1113 } else {
1114 u32 cc_d = cc - cycles;
1115 u32 rc_d = rc - rx_clear;
1116 u32 rf_d = rf - rx_frame;
1117 u32 tf_d = tf - tx_frame;
1118
1119 if (cc_d != 0) {
1120 *rxc_pcnt = rc_d * 100 / cc_d;
1121 *rxf_pcnt = rf_d * 100 / cc_d;
1122 *txf_pcnt = tf_d * 100 / cc_d;
1123 } else {
1124 good = 0;
1125 }
1126 }
1127
1128 cycles = cc;
1129 rx_frame = rf;
1130 rx_clear = rc;
1131 tx_frame = tf;
1132
1133 return good;
1134 }
1135
1136 void ath9k_hw_set11nmac2040(struct ath_hal *ah, enum ath9k_ht_macmode mode)
1137 {
1138 u32 macmode;
1139
1140 if (mode == ATH9K_HT_MACMODE_2040 &&
1141 !ah->ah_config.cwm_ignore_extcca)
1142 macmode = AR_2040_JOINED_RX_CLEAR;
1143 else
1144 macmode = 0;
1145
1146 REG_WRITE(ah, AR_2040_MODE, macmode);
1147 }
1148
1149 static void ath9k_hw_mark_phy_inactive(struct ath_hal *ah)
1150 {
1151 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1152 }
1153
1154
1155 static struct ath_hal_5416 *ath9k_hw_newstate(u16 devid,
1156 struct ath_softc *sc,
1157 void __iomem *mem,
1158 int *status)
1159 {
1160 static const u8 defbssidmask[ETH_ALEN] =
1161 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1162 struct ath_hal_5416 *ahp;
1163 struct ath_hal *ah;
1164
1165 ahp = kzalloc(sizeof(struct ath_hal_5416), GFP_KERNEL);
1166 if (ahp == NULL) {
1167 DPRINTF(sc, ATH_DBG_FATAL,
1168 "%s: cannot allocate memory for state block\n",
1169 __func__);
1170 *status = -ENOMEM;
1171 return NULL;
1172 }
1173
1174 ah = &ahp->ah;
1175
1176 ah->ah_sc = sc;
1177 ah->ah_sh = mem;
1178
1179 ah->ah_magic = AR5416_MAGIC;
1180 ah->ah_countryCode = CTRY_DEFAULT;
1181
1182 ah->ah_devid = devid;
1183 ah->ah_subvendorid = 0;
1184
1185 ah->ah_flags = 0;
1186 if ((devid == AR5416_AR9100_DEVID))
1187 ah->ah_macVersion = AR_SREV_VERSION_9100;
1188 if (!AR_SREV_9100(ah))
1189 ah->ah_flags = AH_USE_EEPROM;
1190
1191 ah->ah_powerLimit = MAX_RATE_POWER;
1192 ah->ah_tpScale = ATH9K_TP_SCALE_MAX;
1193
1194 ahp->ah_atimWindow = 0;
1195 ahp->ah_diversityControl = ah->ah_config.diversity_control;
1196 ahp->ah_antennaSwitchSwap =
1197 ah->ah_config.antenna_switch_swap;
1198
1199 ahp->ah_staId1Defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
1200 ahp->ah_beaconInterval = 100;
1201 ahp->ah_enable32kHzClock = DONT_USE_32KHZ;
1202 ahp->ah_slottime = (u32) -1;
1203 ahp->ah_acktimeout = (u32) -1;
1204 ahp->ah_ctstimeout = (u32) -1;
1205 ahp->ah_globaltxtimeout = (u32) -1;
1206 memcpy(&ahp->ah_bssidmask, defbssidmask, ETH_ALEN);
1207
1208 ahp->ah_gBeaconRate = 0;
1209
1210 return ahp;
1211 }
1212
1213 static int ath9k_hw_eeprom_attach(struct ath_hal *ah)
1214 {
1215 int status;
1216
1217 if (ath9k_hw_use_flash(ah))
1218 ath9k_hw_flash_map(ah);
1219
1220 if (!ath9k_hw_fill_eeprom(ah))
1221 return -EIO;
1222
1223 status = ath9k_hw_check_eeprom(ah);
1224
1225 return status;
1226 }
1227
1228 u32 ath9k_hw_get_eeprom(struct ath_hal_5416 *ahp,
1229 enum eeprom_param param)
1230 {
1231 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
1232 struct modal_eep_header *pModal = eep->modalHeader;
1233 struct base_eep_header *pBase = &eep->baseEepHeader;
1234
1235 switch (param) {
1236 case EEP_NFTHRESH_5:
1237 return -pModal[0].noiseFloorThreshCh[0];
1238 case EEP_NFTHRESH_2:
1239 return -pModal[1].noiseFloorThreshCh[0];
1240 case AR_EEPROM_MAC(0):
1241 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
1242 case AR_EEPROM_MAC(1):
1243 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
1244 case AR_EEPROM_MAC(2):
1245 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
1246 case EEP_REG_0:
1247 return pBase->regDmn[0];
1248 case EEP_REG_1:
1249 return pBase->regDmn[1];
1250 case EEP_OP_CAP:
1251 return pBase->deviceCap;
1252 case EEP_OP_MODE:
1253 return pBase->opCapFlags;
1254 case EEP_RF_SILENT:
1255 return pBase->rfSilent;
1256 case EEP_OB_5:
1257 return pModal[0].ob;
1258 case EEP_DB_5:
1259 return pModal[0].db;
1260 case EEP_OB_2:
1261 return pModal[1].ob;
1262 case EEP_DB_2:
1263 return pModal[1].db;
1264 case EEP_MINOR_REV:
1265 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
1266 case EEP_TX_MASK:
1267 return pBase->txMask;
1268 case EEP_RX_MASK:
1269 return pBase->rxMask;
1270 default:
1271 return 0;
1272 }
1273 }
1274
1275 static inline int ath9k_hw_get_radiorev(struct ath_hal *ah)
1276 {
1277 u32 val;
1278 int i;
1279
1280 REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
1281 for (i = 0; i < 8; i++)
1282 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
1283 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
1284 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
1285 return ath9k_hw_reverse_bits(val, 8);
1286 }
1287
1288 static inline int ath9k_hw_init_macaddr(struct ath_hal *ah)
1289 {
1290 u32 sum;
1291 int i;
1292 u16 eeval;
1293 struct ath_hal_5416 *ahp = AH5416(ah);
1294 DECLARE_MAC_BUF(mac);
1295
1296 sum = 0;
1297 for (i = 0; i < 3; i++) {
1298 eeval = ath9k_hw_get_eeprom(ahp, AR_EEPROM_MAC(i));
1299 sum += eeval;
1300 ahp->ah_macaddr[2 * i] = eeval >> 8;
1301 ahp->ah_macaddr[2 * i + 1] = eeval & 0xff;
1302 }
1303 if (sum == 0 || sum == 0xffff * 3) {
1304 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1305 "%s: mac address read failed: %s\n", __func__,
1306 print_mac(mac, ahp->ah_macaddr));
1307 return -EADDRNOTAVAIL;
1308 }
1309
1310 return 0;
1311 }
1312
1313 static inline int16_t ath9k_hw_interpolate(u16 target,
1314 u16 srcLeft,
1315 u16 srcRight,
1316 int16_t targetLeft,
1317 int16_t targetRight)
1318 {
1319 int16_t rv;
1320
1321 if (srcRight == srcLeft) {
1322 rv = targetLeft;
1323 } else {
1324 rv = (int16_t) (((target - srcLeft) * targetRight +
1325 (srcRight - target) * targetLeft) /
1326 (srcRight - srcLeft));
1327 }
1328 return rv;
1329 }
1330
1331 static inline u16 ath9k_hw_fbin2freq(u8 fbin,
1332 bool is2GHz)
1333 {
1334
1335 if (fbin == AR5416_BCHAN_UNUSED)
1336 return fbin;
1337
1338 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
1339 }
1340
1341 static u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah,
1342 u16 i,
1343 bool is2GHz)
1344 {
1345 struct ath_hal_5416 *ahp = AH5416(ah);
1346 struct ar5416_eeprom *eep =
1347 (struct ar5416_eeprom *) &ahp->ah_eeprom;
1348 u16 spur_val = AR_NO_SPUR;
1349
1350 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1351 "Getting spur idx %d is2Ghz. %d val %x\n",
1352 i, is2GHz, ah->ah_config.spurchans[i][is2GHz]);
1353
1354 switch (ah->ah_config.spurmode) {
1355 case SPUR_DISABLE:
1356 break;
1357 case SPUR_ENABLE_IOCTL:
1358 spur_val = ah->ah_config.spurchans[i][is2GHz];
1359 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1360 "Getting spur val from new loc. %d\n", spur_val);
1361 break;
1362 case SPUR_ENABLE_EEPROM:
1363 spur_val = eep->modalHeader[is2GHz].spurChans[i].spurChan;
1364 break;
1365
1366 }
1367 return spur_val;
1368 }
1369
1370 static inline int ath9k_hw_rfattach(struct ath_hal *ah)
1371 {
1372 bool rfStatus = false;
1373 int ecode = 0;
1374
1375 rfStatus = ath9k_hw_init_rf(ah, &ecode);
1376 if (!rfStatus) {
1377 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1378 "%s: RF setup failed, status %u\n", __func__,
1379 ecode);
1380 return ecode;
1381 }
1382
1383 return 0;
1384 }
1385
1386 static int ath9k_hw_rf_claim(struct ath_hal *ah)
1387 {
1388 u32 val;
1389
1390 REG_WRITE(ah, AR_PHY(0), 0x00000007);
1391
1392 val = ath9k_hw_get_radiorev(ah);
1393 switch (val & AR_RADIO_SREV_MAJOR) {
1394 case 0:
1395 val = AR_RAD5133_SREV_MAJOR;
1396 break;
1397 case AR_RAD5133_SREV_MAJOR:
1398 case AR_RAD5122_SREV_MAJOR:
1399 case AR_RAD2133_SREV_MAJOR:
1400 case AR_RAD2122_SREV_MAJOR:
1401 break;
1402 default:
1403 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1404 "%s: 5G Radio Chip Rev 0x%02X is not "
1405 "supported by this driver\n",
1406 __func__, ah->ah_analog5GhzRev);
1407 return -EOPNOTSUPP;
1408 }
1409
1410 ah->ah_analog5GhzRev = val;
1411
1412 return 0;
1413 }
1414
1415 static inline void ath9k_hw_init_pll(struct ath_hal *ah,
1416 struct ath9k_channel *chan)
1417 {
1418 u32 pll;
1419
1420 if (AR_SREV_9100(ah)) {
1421 if (chan && IS_CHAN_5GHZ(chan))
1422 pll = 0x1450;
1423 else
1424 pll = 0x1458;
1425 } else {
1426 if (AR_SREV_9280_10_OR_LATER(ah)) {
1427 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1428
1429 if (chan && IS_CHAN_HALF_RATE(chan))
1430 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1431 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1432 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1433
1434 if (chan && IS_CHAN_5GHZ(chan)) {
1435 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1436
1437
1438 if (AR_SREV_9280_20(ah)) {
1439 if (((chan->channel % 20) == 0)
1440 || ((chan->channel % 10) == 0))
1441 pll = 0x2850;
1442 else
1443 pll = 0x142c;
1444 }
1445 } else {
1446 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1447 }
1448
1449 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1450
1451 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1452
1453 if (chan && IS_CHAN_HALF_RATE(chan))
1454 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1455 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1456 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1457
1458 if (chan && IS_CHAN_5GHZ(chan))
1459 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1460 else
1461 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1462 } else {
1463 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1464
1465 if (chan && IS_CHAN_HALF_RATE(chan))
1466 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1467 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1468 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1469
1470 if (chan && IS_CHAN_5GHZ(chan))
1471 pll |= SM(0xa, AR_RTC_PLL_DIV);
1472 else
1473 pll |= SM(0xb, AR_RTC_PLL_DIV);
1474 }
1475 }
1476 REG_WRITE(ah, (u16) (AR_RTC_PLL_CONTROL), pll);
1477
1478 udelay(RTC_PLL_SETTLE_DELAY);
1479
1480 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1481 }
1482
1483 static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
1484 enum ath9k_ht_macmode macmode)
1485 {
1486 u32 phymode;
1487 struct ath_hal_5416 *ahp = AH5416(ah);
1488
1489 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1490 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
1491
1492 if (IS_CHAN_HT40(chan)) {
1493 phymode |= AR_PHY_FC_DYN2040_EN;
1494
1495 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1496 (chan->chanmode == CHANNEL_G_HT40PLUS))
1497 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1498
1499 if (ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1500 phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1501 }
1502 REG_WRITE(ah, AR_PHY_TURBO, phymode);
1503
1504 ath9k_hw_set11nmac2040(ah, macmode);
1505
1506 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1507 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1508 }
1509
1510 static void ath9k_hw_set_operating_mode(struct ath_hal *ah, int opmode)
1511 {
1512 u32 val;
1513
1514 val = REG_READ(ah, AR_STA_ID1);
1515 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1516 switch (opmode) {
1517 case ATH9K_M_HOSTAP:
1518 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1519 | AR_STA_ID1_KSRCH_MODE);
1520 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1521 break;
1522 case ATH9K_M_IBSS:
1523 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1524 | AR_STA_ID1_KSRCH_MODE);
1525 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1526 break;
1527 case ATH9K_M_STA:
1528 case ATH9K_M_MONITOR:
1529 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1530 break;
1531 }
1532 }
1533
1534 static inline void
1535 ath9k_hw_set_rfmode(struct ath_hal *ah, struct ath9k_channel *chan)
1536 {
1537 u32 rfMode = 0;
1538
1539 if (chan == NULL)
1540 return;
1541
1542 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1543 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1544
1545 if (!AR_SREV_9280_10_OR_LATER(ah))
1546 rfMode |= (IS_CHAN_5GHZ(chan)) ? AR_PHY_MODE_RF5GHZ :
1547 AR_PHY_MODE_RF2GHZ;
1548
1549 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1550 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1551
1552 REG_WRITE(ah, AR_PHY_MODE, rfMode);
1553 }
1554
1555 static bool ath9k_hw_set_reset(struct ath_hal *ah, int type)
1556 {
1557 u32 rst_flags;
1558 u32 tmpReg;
1559
1560 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1561 AR_RTC_FORCE_WAKE_ON_INT);
1562
1563 if (AR_SREV_9100(ah)) {
1564 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1565 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1566 } else {
1567 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1568 if (tmpReg &
1569 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1570 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1571 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1572 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1573 } else {
1574 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1575 }
1576
1577 rst_flags = AR_RTC_RC_MAC_WARM;
1578 if (type == ATH9K_RESET_COLD)
1579 rst_flags |= AR_RTC_RC_MAC_COLD;
1580 }
1581
1582 REG_WRITE(ah, (u16) (AR_RTC_RC), rst_flags);
1583 udelay(50);
1584
1585 REG_WRITE(ah, (u16) (AR_RTC_RC), 0);
1586 if (!ath9k_hw_wait(ah, (u16) (AR_RTC_RC), AR_RTC_RC_M, 0)) {
1587 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1588 "%s: RTC stuck in MAC reset\n",
1589 __func__);
1590 return false;
1591 }
1592
1593 if (!AR_SREV_9100(ah))
1594 REG_WRITE(ah, AR_RC, 0);
1595
1596 ath9k_hw_init_pll(ah, NULL);
1597
1598 if (AR_SREV_9100(ah))
1599 udelay(50);
1600
1601 return true;
1602 }
1603
1604 static inline bool ath9k_hw_set_reset_power_on(struct ath_hal *ah)
1605 {
1606 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1607 AR_RTC_FORCE_WAKE_ON_INT);
1608
1609 REG_WRITE(ah, (u16) (AR_RTC_RESET), 0);
1610 REG_WRITE(ah, (u16) (AR_RTC_RESET), 1);
1611
1612 if (!ath9k_hw_wait(ah,
1613 AR_RTC_STATUS,
1614 AR_RTC_STATUS_M,
1615 AR_RTC_STATUS_ON)) {
1616 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: RTC not waking up\n",
1617 __func__);
1618 return false;
1619 }
1620
1621 ath9k_hw_read_revisions(ah);
1622
1623 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1624 }
1625
1626 static bool ath9k_hw_set_reset_reg(struct ath_hal *ah,
1627 u32 type)
1628 {
1629 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1630 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1631
1632 switch (type) {
1633 case ATH9K_RESET_POWER_ON:
1634 return ath9k_hw_set_reset_power_on(ah);
1635 break;
1636 case ATH9K_RESET_WARM:
1637 case ATH9K_RESET_COLD:
1638 return ath9k_hw_set_reset(ah, type);
1639 break;
1640 default:
1641 return false;
1642 }
1643 }
1644
1645 static inline
1646 struct ath9k_channel *ath9k_hw_check_chan(struct ath_hal *ah,
1647 struct ath9k_channel *chan)
1648 {
1649 if (!(IS_CHAN_2GHZ(chan) ^ IS_CHAN_5GHZ(chan))) {
1650 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1651 "%s: invalid channel %u/0x%x; not marked as "
1652 "2GHz or 5GHz\n", __func__, chan->channel,
1653 chan->channelFlags);
1654 return NULL;
1655 }
1656
1657 if (!IS_CHAN_OFDM(chan) &&
1658 !IS_CHAN_CCK(chan) &&
1659 !IS_CHAN_HT20(chan) &&
1660 !IS_CHAN_HT40(chan)) {
1661 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1662 "%s: invalid channel %u/0x%x; not marked as "
1663 "OFDM or CCK or HT20 or HT40PLUS or HT40MINUS\n",
1664 __func__, chan->channel, chan->channelFlags);
1665 return NULL;
1666 }
1667
1668 return ath9k_regd_check_channel(ah, chan);
1669 }
1670
1671 static inline bool
1672 ath9k_hw_get_lower_upper_index(u8 target,
1673 u8 *pList,
1674 u16 listSize,
1675 u16 *indexL,
1676 u16 *indexR)
1677 {
1678 u16 i;
1679
1680 if (target <= pList[0]) {
1681 *indexL = *indexR = 0;
1682 return true;
1683 }
1684 if (target >= pList[listSize - 1]) {
1685 *indexL = *indexR = (u16) (listSize - 1);
1686 return true;
1687 }
1688
1689 for (i = 0; i < listSize - 1; i++) {
1690 if (pList[i] == target) {
1691 *indexL = *indexR = i;
1692 return true;
1693 }
1694 if (target < pList[i + 1]) {
1695 *indexL = i;
1696 *indexR = (u16) (i + 1);
1697 return false;
1698 }
1699 }
1700 return false;
1701 }
1702
1703 static int16_t ath9k_hw_get_nf_hist_mid(int16_t *nfCalBuffer)
1704 {
1705 int16_t nfval;
1706 int16_t sort[ATH9K_NF_CAL_HIST_MAX];
1707 int i, j;
1708
1709 for (i = 0; i < ATH9K_NF_CAL_HIST_MAX; i++)
1710 sort[i] = nfCalBuffer[i];
1711
1712 for (i = 0; i < ATH9K_NF_CAL_HIST_MAX - 1; i++) {
1713 for (j = 1; j < ATH9K_NF_CAL_HIST_MAX - i; j++) {
1714 if (sort[j] > sort[j - 1]) {
1715 nfval = sort[j];
1716 sort[j] = sort[j - 1];
1717 sort[j - 1] = nfval;
1718 }
1719 }
1720 }
1721 nfval = sort[(ATH9K_NF_CAL_HIST_MAX - 1) >> 1];
1722
1723 return nfval;
1724 }
1725
1726 static void ath9k_hw_update_nfcal_hist_buffer(struct ath9k_nfcal_hist *h,
1727 int16_t *nfarray)
1728 {
1729 int i;
1730
1731 for (i = 0; i < NUM_NF_READINGS; i++) {
1732 h[i].nfCalBuffer[h[i].currIndex] = nfarray[i];
1733
1734 if (++h[i].currIndex >= ATH9K_NF_CAL_HIST_MAX)
1735 h[i].currIndex = 0;
1736
1737 if (h[i].invalidNFcount > 0) {
1738 if (nfarray[i] < AR_PHY_CCA_MIN_BAD_VALUE
1739 || nfarray[i] > AR_PHY_CCA_MAX_HIGH_VALUE) {
1740 h[i].invalidNFcount = ATH9K_NF_CAL_HIST_MAX;
1741 } else {
1742 h[i].invalidNFcount--;
1743 h[i].privNF = nfarray[i];
1744 }
1745 } else {
1746 h[i].privNF =
1747 ath9k_hw_get_nf_hist_mid(h[i].nfCalBuffer);
1748 }
1749 }
1750 return;
1751 }
1752
1753 static void ar5416GetNoiseFloor(struct ath_hal *ah,
1754 int16_t nfarray[NUM_NF_READINGS])
1755 {
1756 int16_t nf;
1757
1758 if (AR_SREV_9280_10_OR_LATER(ah))
1759 nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
1760 else
1761 nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1762
1763 if (nf & 0x100)
1764 nf = 0 - ((nf ^ 0x1ff) + 1);
1765 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
1766 "NF calibrated [ctl] [chain 0] is %d\n", nf);
1767 nfarray[0] = nf;
1768
1769 if (AR_SREV_9280_10_OR_LATER(ah))
1770 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA),
1771 AR9280_PHY_CH1_MINCCA_PWR);
1772 else
1773 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA),
1774 AR_PHY_CH1_MINCCA_PWR);
1775
1776 if (nf & 0x100)
1777 nf = 0 - ((nf ^ 0x1ff) + 1);
1778 DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
1779 "NF calibrated [ctl] [chain 1] is %d\n", nf);
1780 nfarray[1] = nf;
1781
1782 if (!AR_SREV_9280(ah)) {
1783 nf = MS(REG_READ(ah, AR_PHY_CH2_CCA),
1784 AR_PHY_CH2_MINCCA_PWR);
1785 if (nf & 0x100)
1786 nf = 0 - ((nf ^ 0x1ff) + 1);
1787 DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
1788 "NF calibrated [ctl] [chain 2] is %d\n", nf);
1789 nfarray[2] = nf;
1790 }
1791
1792 if (AR_SREV_9280_10_OR_LATER(ah))
1793 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA),
1794 AR9280_PHY_EXT_MINCCA_PWR);
1795 else
1796 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA),
1797 AR_PHY_EXT_MINCCA_PWR);
1798
1799 if (nf & 0x100)
1800 nf = 0 - ((nf ^ 0x1ff) + 1);
1801 DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
1802 "NF calibrated [ext] [chain 0] is %d\n", nf);
1803 nfarray[3] = nf;
1804
1805 if (AR_SREV_9280_10_OR_LATER(ah))
1806 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA),
1807 AR9280_PHY_CH1_EXT_MINCCA_PWR);
1808 else
1809 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA),
1810 AR_PHY_CH1_EXT_MINCCA_PWR);
1811
1812 if (nf & 0x100)
1813 nf = 0 - ((nf ^ 0x1ff) + 1);
1814 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
1815 "NF calibrated [ext] [chain 1] is %d\n", nf);
1816 nfarray[4] = nf;
1817
1818 if (!AR_SREV_9280(ah)) {
1819 nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA),
1820 AR_PHY_CH2_EXT_MINCCA_PWR);
1821 if (nf & 0x100)
1822 nf = 0 - ((nf ^ 0x1ff) + 1);
1823 DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
1824 "NF calibrated [ext] [chain 2] is %d\n", nf);
1825 nfarray[5] = nf;
1826 }
1827 }
1828
1829 static bool
1830 getNoiseFloorThresh(struct ath_hal *ah,
1831 const struct ath9k_channel *chan,
1832 int16_t *nft)
1833 {
1834 struct ath_hal_5416 *ahp = AH5416(ah);
1835
1836 switch (chan->chanmode) {
1837 case CHANNEL_A:
1838 case CHANNEL_A_HT20:
1839 case CHANNEL_A_HT40PLUS:
1840 case CHANNEL_A_HT40MINUS:
1841 *nft = (int16_t) ath9k_hw_get_eeprom(ahp, EEP_NFTHRESH_5);
1842 break;
1843 case CHANNEL_B:
1844 case CHANNEL_G:
1845 case CHANNEL_G_HT20:
1846 case CHANNEL_G_HT40PLUS:
1847 case CHANNEL_G_HT40MINUS:
1848 *nft = (int16_t) ath9k_hw_get_eeprom(ahp, EEP_NFTHRESH_2);
1849 break;
1850 default:
1851 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1852 "%s: invalid channel flags 0x%x\n", __func__,
1853 chan->channelFlags);
1854 return false;
1855 }
1856 return true;
1857 }
1858
1859 static void ath9k_hw_start_nfcal(struct ath_hal *ah)
1860 {
1861 REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
1862 AR_PHY_AGC_CONTROL_ENABLE_NF);
1863 REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
1864 AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1865 REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1866 }
1867
1868 static void
1869 ath9k_hw_loadnf(struct ath_hal *ah, struct ath9k_channel *chan)
1870 {
1871 struct ath9k_nfcal_hist *h;
1872 int i, j;
1873 int32_t val;
1874 const u32 ar5416_cca_regs[6] = {
1875 AR_PHY_CCA,
1876 AR_PHY_CH1_CCA,
1877 AR_PHY_CH2_CCA,
1878 AR_PHY_EXT_CCA,
1879 AR_PHY_CH1_EXT_CCA,
1880 AR_PHY_CH2_EXT_CCA
1881 };
1882 u8 chainmask;
1883
1884 if (AR_SREV_9280(ah))
1885 chainmask = 0x1B;
1886 else
1887 chainmask = 0x3F;
1888
1889 #ifdef ATH_NF_PER_CHAN
1890 h = chan->nfCalHist;
1891 #else
1892 h = ah->nfCalHist;
1893 #endif
1894
1895 for (i = 0; i < NUM_NF_READINGS; i++) {
1896 if (chainmask & (1 << i)) {
1897 val = REG_READ(ah, ar5416_cca_regs[i]);
1898 val &= 0xFFFFFE00;
1899 val |= (((u32) (h[i].privNF) << 1) & 0x1ff);
1900 REG_WRITE(ah, ar5416_cca_regs[i], val);
1901 }
1902 }
1903
1904 REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
1905 AR_PHY_AGC_CONTROL_ENABLE_NF);
1906 REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
1907 AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1908 REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1909
1910 for (j = 0; j < 1000; j++) {
1911 if ((REG_READ(ah, AR_PHY_AGC_CONTROL) &
1912 AR_PHY_AGC_CONTROL_NF) == 0)
1913 break;
1914 udelay(10);
1915 }
1916
1917 for (i = 0; i < NUM_NF_READINGS; i++) {
1918 if (chainmask & (1 << i)) {
1919 val = REG_READ(ah, ar5416_cca_regs[i]);
1920 val &= 0xFFFFFE00;
1921 val |= (((u32) (-50) << 1) & 0x1ff);
1922 REG_WRITE(ah, ar5416_cca_regs[i], val);
1923 }
1924 }
1925 }
1926
1927 static int16_t ath9k_hw_getnf(struct ath_hal *ah,
1928 struct ath9k_channel *chan)
1929 {
1930 int16_t nf, nfThresh;
1931 int16_t nfarray[NUM_NF_READINGS] = { 0 };
1932 struct ath9k_nfcal_hist *h;
1933 u8 chainmask;
1934
1935 if (AR_SREV_9280(ah))
1936 chainmask = 0x1B;
1937 else
1938 chainmask = 0x3F;
1939
1940 chan->channelFlags &= (~CHANNEL_CW_INT);
1941 if (REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1942 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
1943 "%s: NF did not complete in calibration window\n",
1944 __func__);
1945 nf = 0;
1946 chan->rawNoiseFloor = nf;
1947 return chan->rawNoiseFloor;
1948 } else {
1949 ar5416GetNoiseFloor(ah, nfarray);
1950 nf = nfarray[0];
1951 if (getNoiseFloorThresh(ah, chan, &nfThresh)
1952 && nf > nfThresh) {
1953 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
1954 "%s: noise floor failed detected; "
1955 "detected %d, threshold %d\n", __func__,
1956 nf, nfThresh);
1957 chan->channelFlags |= CHANNEL_CW_INT;
1958 }
1959 }
1960
1961 #ifdef ATH_NF_PER_CHAN
1962 h = chan->nfCalHist;
1963 #else
1964 h = ah->nfCalHist;
1965 #endif
1966
1967 ath9k_hw_update_nfcal_hist_buffer(h, nfarray);
1968 chan->rawNoiseFloor = h[0].privNF;
1969
1970 return chan->rawNoiseFloor;
1971 }
1972
1973 static void ath9k_hw_update_mibstats(struct ath_hal *ah,
1974 struct ath9k_mib_stats *stats)
1975 {
1976 stats->ackrcv_bad += REG_READ(ah, AR_ACK_FAIL);
1977 stats->rts_bad += REG_READ(ah, AR_RTS_FAIL);
1978 stats->fcs_bad += REG_READ(ah, AR_FCS_FAIL);
1979 stats->rts_good += REG_READ(ah, AR_RTS_OK);
1980 stats->beacons += REG_READ(ah, AR_BEACON_CNT);
1981 }
1982
1983 static void ath9k_enable_mib_counters(struct ath_hal *ah)
1984 {
1985 struct ath_hal_5416 *ahp = AH5416(ah);
1986
1987 DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Enable mib counters\n");
1988
1989 ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
1990
1991 REG_WRITE(ah, AR_FILT_OFDM, 0);
1992 REG_WRITE(ah, AR_FILT_CCK, 0);
1993 REG_WRITE(ah, AR_MIBC,
1994 ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS)
1995 & 0x0f);
1996 REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1997 REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1998 }
1999
2000 static void ath9k_hw_disable_mib_counters(struct ath_hal *ah)
2001 {
2002 struct ath_hal_5416 *ahp = AH5416(ah);
2003
2004 DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Disabling MIB counters\n");
2005
2006 REG_WRITE(ah, AR_MIBC, AR_MIBC_FMC | AR_MIBC_CMC);
2007
2008 ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
2009
2010 REG_WRITE(ah, AR_FILT_OFDM, 0);
2011 REG_WRITE(ah, AR_FILT_CCK, 0);
2012 }
2013
2014 static int ath9k_hw_get_ani_channel_idx(struct ath_hal *ah,
2015 struct ath9k_channel *chan)
2016 {
2017 struct ath_hal_5416 *ahp = AH5416(ah);
2018 int i;
2019
2020 for (i = 0; i < ARRAY_SIZE(ahp->ah_ani); i++) {
2021 if (ahp->ah_ani[i].c.channel == chan->channel)
2022 return i;
2023 if (ahp->ah_ani[i].c.channel == 0) {
2024 ahp->ah_ani[i].c.channel = chan->channel;
2025 ahp->ah_ani[i].c.channelFlags = chan->channelFlags;
2026 return i;
2027 }
2028 }
2029
2030 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2031 "No more channel states left. Using channel 0\n");
2032 return 0;
2033 }
2034
2035 static void ath9k_hw_ani_attach(struct ath_hal *ah)
2036 {
2037 struct ath_hal_5416 *ahp = AH5416(ah);
2038 int i;
2039
2040 ahp->ah_hasHwPhyCounters = 1;
2041
2042 memset(ahp->ah_ani, 0, sizeof(ahp->ah_ani));
2043 for (i = 0; i < ARRAY_SIZE(ahp->ah_ani); i++) {
2044 ahp->ah_ani[i].ofdmTrigHigh = ATH9K_ANI_OFDM_TRIG_HIGH;
2045 ahp->ah_ani[i].ofdmTrigLow = ATH9K_ANI_OFDM_TRIG_LOW;
2046 ahp->ah_ani[i].cckTrigHigh = ATH9K_ANI_CCK_TRIG_HIGH;
2047 ahp->ah_ani[i].cckTrigLow = ATH9K_ANI_CCK_TRIG_LOW;
2048 ahp->ah_ani[i].rssiThrHigh = ATH9K_ANI_RSSI_THR_HIGH;
2049 ahp->ah_ani[i].rssiThrLow = ATH9K_ANI_RSSI_THR_LOW;
2050 ahp->ah_ani[i].ofdmWeakSigDetectOff =
2051 !ATH9K_ANI_USE_OFDM_WEAK_SIG;
2052 ahp->ah_ani[i].cckWeakSigThreshold =
2053 ATH9K_ANI_CCK_WEAK_SIG_THR;
2054 ahp->ah_ani[i].spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
2055 ahp->ah_ani[i].firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
2056 if (ahp->ah_hasHwPhyCounters) {
2057 ahp->ah_ani[i].ofdmPhyErrBase =
2058 AR_PHY_COUNTMAX - ATH9K_ANI_OFDM_TRIG_HIGH;
2059 ahp->ah_ani[i].cckPhyErrBase =
2060 AR_PHY_COUNTMAX - ATH9K_ANI_CCK_TRIG_HIGH;
2061 }
2062 }
2063 if (ahp->ah_hasHwPhyCounters) {
2064 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2065 "Setting OfdmErrBase = 0x%08x\n",
2066 ahp->ah_ani[0].ofdmPhyErrBase);
2067 DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Setting cckErrBase = 0x%08x\n",
2068 ahp->ah_ani[0].cckPhyErrBase);
2069
2070 REG_WRITE(ah, AR_PHY_ERR_1, ahp->ah_ani[0].ofdmPhyErrBase);
2071 REG_WRITE(ah, AR_PHY_ERR_2, ahp->ah_ani[0].cckPhyErrBase);
2072 ath9k_enable_mib_counters(ah);
2073 }
2074 ahp->ah_aniPeriod = ATH9K_ANI_PERIOD;
2075 if (ah->ah_config.enable_ani)
2076 ahp->ah_procPhyErr |= HAL_PROCESS_ANI;
2077 }
2078
2079 static inline void ath9k_hw_ani_setup(struct ath_hal *ah)
2080 {
2081 struct ath_hal_5416 *ahp = AH5416(ah);
2082 int i;
2083
2084 const int totalSizeDesired[] = { -55, -55, -55, -55, -62 };
2085 const int coarseHigh[] = { -14, -14, -14, -14, -12 };
2086 const int coarseLow[] = { -64, -64, -64, -64, -70 };
2087 const int firpwr[] = { -78, -78, -78, -78, -80 };
2088
2089 for (i = 0; i < 5; i++) {
2090 ahp->ah_totalSizeDesired[i] = totalSizeDesired[i];
2091 ahp->ah_coarseHigh[i] = coarseHigh[i];
2092 ahp->ah_coarseLow[i] = coarseLow[i];
2093 ahp->ah_firpwr[i] = firpwr[i];
2094 }
2095 }
2096
2097 static void ath9k_hw_ani_detach(struct ath_hal *ah)
2098 {
2099 struct ath_hal_5416 *ahp = AH5416(ah);
2100
2101 DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Detaching Ani\n");
2102 if (ahp->ah_hasHwPhyCounters) {
2103 ath9k_hw_disable_mib_counters(ah);
2104 REG_WRITE(ah, AR_PHY_ERR_1, 0);
2105 REG_WRITE(ah, AR_PHY_ERR_2, 0);
2106 }
2107 }
2108
2109
2110 static bool ath9k_hw_ani_control(struct ath_hal *ah,
2111 enum ath9k_ani_cmd cmd, int param)
2112 {
2113 struct ath_hal_5416 *ahp = AH5416(ah);
2114 struct ar5416AniState *aniState = ahp->ah_curani;
2115
2116 switch (cmd & ahp->ah_ani_function) {
2117 case ATH9K_ANI_NOISE_IMMUNITY_LEVEL:{
2118 u32 level = param;
2119
2120 if (level >= ARRAY_SIZE(ahp->ah_totalSizeDesired)) {
2121 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2122 "%s: level out of range (%u > %u)\n",
2123 __func__, level,
2124 (unsigned) ARRAY_SIZE(ahp->
2125 ah_totalSizeDesired));
2126 return false;
2127 }
2128
2129 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
2130 AR_PHY_DESIRED_SZ_TOT_DES,
2131 ahp->ah_totalSizeDesired[level]);
2132 REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
2133 AR_PHY_AGC_CTL1_COARSE_LOW,
2134 ahp->ah_coarseLow[level]);
2135 REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
2136 AR_PHY_AGC_CTL1_COARSE_HIGH,
2137 ahp->ah_coarseHigh[level]);
2138 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
2139 AR_PHY_FIND_SIG_FIRPWR,
2140 ahp->ah_firpwr[level]);
2141
2142 if (level > aniState->noiseImmunityLevel)
2143 ahp->ah_stats.ast_ani_niup++;
2144 else if (level < aniState->noiseImmunityLevel)
2145 ahp->ah_stats.ast_ani_nidown++;
2146 aniState->noiseImmunityLevel = level;
2147 break;
2148 }
2149 case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
2150 const int m1ThreshLow[] = { 127, 50 };
2151 const int m2ThreshLow[] = { 127, 40 };
2152 const int m1Thresh[] = { 127, 0x4d };
2153 const int m2Thresh[] = { 127, 0x40 };
2154 const int m2CountThr[] = { 31, 16 };
2155 const int m2CountThrLow[] = { 63, 48 };
2156 u32 on = param ? 1 : 0;
2157
2158 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
2159 AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
2160 m1ThreshLow[on]);
2161 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
2162 AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
2163 m2ThreshLow[on]);
2164 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
2165 AR_PHY_SFCORR_M1_THRESH,
2166 m1Thresh[on]);
2167 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
2168 AR_PHY_SFCORR_M2_THRESH,
2169 m2Thresh[on]);
2170 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
2171 AR_PHY_SFCORR_M2COUNT_THR,
2172 m2CountThr[on]);
2173 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
2174 AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
2175 m2CountThrLow[on]);
2176
2177 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
2178 AR_PHY_SFCORR_EXT_M1_THRESH_LOW,
2179 m1ThreshLow[on]);
2180 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
2181 AR_PHY_SFCORR_EXT_M2_THRESH_LOW,
2182 m2ThreshLow[on]);
2183 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
2184 AR_PHY_SFCORR_EXT_M1_THRESH,
2185 m1Thresh[on]);
2186 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
2187 AR_PHY_SFCORR_EXT_M2_THRESH,
2188 m2Thresh[on]);
2189
2190 if (on)
2191 REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
2192 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
2193 else
2194 REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
2195 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
2196
2197 if (!on != aniState->ofdmWeakSigDetectOff) {
2198 if (on)
2199 ahp->ah_stats.ast_ani_ofdmon++;
2200 else
2201 ahp->ah_stats.ast_ani_ofdmoff++;
2202 aniState->ofdmWeakSigDetectOff = !on;
2203 }
2204 break;
2205 }
2206 case ATH9K_ANI_CCK_WEAK_SIGNAL_THR:{
2207 const int weakSigThrCck[] = { 8, 6 };
2208 u32 high = param ? 1 : 0;
2209
2210 REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
2211 AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
2212 weakSigThrCck[high]);
2213 if (high != aniState->cckWeakSigThreshold) {
2214 if (high)
2215 ahp->ah_stats.ast_ani_cckhigh++;
2216 else
2217 ahp->ah_stats.ast_ani_ccklow++;
2218 aniState->cckWeakSigThreshold = high;
2219 }
2220 break;
2221 }
2222 case ATH9K_ANI_FIRSTEP_LEVEL:{
2223 const int firstep[] = { 0, 4, 8 };
2224 u32 level = param;
2225
2226 if (level >= ARRAY_SIZE(firstep)) {
2227 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2228 "%s: level out of range (%u > %u)\n",
2229 __func__, level,
2230 (unsigned) ARRAY_SIZE(firstep));
2231 return false;
2232 }
2233 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
2234 AR_PHY_FIND_SIG_FIRSTEP,
2235 firstep[level]);
2236 if (level > aniState->firstepLevel)
2237 ahp->ah_stats.ast_ani_stepup++;
2238 else if (level < aniState->firstepLevel)
2239 ahp->ah_stats.ast_ani_stepdown++;
2240 aniState->firstepLevel = level;
2241 break;
2242 }
2243 case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
2244 const int cycpwrThr1[] =
2245 { 2, 4, 6, 8, 10, 12, 14, 16 };
2246 u32 level = param;
2247
2248 if (level >= ARRAY_SIZE(cycpwrThr1)) {
2249 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2250 "%s: level out of range (%u > %u)\n",
2251 __func__, level,
2252 (unsigned)
2253 ARRAY_SIZE(cycpwrThr1));
2254 return false;
2255 }
2256 REG_RMW_FIELD(ah, AR_PHY_TIMING5,
2257 AR_PHY_TIMING5_CYCPWR_THR1,
2258 cycpwrThr1[level]);
2259 if (level > aniState->spurImmunityLevel)
2260 ahp->ah_stats.ast_ani_spurup++;
2261 else if (level < aniState->spurImmunityLevel)
2262 ahp->ah_stats.ast_ani_spurdown++;
2263 aniState->spurImmunityLevel = level;
2264 break;
2265 }
2266 case ATH9K_ANI_PRESENT:
2267 break;
2268 default:
2269 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2270 "%s: invalid cmd %u\n", __func__, cmd);
2271 return false;
2272 }
2273
2274 DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: ANI parameters:\n", __func__);
2275 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2276 "noiseImmunityLevel=%d, spurImmunityLevel=%d, "
2277 "ofdmWeakSigDetectOff=%d\n",
2278 aniState->noiseImmunityLevel, aniState->spurImmunityLevel,
2279 !aniState->ofdmWeakSigDetectOff);
2280 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2281 "cckWeakSigThreshold=%d, "
2282 "firstepLevel=%d, listenTime=%d\n",
2283 aniState->cckWeakSigThreshold, aniState->firstepLevel,
2284 aniState->listenTime);
2285 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2286 "cycleCount=%d, ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n",
2287 aniState->cycleCount, aniState->ofdmPhyErrCount,
2288 aniState->cckPhyErrCount);
2289 return true;
2290 }
2291
2292 static void ath9k_ani_restart(struct ath_hal *ah)
2293 {
2294 struct ath_hal_5416 *ahp = AH5416(ah);
2295 struct ar5416AniState *aniState;
2296
2297 if (!DO_ANI(ah))
2298 return;
2299
2300 aniState = ahp->ah_curani;
2301
2302 aniState->listenTime = 0;
2303 if (ahp->ah_hasHwPhyCounters) {
2304 if (aniState->ofdmTrigHigh > AR_PHY_COUNTMAX) {
2305 aniState->ofdmPhyErrBase = 0;
2306 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2307 "OFDM Trigger is too high for hw counters\n");
2308 } else {
2309 aniState->ofdmPhyErrBase =
2310 AR_PHY_COUNTMAX - aniState->ofdmTrigHigh;
2311 }
2312 if (aniState->cckTrigHigh > AR_PHY_COUNTMAX) {
2313 aniState->cckPhyErrBase = 0;
2314 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2315 "CCK Trigger is too high for hw counters\n");
2316 } else {
2317 aniState->cckPhyErrBase =
2318 AR_PHY_COUNTMAX - aniState->cckTrigHigh;
2319 }
2320 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2321 "%s: Writing ofdmbase=%u cckbase=%u\n",
2322 __func__, aniState->ofdmPhyErrBase,
2323 aniState->cckPhyErrBase);
2324 REG_WRITE(ah, AR_PHY_ERR_1, aniState->ofdmPhyErrBase);
2325 REG_WRITE(ah, AR_PHY_ERR_2, aniState->cckPhyErrBase);
2326 REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
2327 REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
2328
2329 ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
2330 }
2331 aniState->ofdmPhyErrCount = 0;
2332 aniState->cckPhyErrCount = 0;
2333 }
2334
2335 static void ath9k_hw_ani_ofdm_err_trigger(struct ath_hal *ah)
2336 {
2337 struct ath_hal_5416 *ahp = AH5416(ah);
2338 struct ath9k_channel *chan = ah->ah_curchan;
2339 struct ar5416AniState *aniState;
2340 enum wireless_mode mode;
2341 int32_t rssi;
2342
2343 if (!DO_ANI(ah))
2344 return;
2345
2346 aniState = ahp->ah_curani;
2347
2348 if (aniState->noiseImmunityLevel < HAL_NOISE_IMMUNE_MAX) {
2349 if (ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
2350 aniState->noiseImmunityLevel + 1)) {
2351 return;
2352 }
2353 }
2354
2355 if (aniState->spurImmunityLevel < HAL_SPUR_IMMUNE_MAX) {
2356 if (ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
2357 aniState->spurImmunityLevel + 1)) {
2358 return;
2359 }
2360 }
2361
2362 if (ah->ah_opmode == ATH9K_M_HOSTAP) {
2363 if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) {
2364 ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2365 aniState->firstepLevel + 1);
2366 }
2367 return;
2368 }
2369 rssi = BEACON_RSSI(ahp);
2370 if (rssi > aniState->rssiThrHigh) {
2371 if (!aniState->ofdmWeakSigDetectOff) {
2372 if (ath9k_hw_ani_control(ah,
2373 ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
2374 false)) {
2375 ath9k_hw_ani_control(ah,
2376 ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
2377 0);
2378 return;
2379 }
2380 }
2381 if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) {
2382 ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2383 aniState->firstepLevel + 1);
2384 return;
2385 }
2386 } else if (rssi > aniState->rssiThrLow) {
2387 if (aniState->ofdmWeakSigDetectOff)
2388 ath9k_hw_ani_control(ah,
2389 ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
2390 true);
2391 if (aniState->firstepLevel < HAL_FIRST_STEP_MAX)
2392 ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2393 aniState->firstepLevel + 1);
2394 return;
2395 } else {
2396 mode = ath9k_hw_chan2wmode(ah, chan);
2397 if (mode == ATH9K_MODE_11G || mode == ATH9K_MODE_11B) {
2398 if (!aniState->ofdmWeakSigDetectOff)
2399 ath9k_hw_ani_control(ah,
2400 ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
2401 false);
2402 if (aniState->firstepLevel > 0)
2403 ath9k_hw_ani_control(ah,
2404 ATH9K_ANI_FIRSTEP_LEVEL,
2405 0);
2406 return;
2407 }
2408 }
2409 }
2410
2411 static void ath9k_hw_ani_cck_err_trigger(struct ath_hal *ah)
2412 {
2413 struct ath_hal_5416 *ahp = AH5416(ah);
2414 struct ath9k_channel *chan = ah->ah_curchan;
2415 struct ar5416AniState *aniState;
2416 enum wireless_mode mode;
2417 int32_t rssi;
2418
2419 if (!DO_ANI(ah))
2420 return;
2421
2422 aniState = ahp->ah_curani;
2423 if (aniState->noiseImmunityLevel < HAL_NOISE_IMMUNE_MAX) {
2424 if (ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
2425 aniState->noiseImmunityLevel + 1)) {
2426 return;
2427 }
2428 }
2429 if (ah->ah_opmode == ATH9K_M_HOSTAP) {
2430 if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) {
2431 ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2432 aniState->firstepLevel + 1);
2433 }
2434 return;
2435 }
2436 rssi = BEACON_RSSI(ahp);
2437 if (rssi > aniState->rssiThrLow) {
2438 if (aniState->firstepLevel < HAL_FIRST_STEP_MAX)
2439 ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2440 aniState->firstepLevel + 1);
2441 } else {
2442 mode = ath9k_hw_chan2wmode(ah, chan);
2443 if (mode == ATH9K_MODE_11G || mode == ATH9K_MODE_11B) {
2444 if (aniState->firstepLevel > 0)
2445 ath9k_hw_ani_control(ah,
2446 ATH9K_ANI_FIRSTEP_LEVEL,
2447 0);
2448 }
2449 }
2450 }
2451
2452 static void ath9k_ani_reset(struct ath_hal *ah)
2453 {
2454 struct ath_hal_5416 *ahp = AH5416(ah);
2455 struct ar5416AniState *aniState;
2456 struct ath9k_channel *chan = ah->ah_curchan;
2457 int index;
2458
2459 if (!DO_ANI(ah))
2460 return;
2461
2462 index = ath9k_hw_get_ani_channel_idx(ah, chan);
2463 aniState = &ahp->ah_ani[index];
2464 ahp->ah_curani = aniState;
2465
2466 if (DO_ANI(ah) && ah->ah_opmode != ATH9K_M_STA
2467 && ah->ah_opmode != ATH9K_M_IBSS) {
2468 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2469 "%s: Reset ANI state opmode %u\n", __func__,
2470 ah->ah_opmode);
2471 ahp->ah_stats.ast_ani_reset++;
2472 ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, 0);
2473 ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, 0);
2474 ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, 0);
2475 ath9k_hw_ani_control(ah,
2476 ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
2477 !ATH9K_ANI_USE_OFDM_WEAK_SIG);
2478 ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR,
2479 ATH9K_ANI_CCK_WEAK_SIG_THR);
2480 ath9k_hw_setrxfilter(ah,
2481 ath9k_hw_getrxfilter(ah) |
2482 ATH9K_RX_FILTER_PHYERR);
2483 if (ah->ah_opmode == ATH9K_M_HOSTAP) {
2484 ahp->ah_curani->ofdmTrigHigh =
2485 ah->ah_config.ofdm_trig_high;
2486 ahp->ah_curani->ofdmTrigLow =
2487 ah->ah_config.ofdm_trig_low;
2488 ahp->ah_curani->cckTrigHigh =
2489 ah->ah_config.cck_trig_high;
2490 ahp->ah_curani->cckTrigLow =
2491 ah->ah_config.cck_trig_low;
2492 }
2493 ath9k_ani_restart(ah);
2494 return;
2495 }
2496
2497 if (aniState->noiseImmunityLevel != 0)
2498 ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
2499 aniState->noiseImmunityLevel);
2500 if (aniState->spurImmunityLevel != 0)
2501 ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
2502 aniState->spurImmunityLevel);
2503 if (aniState->ofdmWeakSigDetectOff)
2504 ath9k_hw_ani_control(ah,
2505 ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
2506 !aniState->ofdmWeakSigDetectOff);
2507 if (aniState->cckWeakSigThreshold)
2508 ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR,
2509 aniState->cckWeakSigThreshold);
2510 if (aniState->firstepLevel != 0)
2511 ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2512 aniState->firstepLevel);
2513 if (ahp->ah_hasHwPhyCounters) {
2514 ath9k_hw_setrxfilter(ah,
2515 ath9k_hw_getrxfilter(ah) &
2516 ~ATH9K_RX_FILTER_PHYERR);
2517 ath9k_ani_restart(ah);
2518 REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
2519 REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
2520
2521 } else {
2522 ath9k_ani_restart(ah);
2523 ath9k_hw_setrxfilter(ah,
2524 ath9k_hw_getrxfilter(ah) |
2525 ATH9K_RX_FILTER_PHYERR);
2526 }
2527 }
2528
2529 void ath9k_hw_procmibevent(struct ath_hal *ah,
2530 const struct ath9k_node_stats *stats)
2531 {
2532 struct ath_hal_5416 *ahp = AH5416(ah);
2533 u32 phyCnt1, phyCnt2;
2534
2535 DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Processing Mib Intr\n");
2536
2537 REG_WRITE(ah, AR_FILT_OFDM, 0);
2538 REG_WRITE(ah, AR_FILT_CCK, 0);
2539 if (!(REG_READ(ah, AR_SLP_MIB_CTRL) & AR_SLP_MIB_PENDING))
2540 REG_WRITE(ah, AR_SLP_MIB_CTRL, AR_SLP_MIB_CLEAR);
2541
2542 ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
2543 ahp->ah_stats.ast_nodestats = *stats;
2544
2545 if (!DO_ANI(ah))
2546 return;
2547
2548 phyCnt1 = REG_READ(ah, AR_PHY_ERR_1);
2549 phyCnt2 = REG_READ(ah, AR_PHY_ERR_2);
2550 if (((phyCnt1 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK) ||
2551 ((phyCnt2 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK)) {
2552 struct ar5416AniState *aniState = ahp->ah_curani;
2553 u32 ofdmPhyErrCnt, cckPhyErrCnt;
2554
2555 ofdmPhyErrCnt = phyCnt1 - aniState->ofdmPhyErrBase;
2556 ahp->ah_stats.ast_ani_ofdmerrs +=
2557 ofdmPhyErrCnt - aniState->ofdmPhyErrCount;
2558 aniState->ofdmPhyErrCount = ofdmPhyErrCnt;
2559
2560 cckPhyErrCnt = phyCnt2 - aniState->cckPhyErrBase;
2561 ahp->ah_stats.ast_ani_cckerrs +=
2562 cckPhyErrCnt - aniState->cckPhyErrCount;
2563 aniState->cckPhyErrCount = cckPhyErrCnt;
2564
2565 if (aniState->ofdmPhyErrCount > aniState->ofdmTrigHigh)
2566 ath9k_hw_ani_ofdm_err_trigger(ah);
2567 if (aniState->cckPhyErrCount > aniState->cckTrigHigh)
2568 ath9k_hw_ani_cck_err_trigger(ah);
2569
2570 ath9k_ani_restart(ah);
2571 }
2572 }
2573
2574 static void ath9k_hw_ani_lower_immunity(struct ath_hal *ah)
2575 {
2576 struct ath_hal_5416 *ahp = AH5416(ah);
2577 struct ar5416AniState *aniState;
2578 int32_t rssi;
2579
2580 aniState = ahp->ah_curani;
2581
2582 if (ah->ah_opmode == ATH9K_M_HOSTAP) {
2583 if (aniState->firstepLevel > 0) {
2584 if (ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2585 aniState->firstepLevel - 1)) {
2586 return;
2587 }
2588 }
2589 } else {
2590 rssi = BEACON_RSSI(ahp);
2591 if (rssi > aniState->rssiThrHigh) {
2592 /* XXX: Handle me */
2593 } else if (rssi > aniState->rssiThrLow) {
2594 if (aniState->ofdmWeakSigDetectOff) {
2595 if (ath9k_hw_ani_control(ah,
2596 ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
2597 true) ==
2598 true) {
2599 return;
2600 }
2601 }
2602 if (aniState->firstepLevel > 0) {
2603 if (ath9k_hw_ani_control
2604 (ah, ATH9K_ANI_FIRSTEP_LEVEL,
2605 aniState->firstepLevel - 1) ==
2606 true) {
2607 return;
2608 }
2609 }
2610 } else {
2611 if (aniState->firstepLevel > 0) {
2612 if (ath9k_hw_ani_control
2613 (ah, ATH9K_ANI_FIRSTEP_LEVEL,
2614 aniState->firstepLevel - 1) ==
2615 true) {
2616 return;
2617 }
2618 }
2619 }
2620 }
2621
2622 if (aniState->spurImmunityLevel > 0) {
2623 if (ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
2624 aniState->spurImmunityLevel - 1)) {
2625 return;
2626 }
2627 }
2628
2629 if (aniState->noiseImmunityLevel > 0) {
2630 ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
2631 aniState->noiseImmunityLevel - 1);
2632 return;
2633 }
2634 }
2635
2636 static int32_t ath9k_hw_ani_get_listen_time(struct ath_hal *ah)
2637 {
2638 struct ath_hal_5416 *ahp = AH5416(ah);
2639 struct ar5416AniState *aniState;
2640 u32 txFrameCount, rxFrameCount, cycleCount;
2641 int32_t listenTime;
2642
2643 txFrameCount = REG_READ(ah, AR_TFCNT);
2644 rxFrameCount = REG_READ(ah, AR_RFCNT);
2645 cycleCount = REG_READ(ah, AR_CCCNT);
2646
2647 aniState = ahp->ah_curani;
2648 if (aniState->cycleCount == 0 || aniState->cycleCount > cycleCount) {
2649
2650 listenTime = 0;
2651 ahp->ah_stats.ast_ani_lzero++;
2652 } else {
2653 int32_t ccdelta = cycleCount - aniState->cycleCount;
2654 int32_t rfdelta = rxFrameCount - aniState->rxFrameCount;
2655 int32_t tfdelta = txFrameCount - aniState->txFrameCount;
2656 listenTime = (ccdelta - rfdelta - tfdelta) / 44000;
2657 }
2658 aniState->cycleCount = cycleCount;
2659 aniState->txFrameCount = txFrameCount;
2660 aniState->rxFrameCount = rxFrameCount;
2661
2662 return listenTime;
2663 }
2664
2665 void ath9k_hw_ani_monitor(struct ath_hal *ah,
2666 const struct ath9k_node_stats *stats,
2667 struct ath9k_channel *chan)
2668 {
2669 struct ath_hal_5416 *ahp = AH5416(ah);
2670 struct ar5416AniState *aniState;
2671 int32_t listenTime;
2672
2673 aniState = ahp->ah_curani;
2674 ahp->ah_stats.ast_nodestats = *stats;
2675
2676 listenTime = ath9k_hw_ani_get_listen_time(ah);
2677 if (listenTime < 0) {
2678 ahp->ah_stats.ast_ani_lneg++;
2679 ath9k_ani_restart(ah);
2680 return;
2681 }
2682
2683 aniState->listenTime += listenTime;
2684
2685 if (ahp->ah_hasHwPhyCounters) {
2686 u32 phyCnt1, phyCnt2;
2687 u32 ofdmPhyErrCnt, cckPhyErrCnt;
2688
2689 ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
2690
2691 phyCnt1 = REG_READ(ah, AR_PHY_ERR_1);
2692 phyCnt2 = REG_READ(ah, AR_PHY_ERR_2);
2693
2694 if (phyCnt1 < aniState->ofdmPhyErrBase ||
2695 phyCnt2 < aniState->cckPhyErrBase) {
2696 if (phyCnt1 < aniState->ofdmPhyErrBase) {
2697 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2698 "%s: phyCnt1 0x%x, resetting "
2699 "counter value to 0x%x\n",
2700 __func__, phyCnt1,
2701 aniState->ofdmPhyErrBase);
2702 REG_WRITE(ah, AR_PHY_ERR_1,
2703 aniState->ofdmPhyErrBase);
2704 REG_WRITE(ah, AR_PHY_ERR_MASK_1,
2705 AR_PHY_ERR_OFDM_TIMING);
2706 }
2707 if (phyCnt2 < aniState->cckPhyErrBase) {
2708 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2709 "%s: phyCnt2 0x%x, resetting "
2710 "counter value to 0x%x\n",
2711 __func__, phyCnt2,
2712 aniState->cckPhyErrBase);
2713 REG_WRITE(ah, AR_PHY_ERR_2,
2714 aniState->cckPhyErrBase);
2715 REG_WRITE(ah, AR_PHY_ERR_MASK_2,
2716 AR_PHY_ERR_CCK_TIMING);
2717 }
2718 return;
2719 }
2720
2721 ofdmPhyErrCnt = phyCnt1 - aniState->ofdmPhyErrBase;
2722 ahp->ah_stats.ast_ani_ofdmerrs +=
2723 ofdmPhyErrCnt - aniState->ofdmPhyErrCount;
2724 aniState->ofdmPhyErrCount = ofdmPhyErrCnt;
2725
2726 cckPhyErrCnt = phyCnt2 - aniState->cckPhyErrBase;
2727 ahp->ah_stats.ast_ani_cckerrs +=
2728 cckPhyErrCnt - aniState->cckPhyErrCount;
2729 aniState->cckPhyErrCount = cckPhyErrCnt;
2730 }
2731
2732 if (!DO_ANI(ah))
2733 return;
2734
2735 if (aniState->listenTime > 5 * ahp->ah_aniPeriod) {
2736 if (aniState->ofdmPhyErrCount <= aniState->listenTime *
2737 aniState->ofdmTrigLow / 1000 &&
2738 aniState->cckPhyErrCount <= aniState->listenTime *
2739 aniState->cckTrigLow / 1000)
2740 ath9k_hw_ani_lower_immunity(ah);
2741 ath9k_ani_restart(ah);
2742 } else if (aniState->listenTime > ahp->ah_aniPeriod) {
2743 if (aniState->ofdmPhyErrCount > aniState->listenTime *
2744 aniState->ofdmTrigHigh / 1000) {
2745 ath9k_hw_ani_ofdm_err_trigger(ah);
2746 ath9k_ani_restart(ah);
2747 } else if (aniState->cckPhyErrCount >
2748 aniState->listenTime * aniState->cckTrigHigh /
2749 1000) {
2750 ath9k_hw_ani_cck_err_trigger(ah);
2751 ath9k_ani_restart(ah);
2752 }
2753 }
2754 }
2755
2756 #ifndef ATH_NF_PER_CHAN
2757 static void ath9k_init_nfcal_hist_buffer(struct ath_hal *ah)
2758 {
2759 int i, j;
2760
2761 for (i = 0; i < NUM_NF_READINGS; i++) {
2762 ah->nfCalHist[i].currIndex = 0;
2763 ah->nfCalHist[i].privNF = AR_PHY_CCA_MAX_GOOD_VALUE;
2764 ah->nfCalHist[i].invalidNFcount =
2765 AR_PHY_CCA_FILTERWINDOW_LENGTH;
2766 for (j = 0; j < ATH9K_NF_CAL_HIST_MAX; j++) {
2767 ah->nfCalHist[i].nfCalBuffer[j] =
2768 AR_PHY_CCA_MAX_GOOD_VALUE;
2769 }
2770 }
2771 return;
2772 }
2773 #endif
2774
2775 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hal *ah,
2776 u32 gpio, u32 type)
2777 {
2778 int addr;
2779 u32 gpio_shift, tmp;
2780
2781 if (gpio > 11)
2782 addr = AR_GPIO_OUTPUT_MUX3;
2783 else if (gpio > 5)
2784 addr = AR_GPIO_OUTPUT_MUX2;
2785 else
2786 addr = AR_GPIO_OUTPUT_MUX1;
2787
2788 gpio_shift = (gpio % 6) * 5;
2789
2790 if (AR_SREV_9280_20_OR_LATER(ah)
2791 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2792 REG_RMW(ah, addr, (type << gpio_shift),
2793 (0x1f << gpio_shift));
2794 } else {
2795 tmp = REG_READ(ah, addr);
2796 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2797 tmp &= ~(0x1f << gpio_shift);
2798 tmp |= (type << gpio_shift);
2799 REG_WRITE(ah, addr, tmp);
2800 }
2801 }
2802
2803 static bool ath9k_hw_cfg_output(struct ath_hal *ah, u32 gpio,
2804 enum ath9k_gpio_output_mux_type
2805 halSignalType)
2806 {
2807 u32 ah_signal_type;
2808 u32 gpio_shift;
2809
2810 static u32 MuxSignalConversionTable[] = {
2811
2812 AR_GPIO_OUTPUT_MUX_AS_OUTPUT,
2813
2814 AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED,
2815
2816 AR_GPIO_OUTPUT_MUX_AS_PCIE_POWER_LED,
2817
2818 AR_GPIO_OUTPUT_MUX_AS_MAC_NETWORK_LED,
2819
2820 AR_GPIO_OUTPUT_MUX_AS_MAC_POWER_LED,
2821 };
2822
2823 if ((halSignalType >= 0)
2824 && (halSignalType < ARRAY_SIZE(MuxSignalConversionTable)))
2825 ah_signal_type = MuxSignalConversionTable[halSignalType];
2826 else
2827 return false;
2828
2829 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2830
2831 gpio_shift = 2 * gpio;
2832
2833 REG_RMW(ah,
2834 AR_GPIO_OE_OUT,
2835 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2836 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2837
2838 return true;
2839 }
2840
2841 static bool ath9k_hw_set_gpio(struct ath_hal *ah, u32 gpio,
2842 u32 val)
2843 {
2844 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2845 AR_GPIO_BIT(gpio));
2846 return true;
2847 }
2848
2849 static u32 ath9k_hw_gpio_get(struct ath_hal *ah, u32 gpio)
2850 {
2851 if (gpio >= ah->ah_caps.num_gpio_pins)
2852 return 0xffffffff;
2853
2854 if (AR_SREV_9280_10_OR_LATER(ah)) {
2855 return (MS
2856 (REG_READ(ah, AR_GPIO_IN_OUT),
2857 AR928X_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0;
2858 } else {
2859 return (MS(REG_READ(ah, AR_GPIO_IN_OUT), AR_GPIO_IN_VAL) &
2860 AR_GPIO_BIT(gpio)) != 0;
2861 }
2862 }
2863
2864 static inline int ath9k_hw_post_attach(struct ath_hal *ah)
2865 {
2866 int ecode;
2867
2868 if (!ath9k_hw_chip_test(ah)) {
2869 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
2870 "%s: hardware self-test failed\n", __func__);
2871 return -ENODEV;
2872 }
2873
2874 ecode = ath9k_hw_rf_claim(ah);
2875 if (ecode != 0)
2876 return ecode;
2877
2878 ecode = ath9k_hw_eeprom_attach(ah);
2879 if (ecode != 0)
2880 return ecode;
2881 ecode = ath9k_hw_rfattach(ah);
2882 if (ecode != 0)
2883 return ecode;
2884
2885 if (!AR_SREV_9100(ah)) {
2886 ath9k_hw_ani_setup(ah);
2887 ath9k_hw_ani_attach(ah);
2888 }
2889 return 0;
2890 }
2891
2892 static u32 ath9k_hw_ini_fixup(struct ath_hal *ah,
2893 struct ar5416_eeprom *pEepData,
2894 u32 reg, u32 value)
2895 {
2896 struct base_eep_header *pBase = &(pEepData->baseEepHeader);
2897
2898 switch (ah->ah_devid) {
2899 case AR9280_DEVID_PCI:
2900 if (reg == 0x7894) {
2901 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2902 "ini VAL: %x EEPROM: %x\n", value,
2903 (pBase->version & 0xff));
2904
2905 if ((pBase->version & 0xff) > 0x0a) {
2906 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2907 "PWDCLKIND: %d\n",
2908 pBase->pwdclkind);
2909 value &= ~AR_AN_TOP2_PWDCLKIND;
2910 value |= AR_AN_TOP2_PWDCLKIND & (pBase->
2911 pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
2912 } else {
2913 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2914 "PWDCLKIND Earlier Rev\n");
2915 }
2916
2917 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2918 "final ini VAL: %x\n", value);
2919 }
2920 break;
2921 }
2922 return value;
2923 }
2924
2925 static bool ath9k_hw_fill_cap_info(struct ath_hal *ah)
2926 {
2927 struct ath_hal_5416 *ahp = AH5416(ah);
2928 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
2929 u16 capField = 0, eeval;
2930
2931 eeval = ath9k_hw_get_eeprom(ahp, EEP_REG_0);
2932
2933 ah->ah_currentRD = eeval;
2934
2935 eeval = ath9k_hw_get_eeprom(ahp, EEP_REG_1);
2936 ah->ah_currentRDExt = eeval;
2937
2938 capField = ath9k_hw_get_eeprom(ahp, EEP_OP_CAP);
2939
2940 if (ah->ah_opmode != ATH9K_M_HOSTAP &&
2941 ah->ah_subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2942 if (ah->ah_currentRD == 0x64 || ah->ah_currentRD == 0x65)
2943 ah->ah_currentRD += 5;
2944 else if (ah->ah_currentRD == 0x41)
2945 ah->ah_currentRD = 0x43;
2946 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
2947 "%s: regdomain mapped to 0x%x\n", __func__,
2948 ah->ah_currentRD);
2949 }
2950
2951 eeval = ath9k_hw_get_eeprom(ahp, EEP_OP_MODE);
2952 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2953
2954 if (eeval & AR5416_OPFLAGS_11A) {
2955 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2956 if (ah->ah_config.ht_enable) {
2957 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2958 set_bit(ATH9K_MODE_11NA_HT20,
2959 pCap->wireless_modes);
2960 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2961 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2962 pCap->wireless_modes);
2963 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2964 pCap->wireless_modes);
2965 }
2966 }
2967 }
2968
2969 if (eeval & AR5416_OPFLAGS_11G) {
2970 set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
2971 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2972 if (ah->ah_config.ht_enable) {
2973 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2974 set_bit(ATH9K_MODE_11NG_HT20,
2975 pCap->wireless_modes);
2976 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2977 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2978 pCap->wireless_modes);
2979 set_bit(ATH9K_MODE_11NG_HT40MINUS,
2980 pCap->wireless_modes);
2981 }
2982 }
2983 }
2984
2985 pCap->tx_chainmask = ath9k_hw_get_eeprom(ahp, EEP_TX_MASK);
2986 if ((ah->ah_isPciExpress)
2987 || (eeval & AR5416_OPFLAGS_11A)) {
2988 pCap->rx_chainmask =
2989 ath9k_hw_get_eeprom(ahp, EEP_RX_MASK);
2990 } else {
2991 pCap->rx_chainmask =
2992 (ath9k_hw_gpio_get(ah, 0)) ? 0x5 : 0x7;
2993 }
2994
2995 if (!(AR_SREV_9280(ah) && (ah->ah_macRev == 0)))
2996 ahp->ah_miscMode |= AR_PCU_MIC_NEW_LOC_ENA;
2997
2998 pCap->low_2ghz_chan = 2312;
2999 pCap->high_2ghz_chan = 2732;
3000
3001 pCap->low_5ghz_chan = 4920;
3002 pCap->high_5ghz_chan = 6100;
3003
3004 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3005 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3006 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3007
3008 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3009 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3010 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3011
3012 pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD;
3013
3014 if (ah->ah_config.ht_enable)
3015 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3016 else
3017 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3018
3019 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3020 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3021 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3022 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3023
3024 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3025 pCap->total_queues =
3026 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3027 else
3028 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3029
3030 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3031 pCap->keycache_size =
3032 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3033 else
3034 pCap->keycache_size = AR_KEYTABLE_SIZE;
3035
3036 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3037 pCap->num_mr_retries = 4;
3038 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3039
3040 if (AR_SREV_9280_10_OR_LATER(ah))
3041 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3042 else
3043 pCap->num_gpio_pins = AR_NUM_GPIO;
3044
3045 if (AR_SREV_9280_10_OR_LATER(ah)) {
3046 pCap->hw_caps |= ATH9K_HW_CAP_WOW;
3047 pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
3048 } else {
3049 pCap->hw_caps &= ~ATH9K_HW_CAP_WOW;
3050 pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
3051 }
3052
3053 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3054 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3055 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3056 } else {
3057 pCap->rts_aggr_limit = (8 * 1024);
3058 }
3059
3060 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3061
3062 ah->ah_rfsilent = ath9k_hw_get_eeprom(ahp, EEP_RF_SILENT);
3063 if (ah->ah_rfsilent & EEP_RFSILENT_ENABLED) {
3064 ahp->ah_gpioSelect =
3065 MS(ah->ah_rfsilent, EEP_RFSILENT_GPIO_SEL);
3066 ahp->ah_polarity =
3067 MS(ah->ah_rfsilent, EEP_RFSILENT_POLARITY);
3068
3069 ath9k_hw_setcapability(ah, ATH9K_CAP_RFSILENT, 1, true,
3070 NULL);
3071 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3072 }
3073
3074 if ((ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) ||
3075 (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) ||
3076 (ah->ah_macVersion == AR_SREV_VERSION_9160) ||
3077 (ah->ah_macVersion == AR_SREV_VERSION_9100) ||
3078 (ah->ah_macVersion == AR_SREV_VERSION_9280))
3079 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3080 else
3081 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3082
3083 if (AR_SREV_9280(ah))
3084 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3085 else
3086 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3087
3088 if (ah->ah_currentRDExt & (1 << REG_EXT_JAPAN_MIDBAND)) {
3089 pCap->reg_cap =
3090 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3091 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3092 AR_EEPROM_EEREGCAP_EN_KK_U2 |
3093 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3094 } else {
3095 pCap->reg_cap =
3096 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3097 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3098 }
3099
3100 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3101
3102 pCap->num_antcfg_5ghz =
3103 ath9k_hw_get_num_ant_config(ahp, IEEE80211_BAND_5GHZ);
3104 pCap->num_antcfg_2ghz =
3105 ath9k_hw_get_num_ant_config(ahp, IEEE80211_BAND_2GHZ);
3106
3107 return true;
3108 }
3109
3110 static void ar5416DisablePciePhy(struct ath_hal *ah)
3111 {
3112 if (!AR_SREV_9100(ah))
3113 return;
3114
3115 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
3116 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3117 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
3118 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
3119 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
3120 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
3121 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3122 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3123 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
3124
3125 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3126 }
3127
3128 static void ath9k_set_power_sleep(struct ath_hal *ah, int setChip)
3129 {
3130 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
3131 if (setChip) {
3132 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
3133 AR_RTC_FORCE_WAKE_EN);
3134 if (!AR_SREV_9100(ah))
3135 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
3136
3137 REG_CLR_BIT(ah, (u16) (AR_RTC_RESET),
3138 AR_RTC_RESET_EN);
3139 }
3140 }
3141
3142 static void ath9k_set_power_network_sleep(struct ath_hal *ah, int setChip)
3143 {
3144 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
3145 if (setChip) {
3146 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
3147
3148 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3149 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
3150 AR_RTC_FORCE_WAKE_ON_INT);
3151 } else {
3152 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
3153 AR_RTC_FORCE_WAKE_EN);
3154 }
3155 }
3156 }
3157
3158 static bool ath9k_hw_set_power_awake(struct ath_hal *ah,
3159 int setChip)
3160 {
3161 u32 val;
3162 int i;
3163
3164 if (setChip) {
3165 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
3166 AR_RTC_STATUS_SHUTDOWN) {
3167 if (ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)
3168 != true) {
3169 return false;
3170 }
3171 }
3172 if (AR_SREV_9100(ah))
3173 REG_SET_BIT(ah, AR_RTC_RESET,
3174 AR_RTC_RESET_EN);
3175
3176 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
3177 AR_RTC_FORCE_WAKE_EN);
3178 udelay(50);
3179
3180 for (i = POWER_UP_TIME / 50; i > 0; i--) {
3181 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
3182 if (val == AR_RTC_STATUS_ON)
3183 break;
3184 udelay(50);
3185 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
3186 AR_RTC_FORCE_WAKE_EN);
3187 }
3188 if (i == 0) {
3189 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
3190 "%s: Failed to wakeup in %uus\n",
3191 __func__, POWER_UP_TIME / 20);
3192 return false;
3193 }
3194 }
3195
3196 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
3197 return true;
3198 }
3199
3200 bool ath9k_hw_setpower(struct ath_hal *ah,
3201 enum ath9k_power_mode mode)
3202 {
3203 struct ath_hal_5416 *ahp = AH5416(ah);
3204 static const char *modes[] = {
3205 "AWAKE",
3206 "FULL-SLEEP",
3207 "NETWORK SLEEP",
3208 "UNDEFINED"
3209 };
3210 int status = true, setChip = true;
3211
3212 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: %s -> %s (%s)\n", __func__,
3213 modes[ahp->ah_powerMode], modes[mode],
3214 setChip ? "set chip " : "");
3215
3216 switch (mode) {
3217 case ATH9K_PM_AWAKE:
3218 status = ath9k_hw_set_power_awake(ah, setChip);
3219 break;
3220 case ATH9K_PM_FULL_SLEEP:
3221 ath9k_set_power_sleep(ah, setChip);
3222 ahp->ah_chipFullSleep = true;
3223 break;
3224 case ATH9K_PM_NETWORK_SLEEP:
3225 ath9k_set_power_network_sleep(ah, setChip);
3226 break;
3227 default:
3228 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
3229 "%s: unknown power mode %u\n", __func__, mode);
3230 return false;
3231 }
3232 ahp->ah_powerMode = mode;
3233 return status;
3234 }
3235
3236 static struct ath_hal *ath9k_hw_do_attach(u16 devid,
3237 struct ath_softc *sc,
3238 void __iomem *mem,
3239 int *status)
3240 {
3241 struct ath_hal_5416 *ahp;
3242 struct ath_hal *ah;
3243 int ecode;
3244 #ifndef CONFIG_SLOW_ANT_DIV
3245 u32 i;
3246 u32 j;
3247 #endif
3248
3249 ahp = ath9k_hw_newstate(devid, sc, mem, status);
3250 if (ahp == NULL)
3251 return NULL;
3252
3253 ah = &ahp->ah;
3254
3255 ath9k_hw_set_defaults(ah);
3256
3257 if (ah->ah_config.intr_mitigation != 0)
3258 ahp->ah_intrMitigation = true;
3259
3260 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
3261 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't reset chip\n",
3262 __func__);
3263 ecode = -EIO;
3264 goto bad;
3265 }
3266
3267 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
3268 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't wakeup chip\n",
3269 __func__);
3270 ecode = -EIO;
3271 goto bad;
3272 }
3273
3274 if (ah->ah_config.serialize_regmode == SER_REG_MODE_AUTO) {
3275 if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) {
3276 ah->ah_config.serialize_regmode =
3277 SER_REG_MODE_ON;
3278 } else {
3279 ah->ah_config.serialize_regmode =
3280 SER_REG_MODE_OFF;
3281 }
3282 }
3283 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3284 "%s: serialize_regmode is %d\n",
3285 __func__, ah->ah_config.serialize_regmode);
3286
3287 if ((ah->ah_macVersion != AR_SREV_VERSION_5416_PCI) &&
3288 (ah->ah_macVersion != AR_SREV_VERSION_5416_PCIE) &&
3289 (ah->ah_macVersion != AR_SREV_VERSION_9160) &&
3290 (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah))) {
3291 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3292 "%s: Mac Chip Rev 0x%02x.%x is not supported by "
3293 "this driver\n", __func__,
3294 ah->ah_macVersion, ah->ah_macRev);
3295 ecode = -EOPNOTSUPP;
3296 goto bad;
3297 }
3298
3299 if (AR_SREV_9100(ah)) {
3300 ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
3301 ahp->ah_suppCals = IQ_MISMATCH_CAL;
3302 ah->ah_isPciExpress = false;
3303 }
3304 ah->ah_phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
3305
3306 if (AR_SREV_9160_10_OR_LATER(ah)) {
3307 if (AR_SREV_9280_10_OR_LATER(ah)) {
3308 ahp->ah_iqCalData.calData = &iq_cal_single_sample;
3309 ahp->ah_adcGainCalData.calData =
3310 &adc_gain_cal_single_sample;
3311 ahp->ah_adcDcCalData.calData =
3312 &adc_dc_cal_single_sample;
3313 ahp->ah_adcDcCalInitData.calData =
3314 &adc_init_dc_cal;
3315 } else {
3316 ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
3317 ahp->ah_adcGainCalData.calData =
3318 &adc_gain_cal_multi_sample;
3319 ahp->ah_adcDcCalData.calData =
3320 &adc_dc_cal_multi_sample;
3321 ahp->ah_adcDcCalInitData.calData =
3322 &adc_init_dc_cal;
3323 }
3324 ahp->ah_suppCals =
3325 ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
3326 }
3327
3328 if (AR_SREV_9160(ah)) {
3329 ah->ah_config.enable_ani = 1;
3330 ahp->ah_ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL |
3331 ATH9K_ANI_FIRSTEP_LEVEL);
3332 } else {
3333 ahp->ah_ani_function = ATH9K_ANI_ALL;
3334 if (AR_SREV_9280_10_OR_LATER(ah)) {
3335 ahp->ah_ani_function &=
3336 ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
3337 }
3338 }
3339
3340 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3341 "%s: This Mac Chip Rev 0x%02x.%x is \n", __func__,
3342 ah->ah_macVersion, ah->ah_macRev);
3343
3344 if (AR_SREV_9280_20_OR_LATER(ah)) {
3345 INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280_2,
3346 ARRAY_SIZE(ar9280Modes_9280_2), 6);
3347 INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280_2,
3348 ARRAY_SIZE(ar9280Common_9280_2), 2);
3349
3350 if (ah->ah_config.pcie_clock_req) {
3351 INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
3352 ar9280PciePhy_clkreq_off_L1_9280,
3353 ARRAY_SIZE
3354 (ar9280PciePhy_clkreq_off_L1_9280),
3355 2);
3356 } else {
3357 INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
3358 ar9280PciePhy_clkreq_always_on_L1_9280,
3359 ARRAY_SIZE
3360 (ar9280PciePhy_clkreq_always_on_L1_9280),
3361 2);
3362 }
3363 INIT_INI_ARRAY(&ahp->ah_iniModesAdditional,
3364 ar9280Modes_fast_clock_9280_2,
3365 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2),
3366 3);
3367 } else if (AR_SREV_9280_10_OR_LATER(ah)) {
3368 INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280,
3369 ARRAY_SIZE(ar9280Modes_9280), 6);
3370 INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280,
3371 ARRAY_SIZE(ar9280Common_9280), 2);
3372 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
3373 INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9160,
3374 ARRAY_SIZE(ar5416Modes_9160), 6);
3375 INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9160,
3376 ARRAY_SIZE(ar5416Common_9160), 2);
3377 INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9160,
3378 ARRAY_SIZE(ar5416Bank0_9160), 2);
3379 INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9160,
3380 ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
3381 INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9160,
3382 ARRAY_SIZE(ar5416Bank1_9160), 2);
3383 INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9160,
3384 ARRAY_SIZE(ar5416Bank2_9160), 2);
3385 INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9160,
3386 ARRAY_SIZE(ar5416Bank3_9160), 3);
3387 INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9160,
3388 ARRAY_SIZE(ar5416Bank6_9160), 3);
3389 INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9160,
3390 ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
3391 INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9160,
3392 ARRAY_SIZE(ar5416Bank7_9160), 2);
3393 if (AR_SREV_9160_11(ah)) {
3394 INIT_INI_ARRAY(&ahp->ah_iniAddac,
3395 ar5416Addac_91601_1,
3396 ARRAY_SIZE(ar5416Addac_91601_1), 2);
3397 } else {
3398 INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9160,
3399 ARRAY_SIZE(ar5416Addac_9160), 2);
3400 }
3401 } else if (AR_SREV_9100_OR_LATER(ah)) {
3402 INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9100,
3403 ARRAY_SIZE(ar5416Modes_9100), 6);
3404 INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9100,
3405 ARRAY_SIZE(ar5416Common_9100), 2);
3406 INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9100,
3407 ARRAY_SIZE(ar5416Bank0_9100), 2);
3408 INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9100,
3409 ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
3410 INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9100,
3411 ARRAY_SIZE(ar5416Bank1_9100), 2);
3412 INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9100,
3413 ARRAY_SIZE(ar5416Bank2_9100), 2);
3414 INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9100,
3415 ARRAY_SIZE(ar5416Bank3_9100), 3);
3416 INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9100,
3417 ARRAY_SIZE(ar5416Bank6_9100), 3);
3418 INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9100,
3419 ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
3420 INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9100,
3421 ARRAY_SIZE(ar5416Bank7_9100), 2);
3422 INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9100,
3423 ARRAY_SIZE(ar5416Addac_9100), 2);
3424 } else {
3425 INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes,
3426 ARRAY_SIZE(ar5416Modes), 6);
3427 INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common,
3428 ARRAY_SIZE(ar5416Common), 2);
3429 INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0,
3430 ARRAY_SIZE(ar5416Bank0), 2);
3431 INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain,
3432 ARRAY_SIZE(ar5416BB_RfGain), 3);
3433 INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1,
3434 ARRAY_SIZE(ar5416Bank1), 2);
3435 INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2,
3436 ARRAY_SIZE(ar5416Bank2), 2);
3437 INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3,
3438 ARRAY_SIZE(ar5416Bank3), 3);
3439 INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6,
3440 ARRAY_SIZE(ar5416Bank6), 3);
3441 INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC,
3442 ARRAY_SIZE(ar5416Bank6TPC), 3);
3443 INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7,
3444 ARRAY_SIZE(ar5416Bank7), 2);
3445 INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac,
3446 ARRAY_SIZE(ar5416Addac), 2);
3447 }
3448
3449 if (ah->ah_isPciExpress)
3450 ath9k_hw_configpcipowersave(ah, 0);
3451 else
3452 ar5416DisablePciePhy(ah);
3453
3454 ecode = ath9k_hw_post_attach(ah);
3455 if (ecode != 0)
3456 goto bad;
3457
3458 #ifndef CONFIG_SLOW_ANT_DIV
3459 if (ah->ah_devid == AR9280_DEVID_PCI) {
3460 for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
3461 u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
3462
3463 for (j = 1; j < ahp->ah_iniModes.ia_columns; j++) {
3464 u32 val = INI_RA(&ahp->ah_iniModes, i, j);
3465
3466 INI_RA(&ahp->ah_iniModes, i, j) =
3467 ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom,
3468 reg, val);
3469 }
3470 }
3471 }
3472 #endif
3473
3474 if (!ath9k_hw_fill_cap_info(ah)) {
3475 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3476 "%s:failed ath9k_hw_fill_cap_info\n", __func__);
3477 ecode = -EINVAL;
3478 goto bad;
3479 }
3480
3481 ecode = ath9k_hw_init_macaddr(ah);
3482 if (ecode != 0) {
3483 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3484 "%s: failed initializing mac address\n",
3485 __func__);
3486 goto bad;
3487 }
3488
3489 if (AR_SREV_9285(ah))
3490 ah->ah_txTrigLevel = (AR_FTRIG_256B >> AR_FTRIG_S);
3491 else
3492 ah->ah_txTrigLevel = (AR_FTRIG_512B >> AR_FTRIG_S);
3493
3494 #ifndef ATH_NF_PER_CHAN
3495
3496 ath9k_init_nfcal_hist_buffer(ah);
3497 #endif
3498
3499 return ah;
3500
3501 bad:
3502 if (ahp)
3503 ath9k_hw_detach((struct ath_hal *) ahp);
3504 if (status)
3505 *status = ecode;
3506 return NULL;
3507 }
3508
3509 void ath9k_hw_detach(struct ath_hal *ah)
3510 {
3511 if (!AR_SREV_9100(ah))
3512 ath9k_hw_ani_detach(ah);
3513 ath9k_hw_rfdetach(ah);
3514
3515 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
3516 kfree(ah);
3517 }
3518
3519 bool ath9k_get_channel_edges(struct ath_hal *ah,
3520 u16 flags, u16 *low,
3521 u16 *high)
3522 {
3523 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
3524
3525 if (flags & CHANNEL_5GHZ) {
3526 *low = pCap->low_5ghz_chan;
3527 *high = pCap->high_5ghz_chan;
3528 return true;
3529 }
3530 if ((flags & CHANNEL_2GHZ)) {
3531 *low = pCap->low_2ghz_chan;
3532 *high = pCap->high_2ghz_chan;
3533
3534 return true;
3535 }
3536 return false;
3537 }
3538
3539 static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin,
3540 u8 pwrMax,
3541 u8 *pPwrList,
3542 u8 *pVpdList,
3543 u16
3544 numIntercepts,
3545 u8 *pRetVpdList)
3546 {
3547 u16 i, k;
3548 u8 currPwr = pwrMin;
3549 u16 idxL = 0, idxR = 0;
3550
3551 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
3552 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
3553 numIntercepts, &(idxL),
3554 &(idxR));
3555 if (idxR < 1)
3556 idxR = 1;
3557 if (idxL == numIntercepts - 1)
3558 idxL = (u16) (numIntercepts - 2);
3559 if (pPwrList[idxL] == pPwrList[idxR])
3560 k = pVpdList[idxL];
3561 else
3562 k = (u16) (((currPwr -
3563 pPwrList[idxL]) *
3564 pVpdList[idxR] +
3565 (pPwrList[idxR] -
3566 currPwr) * pVpdList[idxL]) /
3567 (pPwrList[idxR] -
3568 pPwrList[idxL]));
3569 pRetVpdList[i] = (u8) k;
3570 currPwr += 2;
3571 }
3572
3573 return true;
3574 }
3575
3576 static inline void
3577 ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hal *ah,
3578 struct ath9k_channel *chan,
3579 struct cal_data_per_freq *pRawDataSet,
3580 u8 *bChans,
3581 u16 availPiers,
3582 u16 tPdGainOverlap,
3583 int16_t *pMinCalPower,
3584 u16 *pPdGainBoundaries,
3585 u8 *pPDADCValues,
3586 u16 numXpdGains)
3587 {
3588 int i, j, k;
3589 int16_t ss;
3590 u16 idxL = 0, idxR = 0, numPiers;
3591 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
3592 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
3593 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
3594 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
3595 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
3596 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
3597
3598 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
3599 u8 minPwrT4[AR5416_NUM_PD_GAINS];
3600 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
3601 int16_t vpdStep;
3602 int16_t tmpVal;
3603 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
3604 bool match;
3605 int16_t minDelta = 0;
3606 struct chan_centers centers;
3607
3608 ath9k_hw_get_channel_centers(ah, chan, &centers);
3609
3610 for (numPiers = 0; numPiers < availPiers; numPiers++) {
3611 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
3612 break;
3613 }
3614
3615 match = ath9k_hw_get_lower_upper_index((u8)
3616 FREQ2FBIN(centers.
3617 synth_center,
3618 IS_CHAN_2GHZ
3619 (chan)), bChans,
3620 numPiers, &idxL, &idxR);
3621
3622 if (match) {
3623 for (i = 0; i < numXpdGains; i++) {
3624 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
3625 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
3626 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
3627 pRawDataSet[idxL].
3628 pwrPdg[i],
3629 pRawDataSet[idxL].
3630 vpdPdg[i],
3631 AR5416_PD_GAIN_ICEPTS,
3632 vpdTableI[i]);
3633 }
3634 } else {
3635 for (i = 0; i < numXpdGains; i++) {
3636 pVpdL = pRawDataSet[idxL].vpdPdg[i];
3637 pPwrL = pRawDataSet[idxL].pwrPdg[i];
3638 pVpdR = pRawDataSet[idxR].vpdPdg[i];
3639 pPwrR = pRawDataSet[idxR].pwrPdg[i];
3640
3641 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
3642
3643 maxPwrT4[i] =
3644 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
3645 pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
3646
3647
3648 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
3649 pPwrL, pVpdL,
3650 AR5416_PD_GAIN_ICEPTS,
3651 vpdTableL[i]);
3652 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
3653 pPwrR, pVpdR,
3654 AR5416_PD_GAIN_ICEPTS,
3655 vpdTableR[i]);
3656
3657 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
3658 vpdTableI[i][j] =
3659 (u8) (ath9k_hw_interpolate
3660 ((u16)
3661 FREQ2FBIN(centers.
3662 synth_center,
3663 IS_CHAN_2GHZ
3664 (chan)),
3665 bChans[idxL],
3666 bChans[idxR], vpdTableL[i]
3667 [j], vpdTableR[i]
3668 [j]));
3669 }
3670 }
3671 }
3672
3673 *pMinCalPower = (int16_t) (minPwrT4[0] / 2);
3674
3675 k = 0;
3676 for (i = 0; i < numXpdGains; i++) {
3677 if (i == (numXpdGains - 1))
3678 pPdGainBoundaries[i] =
3679 (u16) (maxPwrT4[i] / 2);
3680 else
3681 pPdGainBoundaries[i] =
3682 (u16) ((maxPwrT4[i] +
3683 minPwrT4[i + 1]) / 4);
3684
3685 pPdGainBoundaries[i] =
3686 min((u16) AR5416_MAX_RATE_POWER,
3687 pPdGainBoundaries[i]);
3688
3689 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
3690 minDelta = pPdGainBoundaries[0] - 23;
3691 pPdGainBoundaries[0] = 23;
3692 } else {
3693 minDelta = 0;
3694 }
3695
3696 if (i == 0) {
3697 if (AR_SREV_9280_10_OR_LATER(ah))
3698 ss = (int16_t) (0 - (minPwrT4[i] / 2));
3699 else
3700 ss = 0;
3701 } else {
3702 ss = (int16_t) ((pPdGainBoundaries[i - 1] -
3703 (minPwrT4[i] / 2)) -
3704 tPdGainOverlap + 1 + minDelta);
3705 }
3706 vpdStep = (int16_t) (vpdTableI[i][1] - vpdTableI[i][0]);
3707 vpdStep = (int16_t) ((vpdStep < 1) ? 1 : vpdStep);
3708
3709 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
3710 tmpVal = (int16_t) (vpdTableI[i][0] + ss * vpdStep);
3711 pPDADCValues[k++] =
3712 (u8) ((tmpVal < 0) ? 0 : tmpVal);
3713 ss++;
3714 }
3715
3716 sizeCurrVpdTable =
3717 (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
3718 tgtIndex = (u8) (pPdGainBoundaries[i] + tPdGainOverlap -
3719 (minPwrT4[i] / 2));
3720 maxIndex = (tgtIndex <
3721 sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
3722
3723 while ((ss < maxIndex)
3724 && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
3725 pPDADCValues[k++] = vpdTableI[i][ss++];
3726 }
3727
3728 vpdStep = (int16_t) (vpdTableI[i][sizeCurrVpdTable - 1] -
3729 vpdTableI[i][sizeCurrVpdTable - 2]);
3730 vpdStep = (int16_t) ((vpdStep < 1) ? 1 : vpdStep);
3731
3732 if (tgtIndex > maxIndex) {
3733 while ((ss <= tgtIndex)
3734 && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
3735 tmpVal = (int16_t) ((vpdTableI[i]
3736 [sizeCurrVpdTable -
3737 1] + (ss - maxIndex +
3738 1) * vpdStep));
3739 pPDADCValues[k++] = (u8) ((tmpVal >
3740 255) ? 255 : tmpVal);
3741 ss++;
3742 }
3743 }
3744 }
3745
3746 while (i < AR5416_PD_GAINS_IN_MASK) {
3747 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
3748 i++;
3749 }
3750
3751 while (k < AR5416_NUM_PDADC_VALUES) {
3752 pPDADCValues[k] = pPDADCValues[k - 1];
3753 k++;
3754 }
3755 return;
3756 }
3757
3758 static inline bool
3759 ath9k_hw_set_power_cal_table(struct ath_hal *ah,
3760 struct ar5416_eeprom *pEepData,
3761 struct ath9k_channel *chan,
3762 int16_t *pTxPowerIndexOffset)
3763 {
3764 struct cal_data_per_freq *pRawDataset;
3765 u8 *pCalBChans = NULL;
3766 u16 pdGainOverlap_t2;
3767 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
3768 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
3769 u16 numPiers, i, j;
3770 int16_t tMinCalPower;
3771 u16 numXpdGain, xpdMask;
3772 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
3773 u32 reg32, regOffset, regChainOffset;
3774 int16_t modalIdx;
3775 struct ath_hal_5416 *ahp = AH5416(ah);
3776
3777 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
3778 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
3779
3780 if ((pEepData->baseEepHeader.
3781 version & AR5416_EEP_VER_MINOR_MASK) >=
3782 AR5416_EEP_MINOR_VER_2) {
3783 pdGainOverlap_t2 =
3784 pEepData->modalHeader[modalIdx].pdGainOverlap;
3785 } else {
3786 pdGainOverlap_t2 =
3787 (u16) (MS
3788 (REG_READ(ah, AR_PHY_TPCRG5),
3789 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
3790 }
3791
3792 if (IS_CHAN_2GHZ(chan)) {
3793 pCalBChans = pEepData->calFreqPier2G;
3794 numPiers = AR5416_NUM_2G_CAL_PIERS;
3795 } else {
3796 pCalBChans = pEepData->calFreqPier5G;
3797 numPiers = AR5416_NUM_5G_CAL_PIERS;
3798 }
3799
3800 numXpdGain = 0;
3801
3802 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
3803 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
3804 if (numXpdGain >= AR5416_NUM_PD_GAINS)
3805 break;
3806 xpdGainValues[numXpdGain] =
3807 (u16) (AR5416_PD_GAINS_IN_MASK - i);
3808 numXpdGain++;
3809 }
3810 }
3811
3812 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
3813 (numXpdGain - 1) & 0x3);
3814 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
3815 xpdGainValues[0]);
3816 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
3817 xpdGainValues[1]);
3818 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
3819 xpdGainValues[2]);
3820
3821 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
3822 if (AR_SREV_5416_V20_OR_LATER(ah) &&
3823 (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
3824 && (i != 0)) {
3825 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
3826 } else
3827 regChainOffset = i * 0x1000;
3828 if (pEepData->baseEepHeader.txMask & (1 << i)) {
3829 if (IS_CHAN_2GHZ(chan))
3830 pRawDataset = pEepData->calPierData2G[i];
3831 else
3832 pRawDataset = pEepData->calPierData5G[i];
3833
3834 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
3835 pRawDataset,
3836 pCalBChans,
3837 numPiers,
3838 pdGainOverlap_t2,
3839 &tMinCalPower,
3840 gainBoundaries,
3841 pdadcValues,
3842 numXpdGain);
3843
3844 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
3845
3846 REG_WRITE(ah,
3847 AR_PHY_TPCRG5 + regChainOffset,
3848 SM(pdGainOverlap_t2,
3849 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
3850 | SM(gainBoundaries[0],
3851 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
3852 | SM(gainBoundaries[1],
3853 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
3854 | SM(gainBoundaries[2],
3855 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
3856 | SM(gainBoundaries[3],
3857 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
3858 }
3859
3860 regOffset =
3861 AR_PHY_BASE + (672 << 2) + regChainOffset;
3862 for (j = 0; j < 32; j++) {
3863 reg32 =
3864 ((pdadcValues[4 * j + 0] & 0xFF) << 0)
3865 | ((pdadcValues[4 * j + 1] & 0xFF) <<
3866 8) | ((pdadcValues[4 * j + 2] &
3867 0xFF) << 16) |
3868 ((pdadcValues[4 * j + 3] & 0xFF) <<
3869 24);
3870 REG_WRITE(ah, regOffset, reg32);
3871
3872 DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
3873 "PDADC (%d,%4x): %4.4x %8.8x\n",
3874 i, regChainOffset, regOffset,
3875 reg32);
3876 DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
3877 "PDADC: Chain %d | PDADC %3d Value %3d | "
3878 "PDADC %3d Value %3d | PDADC %3d Value %3d | "
3879 "PDADC %3d Value %3d |\n",
3880 i, 4 * j, pdadcValues[4 * j],
3881 4 * j + 1, pdadcValues[4 * j + 1],
3882 4 * j + 2, pdadcValues[4 * j + 2],
3883 4 * j + 3,
3884 pdadcValues[4 * j + 3]);
3885
3886 regOffset += 4;
3887 }
3888 }
3889 }
3890 *pTxPowerIndexOffset = 0;
3891
3892 return true;
3893 }
3894
3895 void ath9k_hw_configpcipowersave(struct ath_hal *ah, int restore)
3896 {
3897 struct ath_hal_5416 *ahp = AH5416(ah);
3898 u8 i;
3899
3900 if (ah->ah_isPciExpress != true)
3901 return;
3902
3903 if (ah->ah_config.pcie_powersave_enable == 2)
3904 return;
3905
3906 if (restore)
3907 return;
3908
3909 if (AR_SREV_9280_20_OR_LATER(ah)) {
3910 for (i = 0; i < ahp->ah_iniPcieSerdes.ia_rows; i++) {
3911 REG_WRITE(ah, INI_RA(&ahp->ah_iniPcieSerdes, i, 0),
3912 INI_RA(&ahp->ah_iniPcieSerdes, i, 1));
3913 }
3914 udelay(1000);
3915 } else if (AR_SREV_9280(ah)
3916 && (ah->ah_macRev == AR_SREV_REVISION_9280_10)) {
3917 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
3918 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3919
3920 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
3921 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
3922 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
3923
3924 if (ah->ah_config.pcie_clock_req)
3925 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
3926 else
3927 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
3928
3929 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3930 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3931 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
3932
3933 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3934
3935 udelay(1000);
3936 } else {
3937 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
3938 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3939 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
3940 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
3941 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
3942 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
3943 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3944 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3945 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
3946 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3947 }
3948
3949 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
3950
3951 if (ah->ah_config.pcie_waen) {
3952 REG_WRITE(ah, AR_WA, ah->ah_config.pcie_waen);
3953 } else {
3954 if (AR_SREV_9280(ah))
3955 REG_WRITE(ah, AR_WA, 0x0040073f);
3956 else
3957 REG_WRITE(ah, AR_WA, 0x0000073f);
3958 }
3959 }
3960
3961 static inline void
3962 ath9k_hw_get_legacy_target_powers(struct ath_hal *ah,
3963 struct ath9k_channel *chan,
3964 struct cal_target_power_leg *powInfo,
3965 u16 numChannels,
3966 struct cal_target_power_leg *pNewPower,
3967 u16 numRates,
3968 bool isExtTarget)
3969 {
3970 u16 clo, chi;
3971 int i;
3972 int matchIndex = -1, lowIndex = -1;
3973 u16 freq;
3974 struct chan_centers centers;
3975
3976 ath9k_hw_get_channel_centers(ah, chan, &centers);
3977 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
3978
3979 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
3980 IS_CHAN_2GHZ(chan))) {
3981 matchIndex = 0;
3982 } else {
3983 for (i = 0; (i < numChannels)
3984 && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
3985 if (freq ==
3986 ath9k_hw_fbin2freq(powInfo[i].bChannel,
3987 IS_CHAN_2GHZ(chan))) {
3988 matchIndex = i;
3989 break;
3990 } else if ((freq <
3991 ath9k_hw_fbin2freq(powInfo[i].bChannel,
3992 IS_CHAN_2GHZ(chan)))
3993 && (freq >
3994 ath9k_hw_fbin2freq(powInfo[i - 1].
3995 bChannel,
3996 IS_CHAN_2GHZ
3997 (chan)))) {
3998 lowIndex = i - 1;
3999 break;
4000 }
4001 }
4002 if ((matchIndex == -1) && (lowIndex == -1))
4003 matchIndex = i - 1;
4004 }
4005
4006 if (matchIndex != -1) {
4007 *pNewPower = powInfo[matchIndex];
4008 } else {
4009 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
4010 IS_CHAN_2GHZ(chan));
4011 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
4012 IS_CHAN_2GHZ(chan));
4013
4014 for (i = 0; i < numRates; i++) {
4015 pNewPower->tPow2x[i] =
4016 (u8) ath9k_hw_interpolate(freq, clo, chi,
4017 powInfo
4018 [lowIndex].
4019 tPow2x[i],
4020 powInfo
4021 [lowIndex +
4022 1].tPow2x[i]);
4023 }
4024 }
4025 }
4026
4027 static inline void
4028 ath9k_hw_get_target_powers(struct ath_hal *ah,
4029 struct ath9k_channel *chan,
4030 struct cal_target_power_ht *powInfo,
4031 u16 numChannels,
4032 struct cal_target_power_ht *pNewPower,
4033 u16 numRates,
4034 bool isHt40Target)
4035 {
4036 u16 clo, chi;
4037 int i;
4038 int matchIndex = -1, lowIndex = -1;
4039 u16 freq;
4040 struct chan_centers centers;
4041
4042 ath9k_hw_get_channel_centers(ah, chan, &centers);
4043 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
4044
4045 if (freq <=
4046 ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
4047 matchIndex = 0;
4048 } else {
4049 for (i = 0; (i < numChannels)
4050 && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
4051 if (freq ==
4052 ath9k_hw_fbin2freq(powInfo[i].bChannel,
4053 IS_CHAN_2GHZ(chan))) {
4054 matchIndex = i;
4055 break;
4056 } else
4057 if ((freq <
4058 ath9k_hw_fbin2freq(powInfo[i].bChannel,
4059 IS_CHAN_2GHZ(chan)))
4060 && (freq >
4061 ath9k_hw_fbin2freq(powInfo[i - 1].
4062 bChannel,
4063 IS_CHAN_2GHZ
4064 (chan)))) {
4065 lowIndex = i - 1;
4066 break;
4067 }
4068 }
4069 if ((matchIndex == -1) && (lowIndex == -1))
4070 matchIndex = i - 1;
4071 }
4072
4073 if (matchIndex != -1) {
4074 *pNewPower = powInfo[matchIndex];
4075 } else {
4076 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
4077 IS_CHAN_2GHZ(chan));
4078 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
4079 IS_CHAN_2GHZ(chan));
4080
4081 for (i = 0; i < numRates; i++) {
4082 pNewPower->tPow2x[i] =
4083 (u8) ath9k_hw_interpolate(freq, clo, chi,
4084 powInfo
4085 [lowIndex].
4086 tPow2x[i],
4087 powInfo
4088 [lowIndex +
4089 1].tPow2x[i]);
4090 }
4091 }
4092 }
4093
4094 static inline u16
4095 ath9k_hw_get_max_edge_power(u16 freq,
4096 struct cal_ctl_edges *pRdEdgesPower,
4097 bool is2GHz)
4098 {
4099 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
4100 int i;
4101
4102 for (i = 0; (i < AR5416_NUM_BAND_EDGES)
4103 && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
4104 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
4105 is2GHz)) {
4106 twiceMaxEdgePower = pRdEdgesPower[i].tPower;
4107 break;
4108 } else if ((i > 0)
4109 && (freq <
4110 ath9k_hw_fbin2freq(pRdEdgesPower[i].
4111 bChannel, is2GHz))) {
4112 if (ath9k_hw_fbin2freq
4113 (pRdEdgesPower[i - 1].bChannel, is2GHz) < freq
4114 && pRdEdgesPower[i - 1].flag) {
4115 twiceMaxEdgePower =
4116 pRdEdgesPower[i - 1].tPower;
4117 }
4118 break;
4119 }
4120 }
4121 return twiceMaxEdgePower;
4122 }
4123
4124 static inline bool
4125 ath9k_hw_set_power_per_rate_table(struct ath_hal *ah,
4126 struct ar5416_eeprom *pEepData,
4127 struct ath9k_channel *chan,
4128 int16_t *ratesArray,
4129 u16 cfgCtl,
4130 u8 AntennaReduction,
4131 u8 twiceMaxRegulatoryPower,
4132 u8 powerLimit)
4133 {
4134 u8 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
4135 static const u16 tpScaleReductionTable[5] =
4136 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
4137
4138 int i;
4139 int8_t twiceLargestAntenna;
4140 struct cal_ctl_data *rep;
4141 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
4142 0, { 0, 0, 0, 0}
4143 };
4144 struct cal_target_power_leg targetPowerOfdmExt = {
4145 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
4146 0, { 0, 0, 0, 0 }
4147 };
4148 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
4149 0, {0, 0, 0, 0}
4150 };
4151 u8 scaledPower = 0, minCtlPower, maxRegAllowedPower;
4152 u16 ctlModesFor11a[] =
4153 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
4154 u16 ctlModesFor11g[] =
4155 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
4156 CTL_2GHT40
4157 };
4158 u16 numCtlModes, *pCtlMode, ctlMode, freq;
4159 struct chan_centers centers;
4160 int tx_chainmask;
4161 u8 twiceMinEdgePower;
4162 struct ath_hal_5416 *ahp = AH5416(ah);
4163
4164 tx_chainmask = ahp->ah_txchainmask;
4165
4166 ath9k_hw_get_channel_centers(ah, chan, &centers);
4167
4168 twiceLargestAntenna = max(
4169 pEepData->modalHeader
4170 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
4171 pEepData->modalHeader
4172 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
4173
4174 twiceLargestAntenna = max((u8) twiceLargestAntenna,
4175 pEepData->modalHeader
4176 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
4177
4178 twiceLargestAntenna =
4179 (int8_t) min(AntennaReduction - twiceLargestAntenna, 0);
4180
4181 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
4182
4183 if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
4184 maxRegAllowedPower -=
4185 (tpScaleReductionTable[(ah->ah_tpScale)] * 2);
4186 }
4187
4188 scaledPower = min(powerLimit, maxRegAllowedPower);
4189
4190 switch (ar5416_get_ntxchains(tx_chainmask)) {
4191 case 1:
4192 break;
4193 case 2:
4194 scaledPower -=
4195 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].
4196 pwrDecreaseFor2Chain;
4197 break;
4198 case 3:
4199 scaledPower -=
4200 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].
4201 pwrDecreaseFor3Chain;
4202 break;
4203 }
4204
4205 scaledPower = max(0, (int32_t) scaledPower);
4206
4207 if (IS_CHAN_2GHZ(chan)) {
4208 numCtlModes =
4209 ARRAY_SIZE(ctlModesFor11g) -
4210 SUB_NUM_CTL_MODES_AT_2G_40;
4211 pCtlMode = ctlModesFor11g;
4212
4213 ath9k_hw_get_legacy_target_powers(ah, chan,
4214 pEepData->
4215 calTargetPowerCck,
4216 AR5416_NUM_2G_CCK_TARGET_POWERS,
4217 &targetPowerCck, 4,
4218 false);
4219 ath9k_hw_get_legacy_target_powers(ah, chan,
4220 pEepData->
4221 calTargetPower2G,
4222 AR5416_NUM_2G_20_TARGET_POWERS,
4223 &targetPowerOfdm, 4,
4224 false);
4225 ath9k_hw_get_target_powers(ah, chan,
4226 pEepData->calTargetPower2GHT20,
4227 AR5416_NUM_2G_20_TARGET_POWERS,
4228 &targetPowerHt20, 8, false);
4229
4230 if (IS_CHAN_HT40(chan)) {
4231 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4232 ath9k_hw_get_target_powers(ah, chan,
4233 pEepData->
4234 calTargetPower2GHT40,
4235 AR5416_NUM_2G_40_TARGET_POWERS,
4236 &targetPowerHt40, 8,
4237 true);
4238 ath9k_hw_get_legacy_target_powers(ah, chan,
4239 pEepData->
4240 calTargetPowerCck,
4241 AR5416_NUM_2G_CCK_TARGET_POWERS,
4242 &targetPowerCckExt,
4243 4, true);
4244 ath9k_hw_get_legacy_target_powers(ah, chan,
4245 pEepData->
4246 calTargetPower2G,
4247 AR5416_NUM_2G_20_TARGET_POWERS,
4248 &targetPowerOfdmExt,
4249 4, true);
4250 }
4251 } else {
4252
4253 numCtlModes =
4254 ARRAY_SIZE(ctlModesFor11a) -
4255 SUB_NUM_CTL_MODES_AT_5G_40;
4256 pCtlMode = ctlModesFor11a;
4257
4258 ath9k_hw_get_legacy_target_powers(ah, chan,
4259 pEepData->
4260 calTargetPower5G,
4261 AR5416_NUM_5G_20_TARGET_POWERS,
4262 &targetPowerOfdm, 4,
4263 false);
4264 ath9k_hw_get_target_powers(ah, chan,
4265 pEepData->calTargetPower5GHT20,
4266 AR5416_NUM_5G_20_TARGET_POWERS,
4267 &targetPowerHt20, 8, false);
4268
4269 if (IS_CHAN_HT40(chan)) {
4270 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4271 ath9k_hw_get_target_powers(ah, chan,
4272 pEepData->
4273 calTargetPower5GHT40,
4274 AR5416_NUM_5G_40_TARGET_POWERS,
4275 &targetPowerHt40, 8,
4276 true);
4277 ath9k_hw_get_legacy_target_powers(ah, chan,
4278 pEepData->
4279 calTargetPower5G,
4280 AR5416_NUM_5G_20_TARGET_POWERS,
4281 &targetPowerOfdmExt,
4282 4, true);
4283 }
4284 }
4285
4286 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4287 bool isHt40CtlMode =
4288 (pCtlMode[ctlMode] == CTL_5GHT40)
4289 || (pCtlMode[ctlMode] == CTL_2GHT40);
4290 if (isHt40CtlMode)
4291 freq = centers.synth_center;
4292 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4293 freq = centers.ext_center;
4294 else
4295 freq = centers.ctl_center;
4296
4297 if (ar5416_get_eep_ver(ahp) == 14
4298 && ar5416_get_eep_rev(ahp) <= 2)
4299 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
4300
4301 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
4302 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
4303 "EXT_ADDITIVE %d\n",
4304 ctlMode, numCtlModes, isHt40CtlMode,
4305 (pCtlMode[ctlMode] & EXT_ADDITIVE));
4306
4307 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i];
4308 i++) {
4309 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
4310 " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
4311 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
4312 "chan %d\n",
4313 i, cfgCtl, pCtlMode[ctlMode],
4314 pEepData->ctlIndex[i], chan->channel);
4315
4316 if ((((cfgCtl & ~CTL_MODE_M) |
4317 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4318 pEepData->ctlIndex[i])
4319 ||
4320 (((cfgCtl & ~CTL_MODE_M) |
4321 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4322 ((pEepData->
4323 ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
4324 rep = &(pEepData->ctlData[i]);
4325
4326 twiceMinEdgePower =
4327 ath9k_hw_get_max_edge_power(freq,
4328 rep->
4329 ctlEdges
4330 [ar5416_get_ntxchains
4331 (tx_chainmask)
4332 - 1],
4333 IS_CHAN_2GHZ
4334 (chan));
4335
4336 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
4337 " MATCH-EE_IDX %d: ch %d is2 %d "
4338 "2xMinEdge %d chainmask %d chains %d\n",
4339 i, freq, IS_CHAN_2GHZ(chan),
4340 twiceMinEdgePower, tx_chainmask,
4341 ar5416_get_ntxchains
4342 (tx_chainmask));
4343 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
4344 twiceMaxEdgePower =
4345 min(twiceMaxEdgePower,
4346 twiceMinEdgePower);
4347 } else {
4348 twiceMaxEdgePower =
4349 twiceMinEdgePower;
4350 break;
4351 }
4352 }
4353 }
4354
4355 minCtlPower = min(twiceMaxEdgePower, scaledPower);
4356
4357 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
4358 " SEL-Min ctlMode %d pCtlMode %d "
4359 "2xMaxEdge %d sP %d minCtlPwr %d\n",
4360 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4361 scaledPower, minCtlPower);
4362
4363 switch (pCtlMode[ctlMode]) {
4364 case CTL_11B:
4365 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
4366 i++) {
4367 targetPowerCck.tPow2x[i] =
4368 min(targetPowerCck.tPow2x[i],
4369 minCtlPower);
4370 }
4371 break;
4372 case CTL_11A:
4373 case CTL_11G:
4374 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
4375 i++) {
4376 targetPowerOfdm.tPow2x[i] =
4377 min(targetPowerOfdm.tPow2x[i],
4378 minCtlPower);
4379 }
4380 break;
4381 case CTL_5GHT20:
4382 case CTL_2GHT20:
4383 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
4384 i++) {
4385 targetPowerHt20.tPow2x[i] =
4386 min(targetPowerHt20.tPow2x[i],
4387 minCtlPower);
4388 }
4389 break;
4390 case CTL_11B_EXT:
4391 targetPowerCckExt.tPow2x[0] =
4392 min(targetPowerCckExt.tPow2x[0], minCtlPower);
4393 break;
4394 case CTL_11A_EXT:
4395 case CTL_11G_EXT:
4396 targetPowerOfdmExt.tPow2x[0] =
4397 min(targetPowerOfdmExt.tPow2x[0], minCtlPower);
4398 break;
4399 case CTL_5GHT40:
4400 case CTL_2GHT40:
4401 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
4402 i++) {
4403 targetPowerHt40.tPow2x[i] =
4404 min(targetPowerHt40.tPow2x[i],
4405 minCtlPower);
4406 }
4407 break;
4408 default:
4409 break;
4410 }
4411 }
4412
4413 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
4414 ratesArray[rate18mb] = ratesArray[rate24mb] =
4415 targetPowerOfdm.tPow2x[0];
4416 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
4417 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
4418 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
4419 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
4420
4421 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
4422 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
4423
4424 if (IS_CHAN_2GHZ(chan)) {
4425 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
4426 ratesArray[rate2s] = ratesArray[rate2l] =
4427 targetPowerCck.tPow2x[1];
4428 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
4429 targetPowerCck.tPow2x[2];
4430 ;
4431 ratesArray[rate11s] = ratesArray[rate11l] =
4432 targetPowerCck.tPow2x[3];
4433 ;
4434 }
4435 if (IS_CHAN_HT40(chan)) {
4436 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
4437 ratesArray[rateHt40_0 + i] =
4438 targetPowerHt40.tPow2x[i];
4439 }
4440 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
4441 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
4442 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
4443 if (IS_CHAN_2GHZ(chan)) {
4444 ratesArray[rateExtCck] =
4445 targetPowerCckExt.tPow2x[0];
4446 }
4447 }
4448 return true;
4449 }
4450
4451 static int
4452 ath9k_hw_set_txpower(struct ath_hal *ah,
4453 struct ar5416_eeprom *pEepData,
4454 struct ath9k_channel *chan,
4455 u16 cfgCtl,
4456 u8 twiceAntennaReduction,
4457 u8 twiceMaxRegulatoryPower,
4458 u8 powerLimit)
4459 {
4460 struct modal_eep_header *pModal =
4461 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
4462 int16_t ratesArray[Ar5416RateSize];
4463 int16_t txPowerIndexOffset = 0;
4464 u8 ht40PowerIncForPdadc = 2;
4465 int i;
4466
4467 memset(ratesArray, 0, sizeof(ratesArray));
4468
4469 if ((pEepData->baseEepHeader.
4470 version & AR5416_EEP_VER_MINOR_MASK) >=
4471 AR5416_EEP_MINOR_VER_2) {
4472 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
4473 }
4474
4475 if (!ath9k_hw_set_power_per_rate_table(ah, pEepData, chan,
4476 &ratesArray[0], cfgCtl,
4477 twiceAntennaReduction,
4478 twiceMaxRegulatoryPower,
4479 powerLimit)) {
4480 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
4481 "ath9k_hw_set_txpower: unable to set "
4482 "tx power per rate table\n");
4483 return -EIO;
4484 }
4485
4486 if (!ath9k_hw_set_power_cal_table
4487 (ah, pEepData, chan, &txPowerIndexOffset)) {
4488 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
4489 "ath9k_hw_set_txpower: unable to set power table\n");
4490 return -EIO;
4491 }
4492
4493 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
4494 ratesArray[i] =
4495 (int16_t) (txPowerIndexOffset + ratesArray[i]);
4496 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
4497 ratesArray[i] = AR5416_MAX_RATE_POWER;
4498 }
4499
4500 if (AR_SREV_9280_10_OR_LATER(ah)) {
4501 for (i = 0; i < Ar5416RateSize; i++)
4502 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
4503 }
4504
4505 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
4506 ATH9K_POW_SM(ratesArray[rate18mb], 24)
4507 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
4508 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
4509 | ATH9K_POW_SM(ratesArray[rate6mb], 0)
4510 );
4511 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
4512 ATH9K_POW_SM(ratesArray[rate54mb], 24)
4513 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
4514 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
4515 | ATH9K_POW_SM(ratesArray[rate24mb], 0)
4516 );
4517
4518 if (IS_CHAN_2GHZ(chan)) {
4519 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
4520 ATH9K_POW_SM(ratesArray[rate2s], 24)
4521 | ATH9K_POW_SM(ratesArray[rate2l], 16)
4522 | ATH9K_POW_SM(ratesArray[rateXr], 8)
4523 | ATH9K_POW_SM(ratesArray[rate1l], 0)
4524 );
4525 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
4526 ATH9K_POW_SM(ratesArray[rate11s], 24)
4527 | ATH9K_POW_SM(ratesArray[rate11l], 16)
4528 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
4529 | ATH9K_POW_SM(ratesArray[rate5_5l], 0)
4530 );
4531 }
4532
4533 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
4534 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
4535 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
4536 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
4537 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)
4538 );
4539 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
4540 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
4541 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
4542 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
4543 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)
4544 );
4545
4546 if (IS_CHAN_HT40(chan)) {
4547 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
4548 ATH9K_POW_SM(ratesArray[rateHt40_3] +
4549 ht40PowerIncForPdadc, 24)
4550 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
4551 ht40PowerIncForPdadc, 16)
4552 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
4553 ht40PowerIncForPdadc, 8)
4554 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
4555 ht40PowerIncForPdadc, 0)
4556 );
4557 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
4558 ATH9K_POW_SM(ratesArray[rateHt40_7] +
4559 ht40PowerIncForPdadc, 24)
4560 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
4561 ht40PowerIncForPdadc, 16)
4562 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
4563 ht40PowerIncForPdadc, 8)
4564 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
4565 ht40PowerIncForPdadc, 0)
4566 );
4567
4568 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
4569 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
4570 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
4571 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
4572 | ATH9K_POW_SM(ratesArray[rateDupCck], 0)
4573 );
4574 }
4575
4576 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
4577 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
4578 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0)
4579 );
4580
4581 i = rate6mb;
4582 if (IS_CHAN_HT40(chan))
4583 i = rateHt40_0;
4584 else if (IS_CHAN_HT20(chan))
4585 i = rateHt20_0;
4586
4587 if (AR_SREV_9280_10_OR_LATER(ah))
4588 ah->ah_maxPowerLevel =
4589 ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
4590 else
4591 ah->ah_maxPowerLevel = ratesArray[i];
4592
4593 return 0;
4594 }
4595
4596 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hal *ah,
4597 u32 coef_scaled,
4598 u32 *coef_mantissa,
4599 u32 *coef_exponent)
4600 {
4601 u32 coef_exp, coef_man;
4602
4603 for (coef_exp = 31; coef_exp > 0; coef_exp--)
4604 if ((coef_scaled >> coef_exp) & 0x1)
4605 break;
4606
4607 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
4608
4609 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
4610
4611 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
4612 *coef_exponent = coef_exp - 16;
4613 }
4614
4615 static void
4616 ath9k_hw_set_delta_slope(struct ath_hal *ah,
4617 struct ath9k_channel *chan)
4618 {
4619 u32 coef_scaled, ds_coef_exp, ds_coef_man;
4620 u32 clockMhzScaled = 0x64000000;
4621 struct chan_centers centers;
4622
4623 if (IS_CHAN_HALF_RATE(chan))
4624 clockMhzScaled = clockMhzScaled >> 1;
4625 else if (IS_CHAN_QUARTER_RATE(chan))
4626 clockMhzScaled = clockMhzScaled >> 2;
4627
4628 ath9k_hw_get_channel_centers(ah, chan, &centers);
4629 coef_scaled = clockMhzScaled / centers.synth_center;
4630
4631 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
4632 &ds_coef_exp);
4633
4634 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
4635 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
4636 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
4637 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
4638
4639 coef_scaled = (9 * coef_scaled) / 10;
4640
4641 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
4642 &ds_coef_exp);
4643
4644 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
4645 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
4646 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
4647 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
4648 }
4649
4650 static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah,
4651 struct ath9k_channel *chan)
4652 {
4653 int bb_spur = AR_NO_SPUR;
4654 int freq;
4655 int bin, cur_bin;
4656 int bb_spur_off, spur_subchannel_sd;
4657 int spur_freq_sd;
4658 int spur_delta_phase;
4659 int denominator;
4660 int upper, lower, cur_vit_mask;
4661 int tmp, newVal;
4662 int i;
4663 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
4664 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
4665 };
4666 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
4667 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
4668 };
4669 int inc[4] = { 0, 100, 0, 0 };
4670 struct chan_centers centers;
4671
4672 int8_t mask_m[123];
4673 int8_t mask_p[123];
4674 int8_t mask_amt;
4675 int tmp_mask;
4676 int cur_bb_spur;
4677 bool is2GHz = IS_CHAN_2GHZ(chan);
4678
4679 memset(&mask_m, 0, sizeof(int8_t) * 123);
4680 memset(&mask_p, 0, sizeof(int8_t) * 123);
4681
4682 ath9k_hw_get_channel_centers(ah, chan, &centers);
4683 freq = centers.synth_center;
4684
4685 ah->ah_config.spurmode = SPUR_ENABLE_EEPROM;
4686 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
4687 cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
4688
4689 if (is2GHz)
4690 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
4691 else
4692 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
4693
4694 if (AR_NO_SPUR == cur_bb_spur)
4695 break;
4696 cur_bb_spur = cur_bb_spur - freq;
4697
4698 if (IS_CHAN_HT40(chan)) {
4699 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
4700 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
4701 bb_spur = cur_bb_spur;
4702 break;
4703 }
4704 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
4705 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
4706 bb_spur = cur_bb_spur;
4707 break;
4708 }
4709 }
4710
4711 if (AR_NO_SPUR == bb_spur) {
4712 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
4713 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
4714 return;
4715 } else {
4716 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
4717 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
4718 }
4719
4720 bin = bb_spur * 320;
4721
4722 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
4723
4724 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
4725 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
4726 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
4727 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
4728 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
4729
4730 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
4731 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
4732 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
4733 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
4734 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
4735 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
4736
4737 if (IS_CHAN_HT40(chan)) {
4738 if (bb_spur < 0) {
4739 spur_subchannel_sd = 1;
4740 bb_spur_off = bb_spur + 10;
4741 } else {
4742 spur_subchannel_sd = 0;
4743 bb_spur_off = bb_spur - 10;
4744 }
4745 } else {
4746 spur_subchannel_sd = 0;
4747 bb_spur_off = bb_spur;
4748 }
4749
4750 if (IS_CHAN_HT40(chan))
4751 spur_delta_phase =
4752 ((bb_spur * 262144) /
4753 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
4754 else
4755 spur_delta_phase =
4756 ((bb_spur * 524288) /
4757 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
4758
4759 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
4760 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
4761
4762 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
4763 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
4764 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
4765 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
4766
4767 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
4768 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
4769
4770 cur_bin = -6000;
4771 upper = bin + 100;
4772 lower = bin - 100;
4773
4774 for (i = 0; i < 4; i++) {
4775 int pilot_mask = 0;
4776 int chan_mask = 0;
4777 int bp = 0;
4778 for (bp = 0; bp < 30; bp++) {
4779 if ((cur_bin > lower) && (cur_bin < upper)) {
4780 pilot_mask = pilot_mask | 0x1 << bp;
4781 chan_mask = chan_mask | 0x1 << bp;
4782 }
4783 cur_bin += 100;
4784 }
4785 cur_bin += inc[i];
4786 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
4787 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
4788 }
4789
4790 cur_vit_mask = 6100;
4791 upper = bin + 120;
4792 lower = bin - 120;
4793
4794 for (i = 0; i < 123; i++) {
4795 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
4796
4797 /* workaround for gcc bug #37014 */
4798 volatile int tmp = abs(cur_vit_mask - bin);
4799
4800 if (tmp < 75)
4801 mask_amt = 1;
4802 else
4803 mask_amt = 0;
4804 if (cur_vit_mask < 0)
4805 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
4806 else
4807 mask_p[cur_vit_mask / 100] = mask_amt;
4808 }
4809 cur_vit_mask -= 100;
4810 }
4811
4812 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
4813 | (mask_m[48] << 26) | (mask_m[49] << 24)
4814 | (mask_m[50] << 22) | (mask_m[51] << 20)
4815 | (mask_m[52] << 18) | (mask_m[53] << 16)
4816 | (mask_m[54] << 14) | (mask_m[55] << 12)
4817 | (mask_m[56] << 10) | (mask_m[57] << 8)
4818 | (mask_m[58] << 6) | (mask_m[59] << 4)
4819 | (mask_m[60] << 2) | (mask_m[61] << 0);
4820 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
4821 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
4822
4823 tmp_mask = (mask_m[31] << 28)
4824 | (mask_m[32] << 26) | (mask_m[33] << 24)
4825 | (mask_m[34] << 22) | (mask_m[35] << 20)
4826 | (mask_m[36] << 18) | (mask_m[37] << 16)
4827 | (mask_m[48] << 14) | (mask_m[39] << 12)
4828 | (mask_m[40] << 10) | (mask_m[41] << 8)
4829 | (mask_m[42] << 6) | (mask_m[43] << 4)
4830 | (mask_m[44] << 2) | (mask_m[45] << 0);
4831 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
4832 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
4833
4834 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
4835 | (mask_m[18] << 26) | (mask_m[18] << 24)
4836 | (mask_m[20] << 22) | (mask_m[20] << 20)
4837 | (mask_m[22] << 18) | (mask_m[22] << 16)
4838 | (mask_m[24] << 14) | (mask_m[24] << 12)
4839 | (mask_m[25] << 10) | (mask_m[26] << 8)
4840 | (mask_m[27] << 6) | (mask_m[28] << 4)
4841 | (mask_m[29] << 2) | (mask_m[30] << 0);
4842 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
4843 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
4844
4845 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
4846 | (mask_m[2] << 26) | (mask_m[3] << 24)
4847 | (mask_m[4] << 22) | (mask_m[5] << 20)
4848 | (mask_m[6] << 18) | (mask_m[7] << 16)
4849 | (mask_m[8] << 14) | (mask_m[9] << 12)
4850 | (mask_m[10] << 10) | (mask_m[11] << 8)
4851 | (mask_m[12] << 6) | (mask_m[13] << 4)
4852 | (mask_m[14] << 2) | (mask_m[15] << 0);
4853 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
4854 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
4855
4856 tmp_mask = (mask_p[15] << 28)
4857 | (mask_p[14] << 26) | (mask_p[13] << 24)
4858 | (mask_p[12] << 22) | (mask_p[11] << 20)
4859 | (mask_p[10] << 18) | (mask_p[9] << 16)
4860 | (mask_p[8] << 14) | (mask_p[7] << 12)
4861 | (mask_p[6] << 10) | (mask_p[5] << 8)
4862 | (mask_p[4] << 6) | (mask_p[3] << 4)
4863 | (mask_p[2] << 2) | (mask_p[1] << 0);
4864 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
4865 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
4866
4867 tmp_mask = (mask_p[30] << 28)
4868 | (mask_p[29] << 26) | (mask_p[28] << 24)
4869 | (mask_p[27] << 22) | (mask_p[26] << 20)
4870 | (mask_p[25] << 18) | (mask_p[24] << 16)
4871 | (mask_p[23] << 14) | (mask_p[22] << 12)
4872 | (mask_p[21] << 10) | (mask_p[20] << 8)
4873 | (mask_p[19] << 6) | (mask_p[18] << 4)
4874 | (mask_p[17] << 2) | (mask_p[16] << 0);
4875 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
4876 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
4877
4878 tmp_mask = (mask_p[45] << 28)
4879 | (mask_p[44] << 26) | (mask_p[43] << 24)
4880 | (mask_p[42] << 22) | (mask_p[41] << 20)
4881 | (mask_p[40] << 18) | (mask_p[39] << 16)
4882 | (mask_p[38] << 14) | (mask_p[37] << 12)
4883 | (mask_p[36] << 10) | (mask_p[35] << 8)
4884 | (mask_p[34] << 6) | (mask_p[33] << 4)
4885 | (mask_p[32] << 2) | (mask_p[31] << 0);
4886 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
4887 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
4888
4889 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
4890 | (mask_p[59] << 26) | (mask_p[58] << 24)
4891 | (mask_p[57] << 22) | (mask_p[56] << 20)
4892 | (mask_p[55] << 18) | (mask_p[54] << 16)
4893 | (mask_p[53] << 14) | (mask_p[52] << 12)
4894 | (mask_p[51] << 10) | (mask_p[50] << 8)
4895 | (mask_p[49] << 6) | (mask_p[48] << 4)
4896 | (mask_p[47] << 2) | (mask_p[46] << 0);
4897 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
4898 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
4899 }
4900
4901 static void ath9k_hw_spur_mitigate(struct ath_hal *ah,
4902 struct ath9k_channel *chan)
4903 {
4904 int bb_spur = AR_NO_SPUR;
4905 int bin, cur_bin;
4906 int spur_freq_sd;
4907 int spur_delta_phase;
4908 int denominator;
4909 int upper, lower, cur_vit_mask;
4910 int tmp, new;
4911 int i;
4912 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
4913 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
4914 };
4915 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
4916 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
4917 };
4918 int inc[4] = { 0, 100, 0, 0 };
4919
4920 int8_t mask_m[123];
4921 int8_t mask_p[123];
4922 int8_t mask_amt;
4923 int tmp_mask;
4924 int cur_bb_spur;
4925 bool is2GHz = IS_CHAN_2GHZ(chan);
4926
4927 memset(&mask_m, 0, sizeof(int8_t) * 123);
4928 memset(&mask_p, 0, sizeof(int8_t) * 123);
4929
4930 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
4931 cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
4932 if (AR_NO_SPUR == cur_bb_spur)
4933 break;
4934 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
4935 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
4936 bb_spur = cur_bb_spur;
4937 break;
4938 }
4939 }
4940
4941 if (AR_NO_SPUR == bb_spur)
4942 return;
4943
4944 bin = bb_spur * 32;
4945
4946 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
4947 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
4948 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
4949 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
4950 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
4951
4952 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
4953
4954 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
4955 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
4956 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
4957 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
4958 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
4959 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
4960
4961 spur_delta_phase = ((bb_spur * 524288) / 100) &
4962 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
4963
4964 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
4965 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
4966
4967 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
4968 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
4969 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
4970 REG_WRITE(ah, AR_PHY_TIMING11, new);
4971
4972 cur_bin = -6000;
4973 upper = bin + 100;
4974 lower = bin - 100;
4975
4976 for (i = 0; i < 4; i++) {
4977 int pilot_mask = 0;
4978 int chan_mask = 0;
4979 int bp = 0;
4980 for (bp = 0; bp < 30; bp++) {
4981 if ((cur_bin > lower) && (cur_bin < upper)) {
4982 pilot_mask = pilot_mask | 0x1 << bp;
4983 chan_mask = chan_mask | 0x1 << bp;
4984 }
4985 cur_bin += 100;
4986 }
4987 cur_bin += inc[i];
4988 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
4989 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
4990 }
4991
4992 cur_vit_mask = 6100;
4993 upper = bin + 120;
4994 lower = bin - 120;
4995
4996 for (i = 0; i < 123; i++) {
4997 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
4998
4999 /* workaround for gcc bug #37014 */
5000 volatile int tmp = abs(cur_vit_mask - bin);
5001
5002 if (tmp < 75)
5003 mask_amt = 1;
5004 else
5005 mask_amt = 0;
5006 if (cur_vit_mask < 0)
5007 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
5008 else
5009 mask_p[cur_vit_mask / 100] = mask_amt;
5010 }
5011 cur_vit_mask -= 100;
5012 }
5013
5014 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
5015 | (mask_m[48] << 26) | (mask_m[49] << 24)
5016 | (mask_m[50] << 22) | (mask_m[51] << 20)
5017 | (mask_m[52] << 18) | (mask_m[53] << 16)
5018 | (mask_m[54] << 14) | (mask_m[55] << 12)
5019 | (mask_m[56] << 10) | (mask_m[57] << 8)
5020 | (mask_m[58] << 6) | (mask_m[59] << 4)
5021 | (mask_m[60] << 2) | (mask_m[61] << 0);
5022 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
5023 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
5024
5025 tmp_mask = (mask_m[31] << 28)
5026 | (mask_m[32] << 26) | (mask_m[33] << 24)
5027 | (mask_m[34] << 22) | (mask_m[35] << 20)
5028 | (mask_m[36] << 18) | (mask_m[37] << 16)
5029 | (mask_m[48] << 14) | (mask_m[39] << 12)
5030 | (mask_m[40] << 10) | (mask_m[41] << 8)
5031 | (mask_m[42] << 6) | (mask_m[43] << 4)
5032 | (mask_m[44] << 2) | (mask_m[45] << 0);
5033 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
5034 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
5035
5036 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
5037 | (mask_m[18] << 26) | (mask_m[18] << 24)
5038 | (mask_m[20] << 22) | (mask_m[20] << 20)
5039 | (mask_m[22] << 18) | (mask_m[22] << 16)
5040 | (mask_m[24] << 14) | (mask_m[24] << 12)
5041 | (mask_m[25] << 10) | (mask_m[26] << 8)
5042 | (mask_m[27] << 6) | (mask_m[28] << 4)
5043 | (mask_m[29] << 2) | (mask_m[30] << 0);
5044 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
5045 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
5046
5047 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
5048 | (mask_m[2] << 26) | (mask_m[3] << 24)
5049 | (mask_m[4] << 22) | (mask_m[5] << 20)
5050 | (mask_m[6] << 18) | (mask_m[7] << 16)
5051 | (mask_m[8] << 14) | (mask_m[9] << 12)
5052 | (mask_m[10] << 10) | (mask_m[11] << 8)
5053 | (mask_m[12] << 6) | (mask_m[13] << 4)
5054 | (mask_m[14] << 2) | (mask_m[15] << 0);
5055 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
5056 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
5057
5058 tmp_mask = (mask_p[15] << 28)
5059 | (mask_p[14] << 26) | (mask_p[13] << 24)
5060 | (mask_p[12] << 22) | (mask_p[11] << 20)
5061 | (mask_p[10] << 18) | (mask_p[9] << 16)
5062 | (mask_p[8] << 14) | (mask_p[7] << 12)
5063 | (mask_p[6] << 10) | (mask_p[5] << 8)
5064 | (mask_p[4] << 6) | (mask_p[3] << 4)
5065 | (mask_p[2] << 2) | (mask_p[1] << 0);
5066 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
5067 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
5068
5069 tmp_mask = (mask_p[30] << 28)
5070 | (mask_p[29] << 26) | (mask_p[28] << 24)
5071 | (mask_p[27] << 22) | (mask_p[26] << 20)
5072 | (mask_p[25] << 18) | (mask_p[24] << 16)
5073 | (mask_p[23] << 14) | (mask_p[22] << 12)
5074 | (mask_p[21] << 10) | (mask_p[20] << 8)
5075 | (mask_p[19] << 6) | (mask_p[18] << 4)
5076 | (mask_p[17] << 2) | (mask_p[16] << 0);
5077 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
5078 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
5079
5080 tmp_mask = (mask_p[45] << 28)
5081 | (mask_p[44] << 26) | (mask_p[43] << 24)
5082 | (mask_p[42] << 22) | (mask_p[41] << 20)
5083 | (mask_p[40] << 18) | (mask_p[39] << 16)
5084 | (mask_p[38] << 14) | (mask_p[37] << 12)
5085 | (mask_p[36] << 10) | (mask_p[35] << 8)
5086 | (mask_p[34] << 6) | (mask_p[33] << 4)
5087 | (mask_p[32] << 2) | (mask_p[31] << 0);
5088 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
5089 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
5090
5091 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
5092 | (mask_p[59] << 26) | (mask_p[58] << 24)
5093 | (mask_p[57] << 22) | (mask_p[56] << 20)
5094 | (mask_p[55] << 18) | (mask_p[54] << 16)
5095 | (mask_p[53] << 14) | (mask_p[52] << 12)
5096 | (mask_p[51] << 10) | (mask_p[50] << 8)
5097 | (mask_p[49] << 6) | (mask_p[48] << 4)
5098 | (mask_p[47] << 2) | (mask_p[46] << 0);
5099 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
5100 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
5101 }
5102
5103 static inline void ath9k_hw_init_chain_masks(struct ath_hal *ah)
5104 {
5105 struct ath_hal_5416 *ahp = AH5416(ah);
5106 int rx_chainmask, tx_chainmask;
5107
5108 rx_chainmask = ahp->ah_rxchainmask;
5109 tx_chainmask = ahp->ah_txchainmask;
5110
5111 switch (rx_chainmask) {
5112 case 0x5:
5113 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
5114 AR_PHY_SWAP_ALT_CHAIN);
5115 case 0x3:
5116 if (((ah)->ah_macVersion <= AR_SREV_VERSION_9160)) {
5117 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
5118 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
5119 break;
5120 }
5121 case 0x1:
5122 case 0x2:
5123 if (!AR_SREV_9280(ah))
5124 break;
5125 case 0x7:
5126 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
5127 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
5128 break;
5129 default:
5130 break;
5131 }
5132
5133 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
5134 if (tx_chainmask == 0x5) {
5135 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
5136 AR_PHY_SWAP_ALT_CHAIN);
5137 }
5138 if (AR_SREV_9100(ah))
5139 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
5140 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
5141 }
5142
5143 static void ath9k_hw_set_addac(struct ath_hal *ah,
5144 struct ath9k_channel *chan)
5145 {
5146 struct modal_eep_header *pModal;
5147 struct ath_hal_5416 *ahp = AH5416(ah);
5148 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
5149 u8 biaslevel;
5150
5151 if (ah->ah_macVersion != AR_SREV_VERSION_9160)
5152 return;
5153
5154 if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
5155 return;
5156
5157 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
5158
5159 if (pModal->xpaBiasLvl != 0xff) {
5160 biaslevel = pModal->xpaBiasLvl;
5161 } else {
5162
5163 u16 resetFreqBin, freqBin, freqCount = 0;
5164 struct chan_centers centers;
5165
5166 ath9k_hw_get_channel_centers(ah, chan, &centers);
5167
5168 resetFreqBin =
5169 FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan));
5170 freqBin = pModal->xpaBiasLvlFreq[0] & 0xff;
5171 biaslevel = (u8) (pModal->xpaBiasLvlFreq[0] >> 14);
5172
5173 freqCount++;
5174
5175 while (freqCount < 3) {
5176 if (pModal->xpaBiasLvlFreq[freqCount] == 0x0)
5177 break;
5178
5179 freqBin = pModal->xpaBiasLvlFreq[freqCount] & 0xff;
5180 if (resetFreqBin >= freqBin) {
5181 biaslevel =
5182 (u8) (pModal->
5183 xpaBiasLvlFreq[freqCount]
5184 >> 14);
5185 } else {
5186 break;
5187 }
5188 freqCount++;
5189 }
5190 }
5191
5192 if (IS_CHAN_2GHZ(chan)) {
5193 INI_RA(&ahp->ah_iniAddac, 7, 1) =
5194 (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel
5195 << 3;
5196 } else {
5197 INI_RA(&ahp->ah_iniAddac, 6, 1) =
5198 (INI_RA(&ahp->ah_iniAddac, 6, 1) & (~0xc0)) | biaslevel
5199 << 6;
5200 }
5201 }
5202
5203 static u32 ath9k_hw_mac_usec(struct ath_hal *ah, u32 clks)
5204 {
5205 if (ah->ah_curchan != NULL)
5206 return clks /
5207 CLOCK_RATE[ath9k_hw_chan2wmode(ah, ah->ah_curchan)];
5208 else
5209 return clks / CLOCK_RATE[ATH9K_MODE_11B];
5210 }
5211
5212 static u32 ath9k_hw_mac_to_usec(struct ath_hal *ah, u32 clks)
5213 {
5214 struct ath9k_channel *chan = ah->ah_curchan;
5215
5216 if (chan && IS_CHAN_HT40(chan))
5217 return ath9k_hw_mac_usec(ah, clks) / 2;
5218 else
5219 return ath9k_hw_mac_usec(ah, clks);
5220 }
5221
5222 static u32 ath9k_hw_mac_clks(struct ath_hal *ah, u32 usecs)
5223 {
5224 if (ah->ah_curchan != NULL)
5225 return usecs * CLOCK_RATE[ath9k_hw_chan2wmode(ah,
5226 ah->ah_curchan)];
5227 else
5228 return usecs * CLOCK_RATE[ATH9K_MODE_11B];
5229 }
5230
5231 static u32 ath9k_hw_mac_to_clks(struct ath_hal *ah, u32 usecs)
5232 {
5233 struct ath9k_channel *chan = ah->ah_curchan;
5234
5235 if (chan && IS_CHAN_HT40(chan))
5236 return ath9k_hw_mac_clks(ah, usecs) * 2;
5237 else
5238 return ath9k_hw_mac_clks(ah, usecs);
5239 }
5240
5241 static bool ath9k_hw_set_ack_timeout(struct ath_hal *ah, u32 us)
5242 {
5243 struct ath_hal_5416 *ahp = AH5416(ah);
5244
5245 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
5246 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad ack timeout %u\n",
5247 __func__, us);
5248 ahp->ah_acktimeout = (u32) -1;
5249 return false;
5250 } else {
5251 REG_RMW_FIELD(ah, AR_TIME_OUT,
5252 AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
5253 ahp->ah_acktimeout = us;
5254 return true;
5255 }
5256 }
5257
5258 static bool ath9k_hw_set_cts_timeout(struct ath_hal *ah, u32 us)
5259 {
5260 struct ath_hal_5416 *ahp = AH5416(ah);
5261
5262 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
5263 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad cts timeout %u\n",
5264 __func__, us);
5265 ahp->ah_ctstimeout = (u32) -1;
5266 return false;
5267 } else {
5268 REG_RMW_FIELD(ah, AR_TIME_OUT,
5269 AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
5270 ahp->ah_ctstimeout = us;
5271 return true;
5272 }
5273 }
5274 static bool ath9k_hw_set_global_txtimeout(struct ath_hal *ah,
5275 u32 tu)
5276 {
5277 struct ath_hal_5416 *ahp = AH5416(ah);
5278
5279 if (tu > 0xFFFF) {
5280 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
5281 "%s: bad global tx timeout %u\n", __func__, tu);
5282 ahp->ah_globaltxtimeout = (u32) -1;
5283 return false;
5284 } else {
5285 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
5286 ahp->ah_globaltxtimeout = tu;
5287 return true;
5288 }
5289 }
5290
5291 bool ath9k_hw_setslottime(struct ath_hal *ah, u32 us)
5292 {
5293 struct ath_hal_5416 *ahp = AH5416(ah);
5294
5295 if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
5296 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad slot time %u\n",
5297 __func__, us);
5298 ahp->ah_slottime = (u32) -1;
5299 return false;
5300 } else {
5301 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
5302 ahp->ah_slottime = us;
5303 return true;
5304 }
5305 }
5306
5307 static inline void ath9k_hw_init_user_settings(struct ath_hal *ah)
5308 {
5309 struct ath_hal_5416 *ahp = AH5416(ah);
5310
5311 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "--AP %s ahp->ah_miscMode 0x%x\n",
5312 __func__, ahp->ah_miscMode);
5313 if (ahp->ah_miscMode != 0)
5314 REG_WRITE(ah, AR_PCU_MISC,
5315 REG_READ(ah, AR_PCU_MISC) | ahp->ah_miscMode);
5316 if (ahp->ah_slottime != (u32) -1)
5317 ath9k_hw_setslottime(ah, ahp->ah_slottime);
5318 if (ahp->ah_acktimeout != (u32) -1)
5319 ath9k_hw_set_ack_timeout(ah, ahp->ah_acktimeout);
5320 if (ahp->ah_ctstimeout != (u32) -1)
5321 ath9k_hw_set_cts_timeout(ah, ahp->ah_ctstimeout);
5322 if (ahp->ah_globaltxtimeout != (u32) -1)
5323 ath9k_hw_set_global_txtimeout(ah, ahp->ah_globaltxtimeout);
5324 }
5325
5326 static inline int
5327 ath9k_hw_process_ini(struct ath_hal *ah,
5328 struct ath9k_channel *chan,
5329 enum ath9k_ht_macmode macmode)
5330 {
5331 int i, regWrites = 0;
5332 struct ath_hal_5416 *ahp = AH5416(ah);
5333 u32 modesIndex, freqIndex;
5334 int status;
5335
5336 switch (chan->chanmode) {
5337 case CHANNEL_A:
5338 case CHANNEL_A_HT20:
5339 modesIndex = 1;
5340 freqIndex = 1;
5341 break;
5342 case CHANNEL_A_HT40PLUS:
5343 case CHANNEL_A_HT40MINUS:
5344 modesIndex = 2;
5345 freqIndex = 1;
5346 break;
5347 case CHANNEL_G:
5348 case CHANNEL_G_HT20:
5349 case CHANNEL_B:
5350 modesIndex = 4;
5351 freqIndex = 2;
5352 break;
5353 case CHANNEL_G_HT40PLUS:
5354 case CHANNEL_G_HT40MINUS:
5355 modesIndex = 3;
5356 freqIndex = 2;
5357 break;
5358
5359 default:
5360 return -EINVAL;
5361 }
5362
5363 REG_WRITE(ah, AR_PHY(0), 0x00000007);
5364
5365 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
5366
5367 ath9k_hw_set_addac(ah, chan);
5368
5369 if (AR_SREV_5416_V22_OR_LATER(ah)) {
5370 REG_WRITE_ARRAY(&ahp->ah_iniAddac, 1, regWrites);
5371 } else {
5372 struct ar5416IniArray temp;
5373 u32 addacSize =
5374 sizeof(u32) * ahp->ah_iniAddac.ia_rows *
5375 ahp->ah_iniAddac.ia_columns;
5376
5377 memcpy(ahp->ah_addac5416_21,
5378 ahp->ah_iniAddac.ia_array, addacSize);
5379
5380 (ahp->ah_addac5416_21)[31 *
5381 ahp->ah_iniAddac.ia_columns + 1] = 0;
5382
5383 temp.ia_array = ahp->ah_addac5416_21;
5384 temp.ia_columns = ahp->ah_iniAddac.ia_columns;
5385 temp.ia_rows = ahp->ah_iniAddac.ia_rows;
5386 REG_WRITE_ARRAY(&temp, 1, regWrites);
5387 }
5388 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
5389
5390 for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
5391 u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
5392 u32 val = INI_RA(&ahp->ah_iniModes, i, modesIndex);
5393
5394 #ifdef CONFIG_SLOW_ANT_DIV
5395 if (ah->ah_devid == AR9280_DEVID_PCI)
5396 val = ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom, reg,
5397 val);
5398 #endif
5399
5400 REG_WRITE(ah, reg, val);
5401
5402 if (reg >= 0x7800 && reg < 0x78a0
5403 && ah->ah_config.analog_shiftreg) {
5404 udelay(100);
5405 }
5406
5407 DO_DELAY(regWrites);
5408 }
5409
5410 for (i = 0; i < ahp->ah_iniCommon.ia_rows; i++) {
5411 u32 reg = INI_RA(&ahp->ah_iniCommon, i, 0);
5412 u32 val = INI_RA(&ahp->ah_iniCommon, i, 1);
5413
5414 REG_WRITE(ah, reg, val);
5415
5416 if (reg >= 0x7800 && reg < 0x78a0
5417 && ah->ah_config.analog_shiftreg) {
5418 udelay(100);
5419 }
5420
5421 DO_DELAY(regWrites);
5422 }
5423
5424 ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
5425
5426 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
5427 REG_WRITE_ARRAY(&ahp->ah_iniModesAdditional, modesIndex,
5428 regWrites);
5429 }
5430
5431 ath9k_hw_override_ini(ah, chan);
5432 ath9k_hw_set_regs(ah, chan, macmode);
5433 ath9k_hw_init_chain_masks(ah);
5434
5435 status = ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan,
5436 ath9k_regd_get_ctl(ah, chan),
5437 ath9k_regd_get_antenna_allowed(ah,
5438 chan),
5439 chan->maxRegTxPower * 2,
5440 min((u32) MAX_RATE_POWER,
5441 (u32) ah->ah_powerLimit));
5442 if (status != 0) {
5443 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
5444 "%s: error init'ing transmit power\n", __func__);
5445 return -EIO;
5446 }
5447
5448 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
5449 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
5450 "%s: ar5416SetRfRegs failed\n", __func__);
5451 return -EIO;
5452 }
5453
5454 return 0;
5455 }
5456
5457 static inline void ath9k_hw_setup_calibration(struct ath_hal *ah,
5458 struct hal_cal_list *currCal)
5459 {
5460 REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(0),
5461 AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
5462 currCal->calData->calCountMax);
5463
5464 switch (currCal->calData->calType) {
5465 case IQ_MISMATCH_CAL:
5466 REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
5467 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5468 "%s: starting IQ Mismatch Calibration\n",
5469 __func__);
5470 break;
5471 case ADC_GAIN_CAL:
5472 REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_GAIN);
5473 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5474 "%s: starting ADC Gain Calibration\n", __func__);
5475 break;
5476 case ADC_DC_CAL:
5477 REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_PER);
5478 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5479 "%s: starting ADC DC Calibration\n", __func__);
5480 break;
5481 case ADC_DC_INIT_CAL:
5482 REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_INIT);
5483 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5484 "%s: starting Init ADC DC Calibration\n",
5485 __func__);
5486 break;
5487 }
5488
5489 REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0),
5490 AR_PHY_TIMING_CTRL4_DO_CAL);
5491 }
5492
5493 static inline void ath9k_hw_reset_calibration(struct ath_hal *ah,
5494 struct hal_cal_list *currCal)
5495 {
5496 struct ath_hal_5416 *ahp = AH5416(ah);
5497 int i;
5498
5499 ath9k_hw_setup_calibration(ah, currCal);
5500
5501 currCal->calState = CAL_RUNNING;
5502
5503 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
5504 ahp->ah_Meas0.sign[i] = 0;
5505 ahp->ah_Meas1.sign[i] = 0;
5506 ahp->ah_Meas2.sign[i] = 0;
5507 ahp->ah_Meas3.sign[i] = 0;
5508 }
5509
5510 ahp->ah_CalSamples = 0;
5511 }
5512
5513 static inline void
5514 ath9k_hw_per_calibration(struct ath_hal *ah,
5515 struct ath9k_channel *ichan,
5516 u8 rxchainmask,
5517 struct hal_cal_list *currCal,
5518 bool *isCalDone)
5519 {
5520 struct ath_hal_5416 *ahp = AH5416(ah);
5521
5522 *isCalDone = false;
5523
5524 if (currCal->calState == CAL_RUNNING) {
5525 if (!(REG_READ(ah,
5526 AR_PHY_TIMING_CTRL4(0)) &
5527 AR_PHY_TIMING_CTRL4_DO_CAL)) {
5528
5529 currCal->calData->calCollect(ah);
5530
5531 ahp->ah_CalSamples++;
5532
5533 if (ahp->ah_CalSamples >=
5534 currCal->calData->calNumSamples) {
5535 int i, numChains = 0;
5536 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
5537 if (rxchainmask & (1 << i))
5538 numChains++;
5539 }
5540
5541 currCal->calData->calPostProc(ah,
5542 numChains);
5543
5544 ichan->CalValid |=
5545 currCal->calData->calType;
5546 currCal->calState = CAL_DONE;
5547 *isCalDone = true;
5548 } else {
5549 ath9k_hw_setup_calibration(ah, currCal);
5550 }
5551 }
5552 } else if (!(ichan->CalValid & currCal->calData->calType)) {
5553 ath9k_hw_reset_calibration(ah, currCal);
5554 }
5555 }
5556
5557 static inline bool ath9k_hw_run_init_cals(struct ath_hal *ah,
5558 int init_cal_count)
5559 {
5560 struct ath_hal_5416 *ahp = AH5416(ah);
5561 struct ath9k_channel ichan;
5562 bool isCalDone;
5563 struct hal_cal_list *currCal = ahp->ah_cal_list_curr;
5564 const struct hal_percal_data *calData = currCal->calData;
5565 int i;
5566
5567 if (currCal == NULL)
5568 return false;
5569
5570 ichan.CalValid = 0;
5571
5572 for (i = 0; i < init_cal_count; i++) {
5573 ath9k_hw_reset_calibration(ah, currCal);
5574
5575 if (!ath9k_hw_wait(ah, AR_PHY_TIMING_CTRL4(0),
5576 AR_PHY_TIMING_CTRL4_DO_CAL, 0)) {
5577 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5578 "%s: Cal %d failed to complete in 100ms.\n",
5579 __func__, calData->calType);
5580
5581 ahp->ah_cal_list = ahp->ah_cal_list_last =
5582 ahp->ah_cal_list_curr = NULL;
5583 return false;
5584 }
5585
5586 ath9k_hw_per_calibration(ah, &ichan, ahp->ah_rxchainmask,
5587 currCal, &isCalDone);
5588 if (!isCalDone) {
5589 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5590 "%s: Not able to run Init Cal %d.\n",
5591 __func__, calData->calType);
5592 }
5593 if (currCal->calNext) {
5594 currCal = currCal->calNext;
5595 calData = currCal->calData;
5596 }
5597 }
5598
5599 ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = NULL;
5600 return true;
5601 }
5602
5603 static inline bool
5604 ath9k_hw_channel_change(struct ath_hal *ah,
5605 struct ath9k_channel *chan,
5606 enum ath9k_ht_macmode macmode)
5607 {
5608 u32 synthDelay, qnum;
5609 struct ath_hal_5416 *ahp = AH5416(ah);
5610
5611 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
5612 if (ath9k_hw_numtxpending(ah, qnum)) {
5613 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
5614 "%s: Transmit frames pending on queue %d\n",
5615 __func__, qnum);
5616 return false;
5617 }
5618 }
5619
5620 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
5621 if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
5622 AR_PHY_RFBUS_GRANT_EN)) {
5623 DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
5624 "%s: Could not kill baseband RX\n", __func__);
5625 return false;
5626 }
5627
5628 ath9k_hw_set_regs(ah, chan, macmode);
5629
5630 if (AR_SREV_9280_10_OR_LATER(ah)) {
5631 if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
5632 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
5633 "%s: failed to set channel\n", __func__);
5634 return false;
5635 }
5636 } else {
5637 if (!(ath9k_hw_set_channel(ah, chan))) {
5638 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
5639 "%s: failed to set channel\n", __func__);
5640 return false;
5641 }
5642 }
5643
5644 if (ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan,
5645 ath9k_regd_get_ctl(ah, chan),
5646 ath9k_regd_get_antenna_allowed(ah, chan),
5647 chan->maxRegTxPower * 2,
5648 min((u32) MAX_RATE_POWER,
5649 (u32) ah->ah_powerLimit)) != 0) {
5650 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
5651 "%s: error init'ing transmit power\n", __func__);
5652 return false;
5653 }
5654
5655 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
5656 if (IS_CHAN_CCK(chan))
5657 synthDelay = (4 * synthDelay) / 22;
5658 else
5659 synthDelay /= 10;
5660
5661 udelay(synthDelay + BASE_ACTIVATE_DELAY);
5662
5663 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
5664
5665 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
5666 ath9k_hw_set_delta_slope(ah, chan);
5667
5668 if (AR_SREV_9280_10_OR_LATER(ah))
5669 ath9k_hw_9280_spur_mitigate(ah, chan);
5670 else
5671 ath9k_hw_spur_mitigate(ah, chan);
5672
5673 if (!chan->oneTimeCalsDone)
5674 chan->oneTimeCalsDone = true;
5675
5676 return true;
5677 }
5678
5679 static bool ath9k_hw_chip_reset(struct ath_hal *ah,
5680 struct ath9k_channel *chan)
5681 {
5682 struct ath_hal_5416 *ahp = AH5416(ah);
5683
5684 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
5685 return false;
5686
5687 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
5688 return false;
5689
5690 ahp->ah_chipFullSleep = false;
5691
5692 ath9k_hw_init_pll(ah, chan);
5693
5694 ath9k_hw_set_rfmode(ah, chan);
5695
5696 return true;
5697 }
5698
5699 static inline void ath9k_hw_set_dma(struct ath_hal *ah)
5700 {
5701 u32 regval;
5702
5703 regval = REG_READ(ah, AR_AHB_MODE);
5704 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
5705
5706 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
5707 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
5708
5709 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->ah_txTrigLevel);
5710
5711 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
5712 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
5713
5714 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
5715
5716 if (AR_SREV_9285(ah)) {
5717 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
5718 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
5719 } else {
5720 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
5721 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
5722 }
5723 }
5724
5725 bool ath9k_hw_stopdmarecv(struct ath_hal *ah)
5726 {
5727 REG_WRITE(ah, AR_CR, AR_CR_RXD);
5728 if (!ath9k_hw_wait(ah, AR_CR, AR_CR_RXE, 0)) {
5729 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
5730 "%s: dma failed to stop in 10ms\n"
5731 "AR_CR=0x%08x\nAR_DIAG_SW=0x%08x\n",
5732 __func__,
5733 REG_READ(ah, AR_CR), REG_READ(ah, AR_DIAG_SW));
5734 return false;
5735 } else {
5736 return true;
5737 }
5738 }
5739
5740 void ath9k_hw_startpcureceive(struct ath_hal *ah)
5741 {
5742 REG_CLR_BIT(ah, AR_DIAG_SW,
5743 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
5744
5745 ath9k_enable_mib_counters(ah);
5746
5747 ath9k_ani_reset(ah);
5748 }
5749
5750 void ath9k_hw_stoppcurecv(struct ath_hal *ah)
5751 {
5752 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
5753
5754 ath9k_hw_disable_mib_counters(ah);
5755 }
5756
5757 static bool ath9k_hw_iscal_supported(struct ath_hal *ah,
5758 struct ath9k_channel *chan,
5759 enum hal_cal_types calType)
5760 {
5761 struct ath_hal_5416 *ahp = AH5416(ah);
5762 bool retval = false;
5763
5764 switch (calType & ahp->ah_suppCals) {
5765 case IQ_MISMATCH_CAL:
5766 if (!IS_CHAN_B(chan))
5767 retval = true;
5768 break;
5769 case ADC_GAIN_CAL:
5770 case ADC_DC_CAL:
5771 if (!IS_CHAN_B(chan)
5772 && !(IS_CHAN_2GHZ(chan) && IS_CHAN_HT20(chan)))
5773 retval = true;
5774 break;
5775 }
5776
5777 return retval;
5778 }
5779
5780 static inline bool ath9k_hw_init_cal(struct ath_hal *ah,
5781 struct ath9k_channel *chan)
5782 {
5783 struct ath_hal_5416 *ahp = AH5416(ah);
5784 struct ath9k_channel *ichan =
5785 ath9k_regd_check_channel(ah, chan);
5786
5787 REG_WRITE(ah, AR_PHY_AGC_CONTROL,
5788 REG_READ(ah, AR_PHY_AGC_CONTROL) |
5789 AR_PHY_AGC_CONTROL_CAL);
5790
5791 if (!ath9k_hw_wait
5792 (ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
5793 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5794 "%s: offset calibration failed to complete in 1ms; "
5795 "noisy environment?\n", __func__);
5796 return false;
5797 }
5798
5799 REG_WRITE(ah, AR_PHY_AGC_CONTROL,
5800 REG_READ(ah, AR_PHY_AGC_CONTROL) |
5801 AR_PHY_AGC_CONTROL_NF);
5802
5803 ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr =
5804 NULL;
5805
5806 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) {
5807 if (ath9k_hw_iscal_supported(ah, chan, ADC_GAIN_CAL)) {
5808 INIT_CAL(&ahp->ah_adcGainCalData);
5809 INSERT_CAL(ahp, &ahp->ah_adcGainCalData);
5810 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5811 "%s: enabling ADC Gain Calibration.\n",
5812 __func__);
5813 }
5814 if (ath9k_hw_iscal_supported(ah, chan, ADC_DC_CAL)) {
5815 INIT_CAL(&ahp->ah_adcDcCalData);
5816 INSERT_CAL(ahp, &ahp->ah_adcDcCalData);
5817 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5818 "%s: enabling ADC DC Calibration.\n",
5819 __func__);
5820 }
5821 if (ath9k_hw_iscal_supported(ah, chan, IQ_MISMATCH_CAL)) {
5822 INIT_CAL(&ahp->ah_iqCalData);
5823 INSERT_CAL(ahp, &ahp->ah_iqCalData);
5824 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5825 "%s: enabling IQ Calibration.\n",
5826 __func__);
5827 }
5828
5829 ahp->ah_cal_list_curr = ahp->ah_cal_list;
5830
5831 if (ahp->ah_cal_list_curr)
5832 ath9k_hw_reset_calibration(ah,
5833 ahp->ah_cal_list_curr);
5834 }
5835
5836 ichan->CalValid = 0;
5837
5838 return true;
5839 }
5840
5841
5842 bool ath9k_hw_reset(struct ath_hal *ah,
5843 struct ath9k_channel *chan,
5844 enum ath9k_ht_macmode macmode,
5845 u8 txchainmask, u8 rxchainmask,
5846 enum ath9k_ht_extprotspacing extprotspacing,
5847 bool bChannelChange,
5848 int *status)
5849 {
5850 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
5851 u32 saveLedState;
5852 struct ath_hal_5416 *ahp = AH5416(ah);
5853 struct ath9k_channel *curchan = ah->ah_curchan;
5854 u32 saveDefAntenna;
5855 u32 macStaId1;
5856 int ecode;
5857 int i, rx_chainmask;
5858
5859 ahp->ah_extprotspacing = extprotspacing;
5860 ahp->ah_txchainmask = txchainmask;
5861 ahp->ah_rxchainmask = rxchainmask;
5862
5863 if (AR_SREV_9280(ah)) {
5864 ahp->ah_txchainmask &= 0x3;
5865 ahp->ah_rxchainmask &= 0x3;
5866 }
5867
5868 if (ath9k_hw_check_chan(ah, chan) == NULL) {
5869 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
5870 "%s: invalid channel %u/0x%x; no mapping\n",
5871 __func__, chan->channel, chan->channelFlags);
5872 FAIL(-EINVAL);
5873 }
5874
5875 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
5876 return false;
5877
5878 if (curchan)
5879 ath9k_hw_getnf(ah, curchan);
5880
5881 if (bChannelChange &&
5882 (ahp->ah_chipFullSleep != true) &&
5883 (ah->ah_curchan != NULL) &&
5884 (chan->channel != ah->ah_curchan->channel) &&
5885 ((chan->channelFlags & CHANNEL_ALL) ==
5886 (ah->ah_curchan->channelFlags & CHANNEL_ALL)) &&
5887 (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
5888 !IS_CHAN_A_5MHZ_SPACED(ah->
5889 ah_curchan)))) {
5890
5891 if (ath9k_hw_channel_change(ah, chan, macmode)) {
5892 ath9k_hw_loadnf(ah, ah->ah_curchan);
5893 ath9k_hw_start_nfcal(ah);
5894 return true;
5895 }
5896 }
5897
5898 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
5899 if (saveDefAntenna == 0)
5900 saveDefAntenna = 1;
5901
5902 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
5903
5904 saveLedState = REG_READ(ah, AR_CFG_LED) &
5905 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
5906 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
5907
5908 ath9k_hw_mark_phy_inactive(ah);
5909
5910 if (!ath9k_hw_chip_reset(ah, chan)) {
5911 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: chip reset failed\n",
5912 __func__);
5913 FAIL(-EIO);
5914 }
5915
5916 if (AR_SREV_9280(ah)) {
5917 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
5918 AR_GPIO_JTAG_DISABLE);
5919
5920 if (test_bit(ATH9K_MODE_11A, ah->ah_caps.wireless_modes)) {
5921 if (IS_CHAN_5GHZ(chan))
5922 ath9k_hw_set_gpio(ah, 9, 0);
5923 else
5924 ath9k_hw_set_gpio(ah, 9, 1);
5925 }
5926 ath9k_hw_cfg_output(ah, 9, ATH9K_GPIO_OUTPUT_MUX_AS_OUTPUT);
5927 }
5928
5929 ecode = ath9k_hw_process_ini(ah, chan, macmode);
5930 if (ecode != 0)
5931 goto bad;
5932
5933 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
5934 ath9k_hw_set_delta_slope(ah, chan);
5935
5936 if (AR_SREV_9280_10_OR_LATER(ah))
5937 ath9k_hw_9280_spur_mitigate(ah, chan);
5938 else
5939 ath9k_hw_spur_mitigate(ah, chan);
5940
5941 if (!ath9k_hw_eeprom_set_board_values(ah, chan)) {
5942 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
5943 "%s: error setting board options\n", __func__);
5944 FAIL(-EIO);
5945 }
5946
5947 ath9k_hw_decrease_chain_power(ah, chan);
5948
5949 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ahp->ah_macaddr));
5950 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ahp->ah_macaddr + 4)
5951 | macStaId1
5952 | AR_STA_ID1_RTS_USE_DEF
5953 | (ah->ah_config.
5954 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
5955 | ahp->ah_staId1Defaults);
5956 ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
5957
5958 REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
5959 REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
5960
5961 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
5962
5963 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
5964 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
5965 ((ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S));
5966
5967 REG_WRITE(ah, AR_ISR, ~0);
5968
5969 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
5970
5971 if (AR_SREV_9280_10_OR_LATER(ah)) {
5972 if (!(ath9k_hw_ar9280_set_channel(ah, chan)))
5973 FAIL(-EIO);
5974 } else {
5975 if (!(ath9k_hw_set_channel(ah, chan)))
5976 FAIL(-EIO);
5977 }
5978
5979 for (i = 0; i < AR_NUM_DCU; i++)
5980 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
5981
5982 ahp->ah_intrTxqs = 0;
5983 for (i = 0; i < ah->ah_caps.total_queues; i++)
5984 ath9k_hw_resettxqueue(ah, i);
5985
5986 ath9k_hw_init_interrupt_masks(ah, ah->ah_opmode);
5987 ath9k_hw_init_qos(ah);
5988
5989 ath9k_hw_init_user_settings(ah);
5990
5991 REG_WRITE(ah, AR_STA_ID1,
5992 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
5993
5994 ath9k_hw_set_dma(ah);
5995
5996 REG_WRITE(ah, AR_OBS, 8);
5997
5998 if (ahp->ah_intrMitigation) {
5999
6000 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
6001 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
6002 }
6003
6004 ath9k_hw_init_bb(ah, chan);
6005
6006 if (!ath9k_hw_init_cal(ah, chan))
6007 FAIL(-ENODEV);
6008
6009 rx_chainmask = ahp->ah_rxchainmask;
6010 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
6011 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
6012 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
6013 }
6014
6015 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
6016
6017 if (AR_SREV_9100(ah)) {
6018 u32 mask;
6019 mask = REG_READ(ah, AR_CFG);
6020 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
6021 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
6022 "%s CFG Byte Swap Set 0x%x\n", __func__,
6023 mask);
6024 } else {
6025 mask =
6026 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
6027 REG_WRITE(ah, AR_CFG, mask);
6028 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
6029 "%s Setting CFG 0x%x\n", __func__,
6030 REG_READ(ah, AR_CFG));
6031 }
6032 } else {
6033 #ifdef __BIG_ENDIAN
6034 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
6035 #endif
6036 }
6037
6038 return true;
6039 bad:
6040 if (status)
6041 *status = ecode;
6042 return false;
6043 #undef FAIL
6044 }
6045
6046 bool ath9k_hw_phy_disable(struct ath_hal *ah)
6047 {
6048 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
6049 }
6050
6051 bool ath9k_hw_disable(struct ath_hal *ah)
6052 {
6053 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
6054 return false;
6055
6056 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
6057 }
6058
6059 bool
6060 ath9k_hw_calibrate(struct ath_hal *ah, struct ath9k_channel *chan,
6061 u8 rxchainmask, bool longcal,
6062 bool *isCalDone)
6063 {
6064 struct ath_hal_5416 *ahp = AH5416(ah);
6065 struct hal_cal_list *currCal = ahp->ah_cal_list_curr;
6066 struct ath9k_channel *ichan =
6067 ath9k_regd_check_channel(ah, chan);
6068
6069 *isCalDone = true;
6070
6071 if (ichan == NULL) {
6072 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
6073 "%s: invalid channel %u/0x%x; no mapping\n",
6074 __func__, chan->channel, chan->channelFlags);
6075 return false;
6076 }
6077
6078 if (currCal &&
6079 (currCal->calState == CAL_RUNNING ||
6080 currCal->calState == CAL_WAITING)) {
6081 ath9k_hw_per_calibration(ah, ichan, rxchainmask, currCal,
6082 isCalDone);
6083 if (*isCalDone) {
6084 ahp->ah_cal_list_curr = currCal = currCal->calNext;
6085
6086 if (currCal->calState == CAL_WAITING) {
6087 *isCalDone = false;
6088 ath9k_hw_reset_calibration(ah, currCal);
6089 }
6090 }
6091 }
6092
6093 if (longcal) {
6094 ath9k_hw_getnf(ah, ichan);
6095 ath9k_hw_loadnf(ah, ah->ah_curchan);
6096 ath9k_hw_start_nfcal(ah);
6097
6098 if ((ichan->channelFlags & CHANNEL_CW_INT) != 0) {
6099
6100 chan->channelFlags |= CHANNEL_CW_INT;
6101 ichan->channelFlags &= ~CHANNEL_CW_INT;
6102 }
6103 }
6104
6105 return true;
6106 }
6107
6108 static void ath9k_hw_iqcal_collect(struct ath_hal *ah)
6109 {
6110 struct ath_hal_5416 *ahp = AH5416(ah);
6111 int i;
6112
6113 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
6114 ahp->ah_totalPowerMeasI[i] +=
6115 REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
6116 ahp->ah_totalPowerMeasQ[i] +=
6117 REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
6118 ahp->ah_totalIqCorrMeas[i] +=
6119 (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
6120 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6121 "%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n",
6122 ahp->ah_CalSamples, i, ahp->ah_totalPowerMeasI[i],
6123 ahp->ah_totalPowerMeasQ[i],
6124 ahp->ah_totalIqCorrMeas[i]);
6125 }
6126 }
6127
6128 static void ath9k_hw_adc_gaincal_collect(struct ath_hal *ah)
6129 {
6130 struct ath_hal_5416 *ahp = AH5416(ah);
6131 int i;
6132
6133 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
6134 ahp->ah_totalAdcIOddPhase[i] +=
6135 REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
6136 ahp->ah_totalAdcIEvenPhase[i] +=
6137 REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
6138 ahp->ah_totalAdcQOddPhase[i] +=
6139 REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
6140 ahp->ah_totalAdcQEvenPhase[i] +=
6141 REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
6142
6143 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6144 "%d: Chn %d oddi=0x%08x; eveni=0x%08x; "
6145 "oddq=0x%08x; evenq=0x%08x;\n",
6146 ahp->ah_CalSamples, i,
6147 ahp->ah_totalAdcIOddPhase[i],
6148 ahp->ah_totalAdcIEvenPhase[i],
6149 ahp->ah_totalAdcQOddPhase[i],
6150 ahp->ah_totalAdcQEvenPhase[i]);
6151 }
6152 }
6153
6154 static void ath9k_hw_adc_dccal_collect(struct ath_hal *ah)
6155 {
6156 struct ath_hal_5416 *ahp = AH5416(ah);
6157 int i;
6158
6159 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
6160 ahp->ah_totalAdcDcOffsetIOddPhase[i] +=
6161 (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
6162 ahp->ah_totalAdcDcOffsetIEvenPhase[i] +=
6163 (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
6164 ahp->ah_totalAdcDcOffsetQOddPhase[i] +=
6165 (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
6166 ahp->ah_totalAdcDcOffsetQEvenPhase[i] +=
6167 (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
6168
6169 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6170 "%d: Chn %d oddi=0x%08x; eveni=0x%08x; "
6171 "oddq=0x%08x; evenq=0x%08x;\n",
6172 ahp->ah_CalSamples, i,
6173 ahp->ah_totalAdcDcOffsetIOddPhase[i],
6174 ahp->ah_totalAdcDcOffsetIEvenPhase[i],
6175 ahp->ah_totalAdcDcOffsetQOddPhase[i],
6176 ahp->ah_totalAdcDcOffsetQEvenPhase[i]);
6177 }
6178 }
6179
6180 static void ath9k_hw_iqcalibrate(struct ath_hal *ah, u8 numChains)
6181 {
6182 struct ath_hal_5416 *ahp = AH5416(ah);
6183 u32 powerMeasQ, powerMeasI, iqCorrMeas;
6184 u32 qCoffDenom, iCoffDenom;
6185 int32_t qCoff, iCoff;
6186 int iqCorrNeg, i;
6187
6188 for (i = 0; i < numChains; i++) {
6189 powerMeasI = ahp->ah_totalPowerMeasI[i];
6190 powerMeasQ = ahp->ah_totalPowerMeasQ[i];
6191 iqCorrMeas = ahp->ah_totalIqCorrMeas[i];
6192
6193 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6194 "Starting IQ Cal and Correction for Chain %d\n",
6195 i);
6196
6197 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6198 "Orignal: Chn %diq_corr_meas = 0x%08x\n",
6199 i, ahp->ah_totalIqCorrMeas[i]);
6200
6201 iqCorrNeg = 0;
6202
6203
6204 if (iqCorrMeas > 0x80000000) {
6205 iqCorrMeas = (0xffffffff - iqCorrMeas) + 1;
6206 iqCorrNeg = 1;
6207 }
6208
6209 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6210 "Chn %d pwr_meas_i = 0x%08x\n", i, powerMeasI);
6211 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6212 "Chn %d pwr_meas_q = 0x%08x\n", i, powerMeasQ);
6213 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "iqCorrNeg is 0x%08x\n",
6214 iqCorrNeg);
6215
6216 iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
6217 qCoffDenom = powerMeasQ / 64;
6218
6219 if (powerMeasQ != 0) {
6220
6221 iCoff = iqCorrMeas / iCoffDenom;
6222 qCoff = powerMeasI / qCoffDenom - 64;
6223 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6224 "Chn %d iCoff = 0x%08x\n", i, iCoff);
6225 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6226 "Chn %d qCoff = 0x%08x\n", i, qCoff);
6227
6228
6229 iCoff = iCoff & 0x3f;
6230 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6231 "New: Chn %d iCoff = 0x%08x\n", i, iCoff);
6232 if (iqCorrNeg == 0x0)
6233 iCoff = 0x40 - iCoff;
6234
6235 if (qCoff > 15)
6236 qCoff = 15;
6237 else if (qCoff <= -16)
6238 qCoff = 16;
6239
6240 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6241 "Chn %d : iCoff = 0x%x qCoff = 0x%x\n",
6242 i, iCoff, qCoff);
6243
6244 REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i),
6245 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
6246 iCoff);
6247 REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i),
6248 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
6249 qCoff);
6250 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6251 "IQ Cal and Correction done for Chain %d\n",
6252 i);
6253 }
6254 }
6255
6256 REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0),
6257 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
6258 }
6259
6260 static void
6261 ath9k_hw_adc_gaincal_calibrate(struct ath_hal *ah, u8 numChains)
6262 {
6263 struct ath_hal_5416 *ahp = AH5416(ah);
6264 u32 iOddMeasOffset, iEvenMeasOffset, qOddMeasOffset,
6265 qEvenMeasOffset;
6266 u32 qGainMismatch, iGainMismatch, val, i;
6267
6268 for (i = 0; i < numChains; i++) {
6269 iOddMeasOffset = ahp->ah_totalAdcIOddPhase[i];
6270 iEvenMeasOffset = ahp->ah_totalAdcIEvenPhase[i];
6271 qOddMeasOffset = ahp->ah_totalAdcQOddPhase[i];
6272 qEvenMeasOffset = ahp->ah_totalAdcQEvenPhase[i];
6273
6274 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6275 "Starting ADC Gain Cal for Chain %d\n", i);
6276
6277 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6278 "Chn %d pwr_meas_odd_i = 0x%08x\n", i,
6279 iOddMeasOffset);
6280 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6281 "Chn %d pwr_meas_even_i = 0x%08x\n", i,
6282 iEvenMeasOffset);
6283 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6284 "Chn %d pwr_meas_odd_q = 0x%08x\n", i,
6285 qOddMeasOffset);
6286 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6287 "Chn %d pwr_meas_even_q = 0x%08x\n", i,
6288 qEvenMeasOffset);
6289
6290 if (iOddMeasOffset != 0 && qEvenMeasOffset != 0) {
6291 iGainMismatch =
6292 ((iEvenMeasOffset * 32) /
6293 iOddMeasOffset) & 0x3f;
6294 qGainMismatch =
6295 ((qOddMeasOffset * 32) /
6296 qEvenMeasOffset) & 0x3f;
6297
6298 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6299 "Chn %d gain_mismatch_i = 0x%08x\n", i,
6300 iGainMismatch);
6301 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6302 "Chn %d gain_mismatch_q = 0x%08x\n", i,
6303 qGainMismatch);
6304
6305 val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
6306 val &= 0xfffff000;
6307 val |= (qGainMismatch) | (iGainMismatch << 6);
6308 REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
6309
6310 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6311 "ADC Gain Cal done for Chain %d\n", i);
6312 }
6313 }
6314
6315 REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
6316 REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) |
6317 AR_PHY_NEW_ADC_GAIN_CORR_ENABLE);
6318 }
6319
6320 static void
6321 ath9k_hw_adc_dccal_calibrate(struct ath_hal *ah, u8 numChains)
6322 {
6323 struct ath_hal_5416 *ahp = AH5416(ah);
6324 u32 iOddMeasOffset, iEvenMeasOffset, val, i;
6325 int32_t qOddMeasOffset, qEvenMeasOffset, qDcMismatch, iDcMismatch;
6326 const struct hal_percal_data *calData =
6327 ahp->ah_cal_list_curr->calData;
6328 u32 numSamples =
6329 (1 << (calData->calCountMax + 5)) * calData->calNumSamples;
6330
6331 for (i = 0; i < numChains; i++) {
6332 iOddMeasOffset = ahp->ah_totalAdcDcOffsetIOddPhase[i];
6333 iEvenMeasOffset = ahp->ah_totalAdcDcOffsetIEvenPhase[i];
6334 qOddMeasOffset = ahp->ah_totalAdcDcOffsetQOddPhase[i];
6335 qEvenMeasOffset = ahp->ah_totalAdcDcOffsetQEvenPhase[i];
6336
6337 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6338 "Starting ADC DC Offset Cal for Chain %d\n", i);
6339
6340 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6341 "Chn %d pwr_meas_odd_i = %d\n", i,
6342 iOddMeasOffset);
6343 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6344 "Chn %d pwr_meas_even_i = %d\n", i,
6345 iEvenMeasOffset);
6346 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6347 "Chn %d pwr_meas_odd_q = %d\n", i,
6348 qOddMeasOffset);
6349 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6350 "Chn %d pwr_meas_even_q = %d\n", i,
6351 qEvenMeasOffset);
6352
6353 iDcMismatch = (((iEvenMeasOffset - iOddMeasOffset) * 2) /
6354 numSamples) & 0x1ff;
6355 qDcMismatch = (((qOddMeasOffset - qEvenMeasOffset) * 2) /
6356 numSamples) & 0x1ff;
6357
6358 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6359 "Chn %d dc_offset_mismatch_i = 0x%08x\n", i,
6360 iDcMismatch);
6361 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6362 "Chn %d dc_offset_mismatch_q = 0x%08x\n", i,
6363 qDcMismatch);
6364
6365 val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
6366 val &= 0xc0000fff;
6367 val |= (qDcMismatch << 12) | (iDcMismatch << 21);
6368 REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
6369
6370 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6371 "ADC DC Offset Cal done for Chain %d\n", i);
6372 }
6373
6374 REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
6375 REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) |
6376 AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE);
6377 }
6378
6379 bool ath9k_hw_set_txpowerlimit(struct ath_hal *ah, u32 limit)
6380 {
6381 struct ath_hal_5416 *ahp = AH5416(ah);
6382 struct ath9k_channel *chan = ah->ah_curchan;
6383
6384 ah->ah_powerLimit = min(limit, (u32) MAX_RATE_POWER);
6385
6386 if (ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan,
6387 ath9k_regd_get_ctl(ah, chan),
6388 ath9k_regd_get_antenna_allowed(ah,
6389 chan),
6390 chan->maxRegTxPower * 2,
6391 min((u32) MAX_RATE_POWER,
6392 (u32) ah->ah_powerLimit)) != 0)
6393 return false;
6394
6395 return true;
6396 }
6397
6398 void
6399 ath9k_hw_get_channel_centers(struct ath_hal *ah,
6400 struct ath9k_channel *chan,
6401 struct chan_centers *centers)
6402 {
6403 int8_t extoff;
6404 struct ath_hal_5416 *ahp = AH5416(ah);
6405
6406 if (!IS_CHAN_HT40(chan)) {
6407 centers->ctl_center = centers->ext_center =
6408 centers->synth_center = chan->channel;
6409 return;
6410 }
6411
6412 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
6413 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
6414 centers->synth_center =
6415 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
6416 extoff = 1;
6417 } else {
6418 centers->synth_center =
6419 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
6420 extoff = -1;
6421 }
6422
6423 centers->ctl_center = centers->synth_center - (extoff *
6424 HT40_CHANNEL_CENTER_SHIFT);
6425 centers->ext_center = centers->synth_center + (extoff *
6426 ((ahp->
6427 ah_extprotspacing
6428 ==
6429 ATH9K_HT_EXTPROTSPACING_20)
6430 ?
6431 HT40_CHANNEL_CENTER_SHIFT
6432 : 15));
6433
6434 }
6435
6436 void
6437 ath9k_hw_reset_calvalid(struct ath_hal *ah, struct ath9k_channel *chan,
6438 bool *isCalDone)
6439 {
6440 struct ath_hal_5416 *ahp = AH5416(ah);
6441 struct ath9k_channel *ichan =
6442 ath9k_regd_check_channel(ah, chan);
6443 struct hal_cal_list *currCal = ahp->ah_cal_list_curr;
6444
6445 *isCalDone = true;
6446
6447 if (!AR_SREV_9100(ah) && !AR_SREV_9160_10_OR_LATER(ah))
6448 return;
6449
6450 if (currCal == NULL)
6451 return;
6452
6453 if (ichan == NULL) {
6454 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6455 "%s: invalid channel %u/0x%x; no mapping\n",
6456 __func__, chan->channel, chan->channelFlags);
6457 return;
6458 }
6459
6460
6461 if (currCal->calState != CAL_DONE) {
6462 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6463 "%s: Calibration state incorrect, %d\n",
6464 __func__, currCal->calState);
6465 return;
6466 }
6467
6468
6469 if (!ath9k_hw_iscal_supported(ah, chan, currCal->calData->calType))
6470 return;
6471
6472 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6473 "%s: Resetting Cal %d state for channel %u/0x%x\n",
6474 __func__, currCal->calData->calType, chan->channel,
6475 chan->channelFlags);
6476
6477 ichan->CalValid &= ~currCal->calData->calType;
6478 currCal->calState = CAL_WAITING;
6479
6480 *isCalDone = false;
6481 }
6482
6483 void ath9k_hw_getmac(struct ath_hal *ah, u8 *mac)
6484 {
6485 struct ath_hal_5416 *ahp = AH5416(ah);
6486
6487 memcpy(mac, ahp->ah_macaddr, ETH_ALEN);
6488 }
6489
6490 bool ath9k_hw_setmac(struct ath_hal *ah, const u8 *mac)
6491 {
6492 struct ath_hal_5416 *ahp = AH5416(ah);
6493
6494 memcpy(ahp->ah_macaddr, mac, ETH_ALEN);
6495 return true;
6496 }
6497
6498 void ath9k_hw_getbssidmask(struct ath_hal *ah, u8 *mask)
6499 {
6500 struct ath_hal_5416 *ahp = AH5416(ah);
6501
6502 memcpy(mask, ahp->ah_bssidmask, ETH_ALEN);
6503 }
6504
6505 bool
6506 ath9k_hw_setbssidmask(struct ath_hal *ah, const u8 *mask)
6507 {
6508 struct ath_hal_5416 *ahp = AH5416(ah);
6509
6510 memcpy(ahp->ah_bssidmask, mask, ETH_ALEN);
6511
6512 REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
6513 REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
6514
6515 return true;
6516 }
6517
6518 #ifdef CONFIG_ATH9K_RFKILL
6519 static void ath9k_enable_rfkill(struct ath_hal *ah)
6520 {
6521 struct ath_hal_5416 *ahp = AH5416(ah);
6522
6523 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
6524 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
6525
6526 REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
6527 AR_GPIO_INPUT_MUX2_RFSILENT);
6528
6529 ath9k_hw_cfg_gpio_input(ah, ahp->ah_gpioSelect);
6530 REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
6531
6532 if (ahp->ah_gpioBit == ath9k_hw_gpio_get(ah, ahp->ah_gpioSelect)) {
6533
6534 ath9k_hw_set_gpio_intr(ah, ahp->ah_gpioSelect,
6535 !ahp->ah_gpioBit);
6536 } else {
6537 ath9k_hw_set_gpio_intr(ah, ahp->ah_gpioSelect,
6538 ahp->ah_gpioBit);
6539 }
6540 }
6541 #endif
6542
6543 void
6544 ath9k_hw_write_associd(struct ath_hal *ah, const u8 *bssid,
6545 u16 assocId)
6546 {
6547 struct ath_hal_5416 *ahp = AH5416(ah);
6548
6549 memcpy(ahp->ah_bssid, bssid, ETH_ALEN);
6550 ahp->ah_assocId = assocId;
6551
6552 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
6553 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
6554 ((assocId & 0x3fff) << AR_BSS_ID1_AID_S));
6555 }
6556
6557 u64 ath9k_hw_gettsf64(struct ath_hal *ah)
6558 {
6559 u64 tsf;
6560
6561 tsf = REG_READ(ah, AR_TSF_U32);
6562 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
6563 return tsf;
6564 }
6565
6566 void ath9k_hw_reset_tsf(struct ath_hal *ah)
6567 {
6568 int count;
6569
6570 count = 0;
6571 while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
6572 count++;
6573 if (count > 10) {
6574 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
6575 "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n",
6576 __func__);
6577 break;
6578 }
6579 udelay(10);
6580 }
6581 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
6582 }
6583
6584 u32 ath9k_hw_getdefantenna(struct ath_hal *ah)
6585 {
6586 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
6587 }
6588
6589 void ath9k_hw_setantenna(struct ath_hal *ah, u32 antenna)
6590 {
6591 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
6592 }
6593
6594 bool
6595 ath9k_hw_setantennaswitch(struct ath_hal *ah,
6596 enum ath9k_ant_setting settings,
6597 struct ath9k_channel *chan,
6598 u8 *tx_chainmask,
6599 u8 *rx_chainmask,
6600 u8 *antenna_cfgd)
6601 {
6602 struct ath_hal_5416 *ahp = AH5416(ah);
6603 static u8 tx_chainmask_cfg, rx_chainmask_cfg;
6604
6605 if (AR_SREV_9280(ah)) {
6606 if (!tx_chainmask_cfg) {
6607
6608 tx_chainmask_cfg = *tx_chainmask;
6609 rx_chainmask_cfg = *rx_chainmask;
6610 }
6611
6612 switch (settings) {
6613 case ATH9K_ANT_FIXED_A:
6614 *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
6615 *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
6616 *antenna_cfgd = true;
6617 break;
6618 case ATH9K_ANT_FIXED_B:
6619 if (ah->ah_caps.tx_chainmask >
6620 ATH9K_ANTENNA1_CHAINMASK) {
6621 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
6622 }
6623 *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
6624 *antenna_cfgd = true;
6625 break;
6626 case ATH9K_ANT_VARIABLE:
6627 *tx_chainmask = tx_chainmask_cfg;
6628 *rx_chainmask = rx_chainmask_cfg;
6629 *antenna_cfgd = true;
6630 break;
6631 default:
6632 break;
6633 }
6634 } else {
6635 ahp->ah_diversityControl = settings;
6636 }
6637
6638 return true;
6639 }
6640
6641 void ath9k_hw_setopmode(struct ath_hal *ah)
6642 {
6643 ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
6644 }
6645
6646 bool
6647 ath9k_hw_getcapability(struct ath_hal *ah, enum ath9k_capability_type type,
6648 u32 capability, u32 *result)
6649 {
6650 struct ath_hal_5416 *ahp = AH5416(ah);
6651 const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
6652
6653 switch (type) {
6654 case ATH9K_CAP_CIPHER:
6655 switch (capability) {
6656 case ATH9K_CIPHER_AES_CCM:
6657 case ATH9K_CIPHER_AES_OCB:
6658 case ATH9K_CIPHER_TKIP:
6659 case ATH9K_CIPHER_WEP:
6660 case ATH9K_CIPHER_MIC:
6661 case ATH9K_CIPHER_CLR:
6662 return true;
6663 default:
6664 return false;
6665 }
6666 case ATH9K_CAP_TKIP_MIC:
6667 switch (capability) {
6668 case 0:
6669 return true;
6670 case 1:
6671 return (ahp->ah_staId1Defaults &
6672 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
6673 false;
6674 }
6675 case ATH9K_CAP_TKIP_SPLIT:
6676 return (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) ?
6677 false : true;
6678 case ATH9K_CAP_WME_TKIPMIC:
6679 return 0;
6680 case ATH9K_CAP_PHYCOUNTERS:
6681 return ahp->ah_hasHwPhyCounters ? 0 : -ENXIO;
6682 case ATH9K_CAP_DIVERSITY:
6683 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
6684 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
6685 true : false;
6686 case ATH9K_CAP_PHYDIAG:
6687 return true;
6688 case ATH9K_CAP_MCAST_KEYSRCH:
6689 switch (capability) {
6690 case 0:
6691 return true;
6692 case 1:
6693 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
6694 return false;
6695 } else {
6696 return (ahp->ah_staId1Defaults &
6697 AR_STA_ID1_MCAST_KSRCH) ? true :
6698 false;
6699 }
6700 }
6701 return false;
6702 case ATH9K_CAP_TSF_ADJUST:
6703 return (ahp->ah_miscMode & AR_PCU_TX_ADD_TSF) ?
6704 true : false;
6705 case ATH9K_CAP_RFSILENT:
6706 if (capability == 3)
6707 return false;
6708 case ATH9K_CAP_ANT_CFG_2GHZ:
6709 *result = pCap->num_antcfg_2ghz;
6710 return true;
6711 case ATH9K_CAP_ANT_CFG_5GHZ:
6712 *result = pCap->num_antcfg_5ghz;
6713 return true;
6714 case ATH9K_CAP_TXPOW:
6715 switch (capability) {
6716 case 0:
6717 return 0;
6718 case 1:
6719 *result = ah->ah_powerLimit;
6720 return 0;
6721 case 2:
6722 *result = ah->ah_maxPowerLevel;
6723 return 0;
6724 case 3:
6725 *result = ah->ah_tpScale;
6726 return 0;
6727 }
6728 return false;
6729 default:
6730 return false;
6731 }
6732 }
6733
6734 int
6735 ath9k_hw_select_antconfig(struct ath_hal *ah, u32 cfg)
6736 {
6737 struct ath_hal_5416 *ahp = AH5416(ah);
6738 struct ath9k_channel *chan = ah->ah_curchan;
6739 const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
6740 u16 ant_config;
6741 u32 halNumAntConfig;
6742
6743 halNumAntConfig =
6744 IS_CHAN_2GHZ(chan) ? pCap->num_antcfg_2ghz : pCap->
6745 num_antcfg_5ghz;
6746
6747 if (cfg < halNumAntConfig) {
6748 if (!ath9k_hw_get_eeprom_antenna_cfg(ahp, chan,
6749 cfg, &ant_config)) {
6750 REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
6751 return 0;
6752 }
6753 }
6754
6755 return -EINVAL;
6756 }
6757
6758 bool ath9k_hw_intrpend(struct ath_hal *ah)
6759 {
6760 u32 host_isr;
6761
6762 if (AR_SREV_9100(ah))
6763 return true;
6764
6765 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
6766 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
6767 return true;
6768
6769 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
6770 if ((host_isr & AR_INTR_SYNC_DEFAULT)
6771 && (host_isr != AR_INTR_SPURIOUS))
6772 return true;
6773
6774 return false;
6775 }
6776
6777 bool ath9k_hw_getisr(struct ath_hal *ah, enum ath9k_int *masked)
6778 {
6779 u32 isr = 0;
6780 u32 mask2 = 0;
6781 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
6782 u32 sync_cause = 0;
6783 bool fatal_int = false;
6784
6785 if (!AR_SREV_9100(ah)) {
6786 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
6787 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
6788 == AR_RTC_STATUS_ON) {
6789 isr = REG_READ(ah, AR_ISR);
6790 }
6791 }
6792
6793 sync_cause =
6794 REG_READ(ah,
6795 AR_INTR_SYNC_CAUSE) & AR_INTR_SYNC_DEFAULT;
6796
6797 *masked = 0;
6798
6799 if (!isr && !sync_cause)
6800 return false;
6801 } else {
6802 *masked = 0;
6803 isr = REG_READ(ah, AR_ISR);
6804 }
6805
6806 if (isr) {
6807 struct ath_hal_5416 *ahp = AH5416(ah);
6808
6809 if (isr & AR_ISR_BCNMISC) {
6810 u32 isr2;
6811 isr2 = REG_READ(ah, AR_ISR_S2);
6812 if (isr2 & AR_ISR_S2_TIM)
6813 mask2 |= ATH9K_INT_TIM;
6814 if (isr2 & AR_ISR_S2_DTIM)
6815 mask2 |= ATH9K_INT_DTIM;
6816 if (isr2 & AR_ISR_S2_DTIMSYNC)
6817 mask2 |= ATH9K_INT_DTIMSYNC;
6818 if (isr2 & (AR_ISR_S2_CABEND))
6819 mask2 |= ATH9K_INT_CABEND;
6820 if (isr2 & AR_ISR_S2_GTT)
6821 mask2 |= ATH9K_INT_GTT;
6822 if (isr2 & AR_ISR_S2_CST)
6823 mask2 |= ATH9K_INT_CST;
6824 }
6825
6826 isr = REG_READ(ah, AR_ISR_RAC);
6827 if (isr == 0xffffffff) {
6828 *masked = 0;
6829 return false;
6830 }
6831
6832 *masked = isr & ATH9K_INT_COMMON;
6833
6834 if (ahp->ah_intrMitigation) {
6835
6836 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
6837 *masked |= ATH9K_INT_RX;
6838 }
6839
6840 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
6841 *masked |= ATH9K_INT_RX;
6842 if (isr &
6843 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
6844 AR_ISR_TXEOL)) {
6845 u32 s0_s, s1_s;
6846
6847 *masked |= ATH9K_INT_TX;
6848
6849 s0_s = REG_READ(ah, AR_ISR_S0_S);
6850 ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
6851 ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
6852
6853 s1_s = REG_READ(ah, AR_ISR_S1_S);
6854 ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
6855 ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
6856 }
6857
6858 if (isr & AR_ISR_RXORN) {
6859 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
6860 "%s: receive FIFO overrun interrupt\n",
6861 __func__);
6862 }
6863
6864 if (!AR_SREV_9100(ah)) {
6865 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
6866 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
6867 if (isr5 & AR_ISR_S5_TIM_TIMER)
6868 *masked |= ATH9K_INT_TIM_TIMER;
6869 }
6870 }
6871
6872 *masked |= mask2;
6873 }
6874 if (AR_SREV_9100(ah))
6875 return true;
6876 if (sync_cause) {
6877 fatal_int =
6878 (sync_cause &
6879 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
6880 ? true : false;
6881
6882 if (fatal_int) {
6883 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
6884 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
6885 "%s: received PCI FATAL interrupt\n",
6886 __func__);
6887 }
6888 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
6889 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
6890 "%s: received PCI PERR interrupt\n",
6891 __func__);
6892 }
6893 }
6894 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
6895 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
6896 "%s: AR_INTR_SYNC_RADM_CPL_TIMEOUT\n",
6897 __func__);
6898 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
6899 REG_WRITE(ah, AR_RC, 0);
6900 *masked |= ATH9K_INT_FATAL;
6901 }
6902 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
6903 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
6904 "%s: AR_INTR_SYNC_LOCAL_TIMEOUT\n",
6905 __func__);
6906 }
6907
6908 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
6909 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
6910 }
6911 return true;
6912 }
6913
6914 enum ath9k_int ath9k_hw_intrget(struct ath_hal *ah)
6915 {
6916 return AH5416(ah)->ah_maskReg;
6917 }
6918
6919 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hal *ah, enum ath9k_int ints)
6920 {
6921 struct ath_hal_5416 *ahp = AH5416(ah);
6922 u32 omask = ahp->ah_maskReg;
6923 u32 mask, mask2;
6924 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
6925
6926 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: 0x%x => 0x%x\n", __func__,
6927 omask, ints);
6928
6929 if (omask & ATH9K_INT_GLOBAL) {
6930 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: disable IER\n",
6931 __func__);
6932 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
6933 (void) REG_READ(ah, AR_IER);
6934 if (!AR_SREV_9100(ah)) {
6935 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
6936 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
6937
6938 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
6939 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
6940 }
6941 }
6942
6943 mask = ints & ATH9K_INT_COMMON;
6944 mask2 = 0;
6945
6946 if (ints & ATH9K_INT_TX) {
6947 if (ahp->ah_txOkInterruptMask)
6948 mask |= AR_IMR_TXOK;
6949 if (ahp->ah_txDescInterruptMask)
6950 mask |= AR_IMR_TXDESC;
6951 if (ahp->ah_txErrInterruptMask)
6952 mask |= AR_IMR_TXERR;
6953 if (ahp->ah_txEolInterruptMask)
6954 mask |= AR_IMR_TXEOL;
6955 }
6956 if (ints & ATH9K_INT_RX) {
6957 mask |= AR_IMR_RXERR;
6958 if (ahp->ah_intrMitigation)
6959 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
6960 else
6961 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
6962 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
6963 mask |= AR_IMR_GENTMR;
6964 }
6965
6966 if (ints & (ATH9K_INT_BMISC)) {
6967 mask |= AR_IMR_BCNMISC;
6968 if (ints & ATH9K_INT_TIM)
6969 mask2 |= AR_IMR_S2_TIM;
6970 if (ints & ATH9K_INT_DTIM)
6971 mask2 |= AR_IMR_S2_DTIM;
6972 if (ints & ATH9K_INT_DTIMSYNC)
6973 mask2 |= AR_IMR_S2_DTIMSYNC;
6974 if (ints & ATH9K_INT_CABEND)
6975 mask2 |= (AR_IMR_S2_CABEND);
6976 }
6977
6978 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
6979 mask |= AR_IMR_BCNMISC;
6980 if (ints & ATH9K_INT_GTT)
6981 mask2 |= AR_IMR_S2_GTT;
6982 if (ints & ATH9K_INT_CST)
6983 mask2 |= AR_IMR_S2_CST;
6984 }
6985
6986 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: new IMR 0x%x\n", __func__,
6987 mask);
6988 REG_WRITE(ah, AR_IMR, mask);
6989 mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
6990 AR_IMR_S2_DTIM |
6991 AR_IMR_S2_DTIMSYNC |
6992 AR_IMR_S2_CABEND |
6993 AR_IMR_S2_CABTO |
6994 AR_IMR_S2_TSFOOR |
6995 AR_IMR_S2_GTT | AR_IMR_S2_CST);
6996 REG_WRITE(ah, AR_IMR_S2, mask | mask2);
6997 ahp->ah_maskReg = ints;
6998
6999 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
7000 if (ints & ATH9K_INT_TIM_TIMER)
7001 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
7002 else
7003 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
7004 }
7005
7006 if (ints & ATH9K_INT_GLOBAL) {
7007 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: enable IER\n",
7008 __func__);
7009 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
7010 if (!AR_SREV_9100(ah)) {
7011 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
7012 AR_INTR_MAC_IRQ);
7013 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
7014
7015
7016 REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
7017 AR_INTR_SYNC_DEFAULT);
7018 REG_WRITE(ah, AR_INTR_SYNC_MASK,
7019 AR_INTR_SYNC_DEFAULT);
7020 }
7021 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
7022 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
7023 }
7024
7025 return omask;
7026 }
7027
7028 void
7029 ath9k_hw_beaconinit(struct ath_hal *ah,
7030 u32 next_beacon, u32 beacon_period)
7031 {
7032 struct ath_hal_5416 *ahp = AH5416(ah);
7033 int flags = 0;
7034
7035 ahp->ah_beaconInterval = beacon_period;
7036
7037 switch (ah->ah_opmode) {
7038 case ATH9K_M_STA:
7039 case ATH9K_M_MONITOR:
7040 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
7041 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
7042 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
7043 flags |= AR_TBTT_TIMER_EN;
7044 break;
7045 case ATH9K_M_IBSS:
7046 REG_SET_BIT(ah, AR_TXCFG,
7047 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
7048 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
7049 TU_TO_USEC(next_beacon +
7050 (ahp->ah_atimWindow ? ahp->
7051 ah_atimWindow : 1)));
7052 flags |= AR_NDP_TIMER_EN;
7053 case ATH9K_M_HOSTAP:
7054 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
7055 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
7056 TU_TO_USEC(next_beacon -
7057 ah->ah_config.
7058 dma_beacon_response_time));
7059 REG_WRITE(ah, AR_NEXT_SWBA,
7060 TU_TO_USEC(next_beacon -
7061 ah->ah_config.
7062 sw_beacon_response_time));
7063 flags |=
7064 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
7065 break;
7066 }
7067
7068 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
7069 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
7070 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
7071 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
7072
7073 beacon_period &= ~ATH9K_BEACON_ENA;
7074 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
7075 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
7076 ath9k_hw_reset_tsf(ah);
7077 }
7078
7079 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
7080 }
7081
7082 void
7083 ath9k_hw_set_sta_beacon_timers(struct ath_hal *ah,
7084 const struct ath9k_beacon_state *bs)
7085 {
7086 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
7087 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7088
7089 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
7090
7091 REG_WRITE(ah, AR_BEACON_PERIOD,
7092 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
7093 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
7094 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
7095
7096 REG_RMW_FIELD(ah, AR_RSSI_THR,
7097 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
7098
7099 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
7100
7101 if (bs->bs_sleepduration > beaconintval)
7102 beaconintval = bs->bs_sleepduration;
7103
7104 dtimperiod = bs->bs_dtimperiod;
7105 if (bs->bs_sleepduration > dtimperiod)
7106 dtimperiod = bs->bs_sleepduration;
7107
7108 if (beaconintval == dtimperiod)
7109 nextTbtt = bs->bs_nextdtim;
7110 else
7111 nextTbtt = bs->bs_nexttbtt;
7112
7113 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next DTIM %d\n", __func__,
7114 bs->bs_nextdtim);
7115 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next beacon %d\n", __func__,
7116 nextTbtt);
7117 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: beacon period %d\n", __func__,
7118 beaconintval);
7119 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: DTIM period %d\n", __func__,
7120 dtimperiod);
7121
7122 REG_WRITE(ah, AR_NEXT_DTIM,
7123 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
7124 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
7125
7126 REG_WRITE(ah, AR_SLEEP1,
7127 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
7128 | AR_SLEEP1_ASSUME_DTIM);
7129
7130 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
7131 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
7132 else
7133 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
7134
7135 REG_WRITE(ah, AR_SLEEP2,
7136 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
7137
7138 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
7139 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
7140
7141 REG_SET_BIT(ah, AR_TIMER_MODE,
7142 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
7143 AR_DTIM_TIMER_EN);
7144
7145 }
7146
7147 bool ath9k_hw_keyisvalid(struct ath_hal *ah, u16 entry)
7148 {
7149 if (entry < ah->ah_caps.keycache_size) {
7150 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
7151 if (val & AR_KEYTABLE_VALID)
7152 return true;
7153 }
7154 return false;
7155 }
7156
7157 bool ath9k_hw_keyreset(struct ath_hal *ah, u16 entry)
7158 {
7159 u32 keyType;
7160
7161 if (entry >= ah->ah_caps.keycache_size) {
7162 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7163 "%s: entry %u out of range\n", __func__, entry);
7164 return false;
7165 }
7166 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
7167
7168 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
7169 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
7170 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
7171 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
7172 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
7173 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
7174 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
7175 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
7176
7177 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
7178 u16 micentry = entry + 64;
7179
7180 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
7181 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
7182 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
7183 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
7184
7185 }
7186
7187 if (ah->ah_curchan == NULL)
7188 return true;
7189
7190 return true;
7191 }
7192
7193 bool
7194 ath9k_hw_keysetmac(struct ath_hal *ah, u16 entry,
7195 const u8 *mac)
7196 {
7197 u32 macHi, macLo;
7198
7199 if (entry >= ah->ah_caps.keycache_size) {
7200 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7201 "%s: entry %u out of range\n", __func__, entry);
7202 return false;
7203 }
7204
7205 if (mac != NULL) {
7206 macHi = (mac[5] << 8) | mac[4];
7207 macLo = (mac[3] << 24) | (mac[2] << 16)
7208 | (mac[1] << 8) | mac[0];
7209 macLo >>= 1;
7210 macLo |= (macHi & 1) << 31;
7211 macHi >>= 1;
7212 } else {
7213 macLo = macHi = 0;
7214 }
7215 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
7216 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
7217
7218 return true;
7219 }
7220
7221 bool
7222 ath9k_hw_set_keycache_entry(struct ath_hal *ah, u16 entry,
7223 const struct ath9k_keyval *k,
7224 const u8 *mac, int xorKey)
7225 {
7226 const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7227 u32 key0, key1, key2, key3, key4;
7228 u32 keyType;
7229 u32 xorMask = xorKey ?
7230 (ATH9K_KEY_XOR << 24 | ATH9K_KEY_XOR << 16 | ATH9K_KEY_XOR << 8
7231 | ATH9K_KEY_XOR) : 0;
7232 struct ath_hal_5416 *ahp = AH5416(ah);
7233
7234 if (entry >= pCap->keycache_size) {
7235 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7236 "%s: entry %u out of range\n", __func__, entry);
7237 return false;
7238 }
7239 switch (k->kv_type) {
7240 case ATH9K_CIPHER_AES_OCB:
7241 keyType = AR_KEYTABLE_TYPE_AES;
7242 break;
7243 case ATH9K_CIPHER_AES_CCM:
7244 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
7245 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7246 "%s: AES-CCM not supported by "
7247 "mac rev 0x%x\n", __func__,
7248 ah->ah_macRev);
7249 return false;
7250 }
7251 keyType = AR_KEYTABLE_TYPE_CCM;
7252 break;
7253 case ATH9K_CIPHER_TKIP:
7254 keyType = AR_KEYTABLE_TYPE_TKIP;
7255 if (ATH9K_IS_MIC_ENABLED(ah)
7256 && entry + 64 >= pCap->keycache_size) {
7257 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7258 "%s: entry %u inappropriate for TKIP\n",
7259 __func__, entry);
7260 return false;
7261 }
7262 break;
7263 case ATH9K_CIPHER_WEP:
7264 if (k->kv_len < 40 / NBBY) {
7265 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7266 "%s: WEP key length %u too small\n",
7267 __func__, k->kv_len);
7268 return false;
7269 }
7270 if (k->kv_len <= 40 / NBBY)
7271 keyType = AR_KEYTABLE_TYPE_40;
7272 else if (k->kv_len <= 104 / NBBY)
7273 keyType = AR_KEYTABLE_TYPE_104;
7274 else
7275 keyType = AR_KEYTABLE_TYPE_128;
7276 break;
7277 case ATH9K_CIPHER_CLR:
7278 keyType = AR_KEYTABLE_TYPE_CLR;
7279 break;
7280 default:
7281 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7282 "%s: cipher %u not supported\n", __func__,
7283 k->kv_type);
7284 return false;
7285 }
7286
7287 key0 = get_unaligned_le32(k->kv_val + 0) ^ xorMask;
7288 key1 = (get_unaligned_le16(k->kv_val + 4) ^ xorMask) & 0xffff;
7289 key2 = get_unaligned_le32(k->kv_val + 6) ^ xorMask;
7290 key3 = (get_unaligned_le16(k->kv_val + 10) ^ xorMask) & 0xffff;
7291 key4 = get_unaligned_le32(k->kv_val + 12) ^ xorMask;
7292 if (k->kv_len <= 104 / NBBY)
7293 key4 &= 0xff;
7294
7295 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
7296 u16 micentry = entry + 64;
7297
7298 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
7299 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
7300 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
7301 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
7302 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
7303 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
7304 (void) ath9k_hw_keysetmac(ah, entry, mac);
7305
7306 if (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) {
7307 u32 mic0, mic1, mic2, mic3, mic4;
7308
7309 mic0 = get_unaligned_le32(k->kv_mic + 0);
7310 mic2 = get_unaligned_le32(k->kv_mic + 4);
7311 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
7312 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
7313 mic4 = get_unaligned_le32(k->kv_txmic + 4);
7314 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
7315 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
7316 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
7317 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
7318 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
7319 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
7320 AR_KEYTABLE_TYPE_CLR);
7321
7322 } else {
7323 u32 mic0, mic2;
7324
7325 mic0 = get_unaligned_le32(k->kv_mic + 0);
7326 mic2 = get_unaligned_le32(k->kv_mic + 4);
7327 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
7328 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
7329 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
7330 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
7331 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
7332 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
7333 AR_KEYTABLE_TYPE_CLR);
7334 }
7335 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
7336 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
7337 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
7338 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
7339 } else {
7340 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
7341 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
7342 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
7343 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
7344 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
7345 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
7346
7347 (void) ath9k_hw_keysetmac(ah, entry, mac);
7348 }
7349
7350 if (ah->ah_curchan == NULL)
7351 return true;
7352
7353 return true;
7354 }
7355
7356 bool
7357 ath9k_hw_updatetxtriglevel(struct ath_hal *ah, bool bIncTrigLevel)
7358 {
7359 struct ath_hal_5416 *ahp = AH5416(ah);
7360 u32 txcfg, curLevel, newLevel;
7361 enum ath9k_int omask;
7362
7363 if (ah->ah_txTrigLevel >= MAX_TX_FIFO_THRESHOLD)
7364 return false;
7365
7366 omask = ath9k_hw_set_interrupts(ah,
7367 ahp->ah_maskReg & ~ATH9K_INT_GLOBAL);
7368
7369 txcfg = REG_READ(ah, AR_TXCFG);
7370 curLevel = MS(txcfg, AR_FTRIG);
7371 newLevel = curLevel;
7372 if (bIncTrigLevel) {
7373 if (curLevel < MAX_TX_FIFO_THRESHOLD)
7374 newLevel++;
7375 } else if (curLevel > MIN_TX_FIFO_THRESHOLD)
7376 newLevel--;
7377 if (newLevel != curLevel)
7378 REG_WRITE(ah, AR_TXCFG,
7379 (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
7380
7381 ath9k_hw_set_interrupts(ah, omask);
7382
7383 ah->ah_txTrigLevel = newLevel;
7384
7385 return newLevel != curLevel;
7386 }
7387
7388 bool ath9k_hw_set_txq_props(struct ath_hal *ah, int q,
7389 const struct ath9k_tx_queue_info *qinfo)
7390 {
7391 u32 cw;
7392 struct ath_hal_5416 *ahp = AH5416(ah);
7393 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7394 struct ath9k_tx_queue_info *qi;
7395
7396 if (q >= pCap->total_queues) {
7397 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
7398 __func__, q);
7399 return false;
7400 }
7401
7402 qi = &ahp->ah_txq[q];
7403 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
7404 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue\n",
7405 __func__);
7406 return false;
7407 }
7408
7409 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %p\n", __func__, qi);
7410
7411 qi->tqi_ver = qinfo->tqi_ver;
7412 qi->tqi_subtype = qinfo->tqi_subtype;
7413 qi->tqi_qflags = qinfo->tqi_qflags;
7414 qi->tqi_priority = qinfo->tqi_priority;
7415 if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
7416 qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
7417 else
7418 qi->tqi_aifs = INIT_AIFS;
7419 if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
7420 cw = min(qinfo->tqi_cwmin, 1024U);
7421 qi->tqi_cwmin = 1;
7422 while (qi->tqi_cwmin < cw)
7423 qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
7424 } else
7425 qi->tqi_cwmin = qinfo->tqi_cwmin;
7426 if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
7427 cw = min(qinfo->tqi_cwmax, 1024U);
7428 qi->tqi_cwmax = 1;
7429 while (qi->tqi_cwmax < cw)
7430 qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
7431 } else
7432 qi->tqi_cwmax = INIT_CWMAX;
7433
7434 if (qinfo->tqi_shretry != 0)
7435 qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
7436 else
7437 qi->tqi_shretry = INIT_SH_RETRY;
7438 if (qinfo->tqi_lgretry != 0)
7439 qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
7440 else
7441 qi->tqi_lgretry = INIT_LG_RETRY;
7442 qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
7443 qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
7444 qi->tqi_burstTime = qinfo->tqi_burstTime;
7445 qi->tqi_readyTime = qinfo->tqi_readyTime;
7446
7447 switch (qinfo->tqi_subtype) {
7448 case ATH9K_WME_UPSD:
7449 if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
7450 qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
7451 break;
7452 default:
7453 break;
7454 }
7455 return true;
7456 }
7457
7458 bool ath9k_hw_get_txq_props(struct ath_hal *ah, int q,
7459 struct ath9k_tx_queue_info *qinfo)
7460 {
7461 struct ath_hal_5416 *ahp = AH5416(ah);
7462 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7463 struct ath9k_tx_queue_info *qi;
7464
7465 if (q >= pCap->total_queues) {
7466 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
7467 __func__, q);
7468 return false;
7469 }
7470
7471 qi = &ahp->ah_txq[q];
7472 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
7473 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue\n",
7474 __func__);
7475 return false;
7476 }
7477
7478 qinfo->tqi_qflags = qi->tqi_qflags;
7479 qinfo->tqi_ver = qi->tqi_ver;
7480 qinfo->tqi_subtype = qi->tqi_subtype;
7481 qinfo->tqi_qflags = qi->tqi_qflags;
7482 qinfo->tqi_priority = qi->tqi_priority;
7483 qinfo->tqi_aifs = qi->tqi_aifs;
7484 qinfo->tqi_cwmin = qi->tqi_cwmin;
7485 qinfo->tqi_cwmax = qi->tqi_cwmax;
7486 qinfo->tqi_shretry = qi->tqi_shretry;
7487 qinfo->tqi_lgretry = qi->tqi_lgretry;
7488 qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
7489 qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
7490 qinfo->tqi_burstTime = qi->tqi_burstTime;
7491 qinfo->tqi_readyTime = qi->tqi_readyTime;
7492
7493 return true;
7494 }
7495
7496 int
7497 ath9k_hw_setuptxqueue(struct ath_hal *ah, enum ath9k_tx_queue type,
7498 const struct ath9k_tx_queue_info *qinfo)
7499 {
7500 struct ath_hal_5416 *ahp = AH5416(ah);
7501 struct ath9k_tx_queue_info *qi;
7502 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7503 int q;
7504
7505 switch (type) {
7506 case ATH9K_TX_QUEUE_BEACON:
7507 q = pCap->total_queues - 1;
7508 break;
7509 case ATH9K_TX_QUEUE_CAB:
7510 q = pCap->total_queues - 2;
7511 break;
7512 case ATH9K_TX_QUEUE_PSPOLL:
7513 q = 1;
7514 break;
7515 case ATH9K_TX_QUEUE_UAPSD:
7516 q = pCap->total_queues - 3;
7517 break;
7518 case ATH9K_TX_QUEUE_DATA:
7519 for (q = 0; q < pCap->total_queues; q++)
7520 if (ahp->ah_txq[q].tqi_type ==
7521 ATH9K_TX_QUEUE_INACTIVE)
7522 break;
7523 if (q == pCap->total_queues) {
7524 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
7525 "%s: no available tx queue\n", __func__);
7526 return -1;
7527 }
7528 break;
7529 default:
7530 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: bad tx queue type %u\n",
7531 __func__, type);
7532 return -1;
7533 }
7534
7535 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %u\n", __func__, q);
7536
7537 qi = &ahp->ah_txq[q];
7538 if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
7539 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
7540 "%s: tx queue %u already active\n", __func__, q);
7541 return -1;
7542 }
7543 memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
7544 qi->tqi_type = type;
7545 if (qinfo == NULL) {
7546 qi->tqi_qflags =
7547 TXQ_FLAG_TXOKINT_ENABLE
7548 | TXQ_FLAG_TXERRINT_ENABLE
7549 | TXQ_FLAG_TXDESCINT_ENABLE | TXQ_FLAG_TXURNINT_ENABLE;
7550 qi->tqi_aifs = INIT_AIFS;
7551 qi->tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
7552 qi->tqi_cwmax = INIT_CWMAX;
7553 qi->tqi_shretry = INIT_SH_RETRY;
7554 qi->tqi_lgretry = INIT_LG_RETRY;
7555 qi->tqi_physCompBuf = 0;
7556 } else {
7557 qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
7558 (void) ath9k_hw_set_txq_props(ah, q, qinfo);
7559 }
7560
7561 return q;
7562 }
7563
7564 static void
7565 ath9k_hw_set_txq_interrupts(struct ath_hal *ah,
7566 struct ath9k_tx_queue_info *qi)
7567 {
7568 struct ath_hal_5416 *ahp = AH5416(ah);
7569
7570 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
7571 "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
7572 __func__, ahp->ah_txOkInterruptMask,
7573 ahp->ah_txErrInterruptMask, ahp->ah_txDescInterruptMask,
7574 ahp->ah_txEolInterruptMask, ahp->ah_txUrnInterruptMask);
7575
7576 REG_WRITE(ah, AR_IMR_S0,
7577 SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
7578 | SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC));
7579 REG_WRITE(ah, AR_IMR_S1,
7580 SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
7581 | SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL));
7582 REG_RMW_FIELD(ah, AR_IMR_S2,
7583 AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
7584 }
7585
7586 bool ath9k_hw_releasetxqueue(struct ath_hal *ah, u32 q)
7587 {
7588 struct ath_hal_5416 *ahp = AH5416(ah);
7589 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7590 struct ath9k_tx_queue_info *qi;
7591
7592 if (q >= pCap->total_queues) {
7593 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
7594 __func__, q);
7595 return false;
7596 }
7597 qi = &ahp->ah_txq[q];
7598 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
7599 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue %u\n",
7600 __func__, q);
7601 return false;
7602 }
7603
7604 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: release queue %u\n",
7605 __func__, q);
7606
7607 qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
7608 ahp->ah_txOkInterruptMask &= ~(1 << q);
7609 ahp->ah_txErrInterruptMask &= ~(1 << q);
7610 ahp->ah_txDescInterruptMask &= ~(1 << q);
7611 ahp->ah_txEolInterruptMask &= ~(1 << q);
7612 ahp->ah_txUrnInterruptMask &= ~(1 << q);
7613 ath9k_hw_set_txq_interrupts(ah, qi);
7614
7615 return true;
7616 }
7617
7618 bool ath9k_hw_resettxqueue(struct ath_hal *ah, u32 q)
7619 {
7620 struct ath_hal_5416 *ahp = AH5416(ah);
7621 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7622 struct ath9k_channel *chan = ah->ah_curchan;
7623 struct ath9k_tx_queue_info *qi;
7624 u32 cwMin, chanCwMin, value;
7625
7626 if (q >= pCap->total_queues) {
7627 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
7628 __func__, q);
7629 return false;
7630 }
7631 qi = &ahp->ah_txq[q];
7632 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
7633 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue %u\n",
7634 __func__, q);
7635 return true;
7636 }
7637
7638 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: reset queue %u\n", __func__, q);
7639
7640 if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
7641 if (chan && IS_CHAN_B(chan))
7642 chanCwMin = INIT_CWMIN_11B;
7643 else
7644 chanCwMin = INIT_CWMIN;
7645
7646 for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
7647 } else
7648 cwMin = qi->tqi_cwmin;
7649
7650 REG_WRITE(ah, AR_DLCL_IFS(q), SM(cwMin, AR_D_LCL_IFS_CWMIN)
7651 | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
7652 | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
7653
7654 REG_WRITE(ah, AR_DRETRY_LIMIT(q),
7655 SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
7656 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
7657 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
7658 );
7659
7660 REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
7661 REG_WRITE(ah, AR_DMISC(q),
7662 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
7663
7664 if (qi->tqi_cbrPeriod) {
7665 REG_WRITE(ah, AR_QCBRCFG(q),
7666 SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL)
7667 | SM(qi->tqi_cbrOverflowLimit,
7668 AR_Q_CBRCFG_OVF_THRESH));
7669 REG_WRITE(ah, AR_QMISC(q),
7670 REG_READ(ah,
7671 AR_QMISC(q)) | AR_Q_MISC_FSP_CBR | (qi->
7672 tqi_cbrOverflowLimit
7673 ?
7674 AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN
7675 :
7676 0));
7677 }
7678 if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
7679 REG_WRITE(ah, AR_QRDYTIMECFG(q),
7680 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
7681 AR_Q_RDYTIMECFG_EN);
7682 }
7683
7684 REG_WRITE(ah, AR_DCHNTIME(q),
7685 SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
7686 (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
7687
7688 if (qi->tqi_burstTime
7689 && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)) {
7690 REG_WRITE(ah, AR_QMISC(q),
7691 REG_READ(ah,
7692 AR_QMISC(q)) |
7693 AR_Q_MISC_RDYTIME_EXP_POLICY);
7694
7695 }
7696
7697 if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE) {
7698 REG_WRITE(ah, AR_DMISC(q),
7699 REG_READ(ah, AR_DMISC(q)) |
7700 AR_D_MISC_POST_FR_BKOFF_DIS);
7701 }
7702 if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) {
7703 REG_WRITE(ah, AR_DMISC(q),
7704 REG_READ(ah, AR_DMISC(q)) |
7705 AR_D_MISC_FRAG_BKOFF_EN);
7706 }
7707 switch (qi->tqi_type) {
7708 case ATH9K_TX_QUEUE_BEACON:
7709 REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q))
7710 | AR_Q_MISC_FSP_DBA_GATED
7711 | AR_Q_MISC_BEACON_USE
7712 | AR_Q_MISC_CBR_INCR_DIS1);
7713
7714 REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
7715 | (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
7716 AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
7717 | AR_D_MISC_BEACON_USE
7718 | AR_D_MISC_POST_FR_BKOFF_DIS);
7719 break;
7720 case ATH9K_TX_QUEUE_CAB:
7721 REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q))
7722 | AR_Q_MISC_FSP_DBA_GATED
7723 | AR_Q_MISC_CBR_INCR_DIS1
7724 | AR_Q_MISC_CBR_INCR_DIS0);
7725 value = (qi->tqi_readyTime
7726 - (ah->ah_config.sw_beacon_response_time -
7727 ah->ah_config.dma_beacon_response_time)
7728 -
7729 ah->ah_config.additional_swba_backoff) *
7730 1024;
7731 REG_WRITE(ah, AR_QRDYTIMECFG(q),
7732 value | AR_Q_RDYTIMECFG_EN);
7733 REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
7734 | (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
7735 AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
7736 break;
7737 case ATH9K_TX_QUEUE_PSPOLL:
7738 REG_WRITE(ah, AR_QMISC(q),
7739 REG_READ(ah,
7740 AR_QMISC(q)) | AR_Q_MISC_CBR_INCR_DIS1);
7741 break;
7742 case ATH9K_TX_QUEUE_UAPSD:
7743 REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
7744 | AR_D_MISC_POST_FR_BKOFF_DIS);
7745 break;
7746 default:
7747 break;
7748 }
7749
7750 if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
7751 REG_WRITE(ah, AR_DMISC(q),
7752 REG_READ(ah, AR_DMISC(q)) |
7753 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
7754 AR_D_MISC_ARB_LOCKOUT_CNTRL) |
7755 AR_D_MISC_POST_FR_BKOFF_DIS);
7756 }
7757
7758 if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
7759 ahp->ah_txOkInterruptMask |= 1 << q;
7760 else
7761 ahp->ah_txOkInterruptMask &= ~(1 << q);
7762 if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
7763 ahp->ah_txErrInterruptMask |= 1 << q;
7764 else
7765 ahp->ah_txErrInterruptMask &= ~(1 << q);
7766 if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
7767 ahp->ah_txDescInterruptMask |= 1 << q;
7768 else
7769 ahp->ah_txDescInterruptMask &= ~(1 << q);
7770 if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
7771 ahp->ah_txEolInterruptMask |= 1 << q;
7772 else
7773 ahp->ah_txEolInterruptMask &= ~(1 << q);
7774 if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
7775 ahp->ah_txUrnInterruptMask |= 1 << q;
7776 else
7777 ahp->ah_txUrnInterruptMask &= ~(1 << q);
7778 ath9k_hw_set_txq_interrupts(ah, qi);
7779
7780 return true;
7781 }
7782
7783 void ath9k_hw_gettxintrtxqs(struct ath_hal *ah, u32 *txqs)
7784 {
7785 struct ath_hal_5416 *ahp = AH5416(ah);
7786 *txqs &= ahp->ah_intrTxqs;
7787 ahp->ah_intrTxqs &= ~(*txqs);
7788 }
7789
7790 bool
7791 ath9k_hw_filltxdesc(struct ath_hal *ah, struct ath_desc *ds,
7792 u32 segLen, bool firstSeg,
7793 bool lastSeg, const struct ath_desc *ds0)
7794 {
7795 struct ar5416_desc *ads = AR5416DESC(ds);
7796
7797 if (firstSeg) {
7798 ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
7799 } else if (lastSeg) {
7800 ads->ds_ctl0 = 0;
7801 ads->ds_ctl1 = segLen;
7802 ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
7803 ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
7804 } else {
7805 ads->ds_ctl0 = 0;
7806 ads->ds_ctl1 = segLen | AR_TxMore;
7807 ads->ds_ctl2 = 0;
7808 ads->ds_ctl3 = 0;
7809 }
7810 ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
7811 ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
7812 ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
7813 ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
7814 ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
7815 return true;
7816 }
7817
7818 void ath9k_hw_cleartxdesc(struct ath_hal *ah, struct ath_desc *ds)
7819 {
7820 struct ar5416_desc *ads = AR5416DESC(ds);
7821
7822 ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
7823 ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
7824 ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
7825 ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
7826 ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
7827 }
7828
7829 int
7830 ath9k_hw_txprocdesc(struct ath_hal *ah, struct ath_desc *ds)
7831 {
7832 struct ar5416_desc *ads = AR5416DESC(ds);
7833
7834 if ((ads->ds_txstatus9 & AR_TxDone) == 0)
7835 return -EINPROGRESS;
7836
7837 ds->ds_txstat.ts_seqnum = MS(ads->ds_txstatus9, AR_SeqNum);
7838 ds->ds_txstat.ts_tstamp = ads->AR_SendTimestamp;
7839 ds->ds_txstat.ts_status = 0;
7840 ds->ds_txstat.ts_flags = 0;
7841
7842 if (ads->ds_txstatus1 & AR_ExcessiveRetries)
7843 ds->ds_txstat.ts_status |= ATH9K_TXERR_XRETRY;
7844 if (ads->ds_txstatus1 & AR_Filtered)
7845 ds->ds_txstat.ts_status |= ATH9K_TXERR_FILT;
7846 if (ads->ds_txstatus1 & AR_FIFOUnderrun)
7847 ds->ds_txstat.ts_status |= ATH9K_TXERR_FIFO;
7848 if (ads->ds_txstatus9 & AR_TxOpExceeded)
7849 ds->ds_txstat.ts_status |= ATH9K_TXERR_XTXOP;
7850 if (ads->ds_txstatus1 & AR_TxTimerExpired)
7851 ds->ds_txstat.ts_status |= ATH9K_TXERR_TIMER_EXPIRED;
7852
7853 if (ads->ds_txstatus1 & AR_DescCfgErr)
7854 ds->ds_txstat.ts_flags |= ATH9K_TX_DESC_CFG_ERR;
7855 if (ads->ds_txstatus1 & AR_TxDataUnderrun) {
7856 ds->ds_txstat.ts_flags |= ATH9K_TX_DATA_UNDERRUN;
7857 ath9k_hw_updatetxtriglevel(ah, true);
7858 }
7859 if (ads->ds_txstatus1 & AR_TxDelimUnderrun) {
7860 ds->ds_txstat.ts_flags |= ATH9K_TX_DELIM_UNDERRUN;
7861 ath9k_hw_updatetxtriglevel(ah, true);
7862 }
7863 if (ads->ds_txstatus0 & AR_TxBaStatus) {
7864 ds->ds_txstat.ts_flags |= ATH9K_TX_BA;
7865 ds->ds_txstat.ba_low = ads->AR_BaBitmapLow;
7866 ds->ds_txstat.ba_high = ads->AR_BaBitmapHigh;
7867 }
7868
7869 ds->ds_txstat.ts_rateindex = MS(ads->ds_txstatus9, AR_FinalTxIdx);
7870 switch (ds->ds_txstat.ts_rateindex) {
7871 case 0:
7872 ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate0);
7873 break;
7874 case 1:
7875 ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate1);
7876 break;
7877 case 2:
7878 ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate2);
7879 break;
7880 case 3:
7881 ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate3);
7882 break;
7883 }
7884
7885 ds->ds_txstat.ts_rssi = MS(ads->ds_txstatus5, AR_TxRSSICombined);
7886 ds->ds_txstat.ts_rssi_ctl0 = MS(ads->ds_txstatus0, AR_TxRSSIAnt00);
7887 ds->ds_txstat.ts_rssi_ctl1 = MS(ads->ds_txstatus0, AR_TxRSSIAnt01);
7888 ds->ds_txstat.ts_rssi_ctl2 = MS(ads->ds_txstatus0, AR_TxRSSIAnt02);
7889 ds->ds_txstat.ts_rssi_ext0 = MS(ads->ds_txstatus5, AR_TxRSSIAnt10);
7890 ds->ds_txstat.ts_rssi_ext1 = MS(ads->ds_txstatus5, AR_TxRSSIAnt11);
7891 ds->ds_txstat.ts_rssi_ext2 = MS(ads->ds_txstatus5, AR_TxRSSIAnt12);
7892 ds->ds_txstat.evm0 = ads->AR_TxEVM0;
7893 ds->ds_txstat.evm1 = ads->AR_TxEVM1;
7894 ds->ds_txstat.evm2 = ads->AR_TxEVM2;
7895 ds->ds_txstat.ts_shortretry = MS(ads->ds_txstatus1, AR_RTSFailCnt);
7896 ds->ds_txstat.ts_longretry = MS(ads->ds_txstatus1, AR_DataFailCnt);
7897 ds->ds_txstat.ts_virtcol = MS(ads->ds_txstatus1, AR_VirtRetryCnt);
7898 ds->ds_txstat.ts_antenna = 1;
7899
7900 return 0;
7901 }
7902
7903 void
7904 ath9k_hw_set11n_txdesc(struct ath_hal *ah, struct ath_desc *ds,
7905 u32 pktLen, enum ath9k_pkt_type type, u32 txPower,
7906 u32 keyIx, enum ath9k_key_type keyType, u32 flags)
7907 {
7908 struct ar5416_desc *ads = AR5416DESC(ds);
7909 struct ath_hal_5416 *ahp = AH5416(ah);
7910
7911 txPower += ahp->ah_txPowerIndexOffset;
7912 if (txPower > 63)
7913 txPower = 63;
7914
7915 ads->ds_ctl0 = (pktLen & AR_FrameLen)
7916 | (flags & ATH9K_TXDESC_VMF ? AR_VirtMoreFrag : 0)
7917 | SM(txPower, AR_XmitPower)
7918 | (flags & ATH9K_TXDESC_VEOL ? AR_VEOL : 0)
7919 | (flags & ATH9K_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
7920 | (flags & ATH9K_TXDESC_INTREQ ? AR_TxIntrReq : 0)
7921 | (keyIx != ATH9K_TXKEYIX_INVALID ? AR_DestIdxValid : 0);
7922
7923 ads->ds_ctl1 =
7924 (keyIx != ATH9K_TXKEYIX_INVALID ? SM(keyIx, AR_DestIdx) : 0)
7925 | SM(type, AR_FrameType)
7926 | (flags & ATH9K_TXDESC_NOACK ? AR_NoAck : 0)
7927 | (flags & ATH9K_TXDESC_EXT_ONLY ? AR_ExtOnly : 0)
7928 | (flags & ATH9K_TXDESC_EXT_AND_CTL ? AR_ExtAndCtl : 0);
7929
7930 ads->ds_ctl6 = SM(keyType, AR_EncrType);
7931
7932 if (AR_SREV_9285(ah)) {
7933
7934 ads->ds_ctl8 = 0;
7935 ads->ds_ctl9 = 0;
7936 ads->ds_ctl10 = 0;
7937 ads->ds_ctl11 = 0;
7938 }
7939 }
7940
7941 void
7942 ath9k_hw_set11n_ratescenario(struct ath_hal *ah, struct ath_desc *ds,
7943 struct ath_desc *lastds,
7944 u32 durUpdateEn, u32 rtsctsRate,
7945 u32 rtsctsDuration,
7946 struct ath9k_11n_rate_series series[],
7947 u32 nseries, u32 flags)
7948 {
7949 struct ar5416_desc *ads = AR5416DESC(ds);
7950 struct ar5416_desc *last_ads = AR5416DESC(lastds);
7951 u32 ds_ctl0;
7952
7953 (void) nseries;
7954 (void) rtsctsDuration;
7955
7956 if (flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA)) {
7957 ds_ctl0 = ads->ds_ctl0;
7958
7959 if (flags & ATH9K_TXDESC_RTSENA) {
7960 ds_ctl0 &= ~AR_CTSEnable;
7961 ds_ctl0 |= AR_RTSEnable;
7962 } else {
7963 ds_ctl0 &= ~AR_RTSEnable;
7964 ds_ctl0 |= AR_CTSEnable;
7965 }
7966
7967 ads->ds_ctl0 = ds_ctl0;
7968 } else {
7969 ads->ds_ctl0 =
7970 (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable));
7971 }
7972
7973 ads->ds_ctl2 = set11nTries(series, 0)
7974 | set11nTries(series, 1)
7975 | set11nTries(series, 2)
7976 | set11nTries(series, 3)
7977 | (durUpdateEn ? AR_DurUpdateEna : 0)
7978 | SM(0, AR_BurstDur);
7979
7980 ads->ds_ctl3 = set11nRate(series, 0)
7981 | set11nRate(series, 1)
7982 | set11nRate(series, 2)
7983 | set11nRate(series, 3);
7984
7985 ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
7986 | set11nPktDurRTSCTS(series, 1);
7987
7988 ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
7989 | set11nPktDurRTSCTS(series, 3);
7990
7991 ads->ds_ctl7 = set11nRateFlags(series, 0)
7992 | set11nRateFlags(series, 1)
7993 | set11nRateFlags(series, 2)
7994 | set11nRateFlags(series, 3)
7995 | SM(rtsctsRate, AR_RTSCTSRate);
7996 last_ads->ds_ctl2 = ads->ds_ctl2;
7997 last_ads->ds_ctl3 = ads->ds_ctl3;
7998 }
7999
8000 void
8001 ath9k_hw_set11n_aggr_first(struct ath_hal *ah, struct ath_desc *ds,
8002 u32 aggrLen)
8003 {
8004 struct ar5416_desc *ads = AR5416DESC(ds);
8005
8006 ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
8007
8008 ads->ds_ctl6 &= ~AR_AggrLen;
8009 ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
8010 }
8011
8012 void
8013 ath9k_hw_set11n_aggr_middle(struct ath_hal *ah, struct ath_desc *ds,
8014 u32 numDelims)
8015 {
8016 struct ar5416_desc *ads = AR5416DESC(ds);
8017 unsigned int ctl6;
8018
8019 ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
8020
8021 ctl6 = ads->ds_ctl6;
8022 ctl6 &= ~AR_PadDelim;
8023 ctl6 |= SM(numDelims, AR_PadDelim);
8024 ads->ds_ctl6 = ctl6;
8025 }
8026
8027 void ath9k_hw_set11n_aggr_last(struct ath_hal *ah, struct ath_desc *ds)
8028 {
8029 struct ar5416_desc *ads = AR5416DESC(ds);
8030
8031 ads->ds_ctl1 |= AR_IsAggr;
8032 ads->ds_ctl1 &= ~AR_MoreAggr;
8033 ads->ds_ctl6 &= ~AR_PadDelim;
8034 }
8035
8036 void ath9k_hw_clr11n_aggr(struct ath_hal *ah, struct ath_desc *ds)
8037 {
8038 struct ar5416_desc *ads = AR5416DESC(ds);
8039
8040 ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
8041 }
8042
8043 void
8044 ath9k_hw_set11n_burstduration(struct ath_hal *ah, struct ath_desc *ds,
8045 u32 burstDuration)
8046 {
8047 struct ar5416_desc *ads = AR5416DESC(ds);
8048
8049 ads->ds_ctl2 &= ~AR_BurstDur;
8050 ads->ds_ctl2 |= SM(burstDuration, AR_BurstDur);
8051 }
8052
8053 void
8054 ath9k_hw_set11n_virtualmorefrag(struct ath_hal *ah, struct ath_desc *ds,
8055 u32 vmf)
8056 {
8057 struct ar5416_desc *ads = AR5416DESC(ds);
8058
8059 if (vmf)
8060 ads->ds_ctl0 |= AR_VirtMoreFrag;
8061 else
8062 ads->ds_ctl0 &= ~AR_VirtMoreFrag;
8063 }
8064
8065 void ath9k_hw_putrxbuf(struct ath_hal *ah, u32 rxdp)
8066 {
8067 REG_WRITE(ah, AR_RXDP, rxdp);
8068 }
8069
8070 void ath9k_hw_rxena(struct ath_hal *ah)
8071 {
8072 REG_WRITE(ah, AR_CR, AR_CR_RXE);
8073 }
8074
8075 bool ath9k_hw_setrxabort(struct ath_hal *ah, bool set)
8076 {
8077 if (set) {
8078
8079 REG_SET_BIT(ah, AR_DIAG_SW,
8080 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
8081
8082 if (!ath9k_hw_wait
8083 (ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE, 0)) {
8084 u32 reg;
8085
8086 REG_CLR_BIT(ah, AR_DIAG_SW,
8087 (AR_DIAG_RX_DIS |
8088 AR_DIAG_RX_ABORT));
8089
8090 reg = REG_READ(ah, AR_OBS_BUS_1);
8091 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
8092 "%s: rx failed to go idle in 10 ms RXSM=0x%x\n",
8093 __func__, reg);
8094
8095 return false;
8096 }
8097 } else {
8098 REG_CLR_BIT(ah, AR_DIAG_SW,
8099 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
8100 }
8101
8102 return true;
8103 }
8104
8105 void
8106 ath9k_hw_setmcastfilter(struct ath_hal *ah, u32 filter0,
8107 u32 filter1)
8108 {
8109 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
8110 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
8111 }
8112
8113 bool
8114 ath9k_hw_setuprxdesc(struct ath_hal *ah, struct ath_desc *ds,
8115 u32 size, u32 flags)
8116 {
8117 struct ar5416_desc *ads = AR5416DESC(ds);
8118 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
8119
8120 ads->ds_ctl1 = size & AR_BufLen;
8121 if (flags & ATH9K_RXDESC_INTREQ)
8122 ads->ds_ctl1 |= AR_RxIntrReq;
8123
8124 ads->ds_rxstatus8 &= ~AR_RxDone;
8125 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
8126 memset(&(ads->u), 0, sizeof(ads->u));
8127 return true;
8128 }
8129
8130 int
8131 ath9k_hw_rxprocdesc(struct ath_hal *ah, struct ath_desc *ds,
8132 u32 pa, struct ath_desc *nds, u64 tsf)
8133 {
8134 struct ar5416_desc ads;
8135 struct ar5416_desc *adsp = AR5416DESC(ds);
8136
8137 if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
8138 return -EINPROGRESS;
8139
8140 ads.u.rx = adsp->u.rx;
8141
8142 ds->ds_rxstat.rs_status = 0;
8143 ds->ds_rxstat.rs_flags = 0;
8144
8145 ds->ds_rxstat.rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
8146 ds->ds_rxstat.rs_tstamp = ads.AR_RcvTimestamp;
8147
8148 ds->ds_rxstat.rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
8149 ds->ds_rxstat.rs_rssi_ctl0 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt00);
8150 ds->ds_rxstat.rs_rssi_ctl1 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt01);
8151 ds->ds_rxstat.rs_rssi_ctl2 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt02);
8152 ds->ds_rxstat.rs_rssi_ext0 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt10);
8153 ds->ds_rxstat.rs_rssi_ext1 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt11);
8154 ds->ds_rxstat.rs_rssi_ext2 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt12);
8155 if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
8156 ds->ds_rxstat.rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
8157 else
8158 ds->ds_rxstat.rs_keyix = ATH9K_RXKEYIX_INVALID;
8159
8160 ds->ds_rxstat.rs_rate = RXSTATUS_RATE(ah, (&ads));
8161 ds->ds_rxstat.rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
8162
8163 ds->ds_rxstat.rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
8164 ds->ds_rxstat.rs_moreaggr =
8165 (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
8166 ds->ds_rxstat.rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
8167 ds->ds_rxstat.rs_flags =
8168 (ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
8169 ds->ds_rxstat.rs_flags |=
8170 (ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
8171
8172 if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
8173 ds->ds_rxstat.rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
8174 if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
8175 ds->ds_rxstat.rs_flags |= ATH9K_RX_DELIM_CRC_POST;
8176 if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
8177 ds->ds_rxstat.rs_flags |= ATH9K_RX_DECRYPT_BUSY;
8178
8179 if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
8180
8181 if (ads.ds_rxstatus8 & AR_CRCErr)
8182 ds->ds_rxstat.rs_status |= ATH9K_RXERR_CRC;
8183 else if (ads.ds_rxstatus8 & AR_PHYErr) {
8184 u32 phyerr;
8185
8186 ds->ds_rxstat.rs_status |= ATH9K_RXERR_PHY;
8187 phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
8188 ds->ds_rxstat.rs_phyerr = phyerr;
8189 } else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
8190 ds->ds_rxstat.rs_status |= ATH9K_RXERR_DECRYPT;
8191 else if (ads.ds_rxstatus8 & AR_MichaelErr)
8192 ds->ds_rxstat.rs_status |= ATH9K_RXERR_MIC;
8193 }
8194
8195 return 0;
8196 }
8197
8198 static void ath9k_hw_setup_rate_table(struct ath_hal *ah,
8199 struct ath9k_rate_table *rt)
8200 {
8201 int i;
8202
8203 if (rt->rateCodeToIndex[0] != 0)
8204 return;
8205 for (i = 0; i < 256; i++)
8206 rt->rateCodeToIndex[i] = (u8) -1;
8207 for (i = 0; i < rt->rateCount; i++) {
8208 u8 code = rt->info[i].rateCode;
8209 u8 cix = rt->info[i].controlRate;
8210
8211 rt->rateCodeToIndex[code] = i;
8212 rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
8213
8214 rt->info[i].lpAckDuration =
8215 ath9k_hw_computetxtime(ah, rt,
8216 WLAN_CTRL_FRAME_SIZE,
8217 cix,
8218 false);
8219 rt->info[i].spAckDuration =
8220 ath9k_hw_computetxtime(ah, rt,
8221 WLAN_CTRL_FRAME_SIZE,
8222 cix,
8223 true);
8224 }
8225 }
8226
8227 const struct ath9k_rate_table *ath9k_hw_getratetable(struct ath_hal *ah,
8228 u32 mode)
8229 {
8230 struct ath9k_rate_table *rt;
8231 switch (mode) {
8232 case ATH9K_MODE_11A:
8233 rt = &ar5416_11a_table;
8234 break;
8235 case ATH9K_MODE_11B:
8236 rt = &ar5416_11b_table;
8237 break;
8238 case ATH9K_MODE_11G:
8239 rt = &ar5416_11g_table;
8240 break;
8241 case ATH9K_MODE_11NG_HT20:
8242 case ATH9K_MODE_11NG_HT40PLUS:
8243 case ATH9K_MODE_11NG_HT40MINUS:
8244 rt = &ar5416_11ng_table;
8245 break;
8246 case ATH9K_MODE_11NA_HT20:
8247 case ATH9K_MODE_11NA_HT40PLUS:
8248 case ATH9K_MODE_11NA_HT40MINUS:
8249 rt = &ar5416_11na_table;
8250 break;
8251 default:
8252 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid mode 0x%x\n",
8253 __func__, mode);
8254 return NULL;
8255 }
8256 ath9k_hw_setup_rate_table(ah, rt);
8257 return rt;
8258 }
8259
8260 static const char *ath9k_hw_devname(u16 devid)
8261 {
8262 switch (devid) {
8263 case AR5416_DEVID_PCI:
8264 case AR5416_DEVID_PCIE:
8265 return "Atheros 5416";
8266 case AR9160_DEVID_PCI:
8267 return "Atheros 9160";
8268 case AR9280_DEVID_PCI:
8269 case AR9280_DEVID_PCIE:
8270 return "Atheros 9280";
8271 }
8272 return NULL;
8273 }
8274
8275 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
8276 {
8277 return vendorid == ATHEROS_VENDOR_ID ?
8278 ath9k_hw_devname(devid) : NULL;
8279 }
8280
8281 struct ath_hal *ath9k_hw_attach(u16 devid,
8282 struct ath_softc *sc,
8283 void __iomem *mem,
8284 int *error)
8285 {
8286 struct ath_hal *ah = NULL;
8287
8288 switch (devid) {
8289 case AR5416_DEVID_PCI:
8290 case AR5416_DEVID_PCIE:
8291 case AR9160_DEVID_PCI:
8292 case AR9280_DEVID_PCI:
8293 case AR9280_DEVID_PCIE:
8294 ah = ath9k_hw_do_attach(devid, sc, mem, error);
8295 break;
8296 default:
8297 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
8298 "devid=0x%x not supported.\n", devid);
8299 ah = NULL;
8300 *error = -ENXIO;
8301 break;
8302 }
8303 if (ah != NULL) {
8304 ah->ah_devid = ah->ah_devid;
8305 ah->ah_subvendorid = ah->ah_subvendorid;
8306 ah->ah_macVersion = ah->ah_macVersion;
8307 ah->ah_macRev = ah->ah_macRev;
8308 ah->ah_phyRev = ah->ah_phyRev;
8309 ah->ah_analog5GhzRev = ah->ah_analog5GhzRev;
8310 ah->ah_analog2GhzRev = ah->ah_analog2GhzRev;
8311 }
8312 return ah;
8313 }
8314
8315 u16
8316 ath9k_hw_computetxtime(struct ath_hal *ah,
8317 const struct ath9k_rate_table *rates,
8318 u32 frameLen, u16 rateix,
8319 bool shortPreamble)
8320 {
8321 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
8322 u32 kbps;
8323
8324 kbps = rates->info[rateix].rateKbps;
8325
8326 if (kbps == 0)
8327 return 0;
8328 switch (rates->info[rateix].phy) {
8329
8330 case PHY_CCK:
8331 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
8332 if (shortPreamble && rates->info[rateix].shortPreamble)
8333 phyTime >>= 1;
8334 numBits = frameLen << 3;
8335 txTime = CCK_SIFS_TIME + phyTime
8336 + ((numBits * 1000) / kbps);
8337 break;
8338 case PHY_OFDM:
8339 if (ah->ah_curchan && IS_CHAN_QUARTER_RATE(ah->ah_curchan)) {
8340 bitsPerSymbol =
8341 (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
8342
8343 numBits = OFDM_PLCP_BITS + (frameLen << 3);
8344 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
8345 txTime = OFDM_SIFS_TIME_QUARTER
8346 + OFDM_PREAMBLE_TIME_QUARTER
8347 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
8348 } else if (ah->ah_curchan &&
8349 IS_CHAN_HALF_RATE(ah->ah_curchan)) {
8350 bitsPerSymbol =
8351 (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
8352
8353 numBits = OFDM_PLCP_BITS + (frameLen << 3);
8354 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
8355 txTime = OFDM_SIFS_TIME_HALF +
8356 OFDM_PREAMBLE_TIME_HALF
8357 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
8358 } else {
8359 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
8360
8361 numBits = OFDM_PLCP_BITS + (frameLen << 3);
8362 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
8363 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
8364 + (numSymbols * OFDM_SYMBOL_TIME);
8365 }
8366 break;
8367
8368 default:
8369 DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
8370 "%s: unknown phy %u (rate ix %u)\n", __func__,
8371 rates->info[rateix].phy, rateix);
8372 txTime = 0;
8373 break;
8374 }
8375 return txTime;
8376 }
8377
8378 u32 ath9k_hw_mhz2ieee(struct ath_hal *ah, u32 freq, u32 flags)
8379 {
8380 if (flags & CHANNEL_2GHZ) {
8381 if (freq == 2484)
8382 return 14;
8383 if (freq < 2484)
8384 return (freq - 2407) / 5;
8385 else
8386 return 15 + ((freq - 2512) / 20);
8387 } else if (flags & CHANNEL_5GHZ) {
8388 if (ath9k_regd_is_public_safety_sku(ah) &&
8389 IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
8390 return ((freq * 10) +
8391 (((freq % 5) == 2) ? 5 : 0) - 49400) / 5;
8392 } else if ((flags & CHANNEL_A) && (freq <= 5000)) {
8393 return (freq - 4000) / 5;
8394 } else {
8395 return (freq - 5000) / 5;
8396 }
8397 } else {
8398 if (freq == 2484)
8399 return 14;
8400 if (freq < 2484)
8401 return (freq - 2407) / 5;
8402 if (freq < 5000) {
8403 if (ath9k_regd_is_public_safety_sku(ah)
8404 && IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
8405 return ((freq * 10) +
8406 (((freq % 5) ==
8407 2) ? 5 : 0) - 49400) / 5;
8408 } else if (freq > 4900) {
8409 return (freq - 4000) / 5;
8410 } else {
8411 return 15 + ((freq - 2512) / 20);
8412 }
8413 }
8414 return (freq - 5000) / 5;
8415 }
8416 }
8417
8418 int16_t
8419 ath9k_hw_getchan_noise(struct ath_hal *ah, struct ath9k_channel *chan)
8420 {
8421 struct ath9k_channel *ichan;
8422
8423 ichan = ath9k_regd_check_channel(ah, chan);
8424 if (ichan == NULL) {
8425 DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
8426 "%s: invalid channel %u/0x%x; no mapping\n",
8427 __func__, chan->channel, chan->channelFlags);
8428 return 0;
8429 }
8430 if (ichan->rawNoiseFloor == 0) {
8431 enum wireless_mode mode = ath9k_hw_chan2wmode(ah, chan);
8432 return NOISE_FLOOR[mode];
8433 } else
8434 return ichan->rawNoiseFloor;
8435 }
8436
8437 bool ath9k_hw_set_tsfadjust(struct ath_hal *ah, u32 setting)
8438 {
8439 struct ath_hal_5416 *ahp = AH5416(ah);
8440
8441 if (setting)
8442 ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
8443 else
8444 ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
8445 return true;
8446 }
8447
8448 bool ath9k_hw_phycounters(struct ath_hal *ah)
8449 {
8450 struct ath_hal_5416 *ahp = AH5416(ah);
8451
8452 return ahp->ah_hasHwPhyCounters ? true : false;
8453 }
8454
8455 u32 ath9k_hw_gettxbuf(struct ath_hal *ah, u32 q)
8456 {
8457 return REG_READ(ah, AR_QTXDP(q));
8458 }
8459
8460 bool ath9k_hw_puttxbuf(struct ath_hal *ah, u32 q,
8461 u32 txdp)
8462 {
8463 REG_WRITE(ah, AR_QTXDP(q), txdp);
8464
8465 return true;
8466 }
8467
8468 bool ath9k_hw_txstart(struct ath_hal *ah, u32 q)
8469 {
8470 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %u\n", __func__, q);
8471
8472 REG_WRITE(ah, AR_Q_TXE, 1 << q);
8473
8474 return true;
8475 }
8476
8477 u32 ath9k_hw_numtxpending(struct ath_hal *ah, u32 q)
8478 {
8479 u32 npend;
8480
8481 npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
8482 if (npend == 0) {
8483
8484 if (REG_READ(ah, AR_Q_TXE) & (1 << q))
8485 npend = 1;
8486 }
8487 return npend;
8488 }
8489
8490 bool ath9k_hw_stoptxdma(struct ath_hal *ah, u32 q)
8491 {
8492 u32 wait;
8493
8494 REG_WRITE(ah, AR_Q_TXD, 1 << q);
8495
8496 for (wait = 1000; wait != 0; wait--) {
8497 if (ath9k_hw_numtxpending(ah, q) == 0)
8498 break;
8499 udelay(100);
8500 }
8501
8502 if (ath9k_hw_numtxpending(ah, q)) {
8503 u32 tsfLow, j;
8504
8505 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
8506 "%s: Num of pending TX Frames %d on Q %d\n",
8507 __func__, ath9k_hw_numtxpending(ah, q), q);
8508
8509 for (j = 0; j < 2; j++) {
8510 tsfLow = REG_READ(ah, AR_TSF_L32);
8511 REG_WRITE(ah, AR_QUIET2,
8512 SM(10, AR_QUIET2_QUIET_DUR));
8513 REG_WRITE(ah, AR_QUIET_PERIOD, 100);
8514 REG_WRITE(ah, AR_NEXT_QUIET_TIMER, tsfLow >> 10);
8515 REG_SET_BIT(ah, AR_TIMER_MODE,
8516 AR_QUIET_TIMER_EN);
8517
8518 if ((REG_READ(ah, AR_TSF_L32) >> 10) ==
8519 (tsfLow >> 10)) {
8520 break;
8521 }
8522 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
8523 "%s: TSF have moved while trying to set "
8524 "quiet time TSF: 0x%08x\n",
8525 __func__, tsfLow);
8526 }
8527
8528 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
8529
8530 udelay(200);
8531 REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
8532
8533 wait = 1000;
8534
8535 while (ath9k_hw_numtxpending(ah, q)) {
8536 if ((--wait) == 0) {
8537 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
8538 "%s: Failed to stop Tx DMA in 100 "
8539 "msec after killing last frame\n",
8540 __func__);
8541 break;
8542 }
8543 udelay(100);
8544 }
8545
8546 REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
8547 }
8548
8549 REG_WRITE(ah, AR_Q_TXD, 0);
8550 return wait != 0;
8551 }
This page took 0.213232 seconds and 5 git commands to generate.