4c29cef66a61263fb4611ff63c888edd1c61319e
[deliverable/linux.git] / drivers / net / wireless / ath9k / main.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 #define ATH_PCI_VERSION "0.1"
21
22 static char *dev_info = "ath9k";
23
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
28
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32
33 /* We use the hw_value as an index into our private channel structure */
34
35 #define CHAN2G(_freq, _idx) { \
36 .center_freq = (_freq), \
37 .hw_value = (_idx), \
38 .max_power = 30, \
39 }
40
41 #define CHAN5G(_freq, _idx) { \
42 .band = IEEE80211_BAND_5GHZ, \
43 .center_freq = (_freq), \
44 .hw_value = (_idx), \
45 .max_power = 30, \
46 }
47
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49 * on 5 MHz steps, we support the channels which we know
50 * we have calibration data for all cards though to make
51 * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53 CHAN2G(2412, 0), /* Channel 1 */
54 CHAN2G(2417, 1), /* Channel 2 */
55 CHAN2G(2422, 2), /* Channel 3 */
56 CHAN2G(2427, 3), /* Channel 4 */
57 CHAN2G(2432, 4), /* Channel 5 */
58 CHAN2G(2437, 5), /* Channel 6 */
59 CHAN2G(2442, 6), /* Channel 7 */
60 CHAN2G(2447, 7), /* Channel 8 */
61 CHAN2G(2452, 8), /* Channel 9 */
62 CHAN2G(2457, 9), /* Channel 10 */
63 CHAN2G(2462, 10), /* Channel 11 */
64 CHAN2G(2467, 11), /* Channel 12 */
65 CHAN2G(2472, 12), /* Channel 13 */
66 CHAN2G(2484, 13), /* Channel 14 */
67 };
68
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70 * on 5 MHz steps, we support the channels which we know
71 * we have calibration data for all cards though to make
72 * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74 /* _We_ call this UNII 1 */
75 CHAN5G(5180, 14), /* Channel 36 */
76 CHAN5G(5200, 15), /* Channel 40 */
77 CHAN5G(5220, 16), /* Channel 44 */
78 CHAN5G(5240, 17), /* Channel 48 */
79 /* _We_ call this UNII 2 */
80 CHAN5G(5260, 18), /* Channel 52 */
81 CHAN5G(5280, 19), /* Channel 56 */
82 CHAN5G(5300, 20), /* Channel 60 */
83 CHAN5G(5320, 21), /* Channel 64 */
84 /* _We_ call this "Middle band" */
85 CHAN5G(5500, 22), /* Channel 100 */
86 CHAN5G(5520, 23), /* Channel 104 */
87 CHAN5G(5540, 24), /* Channel 108 */
88 CHAN5G(5560, 25), /* Channel 112 */
89 CHAN5G(5580, 26), /* Channel 116 */
90 CHAN5G(5600, 27), /* Channel 120 */
91 CHAN5G(5620, 28), /* Channel 124 */
92 CHAN5G(5640, 29), /* Channel 128 */
93 CHAN5G(5660, 30), /* Channel 132 */
94 CHAN5G(5680, 31), /* Channel 136 */
95 CHAN5G(5700, 32), /* Channel 140 */
96 /* _We_ call this UNII 3 */
97 CHAN5G(5745, 33), /* Channel 149 */
98 CHAN5G(5765, 34), /* Channel 153 */
99 CHAN5G(5785, 35), /* Channel 157 */
100 CHAN5G(5805, 36), /* Channel 161 */
101 CHAN5G(5825, 37), /* Channel 165 */
102 };
103
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105 struct ieee80211_conf *conf)
106 {
107 switch (conf->channel->band) {
108 case IEEE80211_BAND_2GHZ:
109 if (conf_is_ht20(conf))
110 sc->cur_rate_table =
111 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112 else if (conf_is_ht40_minus(conf))
113 sc->cur_rate_table =
114 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115 else if (conf_is_ht40_plus(conf))
116 sc->cur_rate_table =
117 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118 else
119 sc->cur_rate_table =
120 sc->hw_rate_table[ATH9K_MODE_11G];
121 break;
122 case IEEE80211_BAND_5GHZ:
123 if (conf_is_ht20(conf))
124 sc->cur_rate_table =
125 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126 else if (conf_is_ht40_minus(conf))
127 sc->cur_rate_table =
128 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129 else if (conf_is_ht40_plus(conf))
130 sc->cur_rate_table =
131 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132 else
133 sc->cur_rate_table =
134 sc->hw_rate_table[ATH9K_MODE_11A];
135 break;
136 default:
137 BUG_ON(1);
138 break;
139 }
140 }
141
142 static void ath_update_txpow(struct ath_softc *sc)
143 {
144 struct ath_hw *ah = sc->sc_ah;
145 u32 txpow;
146
147 if (sc->curtxpow != sc->config.txpowlimit) {
148 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149 /* read back in case value is clamped */
150 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151 sc->curtxpow = txpow;
152 }
153 }
154
155 static u8 parse_mpdudensity(u8 mpdudensity)
156 {
157 /*
158 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159 * 0 for no restriction
160 * 1 for 1/4 us
161 * 2 for 1/2 us
162 * 3 for 1 us
163 * 4 for 2 us
164 * 5 for 4 us
165 * 6 for 8 us
166 * 7 for 16 us
167 */
168 switch (mpdudensity) {
169 case 0:
170 return 0;
171 case 1:
172 case 2:
173 case 3:
174 /* Our lower layer calculations limit our precision to
175 1 microsecond */
176 return 1;
177 case 4:
178 return 2;
179 case 5:
180 return 4;
181 case 6:
182 return 8;
183 case 7:
184 return 16;
185 default:
186 return 0;
187 }
188 }
189
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 {
192 struct ath_rate_table *rate_table = NULL;
193 struct ieee80211_supported_band *sband;
194 struct ieee80211_rate *rate;
195 int i, maxrates;
196
197 switch (band) {
198 case IEEE80211_BAND_2GHZ:
199 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200 break;
201 case IEEE80211_BAND_5GHZ:
202 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203 break;
204 default:
205 break;
206 }
207
208 if (rate_table == NULL)
209 return;
210
211 sband = &sc->sbands[band];
212 rate = sc->rates[band];
213
214 if (rate_table->rate_cnt > ATH_RATE_MAX)
215 maxrates = ATH_RATE_MAX;
216 else
217 maxrates = rate_table->rate_cnt;
218
219 for (i = 0; i < maxrates; i++) {
220 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221 rate[i].hw_value = rate_table->info[i].ratecode;
222 if (rate_table->info[i].short_preamble) {
223 rate[i].hw_value_short = rate_table->info[i].ratecode |
224 rate_table->info[i].short_preamble;
225 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
226 }
227 sband->n_bitrates++;
228
229 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230 rate[i].bitrate / 10, rate[i].hw_value);
231 }
232 }
233
234 /*
235 * Set/change channels. If the channel is really being changed, it's done
236 * by reseting the chip. To accomplish this we must first cleanup any pending
237 * DMA, then restart stuff.
238 */
239 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
240 struct ath9k_channel *hchan)
241 {
242 struct ath_hw *ah = sc->sc_ah;
243 bool fastcc = true, stopped;
244 struct ieee80211_channel *channel = hw->conf.channel;
245 int r;
246
247 if (sc->sc_flags & SC_OP_INVALID)
248 return -EIO;
249
250 ath9k_ps_wakeup(sc);
251
252 /*
253 * This is only performed if the channel settings have
254 * actually changed.
255 *
256 * To switch channels clear any pending DMA operations;
257 * wait long enough for the RX fifo to drain, reset the
258 * hardware at the new frequency, and then re-enable
259 * the relevant bits of the h/w.
260 */
261 ath9k_hw_set_interrupts(ah, 0);
262 ath_drain_all_txq(sc, false);
263 stopped = ath_stoprecv(sc);
264
265 /* XXX: do not flush receive queue here. We don't want
266 * to flush data frames already in queue because of
267 * changing channel. */
268
269 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
270 fastcc = false;
271
272 DPRINTF(sc, ATH_DBG_CONFIG,
273 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274 sc->sc_ah->curchan->channel,
275 channel->center_freq, sc->tx_chan_width);
276
277 spin_lock_bh(&sc->sc_resetlock);
278
279 r = ath9k_hw_reset(ah, hchan, fastcc);
280 if (r) {
281 DPRINTF(sc, ATH_DBG_FATAL,
282 "Unable to reset channel (%u Mhz) "
283 "reset status %u\n",
284 channel->center_freq, r);
285 spin_unlock_bh(&sc->sc_resetlock);
286 return r;
287 }
288 spin_unlock_bh(&sc->sc_resetlock);
289
290 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
291 sc->sc_flags &= ~SC_OP_FULL_RESET;
292
293 if (ath_startrecv(sc) != 0) {
294 DPRINTF(sc, ATH_DBG_FATAL,
295 "Unable to restart recv logic\n");
296 return -EIO;
297 }
298
299 ath_cache_conf_rate(sc, &hw->conf);
300 ath_update_txpow(sc);
301 ath9k_hw_set_interrupts(ah, sc->imask);
302 ath9k_ps_restore(sc);
303 return 0;
304 }
305
306 /*
307 * This routine performs the periodic noise floor calibration function
308 * that is used to adjust and optimize the chip performance. This
309 * takes environmental changes (location, temperature) into account.
310 * When the task is complete, it reschedules itself depending on the
311 * appropriate interval that was calculated.
312 */
313 static void ath_ani_calibrate(unsigned long data)
314 {
315 struct ath_softc *sc = (struct ath_softc *)data;
316 struct ath_hw *ah = sc->sc_ah;
317 bool longcal = false;
318 bool shortcal = false;
319 bool aniflag = false;
320 unsigned int timestamp = jiffies_to_msecs(jiffies);
321 u32 cal_interval, short_cal_interval;
322
323 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
324 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
325
326 /*
327 * don't calibrate when we're scanning.
328 * we are most likely not on our home channel.
329 */
330 if (sc->sc_flags & SC_OP_SCANNING)
331 goto set_timer;
332
333 /* Long calibration runs independently of short calibration. */
334 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
335 longcal = true;
336 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
337 sc->ani.longcal_timer = timestamp;
338 }
339
340 /* Short calibration applies only while caldone is false */
341 if (!sc->ani.caldone) {
342 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
343 shortcal = true;
344 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
345 sc->ani.shortcal_timer = timestamp;
346 sc->ani.resetcal_timer = timestamp;
347 }
348 } else {
349 if ((timestamp - sc->ani.resetcal_timer) >=
350 ATH_RESTART_CALINTERVAL) {
351 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
352 if (sc->ani.caldone)
353 sc->ani.resetcal_timer = timestamp;
354 }
355 }
356
357 /* Verify whether we must check ANI */
358 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
359 aniflag = true;
360 sc->ani.checkani_timer = timestamp;
361 }
362
363 /* Skip all processing if there's nothing to do. */
364 if (longcal || shortcal || aniflag) {
365 /* Call ANI routine if necessary */
366 if (aniflag)
367 ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
368
369 /* Perform calibration if necessary */
370 if (longcal || shortcal) {
371 bool iscaldone = false;
372
373 if (ath9k_hw_calibrate(ah, ah->curchan,
374 sc->rx_chainmask, longcal,
375 &iscaldone)) {
376 if (longcal)
377 sc->ani.noise_floor =
378 ath9k_hw_getchan_noise(ah,
379 ah->curchan);
380
381 DPRINTF(sc, ATH_DBG_ANI,
382 "calibrate chan %u/%x nf: %d\n",
383 ah->curchan->channel,
384 ah->curchan->channelFlags,
385 sc->ani.noise_floor);
386 } else {
387 DPRINTF(sc, ATH_DBG_ANY,
388 "calibrate chan %u/%x failed\n",
389 ah->curchan->channel,
390 ah->curchan->channelFlags);
391 }
392 sc->ani.caldone = iscaldone;
393 }
394 }
395
396 set_timer:
397 /*
398 * Set timer interval based on previous results.
399 * The interval must be the shortest necessary to satisfy ANI,
400 * short calibration and long calibration.
401 */
402 cal_interval = ATH_LONG_CALINTERVAL;
403 if (sc->sc_ah->config.enable_ani)
404 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
405 if (!sc->ani.caldone)
406 cal_interval = min(cal_interval, (u32)short_cal_interval);
407
408 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
409 }
410
411 /*
412 * Update tx/rx chainmask. For legacy association,
413 * hard code chainmask to 1x1, for 11n association, use
414 * the chainmask configuration, for bt coexistence, use
415 * the chainmask configuration even in legacy mode.
416 */
417 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
418 {
419 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
420 if (is_ht ||
421 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
422 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
423 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
424 } else {
425 sc->tx_chainmask = 1;
426 sc->rx_chainmask = 1;
427 }
428
429 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
430 sc->tx_chainmask, sc->rx_chainmask);
431 }
432
433 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
434 {
435 struct ath_node *an;
436
437 an = (struct ath_node *)sta->drv_priv;
438
439 if (sc->sc_flags & SC_OP_TXAGGR)
440 ath_tx_node_init(sc, an);
441
442 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
443 sta->ht_cap.ampdu_factor);
444 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
445 }
446
447 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
448 {
449 struct ath_node *an = (struct ath_node *)sta->drv_priv;
450
451 if (sc->sc_flags & SC_OP_TXAGGR)
452 ath_tx_node_cleanup(sc, an);
453 }
454
455 static void ath9k_tasklet(unsigned long data)
456 {
457 struct ath_softc *sc = (struct ath_softc *)data;
458 u32 status = sc->intrstatus;
459
460 if (status & ATH9K_INT_FATAL) {
461 /* need a chip reset */
462 ath_reset(sc, false);
463 return;
464 } else {
465
466 if (status &
467 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
468 spin_lock_bh(&sc->rx.rxflushlock);
469 ath_rx_tasklet(sc, 0);
470 spin_unlock_bh(&sc->rx.rxflushlock);
471 }
472 /* XXX: optimize this */
473 if (status & ATH9K_INT_TX)
474 ath_tx_tasklet(sc);
475 }
476
477 /* re-enable hardware interrupt */
478 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
479 }
480
481 irqreturn_t ath_isr(int irq, void *dev)
482 {
483 struct ath_softc *sc = dev;
484 struct ath_hw *ah = sc->sc_ah;
485 enum ath9k_int status;
486 bool sched = false;
487
488 do {
489 if (sc->sc_flags & SC_OP_INVALID) {
490 /*
491 * The hardware is not ready/present, don't
492 * touch anything. Note this can happen early
493 * on if the IRQ is shared.
494 */
495 return IRQ_NONE;
496 }
497 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
498 return IRQ_NONE;
499 }
500
501 /*
502 * Figure out the reason(s) for the interrupt. Note
503 * that the hal returns a pseudo-ISR that may include
504 * bits we haven't explicitly enabled so we mask the
505 * value to insure we only process bits we requested.
506 */
507 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
508
509 status &= sc->imask; /* discard unasked-for bits */
510
511 /*
512 * If there are no status bits set, then this interrupt was not
513 * for me (should have been caught above).
514 */
515 if (!status)
516 return IRQ_NONE;
517
518 sc->intrstatus = status;
519 ath9k_ps_wakeup(sc);
520
521 if (status & ATH9K_INT_FATAL) {
522 /* need a chip reset */
523 sched = true;
524 } else if (status & ATH9K_INT_RXORN) {
525 /* need a chip reset */
526 sched = true;
527 } else {
528 if (status & ATH9K_INT_SWBA) {
529 /* schedule a tasklet for beacon handling */
530 tasklet_schedule(&sc->bcon_tasklet);
531 }
532 if (status & ATH9K_INT_RXEOL) {
533 /*
534 * NB: the hardware should re-read the link when
535 * RXE bit is written, but it doesn't work
536 * at least on older hardware revs.
537 */
538 sched = true;
539 }
540
541 if (status & ATH9K_INT_TXURN)
542 /* bump tx trigger level */
543 ath9k_hw_updatetxtriglevel(ah, true);
544 /* XXX: optimize this */
545 if (status & ATH9K_INT_RX)
546 sched = true;
547 if (status & ATH9K_INT_TX)
548 sched = true;
549 if (status & ATH9K_INT_BMISS)
550 sched = true;
551 /* carrier sense timeout */
552 if (status & ATH9K_INT_CST)
553 sched = true;
554 if (status & ATH9K_INT_MIB) {
555 /*
556 * Disable interrupts until we service the MIB
557 * interrupt; otherwise it will continue to
558 * fire.
559 */
560 ath9k_hw_set_interrupts(ah, 0);
561 /*
562 * Let the hal handle the event. We assume
563 * it will clear whatever condition caused
564 * the interrupt.
565 */
566 ath9k_hw_procmibevent(ah, &sc->nodestats);
567 ath9k_hw_set_interrupts(ah, sc->imask);
568 }
569 if (status & ATH9K_INT_TIM_TIMER) {
570 if (!(ah->caps.hw_caps &
571 ATH9K_HW_CAP_AUTOSLEEP)) {
572 /* Clear RxAbort bit so that we can
573 * receive frames */
574 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
575 ath9k_hw_setrxabort(ah, 0);
576 sched = true;
577 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
578 }
579 }
580 if (status & ATH9K_INT_TSFOOR) {
581 /* FIXME: Handle this interrupt for power save */
582 sched = true;
583 }
584 }
585 ath9k_ps_restore(sc);
586 } while (0);
587
588 ath_debug_stat_interrupt(sc, status);
589
590 if (sched) {
591 /* turn off every interrupt except SWBA */
592 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
593 tasklet_schedule(&sc->intr_tq);
594 }
595
596 return IRQ_HANDLED;
597 }
598
599 static u32 ath_get_extchanmode(struct ath_softc *sc,
600 struct ieee80211_channel *chan,
601 enum nl80211_channel_type channel_type)
602 {
603 u32 chanmode = 0;
604
605 switch (chan->band) {
606 case IEEE80211_BAND_2GHZ:
607 switch(channel_type) {
608 case NL80211_CHAN_NO_HT:
609 case NL80211_CHAN_HT20:
610 chanmode = CHANNEL_G_HT20;
611 break;
612 case NL80211_CHAN_HT40PLUS:
613 chanmode = CHANNEL_G_HT40PLUS;
614 break;
615 case NL80211_CHAN_HT40MINUS:
616 chanmode = CHANNEL_G_HT40MINUS;
617 break;
618 }
619 break;
620 case IEEE80211_BAND_5GHZ:
621 switch(channel_type) {
622 case NL80211_CHAN_NO_HT:
623 case NL80211_CHAN_HT20:
624 chanmode = CHANNEL_A_HT20;
625 break;
626 case NL80211_CHAN_HT40PLUS:
627 chanmode = CHANNEL_A_HT40PLUS;
628 break;
629 case NL80211_CHAN_HT40MINUS:
630 chanmode = CHANNEL_A_HT40MINUS;
631 break;
632 }
633 break;
634 default:
635 break;
636 }
637
638 return chanmode;
639 }
640
641 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
642 struct ath9k_keyval *hk, const u8 *addr,
643 bool authenticator)
644 {
645 const u8 *key_rxmic;
646 const u8 *key_txmic;
647
648 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
649 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
650
651 if (addr == NULL) {
652 /*
653 * Group key installation - only two key cache entries are used
654 * regardless of splitmic capability since group key is only
655 * used either for TX or RX.
656 */
657 if (authenticator) {
658 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
659 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
660 } else {
661 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
662 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
663 }
664 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
665 }
666 if (!sc->splitmic) {
667 /* TX and RX keys share the same key cache entry. */
668 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
669 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
670 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
671 }
672
673 /* Separate key cache entries for TX and RX */
674
675 /* TX key goes at first index, RX key at +32. */
676 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
677 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
678 /* TX MIC entry failed. No need to proceed further */
679 DPRINTF(sc, ATH_DBG_KEYCACHE,
680 "Setting TX MIC Key Failed\n");
681 return 0;
682 }
683
684 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
685 /* XXX delete tx key on failure? */
686 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
687 }
688
689 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
690 {
691 int i;
692
693 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
694 if (test_bit(i, sc->keymap) ||
695 test_bit(i + 64, sc->keymap))
696 continue; /* At least one part of TKIP key allocated */
697 if (sc->splitmic &&
698 (test_bit(i + 32, sc->keymap) ||
699 test_bit(i + 64 + 32, sc->keymap)))
700 continue; /* At least one part of TKIP key allocated */
701
702 /* Found a free slot for a TKIP key */
703 return i;
704 }
705 return -1;
706 }
707
708 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
709 {
710 int i;
711
712 /* First, try to find slots that would not be available for TKIP. */
713 if (sc->splitmic) {
714 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
715 if (!test_bit(i, sc->keymap) &&
716 (test_bit(i + 32, sc->keymap) ||
717 test_bit(i + 64, sc->keymap) ||
718 test_bit(i + 64 + 32, sc->keymap)))
719 return i;
720 if (!test_bit(i + 32, sc->keymap) &&
721 (test_bit(i, sc->keymap) ||
722 test_bit(i + 64, sc->keymap) ||
723 test_bit(i + 64 + 32, sc->keymap)))
724 return i + 32;
725 if (!test_bit(i + 64, sc->keymap) &&
726 (test_bit(i , sc->keymap) ||
727 test_bit(i + 32, sc->keymap) ||
728 test_bit(i + 64 + 32, sc->keymap)))
729 return i + 64;
730 if (!test_bit(i + 64 + 32, sc->keymap) &&
731 (test_bit(i, sc->keymap) ||
732 test_bit(i + 32, sc->keymap) ||
733 test_bit(i + 64, sc->keymap)))
734 return i + 64 + 32;
735 }
736 } else {
737 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
738 if (!test_bit(i, sc->keymap) &&
739 test_bit(i + 64, sc->keymap))
740 return i;
741 if (test_bit(i, sc->keymap) &&
742 !test_bit(i + 64, sc->keymap))
743 return i + 64;
744 }
745 }
746
747 /* No partially used TKIP slots, pick any available slot */
748 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
749 /* Do not allow slots that could be needed for TKIP group keys
750 * to be used. This limitation could be removed if we know that
751 * TKIP will not be used. */
752 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
753 continue;
754 if (sc->splitmic) {
755 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
756 continue;
757 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
758 continue;
759 }
760
761 if (!test_bit(i, sc->keymap))
762 return i; /* Found a free slot for a key */
763 }
764
765 /* No free slot found */
766 return -1;
767 }
768
769 static int ath_key_config(struct ath_softc *sc,
770 struct ieee80211_vif *vif,
771 struct ieee80211_sta *sta,
772 struct ieee80211_key_conf *key)
773 {
774 struct ath9k_keyval hk;
775 const u8 *mac = NULL;
776 int ret = 0;
777 int idx;
778
779 memset(&hk, 0, sizeof(hk));
780
781 switch (key->alg) {
782 case ALG_WEP:
783 hk.kv_type = ATH9K_CIPHER_WEP;
784 break;
785 case ALG_TKIP:
786 hk.kv_type = ATH9K_CIPHER_TKIP;
787 break;
788 case ALG_CCMP:
789 hk.kv_type = ATH9K_CIPHER_AES_CCM;
790 break;
791 default:
792 return -EOPNOTSUPP;
793 }
794
795 hk.kv_len = key->keylen;
796 memcpy(hk.kv_val, key->key, key->keylen);
797
798 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
799 /* For now, use the default keys for broadcast keys. This may
800 * need to change with virtual interfaces. */
801 idx = key->keyidx;
802 } else if (key->keyidx) {
803 if (WARN_ON(!sta))
804 return -EOPNOTSUPP;
805 mac = sta->addr;
806
807 if (vif->type != NL80211_IFTYPE_AP) {
808 /* Only keyidx 0 should be used with unicast key, but
809 * allow this for client mode for now. */
810 idx = key->keyidx;
811 } else
812 return -EIO;
813 } else {
814 if (WARN_ON(!sta))
815 return -EOPNOTSUPP;
816 mac = sta->addr;
817
818 if (key->alg == ALG_TKIP)
819 idx = ath_reserve_key_cache_slot_tkip(sc);
820 else
821 idx = ath_reserve_key_cache_slot(sc);
822 if (idx < 0)
823 return -ENOSPC; /* no free key cache entries */
824 }
825
826 if (key->alg == ALG_TKIP)
827 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
828 vif->type == NL80211_IFTYPE_AP);
829 else
830 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
831
832 if (!ret)
833 return -EIO;
834
835 set_bit(idx, sc->keymap);
836 if (key->alg == ALG_TKIP) {
837 set_bit(idx + 64, sc->keymap);
838 if (sc->splitmic) {
839 set_bit(idx + 32, sc->keymap);
840 set_bit(idx + 64 + 32, sc->keymap);
841 }
842 }
843
844 return idx;
845 }
846
847 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
848 {
849 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
850 if (key->hw_key_idx < IEEE80211_WEP_NKID)
851 return;
852
853 clear_bit(key->hw_key_idx, sc->keymap);
854 if (key->alg != ALG_TKIP)
855 return;
856
857 clear_bit(key->hw_key_idx + 64, sc->keymap);
858 if (sc->splitmic) {
859 clear_bit(key->hw_key_idx + 32, sc->keymap);
860 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
861 }
862 }
863
864 static void setup_ht_cap(struct ath_softc *sc,
865 struct ieee80211_sta_ht_cap *ht_info)
866 {
867 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
868 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
869
870 ht_info->ht_supported = true;
871 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
872 IEEE80211_HT_CAP_SM_PS |
873 IEEE80211_HT_CAP_SGI_40 |
874 IEEE80211_HT_CAP_DSSSCCK40;
875
876 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
877 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
878
879 /* set up supported mcs set */
880 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
881
882 switch(sc->rx_chainmask) {
883 case 1:
884 ht_info->mcs.rx_mask[0] = 0xff;
885 break;
886 case 3:
887 case 5:
888 case 7:
889 default:
890 ht_info->mcs.rx_mask[0] = 0xff;
891 ht_info->mcs.rx_mask[1] = 0xff;
892 break;
893 }
894
895 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
896 }
897
898 static void ath9k_bss_assoc_info(struct ath_softc *sc,
899 struct ieee80211_vif *vif,
900 struct ieee80211_bss_conf *bss_conf)
901 {
902 struct ath_vif *avp = (void *)vif->drv_priv;
903
904 if (bss_conf->assoc) {
905 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
906 bss_conf->aid, sc->curbssid);
907
908 /* New association, store aid */
909 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
910 sc->curaid = bss_conf->aid;
911 ath9k_hw_write_associd(sc);
912 }
913
914 /* Configure the beacon */
915 ath_beacon_config(sc, vif);
916
917 /* Reset rssi stats */
918 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
919 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
920 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
921 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
922
923 /* Start ANI */
924 mod_timer(&sc->ani.timer,
925 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
926 } else {
927 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
928 sc->curaid = 0;
929 }
930 }
931
932 /********************************/
933 /* LED functions */
934 /********************************/
935
936 static void ath_led_blink_work(struct work_struct *work)
937 {
938 struct ath_softc *sc = container_of(work, struct ath_softc,
939 ath_led_blink_work.work);
940
941 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
942 return;
943
944 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
945 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
946 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
947 else
948 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
949 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
950
951 queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
952 (sc->sc_flags & SC_OP_LED_ON) ?
953 msecs_to_jiffies(sc->led_off_duration) :
954 msecs_to_jiffies(sc->led_on_duration));
955
956 sc->led_on_duration = sc->led_on_cnt ?
957 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
958 ATH_LED_ON_DURATION_IDLE;
959 sc->led_off_duration = sc->led_off_cnt ?
960 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
961 ATH_LED_OFF_DURATION_IDLE;
962 sc->led_on_cnt = sc->led_off_cnt = 0;
963 if (sc->sc_flags & SC_OP_LED_ON)
964 sc->sc_flags &= ~SC_OP_LED_ON;
965 else
966 sc->sc_flags |= SC_OP_LED_ON;
967 }
968
969 static void ath_led_brightness(struct led_classdev *led_cdev,
970 enum led_brightness brightness)
971 {
972 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
973 struct ath_softc *sc = led->sc;
974
975 switch (brightness) {
976 case LED_OFF:
977 if (led->led_type == ATH_LED_ASSOC ||
978 led->led_type == ATH_LED_RADIO) {
979 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
980 (led->led_type == ATH_LED_RADIO));
981 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
982 if (led->led_type == ATH_LED_RADIO)
983 sc->sc_flags &= ~SC_OP_LED_ON;
984 } else {
985 sc->led_off_cnt++;
986 }
987 break;
988 case LED_FULL:
989 if (led->led_type == ATH_LED_ASSOC) {
990 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
991 queue_delayed_work(sc->hw->workqueue,
992 &sc->ath_led_blink_work, 0);
993 } else if (led->led_type == ATH_LED_RADIO) {
994 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
995 sc->sc_flags |= SC_OP_LED_ON;
996 } else {
997 sc->led_on_cnt++;
998 }
999 break;
1000 default:
1001 break;
1002 }
1003 }
1004
1005 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1006 char *trigger)
1007 {
1008 int ret;
1009
1010 led->sc = sc;
1011 led->led_cdev.name = led->name;
1012 led->led_cdev.default_trigger = trigger;
1013 led->led_cdev.brightness_set = ath_led_brightness;
1014
1015 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1016 if (ret)
1017 DPRINTF(sc, ATH_DBG_FATAL,
1018 "Failed to register led:%s", led->name);
1019 else
1020 led->registered = 1;
1021 return ret;
1022 }
1023
1024 static void ath_unregister_led(struct ath_led *led)
1025 {
1026 if (led->registered) {
1027 led_classdev_unregister(&led->led_cdev);
1028 led->registered = 0;
1029 }
1030 }
1031
1032 static void ath_deinit_leds(struct ath_softc *sc)
1033 {
1034 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1035 ath_unregister_led(&sc->assoc_led);
1036 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1037 ath_unregister_led(&sc->tx_led);
1038 ath_unregister_led(&sc->rx_led);
1039 ath_unregister_led(&sc->radio_led);
1040 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1041 }
1042
1043 static void ath_init_leds(struct ath_softc *sc)
1044 {
1045 char *trigger;
1046 int ret;
1047
1048 /* Configure gpio 1 for output */
1049 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1050 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1051 /* LED off, active low */
1052 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1053
1054 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1055
1056 trigger = ieee80211_get_radio_led_name(sc->hw);
1057 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1058 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1059 ret = ath_register_led(sc, &sc->radio_led, trigger);
1060 sc->radio_led.led_type = ATH_LED_RADIO;
1061 if (ret)
1062 goto fail;
1063
1064 trigger = ieee80211_get_assoc_led_name(sc->hw);
1065 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1066 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1067 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1068 sc->assoc_led.led_type = ATH_LED_ASSOC;
1069 if (ret)
1070 goto fail;
1071
1072 trigger = ieee80211_get_tx_led_name(sc->hw);
1073 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1074 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1075 ret = ath_register_led(sc, &sc->tx_led, trigger);
1076 sc->tx_led.led_type = ATH_LED_TX;
1077 if (ret)
1078 goto fail;
1079
1080 trigger = ieee80211_get_rx_led_name(sc->hw);
1081 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1082 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1083 ret = ath_register_led(sc, &sc->rx_led, trigger);
1084 sc->rx_led.led_type = ATH_LED_RX;
1085 if (ret)
1086 goto fail;
1087
1088 return;
1089
1090 fail:
1091 ath_deinit_leds(sc);
1092 }
1093
1094 void ath_radio_enable(struct ath_softc *sc)
1095 {
1096 struct ath_hw *ah = sc->sc_ah;
1097 struct ieee80211_channel *channel = sc->hw->conf.channel;
1098 int r;
1099
1100 ath9k_ps_wakeup(sc);
1101 spin_lock_bh(&sc->sc_resetlock);
1102
1103 r = ath9k_hw_reset(ah, ah->curchan, false);
1104
1105 if (r) {
1106 DPRINTF(sc, ATH_DBG_FATAL,
1107 "Unable to reset channel %u (%uMhz) ",
1108 "reset status %u\n",
1109 channel->center_freq, r);
1110 }
1111 spin_unlock_bh(&sc->sc_resetlock);
1112
1113 ath_update_txpow(sc);
1114 if (ath_startrecv(sc) != 0) {
1115 DPRINTF(sc, ATH_DBG_FATAL,
1116 "Unable to restart recv logic\n");
1117 return;
1118 }
1119
1120 if (sc->sc_flags & SC_OP_BEACONS)
1121 ath_beacon_config(sc, NULL); /* restart beacons */
1122
1123 /* Re-Enable interrupts */
1124 ath9k_hw_set_interrupts(ah, sc->imask);
1125
1126 /* Enable LED */
1127 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1128 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1129 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1130
1131 ieee80211_wake_queues(sc->hw);
1132 ath9k_ps_restore(sc);
1133 }
1134
1135 void ath_radio_disable(struct ath_softc *sc)
1136 {
1137 struct ath_hw *ah = sc->sc_ah;
1138 struct ieee80211_channel *channel = sc->hw->conf.channel;
1139 int r;
1140
1141 ath9k_ps_wakeup(sc);
1142 ieee80211_stop_queues(sc->hw);
1143
1144 /* Disable LED */
1145 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1146 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1147
1148 /* Disable interrupts */
1149 ath9k_hw_set_interrupts(ah, 0);
1150
1151 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1152 ath_stoprecv(sc); /* turn off frame recv */
1153 ath_flushrecv(sc); /* flush recv queue */
1154
1155 spin_lock_bh(&sc->sc_resetlock);
1156 r = ath9k_hw_reset(ah, ah->curchan, false);
1157 if (r) {
1158 DPRINTF(sc, ATH_DBG_FATAL,
1159 "Unable to reset channel %u (%uMhz) "
1160 "reset status %u\n",
1161 channel->center_freq, r);
1162 }
1163 spin_unlock_bh(&sc->sc_resetlock);
1164
1165 ath9k_hw_phy_disable(ah);
1166 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1167 ath9k_ps_restore(sc);
1168 }
1169
1170 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1171
1172 /*******************/
1173 /* Rfkill */
1174 /*******************/
1175
1176 static bool ath_is_rfkill_set(struct ath_softc *sc)
1177 {
1178 struct ath_hw *ah = sc->sc_ah;
1179
1180 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1181 ah->rfkill_polarity;
1182 }
1183
1184 /* h/w rfkill poll function */
1185 static void ath_rfkill_poll(struct work_struct *work)
1186 {
1187 struct ath_softc *sc = container_of(work, struct ath_softc,
1188 rf_kill.rfkill_poll.work);
1189 bool radio_on;
1190
1191 if (sc->sc_flags & SC_OP_INVALID)
1192 return;
1193
1194 radio_on = !ath_is_rfkill_set(sc);
1195
1196 /*
1197 * enable/disable radio only when there is a
1198 * state change in RF switch
1199 */
1200 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1201 enum rfkill_state state;
1202
1203 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1204 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1205 : RFKILL_STATE_HARD_BLOCKED;
1206 } else if (radio_on) {
1207 ath_radio_enable(sc);
1208 state = RFKILL_STATE_UNBLOCKED;
1209 } else {
1210 ath_radio_disable(sc);
1211 state = RFKILL_STATE_HARD_BLOCKED;
1212 }
1213
1214 if (state == RFKILL_STATE_HARD_BLOCKED)
1215 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1216 else
1217 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1218
1219 rfkill_force_state(sc->rf_kill.rfkill, state);
1220 }
1221
1222 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1223 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1224 }
1225
1226 /* s/w rfkill handler */
1227 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1228 {
1229 struct ath_softc *sc = data;
1230
1231 switch (state) {
1232 case RFKILL_STATE_SOFT_BLOCKED:
1233 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1234 SC_OP_RFKILL_SW_BLOCKED)))
1235 ath_radio_disable(sc);
1236 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1237 return 0;
1238 case RFKILL_STATE_UNBLOCKED:
1239 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1240 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1241 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1242 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1243 "radio as it is disabled by h/w\n");
1244 return -EPERM;
1245 }
1246 ath_radio_enable(sc);
1247 }
1248 return 0;
1249 default:
1250 return -EINVAL;
1251 }
1252 }
1253
1254 /* Init s/w rfkill */
1255 static int ath_init_sw_rfkill(struct ath_softc *sc)
1256 {
1257 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1258 RFKILL_TYPE_WLAN);
1259 if (!sc->rf_kill.rfkill) {
1260 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1261 return -ENOMEM;
1262 }
1263
1264 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1265 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1266 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1267 sc->rf_kill.rfkill->data = sc;
1268 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1269 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1270 sc->rf_kill.rfkill->user_claim_unsupported = 1;
1271
1272 return 0;
1273 }
1274
1275 /* Deinitialize rfkill */
1276 static void ath_deinit_rfkill(struct ath_softc *sc)
1277 {
1278 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1279 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1280
1281 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1282 rfkill_unregister(sc->rf_kill.rfkill);
1283 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1284 sc->rf_kill.rfkill = NULL;
1285 }
1286 }
1287
1288 static int ath_start_rfkill_poll(struct ath_softc *sc)
1289 {
1290 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1291 queue_delayed_work(sc->hw->workqueue,
1292 &sc->rf_kill.rfkill_poll, 0);
1293
1294 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1295 if (rfkill_register(sc->rf_kill.rfkill)) {
1296 DPRINTF(sc, ATH_DBG_FATAL,
1297 "Unable to register rfkill\n");
1298 rfkill_free(sc->rf_kill.rfkill);
1299
1300 /* Deinitialize the device */
1301 ath_cleanup(sc);
1302 return -EIO;
1303 } else {
1304 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1305 }
1306 }
1307
1308 return 0;
1309 }
1310 #endif /* CONFIG_RFKILL */
1311
1312 void ath_cleanup(struct ath_softc *sc)
1313 {
1314 ath_detach(sc);
1315 free_irq(sc->irq, sc);
1316 ath_bus_cleanup(sc);
1317 kfree(sc->sec_wiphy);
1318 ieee80211_free_hw(sc->hw);
1319 }
1320
1321 void ath_detach(struct ath_softc *sc)
1322 {
1323 struct ieee80211_hw *hw = sc->hw;
1324 int i = 0;
1325
1326 ath9k_ps_wakeup(sc);
1327
1328 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1329
1330 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1331 ath_deinit_rfkill(sc);
1332 #endif
1333 ath_deinit_leds(sc);
1334 cancel_work_sync(&sc->chan_work);
1335 cancel_delayed_work_sync(&sc->wiphy_work);
1336
1337 for (i = 0; i < sc->num_sec_wiphy; i++) {
1338 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1339 if (aphy == NULL)
1340 continue;
1341 sc->sec_wiphy[i] = NULL;
1342 ieee80211_unregister_hw(aphy->hw);
1343 ieee80211_free_hw(aphy->hw);
1344 }
1345 ieee80211_unregister_hw(hw);
1346 ath_rx_cleanup(sc);
1347 ath_tx_cleanup(sc);
1348
1349 tasklet_kill(&sc->intr_tq);
1350 tasklet_kill(&sc->bcon_tasklet);
1351
1352 if (!(sc->sc_flags & SC_OP_INVALID))
1353 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1354
1355 /* cleanup tx queues */
1356 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1357 if (ATH_TXQ_SETUP(sc, i))
1358 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1359
1360 ath9k_hw_detach(sc->sc_ah);
1361 ath9k_exit_debug(sc);
1362 ath9k_ps_restore(sc);
1363 }
1364
1365 static int ath_init(u16 devid, struct ath_softc *sc)
1366 {
1367 struct ath_hw *ah = NULL;
1368 int status;
1369 int error = 0, i;
1370 int csz = 0;
1371
1372 /* XXX: hardware will not be ready until ath_open() being called */
1373 sc->sc_flags |= SC_OP_INVALID;
1374
1375 if (ath9k_init_debug(sc) < 0)
1376 printk(KERN_ERR "Unable to create debugfs files\n");
1377
1378 spin_lock_init(&sc->wiphy_lock);
1379 spin_lock_init(&sc->sc_resetlock);
1380 spin_lock_init(&sc->sc_serial_rw);
1381 mutex_init(&sc->mutex);
1382 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1383 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1384 (unsigned long)sc);
1385
1386 /*
1387 * Cache line size is used to size and align various
1388 * structures used to communicate with the hardware.
1389 */
1390 ath_read_cachesize(sc, &csz);
1391 /* XXX assert csz is non-zero */
1392 sc->cachelsz = csz << 2; /* convert to bytes */
1393
1394 ah = ath9k_hw_attach(devid, sc, &status);
1395 if (ah == NULL) {
1396 DPRINTF(sc, ATH_DBG_FATAL,
1397 "Unable to attach hardware; HAL status %d\n", status);
1398 error = -ENXIO;
1399 goto bad;
1400 }
1401 sc->sc_ah = ah;
1402
1403 /* Get the hardware key cache size. */
1404 sc->keymax = ah->caps.keycache_size;
1405 if (sc->keymax > ATH_KEYMAX) {
1406 DPRINTF(sc, ATH_DBG_KEYCACHE,
1407 "Warning, using only %u entries in %u key cache\n",
1408 ATH_KEYMAX, sc->keymax);
1409 sc->keymax = ATH_KEYMAX;
1410 }
1411
1412 /*
1413 * Reset the key cache since some parts do not
1414 * reset the contents on initial power up.
1415 */
1416 for (i = 0; i < sc->keymax; i++)
1417 ath9k_hw_keyreset(ah, (u16) i);
1418
1419 if (ath9k_regd_init(sc->sc_ah))
1420 goto bad;
1421
1422 /* default to MONITOR mode */
1423 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1424
1425 /* Setup rate tables */
1426
1427 ath_rate_attach(sc);
1428 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1429 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1430
1431 /*
1432 * Allocate hardware transmit queues: one queue for
1433 * beacon frames and one data queue for each QoS
1434 * priority. Note that the hal handles reseting
1435 * these queues at the needed time.
1436 */
1437 sc->beacon.beaconq = ath_beaconq_setup(ah);
1438 if (sc->beacon.beaconq == -1) {
1439 DPRINTF(sc, ATH_DBG_FATAL,
1440 "Unable to setup a beacon xmit queue\n");
1441 error = -EIO;
1442 goto bad2;
1443 }
1444 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1445 if (sc->beacon.cabq == NULL) {
1446 DPRINTF(sc, ATH_DBG_FATAL,
1447 "Unable to setup CAB xmit queue\n");
1448 error = -EIO;
1449 goto bad2;
1450 }
1451
1452 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1453 ath_cabq_update(sc);
1454
1455 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1456 sc->tx.hwq_map[i] = -1;
1457
1458 /* Setup data queues */
1459 /* NB: ensure BK queue is the lowest priority h/w queue */
1460 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1461 DPRINTF(sc, ATH_DBG_FATAL,
1462 "Unable to setup xmit queue for BK traffic\n");
1463 error = -EIO;
1464 goto bad2;
1465 }
1466
1467 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1468 DPRINTF(sc, ATH_DBG_FATAL,
1469 "Unable to setup xmit queue for BE traffic\n");
1470 error = -EIO;
1471 goto bad2;
1472 }
1473 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1474 DPRINTF(sc, ATH_DBG_FATAL,
1475 "Unable to setup xmit queue for VI traffic\n");
1476 error = -EIO;
1477 goto bad2;
1478 }
1479 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1480 DPRINTF(sc, ATH_DBG_FATAL,
1481 "Unable to setup xmit queue for VO traffic\n");
1482 error = -EIO;
1483 goto bad2;
1484 }
1485
1486 /* Initializes the noise floor to a reasonable default value.
1487 * Later on this will be updated during ANI processing. */
1488
1489 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1490 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1491
1492 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1493 ATH9K_CIPHER_TKIP, NULL)) {
1494 /*
1495 * Whether we should enable h/w TKIP MIC.
1496 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1497 * report WMM capable, so it's always safe to turn on
1498 * TKIP MIC in this case.
1499 */
1500 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1501 0, 1, NULL);
1502 }
1503
1504 /*
1505 * Check whether the separate key cache entries
1506 * are required to handle both tx+rx MIC keys.
1507 * With split mic keys the number of stations is limited
1508 * to 27 otherwise 59.
1509 */
1510 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1511 ATH9K_CIPHER_TKIP, NULL)
1512 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1513 ATH9K_CIPHER_MIC, NULL)
1514 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1515 0, NULL))
1516 sc->splitmic = 1;
1517
1518 /* turn on mcast key search if possible */
1519 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1520 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1521 1, NULL);
1522
1523 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1524
1525 /* 11n Capabilities */
1526 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1527 sc->sc_flags |= SC_OP_TXAGGR;
1528 sc->sc_flags |= SC_OP_RXAGGR;
1529 }
1530
1531 sc->tx_chainmask = ah->caps.tx_chainmask;
1532 sc->rx_chainmask = ah->caps.rx_chainmask;
1533
1534 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1535 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1536
1537 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1538 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1539
1540 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1541
1542 /* initialize beacon slots */
1543 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1544 sc->beacon.bslot[i] = NULL;
1545 sc->beacon.bslot_aphy[i] = NULL;
1546 }
1547
1548 /* save MISC configurations */
1549 sc->config.swBeaconProcess = 1;
1550
1551 /* setup channels and rates */
1552
1553 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1554 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1555 sc->rates[IEEE80211_BAND_2GHZ];
1556 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1557 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1558 ARRAY_SIZE(ath9k_2ghz_chantable);
1559
1560 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1561 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1562 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1563 sc->rates[IEEE80211_BAND_5GHZ];
1564 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1565 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1566 ARRAY_SIZE(ath9k_5ghz_chantable);
1567 }
1568
1569 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1570 ath9k_hw_btcoex_enable(sc->sc_ah);
1571
1572 return 0;
1573 bad2:
1574 /* cleanup tx queues */
1575 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1576 if (ATH_TXQ_SETUP(sc, i))
1577 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1578 bad:
1579 if (ah)
1580 ath9k_hw_detach(ah);
1581 ath9k_exit_debug(sc);
1582
1583 return error;
1584 }
1585
1586 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1587 {
1588 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1589 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1590 IEEE80211_HW_SIGNAL_DBM |
1591 IEEE80211_HW_AMPDU_AGGREGATION |
1592 IEEE80211_HW_SUPPORTS_PS |
1593 IEEE80211_HW_PS_NULLFUNC_STACK |
1594 IEEE80211_HW_SPECTRUM_MGMT;
1595
1596 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1597 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1598
1599 hw->wiphy->interface_modes =
1600 BIT(NL80211_IFTYPE_AP) |
1601 BIT(NL80211_IFTYPE_STATION) |
1602 BIT(NL80211_IFTYPE_ADHOC);
1603
1604 hw->wiphy->reg_notifier = ath9k_reg_notifier;
1605 hw->wiphy->strict_regulatory = true;
1606
1607 hw->queues = 4;
1608 hw->max_rates = 4;
1609 hw->channel_change_time = 5000;
1610 hw->max_listen_interval = 10;
1611 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1612 hw->sta_data_size = sizeof(struct ath_node);
1613 hw->vif_data_size = sizeof(struct ath_vif);
1614
1615 hw->rate_control_algorithm = "ath9k_rate_control";
1616
1617 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1618 &sc->sbands[IEEE80211_BAND_2GHZ];
1619 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1620 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1621 &sc->sbands[IEEE80211_BAND_5GHZ];
1622 }
1623
1624 int ath_attach(u16 devid, struct ath_softc *sc)
1625 {
1626 struct ieee80211_hw *hw = sc->hw;
1627 const struct ieee80211_regdomain *regd;
1628 int error = 0, i;
1629
1630 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1631
1632 error = ath_init(devid, sc);
1633 if (error != 0)
1634 return error;
1635
1636 /* get mac address from hardware and set in mac80211 */
1637
1638 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1639
1640 ath_set_hw_capab(sc, hw);
1641
1642 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1643 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1644 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1645 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1646 }
1647
1648 /* initialize tx/rx engine */
1649 error = ath_tx_init(sc, ATH_TXBUF);
1650 if (error != 0)
1651 goto error_attach;
1652
1653 error = ath_rx_init(sc, ATH_RXBUF);
1654 if (error != 0)
1655 goto error_attach;
1656
1657 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1658 /* Initialze h/w Rfkill */
1659 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1660 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1661
1662 /* Initialize s/w rfkill */
1663 error = ath_init_sw_rfkill(sc);
1664 if (error)
1665 goto error_attach;
1666 #endif
1667
1668 if (ath9k_is_world_regd(sc->sc_ah)) {
1669 /* Anything applied here (prior to wiphy registration) gets
1670 * saved on the wiphy orig_* parameters */
1671 regd = ath9k_world_regdomain(sc->sc_ah);
1672 hw->wiphy->custom_regulatory = true;
1673 hw->wiphy->strict_regulatory = false;
1674 } else {
1675 /* This gets applied in the case of the absense of CRDA,
1676 * it's our own custom world regulatory domain, similar to
1677 * cfg80211's but we enable passive scanning */
1678 regd = ath9k_default_world_regdomain();
1679 }
1680 wiphy_apply_custom_regulatory(hw->wiphy, regd);
1681 ath9k_reg_apply_radar_flags(hw->wiphy);
1682 ath9k_reg_apply_world_flags(hw->wiphy, NL80211_REGDOM_SET_BY_DRIVER);
1683
1684 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1685 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1686 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1687
1688 error = ieee80211_register_hw(hw);
1689
1690 if (!ath9k_is_world_regd(sc->sc_ah)) {
1691 error = regulatory_hint(hw->wiphy,
1692 sc->sc_ah->regulatory.alpha2);
1693 if (error)
1694 goto error_attach;
1695 }
1696
1697 /* Initialize LED control */
1698 ath_init_leds(sc);
1699
1700
1701 return 0;
1702
1703 error_attach:
1704 /* cleanup tx queues */
1705 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1706 if (ATH_TXQ_SETUP(sc, i))
1707 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1708
1709 ath9k_hw_detach(sc->sc_ah);
1710 ath9k_exit_debug(sc);
1711
1712 return error;
1713 }
1714
1715 int ath_reset(struct ath_softc *sc, bool retry_tx)
1716 {
1717 struct ath_hw *ah = sc->sc_ah;
1718 struct ieee80211_hw *hw = sc->hw;
1719 int r;
1720
1721 ath9k_hw_set_interrupts(ah, 0);
1722 ath_drain_all_txq(sc, retry_tx);
1723 ath_stoprecv(sc);
1724 ath_flushrecv(sc);
1725
1726 spin_lock_bh(&sc->sc_resetlock);
1727 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1728 if (r)
1729 DPRINTF(sc, ATH_DBG_FATAL,
1730 "Unable to reset hardware; reset status %u\n", r);
1731 spin_unlock_bh(&sc->sc_resetlock);
1732
1733 if (ath_startrecv(sc) != 0)
1734 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1735
1736 /*
1737 * We may be doing a reset in response to a request
1738 * that changes the channel so update any state that
1739 * might change as a result.
1740 */
1741 ath_cache_conf_rate(sc, &hw->conf);
1742
1743 ath_update_txpow(sc);
1744
1745 if (sc->sc_flags & SC_OP_BEACONS)
1746 ath_beacon_config(sc, NULL); /* restart beacons */
1747
1748 ath9k_hw_set_interrupts(ah, sc->imask);
1749
1750 if (retry_tx) {
1751 int i;
1752 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1753 if (ATH_TXQ_SETUP(sc, i)) {
1754 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1755 ath_txq_schedule(sc, &sc->tx.txq[i]);
1756 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1757 }
1758 }
1759 }
1760
1761 return r;
1762 }
1763
1764 /*
1765 * This function will allocate both the DMA descriptor structure, and the
1766 * buffers it contains. These are used to contain the descriptors used
1767 * by the system.
1768 */
1769 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1770 struct list_head *head, const char *name,
1771 int nbuf, int ndesc)
1772 {
1773 #define DS2PHYS(_dd, _ds) \
1774 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1775 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1776 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1777
1778 struct ath_desc *ds;
1779 struct ath_buf *bf;
1780 int i, bsize, error;
1781
1782 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1783 name, nbuf, ndesc);
1784
1785 INIT_LIST_HEAD(head);
1786 /* ath_desc must be a multiple of DWORDs */
1787 if ((sizeof(struct ath_desc) % 4) != 0) {
1788 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1789 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1790 error = -ENOMEM;
1791 goto fail;
1792 }
1793
1794 dd->dd_name = name;
1795 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1796
1797 /*
1798 * Need additional DMA memory because we can't use
1799 * descriptors that cross the 4K page boundary. Assume
1800 * one skipped descriptor per 4K page.
1801 */
1802 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1803 u32 ndesc_skipped =
1804 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1805 u32 dma_len;
1806
1807 while (ndesc_skipped) {
1808 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1809 dd->dd_desc_len += dma_len;
1810
1811 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1812 };
1813 }
1814
1815 /* allocate descriptors */
1816 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1817 &dd->dd_desc_paddr, GFP_KERNEL);
1818 if (dd->dd_desc == NULL) {
1819 error = -ENOMEM;
1820 goto fail;
1821 }
1822 ds = dd->dd_desc;
1823 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1824 dd->dd_name, ds, (u32) dd->dd_desc_len,
1825 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1826
1827 /* allocate buffers */
1828 bsize = sizeof(struct ath_buf) * nbuf;
1829 bf = kzalloc(bsize, GFP_KERNEL);
1830 if (bf == NULL) {
1831 error = -ENOMEM;
1832 goto fail2;
1833 }
1834 dd->dd_bufptr = bf;
1835
1836 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1837 bf->bf_desc = ds;
1838 bf->bf_daddr = DS2PHYS(dd, ds);
1839
1840 if (!(sc->sc_ah->caps.hw_caps &
1841 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1842 /*
1843 * Skip descriptor addresses which can cause 4KB
1844 * boundary crossing (addr + length) with a 32 dword
1845 * descriptor fetch.
1846 */
1847 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1848 ASSERT((caddr_t) bf->bf_desc <
1849 ((caddr_t) dd->dd_desc +
1850 dd->dd_desc_len));
1851
1852 ds += ndesc;
1853 bf->bf_desc = ds;
1854 bf->bf_daddr = DS2PHYS(dd, ds);
1855 }
1856 }
1857 list_add_tail(&bf->list, head);
1858 }
1859 return 0;
1860 fail2:
1861 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1862 dd->dd_desc_paddr);
1863 fail:
1864 memset(dd, 0, sizeof(*dd));
1865 return error;
1866 #undef ATH_DESC_4KB_BOUND_CHECK
1867 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1868 #undef DS2PHYS
1869 }
1870
1871 void ath_descdma_cleanup(struct ath_softc *sc,
1872 struct ath_descdma *dd,
1873 struct list_head *head)
1874 {
1875 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1876 dd->dd_desc_paddr);
1877
1878 INIT_LIST_HEAD(head);
1879 kfree(dd->dd_bufptr);
1880 memset(dd, 0, sizeof(*dd));
1881 }
1882
1883 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1884 {
1885 int qnum;
1886
1887 switch (queue) {
1888 case 0:
1889 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1890 break;
1891 case 1:
1892 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1893 break;
1894 case 2:
1895 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1896 break;
1897 case 3:
1898 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1899 break;
1900 default:
1901 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1902 break;
1903 }
1904
1905 return qnum;
1906 }
1907
1908 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1909 {
1910 int qnum;
1911
1912 switch (queue) {
1913 case ATH9K_WME_AC_VO:
1914 qnum = 0;
1915 break;
1916 case ATH9K_WME_AC_VI:
1917 qnum = 1;
1918 break;
1919 case ATH9K_WME_AC_BE:
1920 qnum = 2;
1921 break;
1922 case ATH9K_WME_AC_BK:
1923 qnum = 3;
1924 break;
1925 default:
1926 qnum = -1;
1927 break;
1928 }
1929
1930 return qnum;
1931 }
1932
1933 /* XXX: Remove me once we don't depend on ath9k_channel for all
1934 * this redundant data */
1935 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1936 struct ath9k_channel *ichan)
1937 {
1938 struct ieee80211_channel *chan = hw->conf.channel;
1939 struct ieee80211_conf *conf = &hw->conf;
1940
1941 ichan->channel = chan->center_freq;
1942 ichan->chan = chan;
1943
1944 if (chan->band == IEEE80211_BAND_2GHZ) {
1945 ichan->chanmode = CHANNEL_G;
1946 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1947 } else {
1948 ichan->chanmode = CHANNEL_A;
1949 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1950 }
1951
1952 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1953
1954 if (conf_is_ht(conf)) {
1955 if (conf_is_ht40(conf))
1956 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1957
1958 ichan->chanmode = ath_get_extchanmode(sc, chan,
1959 conf->channel_type);
1960 }
1961 }
1962
1963 /**********************/
1964 /* mac80211 callbacks */
1965 /**********************/
1966
1967 static int ath9k_start(struct ieee80211_hw *hw)
1968 {
1969 struct ath_wiphy *aphy = hw->priv;
1970 struct ath_softc *sc = aphy->sc;
1971 struct ieee80211_channel *curchan = hw->conf.channel;
1972 struct ath9k_channel *init_channel;
1973 int r, pos;
1974
1975 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1976 "initial channel: %d MHz\n", curchan->center_freq);
1977
1978 mutex_lock(&sc->mutex);
1979
1980 if (ath9k_wiphy_started(sc)) {
1981 if (sc->chan_idx == curchan->hw_value) {
1982 /*
1983 * Already on the operational channel, the new wiphy
1984 * can be marked active.
1985 */
1986 aphy->state = ATH_WIPHY_ACTIVE;
1987 ieee80211_wake_queues(hw);
1988 } else {
1989 /*
1990 * Another wiphy is on another channel, start the new
1991 * wiphy in paused state.
1992 */
1993 aphy->state = ATH_WIPHY_PAUSED;
1994 ieee80211_stop_queues(hw);
1995 }
1996 mutex_unlock(&sc->mutex);
1997 return 0;
1998 }
1999 aphy->state = ATH_WIPHY_ACTIVE;
2000
2001 /* setup initial channel */
2002
2003 pos = curchan->hw_value;
2004
2005 sc->chan_idx = pos;
2006 init_channel = &sc->sc_ah->channels[pos];
2007 ath9k_update_ichannel(sc, hw, init_channel);
2008
2009 /* Reset SERDES registers */
2010 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
2011
2012 /*
2013 * The basic interface to setting the hardware in a good
2014 * state is ``reset''. On return the hardware is known to
2015 * be powered up and with interrupts disabled. This must
2016 * be followed by initialization of the appropriate bits
2017 * and then setup of the interrupt mask.
2018 */
2019 spin_lock_bh(&sc->sc_resetlock);
2020 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
2021 if (r) {
2022 DPRINTF(sc, ATH_DBG_FATAL,
2023 "Unable to reset hardware; reset status %u "
2024 "(freq %u MHz)\n", r,
2025 curchan->center_freq);
2026 spin_unlock_bh(&sc->sc_resetlock);
2027 goto mutex_unlock;
2028 }
2029 spin_unlock_bh(&sc->sc_resetlock);
2030
2031 /*
2032 * This is needed only to setup initial state
2033 * but it's best done after a reset.
2034 */
2035 ath_update_txpow(sc);
2036
2037 /*
2038 * Setup the hardware after reset:
2039 * The receive engine is set going.
2040 * Frame transmit is handled entirely
2041 * in the frame output path; there's nothing to do
2042 * here except setup the interrupt mask.
2043 */
2044 if (ath_startrecv(sc) != 0) {
2045 DPRINTF(sc, ATH_DBG_FATAL,
2046 "Unable to start recv logic\n");
2047 r = -EIO;
2048 goto mutex_unlock;
2049 }
2050
2051 /* Setup our intr mask. */
2052 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2053 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2054 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2055
2056 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2057 sc->imask |= ATH9K_INT_GTT;
2058
2059 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2060 sc->imask |= ATH9K_INT_CST;
2061
2062 ath_cache_conf_rate(sc, &hw->conf);
2063
2064 sc->sc_flags &= ~SC_OP_INVALID;
2065
2066 /* Disable BMISS interrupt when we're not associated */
2067 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2068 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2069
2070 ieee80211_wake_queues(hw);
2071
2072 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2073 r = ath_start_rfkill_poll(sc);
2074 #endif
2075
2076 mutex_unlock:
2077 mutex_unlock(&sc->mutex);
2078
2079 return r;
2080 }
2081
2082 static int ath9k_tx(struct ieee80211_hw *hw,
2083 struct sk_buff *skb)
2084 {
2085 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2086 struct ath_wiphy *aphy = hw->priv;
2087 struct ath_softc *sc = aphy->sc;
2088 struct ath_tx_control txctl;
2089 int hdrlen, padsize;
2090
2091 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2092 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2093 "%d\n", wiphy_name(hw->wiphy), aphy->state);
2094 goto exit;
2095 }
2096
2097 memset(&txctl, 0, sizeof(struct ath_tx_control));
2098
2099 /*
2100 * As a temporary workaround, assign seq# here; this will likely need
2101 * to be cleaned up to work better with Beacon transmission and virtual
2102 * BSSes.
2103 */
2104 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2105 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2106 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2107 sc->tx.seq_no += 0x10;
2108 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2109 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2110 }
2111
2112 /* Add the padding after the header if this is not already done */
2113 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2114 if (hdrlen & 3) {
2115 padsize = hdrlen % 4;
2116 if (skb_headroom(skb) < padsize)
2117 return -1;
2118 skb_push(skb, padsize);
2119 memmove(skb->data, skb->data + padsize, hdrlen);
2120 }
2121
2122 /* Check if a tx queue is available */
2123
2124 txctl.txq = ath_test_get_txq(sc, skb);
2125 if (!txctl.txq)
2126 goto exit;
2127
2128 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2129
2130 if (ath_tx_start(hw, skb, &txctl) != 0) {
2131 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2132 goto exit;
2133 }
2134
2135 return 0;
2136 exit:
2137 dev_kfree_skb_any(skb);
2138 return 0;
2139 }
2140
2141 static void ath9k_stop(struct ieee80211_hw *hw)
2142 {
2143 struct ath_wiphy *aphy = hw->priv;
2144 struct ath_softc *sc = aphy->sc;
2145
2146 aphy->state = ATH_WIPHY_INACTIVE;
2147
2148 if (sc->sc_flags & SC_OP_INVALID) {
2149 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2150 return;
2151 }
2152
2153 mutex_lock(&sc->mutex);
2154
2155 ieee80211_stop_queues(hw);
2156
2157 if (ath9k_wiphy_started(sc)) {
2158 mutex_unlock(&sc->mutex);
2159 return; /* another wiphy still in use */
2160 }
2161
2162 /* make sure h/w will not generate any interrupt
2163 * before setting the invalid flag. */
2164 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2165
2166 if (!(sc->sc_flags & SC_OP_INVALID)) {
2167 ath_drain_all_txq(sc, false);
2168 ath_stoprecv(sc);
2169 ath9k_hw_phy_disable(sc->sc_ah);
2170 } else
2171 sc->rx.rxlink = NULL;
2172
2173 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2174 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2175 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2176 #endif
2177 /* disable HAL and put h/w to sleep */
2178 ath9k_hw_disable(sc->sc_ah);
2179 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2180
2181 sc->sc_flags |= SC_OP_INVALID;
2182
2183 mutex_unlock(&sc->mutex);
2184
2185 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2186 }
2187
2188 static int ath9k_add_interface(struct ieee80211_hw *hw,
2189 struct ieee80211_if_init_conf *conf)
2190 {
2191 struct ath_wiphy *aphy = hw->priv;
2192 struct ath_softc *sc = aphy->sc;
2193 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2194 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2195 int ret = 0;
2196
2197 mutex_lock(&sc->mutex);
2198
2199 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2200 sc->nvifs > 0) {
2201 ret = -ENOBUFS;
2202 goto out;
2203 }
2204
2205 switch (conf->type) {
2206 case NL80211_IFTYPE_STATION:
2207 ic_opmode = NL80211_IFTYPE_STATION;
2208 break;
2209 case NL80211_IFTYPE_ADHOC:
2210 if (sc->nbcnvifs >= ATH_BCBUF) {
2211 ret = -ENOBUFS;
2212 goto out;
2213 }
2214 ic_opmode = NL80211_IFTYPE_ADHOC;
2215 break;
2216 case NL80211_IFTYPE_AP:
2217 if (sc->nbcnvifs >= ATH_BCBUF) {
2218 ret = -ENOBUFS;
2219 goto out;
2220 }
2221 ic_opmode = NL80211_IFTYPE_AP;
2222 break;
2223 default:
2224 DPRINTF(sc, ATH_DBG_FATAL,
2225 "Interface type %d not yet supported\n", conf->type);
2226 ret = -EOPNOTSUPP;
2227 goto out;
2228 }
2229
2230 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2231
2232 /* Set the VIF opmode */
2233 avp->av_opmode = ic_opmode;
2234 avp->av_bslot = -1;
2235
2236 sc->nvifs++;
2237
2238 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2239 ath9k_set_bssid_mask(hw);
2240
2241 if (sc->nvifs > 1)
2242 goto out; /* skip global settings for secondary vif */
2243
2244 if (ic_opmode == NL80211_IFTYPE_AP) {
2245 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2246 sc->sc_flags |= SC_OP_TSF_RESET;
2247 }
2248
2249 /* Set the device opmode */
2250 sc->sc_ah->opmode = ic_opmode;
2251
2252 /*
2253 * Enable MIB interrupts when there are hardware phy counters.
2254 * Note we only do this (at the moment) for station mode.
2255 */
2256 if ((conf->type == NL80211_IFTYPE_STATION) ||
2257 (conf->type == NL80211_IFTYPE_ADHOC)) {
2258 if (ath9k_hw_phycounters(sc->sc_ah))
2259 sc->imask |= ATH9K_INT_MIB;
2260 sc->imask |= ATH9K_INT_TSFOOR;
2261 }
2262
2263 /*
2264 * Some hardware processes the TIM IE and fires an
2265 * interrupt when the TIM bit is set. For hardware
2266 * that does, if not overridden by configuration,
2267 * enable the TIM interrupt when operating as station.
2268 */
2269 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
2270 (conf->type == NL80211_IFTYPE_STATION) &&
2271 !sc->config.swBeaconProcess)
2272 sc->imask |= ATH9K_INT_TIM;
2273
2274 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2275
2276 if (conf->type == NL80211_IFTYPE_AP) {
2277 /* TODO: is this a suitable place to start ANI for AP mode? */
2278 /* Start ANI */
2279 mod_timer(&sc->ani.timer,
2280 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2281 }
2282
2283 out:
2284 mutex_unlock(&sc->mutex);
2285 return ret;
2286 }
2287
2288 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2289 struct ieee80211_if_init_conf *conf)
2290 {
2291 struct ath_wiphy *aphy = hw->priv;
2292 struct ath_softc *sc = aphy->sc;
2293 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2294 int i;
2295
2296 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2297
2298 mutex_lock(&sc->mutex);
2299
2300 /* Stop ANI */
2301 del_timer_sync(&sc->ani.timer);
2302
2303 /* Reclaim beacon resources */
2304 if (sc->sc_ah->opmode == NL80211_IFTYPE_AP ||
2305 sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) {
2306 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2307 ath_beacon_return(sc, avp);
2308 }
2309
2310 sc->sc_flags &= ~SC_OP_BEACONS;
2311
2312 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2313 if (sc->beacon.bslot[i] == conf->vif) {
2314 printk(KERN_DEBUG "%s: vif had allocated beacon "
2315 "slot\n", __func__);
2316 sc->beacon.bslot[i] = NULL;
2317 sc->beacon.bslot_aphy[i] = NULL;
2318 }
2319 }
2320
2321 sc->nvifs--;
2322
2323 mutex_unlock(&sc->mutex);
2324 }
2325
2326 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2327 {
2328 struct ath_wiphy *aphy = hw->priv;
2329 struct ath_softc *sc = aphy->sc;
2330 struct ieee80211_conf *conf = &hw->conf;
2331
2332 mutex_lock(&sc->mutex);
2333
2334 if (changed & IEEE80211_CONF_CHANGE_PS) {
2335 if (conf->flags & IEEE80211_CONF_PS) {
2336 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2337 sc->imask |= ATH9K_INT_TIM_TIMER;
2338 ath9k_hw_set_interrupts(sc->sc_ah,
2339 sc->imask);
2340 }
2341 ath9k_hw_setrxabort(sc->sc_ah, 1);
2342 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2343 } else {
2344 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2345 ath9k_hw_setrxabort(sc->sc_ah, 0);
2346 sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
2347 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2348 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2349 ath9k_hw_set_interrupts(sc->sc_ah,
2350 sc->imask);
2351 }
2352 }
2353 }
2354
2355 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2356 struct ieee80211_channel *curchan = hw->conf.channel;
2357 int pos = curchan->hw_value;
2358
2359 aphy->chan_idx = pos;
2360 aphy->chan_is_ht = conf_is_ht(conf);
2361
2362 if (aphy->state == ATH_WIPHY_SCAN ||
2363 aphy->state == ATH_WIPHY_ACTIVE)
2364 ath9k_wiphy_pause_all_forced(sc, aphy);
2365 else {
2366 /*
2367 * Do not change operational channel based on a paused
2368 * wiphy changes.
2369 */
2370 goto skip_chan_change;
2371 }
2372
2373 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2374 curchan->center_freq);
2375
2376 /* XXX: remove me eventualy */
2377 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2378
2379 ath_update_chainmask(sc, conf_is_ht(conf));
2380
2381 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2382 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2383 mutex_unlock(&sc->mutex);
2384 return -EINVAL;
2385 }
2386 }
2387
2388 skip_chan_change:
2389 if (changed & IEEE80211_CONF_CHANGE_POWER)
2390 sc->config.txpowlimit = 2 * conf->power_level;
2391
2392 /*
2393 * The HW TSF has to be reset when the beacon interval changes.
2394 * We set the flag here, and ath_beacon_config_ap() would take this
2395 * into account when it gets called through the subsequent
2396 * config_interface() call - with IFCC_BEACON in the changed field.
2397 */
2398
2399 if (changed & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
2400 sc->sc_flags |= SC_OP_TSF_RESET;
2401
2402 mutex_unlock(&sc->mutex);
2403
2404 return 0;
2405 }
2406
2407 static int ath9k_config_interface(struct ieee80211_hw *hw,
2408 struct ieee80211_vif *vif,
2409 struct ieee80211_if_conf *conf)
2410 {
2411 struct ath_wiphy *aphy = hw->priv;
2412 struct ath_softc *sc = aphy->sc;
2413 struct ath_hw *ah = sc->sc_ah;
2414 struct ath_vif *avp = (void *)vif->drv_priv;
2415 u32 rfilt = 0;
2416 int error, i;
2417
2418 mutex_lock(&sc->mutex);
2419
2420 /* TODO: Need to decide which hw opmode to use for multi-interface
2421 * cases */
2422 if (vif->type == NL80211_IFTYPE_AP &&
2423 ah->opmode != NL80211_IFTYPE_AP) {
2424 ah->opmode = NL80211_IFTYPE_STATION;
2425 ath9k_hw_setopmode(ah);
2426 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2427 sc->curaid = 0;
2428 ath9k_hw_write_associd(sc);
2429 /* Request full reset to get hw opmode changed properly */
2430 sc->sc_flags |= SC_OP_FULL_RESET;
2431 }
2432
2433 if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2434 !is_zero_ether_addr(conf->bssid)) {
2435 switch (vif->type) {
2436 case NL80211_IFTYPE_STATION:
2437 case NL80211_IFTYPE_ADHOC:
2438 /* Set BSSID */
2439 memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
2440 memcpy(avp->bssid, conf->bssid, ETH_ALEN);
2441 sc->curaid = 0;
2442 ath9k_hw_write_associd(sc);
2443
2444 /* Set aggregation protection mode parameters */
2445 sc->config.ath_aggr_prot = 0;
2446
2447 DPRINTF(sc, ATH_DBG_CONFIG,
2448 "RX filter 0x%x bssid %pM aid 0x%x\n",
2449 rfilt, sc->curbssid, sc->curaid);
2450
2451 /* need to reconfigure the beacon */
2452 sc->sc_flags &= ~SC_OP_BEACONS ;
2453
2454 break;
2455 default:
2456 break;
2457 }
2458 }
2459
2460 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2461 (vif->type == NL80211_IFTYPE_AP)) {
2462 if ((conf->changed & IEEE80211_IFCC_BEACON) ||
2463 (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
2464 conf->enable_beacon)) {
2465 /*
2466 * Allocate and setup the beacon frame.
2467 *
2468 * Stop any previous beacon DMA. This may be
2469 * necessary, for example, when an ibss merge
2470 * causes reconfiguration; we may be called
2471 * with beacon transmission active.
2472 */
2473 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2474
2475 error = ath_beacon_alloc(aphy, vif);
2476 if (error != 0) {
2477 mutex_unlock(&sc->mutex);
2478 return error;
2479 }
2480
2481 ath_beacon_config(sc, vif);
2482 }
2483 }
2484
2485 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2486 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2487 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2488 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2489 ath9k_hw_keysetmac(sc->sc_ah,
2490 (u16)i,
2491 sc->curbssid);
2492 }
2493
2494 /* Only legacy IBSS for now */
2495 if (vif->type == NL80211_IFTYPE_ADHOC)
2496 ath_update_chainmask(sc, 0);
2497
2498 mutex_unlock(&sc->mutex);
2499
2500 return 0;
2501 }
2502
2503 #define SUPPORTED_FILTERS \
2504 (FIF_PROMISC_IN_BSS | \
2505 FIF_ALLMULTI | \
2506 FIF_CONTROL | \
2507 FIF_OTHER_BSS | \
2508 FIF_BCN_PRBRESP_PROMISC | \
2509 FIF_FCSFAIL)
2510
2511 /* FIXME: sc->sc_full_reset ? */
2512 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2513 unsigned int changed_flags,
2514 unsigned int *total_flags,
2515 int mc_count,
2516 struct dev_mc_list *mclist)
2517 {
2518 struct ath_wiphy *aphy = hw->priv;
2519 struct ath_softc *sc = aphy->sc;
2520 u32 rfilt;
2521
2522 changed_flags &= SUPPORTED_FILTERS;
2523 *total_flags &= SUPPORTED_FILTERS;
2524
2525 sc->rx.rxfilter = *total_flags;
2526 rfilt = ath_calcrxfilter(sc);
2527 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2528
2529 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2530 }
2531
2532 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2533 struct ieee80211_vif *vif,
2534 enum sta_notify_cmd cmd,
2535 struct ieee80211_sta *sta)
2536 {
2537 struct ath_wiphy *aphy = hw->priv;
2538 struct ath_softc *sc = aphy->sc;
2539
2540 switch (cmd) {
2541 case STA_NOTIFY_ADD:
2542 ath_node_attach(sc, sta);
2543 break;
2544 case STA_NOTIFY_REMOVE:
2545 ath_node_detach(sc, sta);
2546 break;
2547 default:
2548 break;
2549 }
2550 }
2551
2552 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2553 const struct ieee80211_tx_queue_params *params)
2554 {
2555 struct ath_wiphy *aphy = hw->priv;
2556 struct ath_softc *sc = aphy->sc;
2557 struct ath9k_tx_queue_info qi;
2558 int ret = 0, qnum;
2559
2560 if (queue >= WME_NUM_AC)
2561 return 0;
2562
2563 mutex_lock(&sc->mutex);
2564
2565 qi.tqi_aifs = params->aifs;
2566 qi.tqi_cwmin = params->cw_min;
2567 qi.tqi_cwmax = params->cw_max;
2568 qi.tqi_burstTime = params->txop;
2569 qnum = ath_get_hal_qnum(queue, sc);
2570
2571 DPRINTF(sc, ATH_DBG_CONFIG,
2572 "Configure tx [queue/halq] [%d/%d], "
2573 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2574 queue, qnum, params->aifs, params->cw_min,
2575 params->cw_max, params->txop);
2576
2577 ret = ath_txq_update(sc, qnum, &qi);
2578 if (ret)
2579 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2580
2581 mutex_unlock(&sc->mutex);
2582
2583 return ret;
2584 }
2585
2586 static int ath9k_set_key(struct ieee80211_hw *hw,
2587 enum set_key_cmd cmd,
2588 struct ieee80211_vif *vif,
2589 struct ieee80211_sta *sta,
2590 struct ieee80211_key_conf *key)
2591 {
2592 struct ath_wiphy *aphy = hw->priv;
2593 struct ath_softc *sc = aphy->sc;
2594 int ret = 0;
2595
2596 if (modparam_nohwcrypt)
2597 return -ENOSPC;
2598
2599 mutex_lock(&sc->mutex);
2600 ath9k_ps_wakeup(sc);
2601 DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2602
2603 switch (cmd) {
2604 case SET_KEY:
2605 ret = ath_key_config(sc, vif, sta, key);
2606 if (ret >= 0) {
2607 key->hw_key_idx = ret;
2608 /* push IV and Michael MIC generation to stack */
2609 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2610 if (key->alg == ALG_TKIP)
2611 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2612 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2613 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2614 ret = 0;
2615 }
2616 break;
2617 case DISABLE_KEY:
2618 ath_key_delete(sc, key);
2619 break;
2620 default:
2621 ret = -EINVAL;
2622 }
2623
2624 ath9k_ps_restore(sc);
2625 mutex_unlock(&sc->mutex);
2626
2627 return ret;
2628 }
2629
2630 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2631 struct ieee80211_vif *vif,
2632 struct ieee80211_bss_conf *bss_conf,
2633 u32 changed)
2634 {
2635 struct ath_wiphy *aphy = hw->priv;
2636 struct ath_softc *sc = aphy->sc;
2637
2638 mutex_lock(&sc->mutex);
2639
2640 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2641 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2642 bss_conf->use_short_preamble);
2643 if (bss_conf->use_short_preamble)
2644 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2645 else
2646 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2647 }
2648
2649 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2650 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2651 bss_conf->use_cts_prot);
2652 if (bss_conf->use_cts_prot &&
2653 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2654 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2655 else
2656 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2657 }
2658
2659 if (changed & BSS_CHANGED_ASSOC) {
2660 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2661 bss_conf->assoc);
2662 ath9k_bss_assoc_info(sc, vif, bss_conf);
2663 }
2664
2665 mutex_unlock(&sc->mutex);
2666 }
2667
2668 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2669 {
2670 u64 tsf;
2671 struct ath_wiphy *aphy = hw->priv;
2672 struct ath_softc *sc = aphy->sc;
2673
2674 mutex_lock(&sc->mutex);
2675 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2676 mutex_unlock(&sc->mutex);
2677
2678 return tsf;
2679 }
2680
2681 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2682 {
2683 struct ath_wiphy *aphy = hw->priv;
2684 struct ath_softc *sc = aphy->sc;
2685
2686 mutex_lock(&sc->mutex);
2687 ath9k_hw_settsf64(sc->sc_ah, tsf);
2688 mutex_unlock(&sc->mutex);
2689 }
2690
2691 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2692 {
2693 struct ath_wiphy *aphy = hw->priv;
2694 struct ath_softc *sc = aphy->sc;
2695
2696 mutex_lock(&sc->mutex);
2697 ath9k_hw_reset_tsf(sc->sc_ah);
2698 mutex_unlock(&sc->mutex);
2699 }
2700
2701 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2702 enum ieee80211_ampdu_mlme_action action,
2703 struct ieee80211_sta *sta,
2704 u16 tid, u16 *ssn)
2705 {
2706 struct ath_wiphy *aphy = hw->priv;
2707 struct ath_softc *sc = aphy->sc;
2708 int ret = 0;
2709
2710 switch (action) {
2711 case IEEE80211_AMPDU_RX_START:
2712 if (!(sc->sc_flags & SC_OP_RXAGGR))
2713 ret = -ENOTSUPP;
2714 break;
2715 case IEEE80211_AMPDU_RX_STOP:
2716 break;
2717 case IEEE80211_AMPDU_TX_START:
2718 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2719 if (ret < 0)
2720 DPRINTF(sc, ATH_DBG_FATAL,
2721 "Unable to start TX aggregation\n");
2722 else
2723 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2724 break;
2725 case IEEE80211_AMPDU_TX_STOP:
2726 ret = ath_tx_aggr_stop(sc, sta, tid);
2727 if (ret < 0)
2728 DPRINTF(sc, ATH_DBG_FATAL,
2729 "Unable to stop TX aggregation\n");
2730
2731 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2732 break;
2733 case IEEE80211_AMPDU_TX_RESUME:
2734 ath_tx_aggr_resume(sc, sta, tid);
2735 break;
2736 default:
2737 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2738 }
2739
2740 return ret;
2741 }
2742
2743 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2744 {
2745 struct ath_wiphy *aphy = hw->priv;
2746 struct ath_softc *sc = aphy->sc;
2747
2748 if (ath9k_wiphy_scanning(sc)) {
2749 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2750 "same time\n");
2751 /*
2752 * Do not allow the concurrent scanning state for now. This
2753 * could be improved with scanning control moved into ath9k.
2754 */
2755 return;
2756 }
2757
2758 aphy->state = ATH_WIPHY_SCAN;
2759 ath9k_wiphy_pause_all_forced(sc, aphy);
2760
2761 mutex_lock(&sc->mutex);
2762 sc->sc_flags |= SC_OP_SCANNING;
2763 mutex_unlock(&sc->mutex);
2764 }
2765
2766 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2767 {
2768 struct ath_wiphy *aphy = hw->priv;
2769 struct ath_softc *sc = aphy->sc;
2770
2771 mutex_lock(&sc->mutex);
2772 aphy->state = ATH_WIPHY_ACTIVE;
2773 sc->sc_flags &= ~SC_OP_SCANNING;
2774 mutex_unlock(&sc->mutex);
2775 }
2776
2777 struct ieee80211_ops ath9k_ops = {
2778 .tx = ath9k_tx,
2779 .start = ath9k_start,
2780 .stop = ath9k_stop,
2781 .add_interface = ath9k_add_interface,
2782 .remove_interface = ath9k_remove_interface,
2783 .config = ath9k_config,
2784 .config_interface = ath9k_config_interface,
2785 .configure_filter = ath9k_configure_filter,
2786 .sta_notify = ath9k_sta_notify,
2787 .conf_tx = ath9k_conf_tx,
2788 .bss_info_changed = ath9k_bss_info_changed,
2789 .set_key = ath9k_set_key,
2790 .get_tsf = ath9k_get_tsf,
2791 .set_tsf = ath9k_set_tsf,
2792 .reset_tsf = ath9k_reset_tsf,
2793 .ampdu_action = ath9k_ampdu_action,
2794 .sw_scan_start = ath9k_sw_scan_start,
2795 .sw_scan_complete = ath9k_sw_scan_complete,
2796 };
2797
2798 static struct {
2799 u32 version;
2800 const char * name;
2801 } ath_mac_bb_names[] = {
2802 { AR_SREV_VERSION_5416_PCI, "5416" },
2803 { AR_SREV_VERSION_5416_PCIE, "5418" },
2804 { AR_SREV_VERSION_9100, "9100" },
2805 { AR_SREV_VERSION_9160, "9160" },
2806 { AR_SREV_VERSION_9280, "9280" },
2807 { AR_SREV_VERSION_9285, "9285" }
2808 };
2809
2810 static struct {
2811 u16 version;
2812 const char * name;
2813 } ath_rf_names[] = {
2814 { 0, "5133" },
2815 { AR_RAD5133_SREV_MAJOR, "5133" },
2816 { AR_RAD5122_SREV_MAJOR, "5122" },
2817 { AR_RAD2133_SREV_MAJOR, "2133" },
2818 { AR_RAD2122_SREV_MAJOR, "2122" }
2819 };
2820
2821 /*
2822 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2823 */
2824 const char *
2825 ath_mac_bb_name(u32 mac_bb_version)
2826 {
2827 int i;
2828
2829 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2830 if (ath_mac_bb_names[i].version == mac_bb_version) {
2831 return ath_mac_bb_names[i].name;
2832 }
2833 }
2834
2835 return "????";
2836 }
2837
2838 /*
2839 * Return the RF name. "????" is returned if the RF is unknown.
2840 */
2841 const char *
2842 ath_rf_name(u16 rf_version)
2843 {
2844 int i;
2845
2846 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2847 if (ath_rf_names[i].version == rf_version) {
2848 return ath_rf_names[i].name;
2849 }
2850 }
2851
2852 return "????";
2853 }
2854
2855 static int __init ath9k_init(void)
2856 {
2857 int error;
2858
2859 /* Register rate control algorithm */
2860 error = ath_rate_control_register();
2861 if (error != 0) {
2862 printk(KERN_ERR
2863 "ath9k: Unable to register rate control "
2864 "algorithm: %d\n",
2865 error);
2866 goto err_out;
2867 }
2868
2869 error = ath9k_debug_create_root();
2870 if (error) {
2871 printk(KERN_ERR
2872 "ath9k: Unable to create debugfs root: %d\n",
2873 error);
2874 goto err_rate_unregister;
2875 }
2876
2877 error = ath_pci_init();
2878 if (error < 0) {
2879 printk(KERN_ERR
2880 "ath9k: No PCI devices found, driver not installed.\n");
2881 error = -ENODEV;
2882 goto err_remove_root;
2883 }
2884
2885 error = ath_ahb_init();
2886 if (error < 0) {
2887 error = -ENODEV;
2888 goto err_pci_exit;
2889 }
2890
2891 return 0;
2892
2893 err_pci_exit:
2894 ath_pci_exit();
2895
2896 err_remove_root:
2897 ath9k_debug_remove_root();
2898 err_rate_unregister:
2899 ath_rate_control_unregister();
2900 err_out:
2901 return error;
2902 }
2903 module_init(ath9k_init);
2904
2905 static void __exit ath9k_exit(void)
2906 {
2907 ath_ahb_exit();
2908 ath_pci_exit();
2909 ath9k_debug_remove_root();
2910 ath_rate_control_unregister();
2911 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2912 }
2913 module_exit(ath9k_exit);
This page took 0.087487 seconds and 4 git commands to generate.