ath9k: convert to use bus-agnostic DMA routines
[deliverable/linux.git] / drivers / net / wireless / ath9k / main.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/nl80211.h>
18 #include "core.h"
19 #include "reg.h"
20 #include "hw.h"
21
22 #define ATH_PCI_VERSION "0.1"
23
24 static char *dev_info = "ath9k";
25
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
30
31 static struct pci_device_id ath_pci_id_table[] __devinitdata = {
32 { PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI */
33 { PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
34 { PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI */
35 { PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI */
36 { PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
37 { PCI_VDEVICE(ATHEROS, 0x002B) }, /* PCI-E */
38 { 0 }
39 };
40
41 static void ath_detach(struct ath_softc *sc);
42
43 /* return bus cachesize in 4B word units */
44
45 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
46 {
47 u8 u8tmp;
48
49 pci_read_config_byte(to_pci_dev(sc->dev), PCI_CACHE_LINE_SIZE,
50 (u8 *)&u8tmp);
51 *csz = (int)u8tmp;
52
53 /*
54 * This check was put in to avoid "unplesant" consequences if
55 * the bootrom has not fully initialized all PCI devices.
56 * Sometimes the cache line size register is not set
57 */
58
59 if (*csz == 0)
60 *csz = DEFAULT_CACHELINE >> 2; /* Use the default size */
61 }
62
63 static void ath_cache_conf_rate(struct ath_softc *sc,
64 struct ieee80211_conf *conf)
65 {
66 switch (conf->channel->band) {
67 case IEEE80211_BAND_2GHZ:
68 if (conf_is_ht20(conf))
69 sc->cur_rate_table =
70 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
71 else if (conf_is_ht40_minus(conf))
72 sc->cur_rate_table =
73 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
74 else if (conf_is_ht40_plus(conf))
75 sc->cur_rate_table =
76 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
77 else
78 sc->cur_rate_table =
79 sc->hw_rate_table[ATH9K_MODE_11G];
80 break;
81 case IEEE80211_BAND_5GHZ:
82 if (conf_is_ht20(conf))
83 sc->cur_rate_table =
84 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
85 else if (conf_is_ht40_minus(conf))
86 sc->cur_rate_table =
87 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
88 else if (conf_is_ht40_plus(conf))
89 sc->cur_rate_table =
90 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
91 else
92 sc->cur_rate_table =
93 sc->hw_rate_table[ATH9K_MODE_11A];
94 break;
95 default:
96 BUG_ON(1);
97 break;
98 }
99 }
100
101 static void ath_update_txpow(struct ath_softc *sc)
102 {
103 struct ath_hal *ah = sc->sc_ah;
104 u32 txpow;
105
106 if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
107 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
108 /* read back in case value is clamped */
109 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
110 sc->sc_curtxpow = txpow;
111 }
112 }
113
114 static u8 parse_mpdudensity(u8 mpdudensity)
115 {
116 /*
117 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
118 * 0 for no restriction
119 * 1 for 1/4 us
120 * 2 for 1/2 us
121 * 3 for 1 us
122 * 4 for 2 us
123 * 5 for 4 us
124 * 6 for 8 us
125 * 7 for 16 us
126 */
127 switch (mpdudensity) {
128 case 0:
129 return 0;
130 case 1:
131 case 2:
132 case 3:
133 /* Our lower layer calculations limit our precision to
134 1 microsecond */
135 return 1;
136 case 4:
137 return 2;
138 case 5:
139 return 4;
140 case 6:
141 return 8;
142 case 7:
143 return 16;
144 default:
145 return 0;
146 }
147 }
148
149 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
150 {
151 struct ath_rate_table *rate_table = NULL;
152 struct ieee80211_supported_band *sband;
153 struct ieee80211_rate *rate;
154 int i, maxrates;
155
156 switch (band) {
157 case IEEE80211_BAND_2GHZ:
158 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
159 break;
160 case IEEE80211_BAND_5GHZ:
161 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
162 break;
163 default:
164 break;
165 }
166
167 if (rate_table == NULL)
168 return;
169
170 sband = &sc->sbands[band];
171 rate = sc->rates[band];
172
173 if (rate_table->rate_cnt > ATH_RATE_MAX)
174 maxrates = ATH_RATE_MAX;
175 else
176 maxrates = rate_table->rate_cnt;
177
178 for (i = 0; i < maxrates; i++) {
179 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
180 rate[i].hw_value = rate_table->info[i].ratecode;
181 sband->n_bitrates++;
182 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
183 rate[i].bitrate / 10, rate[i].hw_value);
184 }
185 }
186
187 static int ath_setup_channels(struct ath_softc *sc)
188 {
189 struct ath_hal *ah = sc->sc_ah;
190 int nchan, i, a = 0, b = 0;
191 u8 regclassids[ATH_REGCLASSIDS_MAX];
192 u32 nregclass = 0;
193 struct ieee80211_supported_band *band_2ghz;
194 struct ieee80211_supported_band *band_5ghz;
195 struct ieee80211_channel *chan_2ghz;
196 struct ieee80211_channel *chan_5ghz;
197 struct ath9k_channel *c;
198
199 /* Fill in ah->ah_channels */
200 if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
201 regclassids, ATH_REGCLASSIDS_MAX,
202 &nregclass, CTRY_DEFAULT, false, 1)) {
203 u32 rd = ah->ah_currentRD;
204 DPRINTF(sc, ATH_DBG_FATAL,
205 "Unable to collect channel list; "
206 "regdomain likely %u country code %u\n",
207 rd, CTRY_DEFAULT);
208 return -EINVAL;
209 }
210
211 band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
212 band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
213 chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
214 chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
215
216 for (i = 0; i < nchan; i++) {
217 c = &ah->ah_channels[i];
218 if (IS_CHAN_2GHZ(c)) {
219 chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
220 chan_2ghz[a].center_freq = c->channel;
221 chan_2ghz[a].max_power = c->maxTxPower;
222 c->chan = &chan_2ghz[a];
223
224 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
225 chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
226 if (c->channelFlags & CHANNEL_PASSIVE)
227 chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
228
229 band_2ghz->n_channels = ++a;
230
231 DPRINTF(sc, ATH_DBG_CONFIG, "2MHz channel: %d, "
232 "channelFlags: 0x%x\n",
233 c->channel, c->channelFlags);
234 } else if (IS_CHAN_5GHZ(c)) {
235 chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
236 chan_5ghz[b].center_freq = c->channel;
237 chan_5ghz[b].max_power = c->maxTxPower;
238 c->chan = &chan_5ghz[a];
239
240 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
241 chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
242 if (c->channelFlags & CHANNEL_PASSIVE)
243 chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
244
245 band_5ghz->n_channels = ++b;
246
247 DPRINTF(sc, ATH_DBG_CONFIG, "5MHz channel: %d, "
248 "channelFlags: 0x%x\n",
249 c->channel, c->channelFlags);
250 }
251 }
252
253 return 0;
254 }
255
256 /*
257 * Set/change channels. If the channel is really being changed, it's done
258 * by reseting the chip. To accomplish this we must first cleanup any pending
259 * DMA, then restart stuff.
260 */
261 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
262 {
263 struct ath_hal *ah = sc->sc_ah;
264 bool fastcc = true, stopped;
265 struct ieee80211_hw *hw = sc->hw;
266 struct ieee80211_channel *channel = hw->conf.channel;
267 int r;
268
269 if (sc->sc_flags & SC_OP_INVALID)
270 return -EIO;
271
272 /*
273 * This is only performed if the channel settings have
274 * actually changed.
275 *
276 * To switch channels clear any pending DMA operations;
277 * wait long enough for the RX fifo to drain, reset the
278 * hardware at the new frequency, and then re-enable
279 * the relevant bits of the h/w.
280 */
281 ath9k_hw_set_interrupts(ah, 0);
282 ath_draintxq(sc, false);
283 stopped = ath_stoprecv(sc);
284
285 /* XXX: do not flush receive queue here. We don't want
286 * to flush data frames already in queue because of
287 * changing channel. */
288
289 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
290 fastcc = false;
291
292 DPRINTF(sc, ATH_DBG_CONFIG,
293 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
294 sc->sc_ah->ah_curchan->channel,
295 channel->center_freq, sc->tx_chan_width);
296
297 spin_lock_bh(&sc->sc_resetlock);
298
299 r = ath9k_hw_reset(ah, hchan, fastcc);
300 if (r) {
301 DPRINTF(sc, ATH_DBG_FATAL,
302 "Unable to reset channel (%u Mhz) "
303 "reset status %u\n",
304 channel->center_freq, r);
305 spin_unlock_bh(&sc->sc_resetlock);
306 return r;
307 }
308 spin_unlock_bh(&sc->sc_resetlock);
309
310 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
311 sc->sc_flags &= ~SC_OP_FULL_RESET;
312
313 if (ath_startrecv(sc) != 0) {
314 DPRINTF(sc, ATH_DBG_FATAL,
315 "Unable to restart recv logic\n");
316 return -EIO;
317 }
318
319 ath_cache_conf_rate(sc, &hw->conf);
320 ath_update_txpow(sc);
321 ath9k_hw_set_interrupts(ah, sc->sc_imask);
322 return 0;
323 }
324
325 /*
326 * This routine performs the periodic noise floor calibration function
327 * that is used to adjust and optimize the chip performance. This
328 * takes environmental changes (location, temperature) into account.
329 * When the task is complete, it reschedules itself depending on the
330 * appropriate interval that was calculated.
331 */
332 static void ath_ani_calibrate(unsigned long data)
333 {
334 struct ath_softc *sc;
335 struct ath_hal *ah;
336 bool longcal = false;
337 bool shortcal = false;
338 bool aniflag = false;
339 unsigned int timestamp = jiffies_to_msecs(jiffies);
340 u32 cal_interval;
341
342 sc = (struct ath_softc *)data;
343 ah = sc->sc_ah;
344
345 /*
346 * don't calibrate when we're scanning.
347 * we are most likely not on our home channel.
348 */
349 if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
350 return;
351
352 /* Long calibration runs independently of short calibration. */
353 if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
354 longcal = true;
355 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
356 sc->sc_ani.sc_longcal_timer = timestamp;
357 }
358
359 /* Short calibration applies only while sc_caldone is false */
360 if (!sc->sc_ani.sc_caldone) {
361 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
362 ATH_SHORT_CALINTERVAL) {
363 shortcal = true;
364 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
365 sc->sc_ani.sc_shortcal_timer = timestamp;
366 sc->sc_ani.sc_resetcal_timer = timestamp;
367 }
368 } else {
369 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
370 ATH_RESTART_CALINTERVAL) {
371 sc->sc_ani.sc_caldone = ath9k_hw_reset_calvalid(ah);
372 if (sc->sc_ani.sc_caldone)
373 sc->sc_ani.sc_resetcal_timer = timestamp;
374 }
375 }
376
377 /* Verify whether we must check ANI */
378 if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
379 ATH_ANI_POLLINTERVAL) {
380 aniflag = true;
381 sc->sc_ani.sc_checkani_timer = timestamp;
382 }
383
384 /* Skip all processing if there's nothing to do. */
385 if (longcal || shortcal || aniflag) {
386 /* Call ANI routine if necessary */
387 if (aniflag)
388 ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
389 ah->ah_curchan);
390
391 /* Perform calibration if necessary */
392 if (longcal || shortcal) {
393 bool iscaldone = false;
394
395 if (ath9k_hw_calibrate(ah, ah->ah_curchan,
396 sc->sc_rx_chainmask, longcal,
397 &iscaldone)) {
398 if (longcal)
399 sc->sc_ani.sc_noise_floor =
400 ath9k_hw_getchan_noise(ah,
401 ah->ah_curchan);
402
403 DPRINTF(sc, ATH_DBG_ANI,
404 "calibrate chan %u/%x nf: %d\n",
405 ah->ah_curchan->channel,
406 ah->ah_curchan->channelFlags,
407 sc->sc_ani.sc_noise_floor);
408 } else {
409 DPRINTF(sc, ATH_DBG_ANY,
410 "calibrate chan %u/%x failed\n",
411 ah->ah_curchan->channel,
412 ah->ah_curchan->channelFlags);
413 }
414 sc->sc_ani.sc_caldone = iscaldone;
415 }
416 }
417
418 /*
419 * Set timer interval based on previous results.
420 * The interval must be the shortest necessary to satisfy ANI,
421 * short calibration and long calibration.
422 */
423 cal_interval = ATH_LONG_CALINTERVAL;
424 if (sc->sc_ah->ah_config.enable_ani)
425 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
426 if (!sc->sc_ani.sc_caldone)
427 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
428
429 mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
430 }
431
432 /*
433 * Update tx/rx chainmask. For legacy association,
434 * hard code chainmask to 1x1, for 11n association, use
435 * the chainmask configuration, for bt coexistence, use
436 * the chainmask configuration even in legacy mode.
437 */
438 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
439 {
440 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
441 if (is_ht ||
442 (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
443 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
444 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
445 } else {
446 sc->sc_tx_chainmask = 1;
447 sc->sc_rx_chainmask = 1;
448 }
449
450 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
451 sc->sc_tx_chainmask, sc->sc_rx_chainmask);
452 }
453
454 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
455 {
456 struct ath_node *an;
457
458 an = (struct ath_node *)sta->drv_priv;
459
460 if (sc->sc_flags & SC_OP_TXAGGR)
461 ath_tx_node_init(sc, an);
462
463 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
464 sta->ht_cap.ampdu_factor);
465 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466 }
467
468 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
469 {
470 struct ath_node *an = (struct ath_node *)sta->drv_priv;
471
472 if (sc->sc_flags & SC_OP_TXAGGR)
473 ath_tx_node_cleanup(sc, an);
474 }
475
476 static void ath9k_tasklet(unsigned long data)
477 {
478 struct ath_softc *sc = (struct ath_softc *)data;
479 u32 status = sc->sc_intrstatus;
480
481 if (status & ATH9K_INT_FATAL) {
482 /* need a chip reset */
483 ath_reset(sc, false);
484 return;
485 } else {
486
487 if (status &
488 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
489 spin_lock_bh(&sc->rx.rxflushlock);
490 ath_rx_tasklet(sc, 0);
491 spin_unlock_bh(&sc->rx.rxflushlock);
492 }
493 /* XXX: optimize this */
494 if (status & ATH9K_INT_TX)
495 ath_tx_tasklet(sc);
496 }
497
498 /* re-enable hardware interrupt */
499 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
500 }
501
502 static irqreturn_t ath_isr(int irq, void *dev)
503 {
504 struct ath_softc *sc = dev;
505 struct ath_hal *ah = sc->sc_ah;
506 enum ath9k_int status;
507 bool sched = false;
508
509 do {
510 if (sc->sc_flags & SC_OP_INVALID) {
511 /*
512 * The hardware is not ready/present, don't
513 * touch anything. Note this can happen early
514 * on if the IRQ is shared.
515 */
516 return IRQ_NONE;
517 }
518 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
519 return IRQ_NONE;
520 }
521
522 /*
523 * Figure out the reason(s) for the interrupt. Note
524 * that the hal returns a pseudo-ISR that may include
525 * bits we haven't explicitly enabled so we mask the
526 * value to insure we only process bits we requested.
527 */
528 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
529
530 status &= sc->sc_imask; /* discard unasked-for bits */
531
532 /*
533 * If there are no status bits set, then this interrupt was not
534 * for me (should have been caught above).
535 */
536 if (!status)
537 return IRQ_NONE;
538
539 sc->sc_intrstatus = status;
540
541 if (status & ATH9K_INT_FATAL) {
542 /* need a chip reset */
543 sched = true;
544 } else if (status & ATH9K_INT_RXORN) {
545 /* need a chip reset */
546 sched = true;
547 } else {
548 if (status & ATH9K_INT_SWBA) {
549 /* schedule a tasklet for beacon handling */
550 tasklet_schedule(&sc->bcon_tasklet);
551 }
552 if (status & ATH9K_INT_RXEOL) {
553 /*
554 * NB: the hardware should re-read the link when
555 * RXE bit is written, but it doesn't work
556 * at least on older hardware revs.
557 */
558 sched = true;
559 }
560
561 if (status & ATH9K_INT_TXURN)
562 /* bump tx trigger level */
563 ath9k_hw_updatetxtriglevel(ah, true);
564 /* XXX: optimize this */
565 if (status & ATH9K_INT_RX)
566 sched = true;
567 if (status & ATH9K_INT_TX)
568 sched = true;
569 if (status & ATH9K_INT_BMISS)
570 sched = true;
571 /* carrier sense timeout */
572 if (status & ATH9K_INT_CST)
573 sched = true;
574 if (status & ATH9K_INT_MIB) {
575 /*
576 * Disable interrupts until we service the MIB
577 * interrupt; otherwise it will continue to
578 * fire.
579 */
580 ath9k_hw_set_interrupts(ah, 0);
581 /*
582 * Let the hal handle the event. We assume
583 * it will clear whatever condition caused
584 * the interrupt.
585 */
586 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
587 ath9k_hw_set_interrupts(ah, sc->sc_imask);
588 }
589 if (status & ATH9K_INT_TIM_TIMER) {
590 if (!(ah->ah_caps.hw_caps &
591 ATH9K_HW_CAP_AUTOSLEEP)) {
592 /* Clear RxAbort bit so that we can
593 * receive frames */
594 ath9k_hw_setrxabort(ah, 0);
595 sched = true;
596 }
597 }
598 }
599 } while (0);
600
601 ath_debug_stat_interrupt(sc, status);
602
603 if (sched) {
604 /* turn off every interrupt except SWBA */
605 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
606 tasklet_schedule(&sc->intr_tq);
607 }
608
609 return IRQ_HANDLED;
610 }
611
612 static int ath_get_channel(struct ath_softc *sc,
613 struct ieee80211_channel *chan)
614 {
615 int i;
616
617 for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
618 if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
619 return i;
620 }
621
622 return -1;
623 }
624
625 static u32 ath_get_extchanmode(struct ath_softc *sc,
626 struct ieee80211_channel *chan,
627 enum nl80211_channel_type channel_type)
628 {
629 u32 chanmode = 0;
630
631 switch (chan->band) {
632 case IEEE80211_BAND_2GHZ:
633 switch(channel_type) {
634 case NL80211_CHAN_NO_HT:
635 case NL80211_CHAN_HT20:
636 chanmode = CHANNEL_G_HT20;
637 break;
638 case NL80211_CHAN_HT40PLUS:
639 chanmode = CHANNEL_G_HT40PLUS;
640 break;
641 case NL80211_CHAN_HT40MINUS:
642 chanmode = CHANNEL_G_HT40MINUS;
643 break;
644 }
645 break;
646 case IEEE80211_BAND_5GHZ:
647 switch(channel_type) {
648 case NL80211_CHAN_NO_HT:
649 case NL80211_CHAN_HT20:
650 chanmode = CHANNEL_A_HT20;
651 break;
652 case NL80211_CHAN_HT40PLUS:
653 chanmode = CHANNEL_A_HT40PLUS;
654 break;
655 case NL80211_CHAN_HT40MINUS:
656 chanmode = CHANNEL_A_HT40MINUS;
657 break;
658 }
659 break;
660 default:
661 break;
662 }
663
664 return chanmode;
665 }
666
667 static int ath_keyset(struct ath_softc *sc, u16 keyix,
668 struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
669 {
670 bool status;
671
672 status = ath9k_hw_set_keycache_entry(sc->sc_ah,
673 keyix, hk, mac, false);
674
675 return status != false;
676 }
677
678 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
679 struct ath9k_keyval *hk,
680 const u8 *addr)
681 {
682 const u8 *key_rxmic;
683 const u8 *key_txmic;
684
685 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
686 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
687
688 if (addr == NULL) {
689 /* Group key installation */
690 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
691 return ath_keyset(sc, keyix, hk, addr);
692 }
693 if (!sc->sc_splitmic) {
694 /*
695 * data key goes at first index,
696 * the hal handles the MIC keys at index+64.
697 */
698 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
699 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
700 return ath_keyset(sc, keyix, hk, addr);
701 }
702 /*
703 * TX key goes at first index, RX key at +32.
704 * The hal handles the MIC keys at index+64.
705 */
706 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
707 if (!ath_keyset(sc, keyix, hk, NULL)) {
708 /* Txmic entry failed. No need to proceed further */
709 DPRINTF(sc, ATH_DBG_KEYCACHE,
710 "Setting TX MIC Key Failed\n");
711 return 0;
712 }
713
714 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
715 /* XXX delete tx key on failure? */
716 return ath_keyset(sc, keyix + 32, hk, addr);
717 }
718
719 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
720 {
721 int i;
722
723 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
724 if (test_bit(i, sc->sc_keymap) ||
725 test_bit(i + 64, sc->sc_keymap))
726 continue; /* At least one part of TKIP key allocated */
727 if (sc->sc_splitmic &&
728 (test_bit(i + 32, sc->sc_keymap) ||
729 test_bit(i + 64 + 32, sc->sc_keymap)))
730 continue; /* At least one part of TKIP key allocated */
731
732 /* Found a free slot for a TKIP key */
733 return i;
734 }
735 return -1;
736 }
737
738 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
739 {
740 int i;
741
742 /* First, try to find slots that would not be available for TKIP. */
743 if (sc->sc_splitmic) {
744 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) {
745 if (!test_bit(i, sc->sc_keymap) &&
746 (test_bit(i + 32, sc->sc_keymap) ||
747 test_bit(i + 64, sc->sc_keymap) ||
748 test_bit(i + 64 + 32, sc->sc_keymap)))
749 return i;
750 if (!test_bit(i + 32, sc->sc_keymap) &&
751 (test_bit(i, sc->sc_keymap) ||
752 test_bit(i + 64, sc->sc_keymap) ||
753 test_bit(i + 64 + 32, sc->sc_keymap)))
754 return i + 32;
755 if (!test_bit(i + 64, sc->sc_keymap) &&
756 (test_bit(i , sc->sc_keymap) ||
757 test_bit(i + 32, sc->sc_keymap) ||
758 test_bit(i + 64 + 32, sc->sc_keymap)))
759 return i + 64;
760 if (!test_bit(i + 64 + 32, sc->sc_keymap) &&
761 (test_bit(i, sc->sc_keymap) ||
762 test_bit(i + 32, sc->sc_keymap) ||
763 test_bit(i + 64, sc->sc_keymap)))
764 return i + 64 + 32;
765 }
766 } else {
767 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
768 if (!test_bit(i, sc->sc_keymap) &&
769 test_bit(i + 64, sc->sc_keymap))
770 return i;
771 if (test_bit(i, sc->sc_keymap) &&
772 !test_bit(i + 64, sc->sc_keymap))
773 return i + 64;
774 }
775 }
776
777 /* No partially used TKIP slots, pick any available slot */
778 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) {
779 /* Do not allow slots that could be needed for TKIP group keys
780 * to be used. This limitation could be removed if we know that
781 * TKIP will not be used. */
782 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
783 continue;
784 if (sc->sc_splitmic) {
785 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
786 continue;
787 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
788 continue;
789 }
790
791 if (!test_bit(i, sc->sc_keymap))
792 return i; /* Found a free slot for a key */
793 }
794
795 /* No free slot found */
796 return -1;
797 }
798
799 static int ath_key_config(struct ath_softc *sc,
800 struct ieee80211_sta *sta,
801 struct ieee80211_key_conf *key)
802 {
803 struct ath9k_keyval hk;
804 const u8 *mac = NULL;
805 int ret = 0;
806 int idx;
807
808 memset(&hk, 0, sizeof(hk));
809
810 switch (key->alg) {
811 case ALG_WEP:
812 hk.kv_type = ATH9K_CIPHER_WEP;
813 break;
814 case ALG_TKIP:
815 hk.kv_type = ATH9K_CIPHER_TKIP;
816 break;
817 case ALG_CCMP:
818 hk.kv_type = ATH9K_CIPHER_AES_CCM;
819 break;
820 default:
821 return -EOPNOTSUPP;
822 }
823
824 hk.kv_len = key->keylen;
825 memcpy(hk.kv_val, key->key, key->keylen);
826
827 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
828 /* For now, use the default keys for broadcast keys. This may
829 * need to change with virtual interfaces. */
830 idx = key->keyidx;
831 } else if (key->keyidx) {
832 struct ieee80211_vif *vif;
833
834 if (WARN_ON(!sta))
835 return -EOPNOTSUPP;
836 mac = sta->addr;
837
838 vif = sc->sc_vaps[0];
839 if (vif->type != NL80211_IFTYPE_AP) {
840 /* Only keyidx 0 should be used with unicast key, but
841 * allow this for client mode for now. */
842 idx = key->keyidx;
843 } else
844 return -EIO;
845 } else {
846 if (WARN_ON(!sta))
847 return -EOPNOTSUPP;
848 mac = sta->addr;
849
850 if (key->alg == ALG_TKIP)
851 idx = ath_reserve_key_cache_slot_tkip(sc);
852 else
853 idx = ath_reserve_key_cache_slot(sc);
854 if (idx < 0)
855 return -ENOSPC; /* no free key cache entries */
856 }
857
858 if (key->alg == ALG_TKIP)
859 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
860 else
861 ret = ath_keyset(sc, idx, &hk, mac);
862
863 if (!ret)
864 return -EIO;
865
866 set_bit(idx, sc->sc_keymap);
867 if (key->alg == ALG_TKIP) {
868 set_bit(idx + 64, sc->sc_keymap);
869 if (sc->sc_splitmic) {
870 set_bit(idx + 32, sc->sc_keymap);
871 set_bit(idx + 64 + 32, sc->sc_keymap);
872 }
873 }
874
875 return idx;
876 }
877
878 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
879 {
880 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
881 if (key->hw_key_idx < IEEE80211_WEP_NKID)
882 return;
883
884 clear_bit(key->hw_key_idx, sc->sc_keymap);
885 if (key->alg != ALG_TKIP)
886 return;
887
888 clear_bit(key->hw_key_idx + 64, sc->sc_keymap);
889 if (sc->sc_splitmic) {
890 clear_bit(key->hw_key_idx + 32, sc->sc_keymap);
891 clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap);
892 }
893 }
894
895 static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
896 {
897 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
898 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
899
900 ht_info->ht_supported = true;
901 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
902 IEEE80211_HT_CAP_SM_PS |
903 IEEE80211_HT_CAP_SGI_40 |
904 IEEE80211_HT_CAP_DSSSCCK40;
905
906 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
907 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
908 /* set up supported mcs set */
909 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
910 ht_info->mcs.rx_mask[0] = 0xff;
911 ht_info->mcs.rx_mask[1] = 0xff;
912 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
913 }
914
915 static void ath9k_bss_assoc_info(struct ath_softc *sc,
916 struct ieee80211_vif *vif,
917 struct ieee80211_bss_conf *bss_conf)
918 {
919 struct ath_vap *avp = (void *)vif->drv_priv;
920
921 if (bss_conf->assoc) {
922 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
923 bss_conf->aid, sc->sc_curbssid);
924
925 /* New association, store aid */
926 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
927 sc->sc_curaid = bss_conf->aid;
928 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
929 sc->sc_curaid);
930 }
931
932 /* Configure the beacon */
933 ath_beacon_config(sc, 0);
934 sc->sc_flags |= SC_OP_BEACONS;
935
936 /* Reset rssi stats */
937 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
938 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
939 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
940 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
941
942 /* Start ANI */
943 mod_timer(&sc->sc_ani.timer,
944 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
945
946 } else {
947 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
948 sc->sc_curaid = 0;
949 }
950 }
951
952 /********************************/
953 /* LED functions */
954 /********************************/
955
956 static void ath_led_brightness(struct led_classdev *led_cdev,
957 enum led_brightness brightness)
958 {
959 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
960 struct ath_softc *sc = led->sc;
961
962 switch (brightness) {
963 case LED_OFF:
964 if (led->led_type == ATH_LED_ASSOC ||
965 led->led_type == ATH_LED_RADIO)
966 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
967 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
968 (led->led_type == ATH_LED_RADIO) ? 1 :
969 !!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
970 break;
971 case LED_FULL:
972 if (led->led_type == ATH_LED_ASSOC)
973 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
974 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
975 break;
976 default:
977 break;
978 }
979 }
980
981 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
982 char *trigger)
983 {
984 int ret;
985
986 led->sc = sc;
987 led->led_cdev.name = led->name;
988 led->led_cdev.default_trigger = trigger;
989 led->led_cdev.brightness_set = ath_led_brightness;
990
991 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
992 if (ret)
993 DPRINTF(sc, ATH_DBG_FATAL,
994 "Failed to register led:%s", led->name);
995 else
996 led->registered = 1;
997 return ret;
998 }
999
1000 static void ath_unregister_led(struct ath_led *led)
1001 {
1002 if (led->registered) {
1003 led_classdev_unregister(&led->led_cdev);
1004 led->registered = 0;
1005 }
1006 }
1007
1008 static void ath_deinit_leds(struct ath_softc *sc)
1009 {
1010 ath_unregister_led(&sc->assoc_led);
1011 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1012 ath_unregister_led(&sc->tx_led);
1013 ath_unregister_led(&sc->rx_led);
1014 ath_unregister_led(&sc->radio_led);
1015 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1016 }
1017
1018 static void ath_init_leds(struct ath_softc *sc)
1019 {
1020 char *trigger;
1021 int ret;
1022
1023 /* Configure gpio 1 for output */
1024 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1025 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1026 /* LED off, active low */
1027 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1028
1029 trigger = ieee80211_get_radio_led_name(sc->hw);
1030 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1031 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1032 ret = ath_register_led(sc, &sc->radio_led, trigger);
1033 sc->radio_led.led_type = ATH_LED_RADIO;
1034 if (ret)
1035 goto fail;
1036
1037 trigger = ieee80211_get_assoc_led_name(sc->hw);
1038 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1039 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1040 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1041 sc->assoc_led.led_type = ATH_LED_ASSOC;
1042 if (ret)
1043 goto fail;
1044
1045 trigger = ieee80211_get_tx_led_name(sc->hw);
1046 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1047 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1048 ret = ath_register_led(sc, &sc->tx_led, trigger);
1049 sc->tx_led.led_type = ATH_LED_TX;
1050 if (ret)
1051 goto fail;
1052
1053 trigger = ieee80211_get_rx_led_name(sc->hw);
1054 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1055 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1056 ret = ath_register_led(sc, &sc->rx_led, trigger);
1057 sc->rx_led.led_type = ATH_LED_RX;
1058 if (ret)
1059 goto fail;
1060
1061 return;
1062
1063 fail:
1064 ath_deinit_leds(sc);
1065 }
1066
1067 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1068
1069 /*******************/
1070 /* Rfkill */
1071 /*******************/
1072
1073 static void ath_radio_enable(struct ath_softc *sc)
1074 {
1075 struct ath_hal *ah = sc->sc_ah;
1076 struct ieee80211_channel *channel = sc->hw->conf.channel;
1077 int r;
1078
1079 spin_lock_bh(&sc->sc_resetlock);
1080
1081 r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1082
1083 if (r) {
1084 DPRINTF(sc, ATH_DBG_FATAL,
1085 "Unable to reset channel %u (%uMhz) ",
1086 "reset status %u\n",
1087 channel->center_freq, r);
1088 }
1089 spin_unlock_bh(&sc->sc_resetlock);
1090
1091 ath_update_txpow(sc);
1092 if (ath_startrecv(sc) != 0) {
1093 DPRINTF(sc, ATH_DBG_FATAL,
1094 "Unable to restart recv logic\n");
1095 return;
1096 }
1097
1098 if (sc->sc_flags & SC_OP_BEACONS)
1099 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1100
1101 /* Re-Enable interrupts */
1102 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1103
1104 /* Enable LED */
1105 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1106 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1107 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1108
1109 ieee80211_wake_queues(sc->hw);
1110 }
1111
1112 static void ath_radio_disable(struct ath_softc *sc)
1113 {
1114 struct ath_hal *ah = sc->sc_ah;
1115 struct ieee80211_channel *channel = sc->hw->conf.channel;
1116 int r;
1117
1118 ieee80211_stop_queues(sc->hw);
1119
1120 /* Disable LED */
1121 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1122 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1123
1124 /* Disable interrupts */
1125 ath9k_hw_set_interrupts(ah, 0);
1126
1127 ath_draintxq(sc, false); /* clear pending tx frames */
1128 ath_stoprecv(sc); /* turn off frame recv */
1129 ath_flushrecv(sc); /* flush recv queue */
1130
1131 spin_lock_bh(&sc->sc_resetlock);
1132 r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1133 if (r) {
1134 DPRINTF(sc, ATH_DBG_FATAL,
1135 "Unable to reset channel %u (%uMhz) "
1136 "reset status %u\n",
1137 channel->center_freq, r);
1138 }
1139 spin_unlock_bh(&sc->sc_resetlock);
1140
1141 ath9k_hw_phy_disable(ah);
1142 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1143 }
1144
1145 static bool ath_is_rfkill_set(struct ath_softc *sc)
1146 {
1147 struct ath_hal *ah = sc->sc_ah;
1148
1149 return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1150 ah->ah_rfkill_polarity;
1151 }
1152
1153 /* h/w rfkill poll function */
1154 static void ath_rfkill_poll(struct work_struct *work)
1155 {
1156 struct ath_softc *sc = container_of(work, struct ath_softc,
1157 rf_kill.rfkill_poll.work);
1158 bool radio_on;
1159
1160 if (sc->sc_flags & SC_OP_INVALID)
1161 return;
1162
1163 radio_on = !ath_is_rfkill_set(sc);
1164
1165 /*
1166 * enable/disable radio only when there is a
1167 * state change in RF switch
1168 */
1169 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1170 enum rfkill_state state;
1171
1172 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1173 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1174 : RFKILL_STATE_HARD_BLOCKED;
1175 } else if (radio_on) {
1176 ath_radio_enable(sc);
1177 state = RFKILL_STATE_UNBLOCKED;
1178 } else {
1179 ath_radio_disable(sc);
1180 state = RFKILL_STATE_HARD_BLOCKED;
1181 }
1182
1183 if (state == RFKILL_STATE_HARD_BLOCKED)
1184 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1185 else
1186 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1187
1188 rfkill_force_state(sc->rf_kill.rfkill, state);
1189 }
1190
1191 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1192 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1193 }
1194
1195 /* s/w rfkill handler */
1196 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1197 {
1198 struct ath_softc *sc = data;
1199
1200 switch (state) {
1201 case RFKILL_STATE_SOFT_BLOCKED:
1202 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1203 SC_OP_RFKILL_SW_BLOCKED)))
1204 ath_radio_disable(sc);
1205 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1206 return 0;
1207 case RFKILL_STATE_UNBLOCKED:
1208 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1209 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1210 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1211 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1212 "radio as it is disabled by h/w\n");
1213 return -EPERM;
1214 }
1215 ath_radio_enable(sc);
1216 }
1217 return 0;
1218 default:
1219 return -EINVAL;
1220 }
1221 }
1222
1223 /* Init s/w rfkill */
1224 static int ath_init_sw_rfkill(struct ath_softc *sc)
1225 {
1226 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1227 RFKILL_TYPE_WLAN);
1228 if (!sc->rf_kill.rfkill) {
1229 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1230 return -ENOMEM;
1231 }
1232
1233 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1234 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1235 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1236 sc->rf_kill.rfkill->data = sc;
1237 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1238 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1239 sc->rf_kill.rfkill->user_claim_unsupported = 1;
1240
1241 return 0;
1242 }
1243
1244 /* Deinitialize rfkill */
1245 static void ath_deinit_rfkill(struct ath_softc *sc)
1246 {
1247 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1248 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1249
1250 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1251 rfkill_unregister(sc->rf_kill.rfkill);
1252 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1253 sc->rf_kill.rfkill = NULL;
1254 }
1255 }
1256
1257 static int ath_start_rfkill_poll(struct ath_softc *sc)
1258 {
1259 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1260 queue_delayed_work(sc->hw->workqueue,
1261 &sc->rf_kill.rfkill_poll, 0);
1262
1263 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1264 if (rfkill_register(sc->rf_kill.rfkill)) {
1265 DPRINTF(sc, ATH_DBG_FATAL,
1266 "Unable to register rfkill\n");
1267 rfkill_free(sc->rf_kill.rfkill);
1268
1269 /* Deinitialize the device */
1270 ath_detach(sc);
1271 if (to_pci_dev(sc->dev)->irq)
1272 free_irq(to_pci_dev(sc->dev)->irq, sc);
1273 pci_iounmap(to_pci_dev(sc->dev), sc->mem);
1274 pci_release_region(to_pci_dev(sc->dev), 0);
1275 pci_disable_device(to_pci_dev(sc->dev));
1276 ieee80211_free_hw(sc->hw);
1277 return -EIO;
1278 } else {
1279 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1280 }
1281 }
1282
1283 return 0;
1284 }
1285 #endif /* CONFIG_RFKILL */
1286
1287 static void ath_detach(struct ath_softc *sc)
1288 {
1289 struct ieee80211_hw *hw = sc->hw;
1290 int i = 0;
1291
1292 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1293
1294 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1295 ath_deinit_rfkill(sc);
1296 #endif
1297 ath_deinit_leds(sc);
1298
1299 ieee80211_unregister_hw(hw);
1300 ath_rx_cleanup(sc);
1301 ath_tx_cleanup(sc);
1302
1303 tasklet_kill(&sc->intr_tq);
1304 tasklet_kill(&sc->bcon_tasklet);
1305
1306 if (!(sc->sc_flags & SC_OP_INVALID))
1307 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1308
1309 /* cleanup tx queues */
1310 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1311 if (ATH_TXQ_SETUP(sc, i))
1312 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1313
1314 ath9k_hw_detach(sc->sc_ah);
1315 ath9k_exit_debug(sc);
1316 }
1317
1318 static int ath_init(u16 devid, struct ath_softc *sc)
1319 {
1320 struct ath_hal *ah = NULL;
1321 int status;
1322 int error = 0, i;
1323 int csz = 0;
1324
1325 /* XXX: hardware will not be ready until ath_open() being called */
1326 sc->sc_flags |= SC_OP_INVALID;
1327
1328 if (ath9k_init_debug(sc) < 0)
1329 printk(KERN_ERR "Unable to create debugfs files\n");
1330
1331 spin_lock_init(&sc->sc_resetlock);
1332 mutex_init(&sc->mutex);
1333 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1334 tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1335 (unsigned long)sc);
1336
1337 /*
1338 * Cache line size is used to size and align various
1339 * structures used to communicate with the hardware.
1340 */
1341 bus_read_cachesize(sc, &csz);
1342 /* XXX assert csz is non-zero */
1343 sc->sc_cachelsz = csz << 2; /* convert to bytes */
1344
1345 ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1346 if (ah == NULL) {
1347 DPRINTF(sc, ATH_DBG_FATAL,
1348 "Unable to attach hardware; HAL status %d\n", status);
1349 error = -ENXIO;
1350 goto bad;
1351 }
1352 sc->sc_ah = ah;
1353
1354 /* Get the hardware key cache size. */
1355 sc->sc_keymax = ah->ah_caps.keycache_size;
1356 if (sc->sc_keymax > ATH_KEYMAX) {
1357 DPRINTF(sc, ATH_DBG_KEYCACHE,
1358 "Warning, using only %u entries in %u key cache\n",
1359 ATH_KEYMAX, sc->sc_keymax);
1360 sc->sc_keymax = ATH_KEYMAX;
1361 }
1362
1363 /*
1364 * Reset the key cache since some parts do not
1365 * reset the contents on initial power up.
1366 */
1367 for (i = 0; i < sc->sc_keymax; i++)
1368 ath9k_hw_keyreset(ah, (u16) i);
1369
1370 /* Collect the channel list using the default country code */
1371
1372 error = ath_setup_channels(sc);
1373 if (error)
1374 goto bad;
1375
1376 /* default to MONITOR mode */
1377 sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1378
1379
1380 /* Setup rate tables */
1381
1382 ath_rate_attach(sc);
1383 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1384 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1385
1386 /*
1387 * Allocate hardware transmit queues: one queue for
1388 * beacon frames and one data queue for each QoS
1389 * priority. Note that the hal handles reseting
1390 * these queues at the needed time.
1391 */
1392 sc->beacon.beaconq = ath_beaconq_setup(ah);
1393 if (sc->beacon.beaconq == -1) {
1394 DPRINTF(sc, ATH_DBG_FATAL,
1395 "Unable to setup a beacon xmit queue\n");
1396 error = -EIO;
1397 goto bad2;
1398 }
1399 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1400 if (sc->beacon.cabq == NULL) {
1401 DPRINTF(sc, ATH_DBG_FATAL,
1402 "Unable to setup CAB xmit queue\n");
1403 error = -EIO;
1404 goto bad2;
1405 }
1406
1407 sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1408 ath_cabq_update(sc);
1409
1410 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1411 sc->tx.hwq_map[i] = -1;
1412
1413 /* Setup data queues */
1414 /* NB: ensure BK queue is the lowest priority h/w queue */
1415 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1416 DPRINTF(sc, ATH_DBG_FATAL,
1417 "Unable to setup xmit queue for BK traffic\n");
1418 error = -EIO;
1419 goto bad2;
1420 }
1421
1422 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1423 DPRINTF(sc, ATH_DBG_FATAL,
1424 "Unable to setup xmit queue for BE traffic\n");
1425 error = -EIO;
1426 goto bad2;
1427 }
1428 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1429 DPRINTF(sc, ATH_DBG_FATAL,
1430 "Unable to setup xmit queue for VI traffic\n");
1431 error = -EIO;
1432 goto bad2;
1433 }
1434 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1435 DPRINTF(sc, ATH_DBG_FATAL,
1436 "Unable to setup xmit queue for VO traffic\n");
1437 error = -EIO;
1438 goto bad2;
1439 }
1440
1441 /* Initializes the noise floor to a reasonable default value.
1442 * Later on this will be updated during ANI processing. */
1443
1444 sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1445 setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1446
1447 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1448 ATH9K_CIPHER_TKIP, NULL)) {
1449 /*
1450 * Whether we should enable h/w TKIP MIC.
1451 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1452 * report WMM capable, so it's always safe to turn on
1453 * TKIP MIC in this case.
1454 */
1455 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1456 0, 1, NULL);
1457 }
1458
1459 /*
1460 * Check whether the separate key cache entries
1461 * are required to handle both tx+rx MIC keys.
1462 * With split mic keys the number of stations is limited
1463 * to 27 otherwise 59.
1464 */
1465 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1466 ATH9K_CIPHER_TKIP, NULL)
1467 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1468 ATH9K_CIPHER_MIC, NULL)
1469 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1470 0, NULL))
1471 sc->sc_splitmic = 1;
1472
1473 /* turn on mcast key search if possible */
1474 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1475 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1476 1, NULL);
1477
1478 sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1479 sc->sc_config.txpowlimit_override = 0;
1480
1481 /* 11n Capabilities */
1482 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1483 sc->sc_flags |= SC_OP_TXAGGR;
1484 sc->sc_flags |= SC_OP_RXAGGR;
1485 }
1486
1487 sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1488 sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1489
1490 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1491 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1492
1493 ath9k_hw_getmac(ah, sc->sc_myaddr);
1494 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1495 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1496 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1497 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1498 }
1499
1500 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1501
1502 /* initialize beacon slots */
1503 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1504 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1505
1506 /* save MISC configurations */
1507 sc->sc_config.swBeaconProcess = 1;
1508
1509 /* setup channels and rates */
1510
1511 sc->sbands[IEEE80211_BAND_2GHZ].channels =
1512 sc->channels[IEEE80211_BAND_2GHZ];
1513 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1514 sc->rates[IEEE80211_BAND_2GHZ];
1515 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1516
1517 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1518 sc->sbands[IEEE80211_BAND_5GHZ].channels =
1519 sc->channels[IEEE80211_BAND_5GHZ];
1520 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1521 sc->rates[IEEE80211_BAND_5GHZ];
1522 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1523 }
1524
1525 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1526 ath9k_hw_btcoex_enable(sc->sc_ah);
1527
1528 return 0;
1529 bad2:
1530 /* cleanup tx queues */
1531 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1532 if (ATH_TXQ_SETUP(sc, i))
1533 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1534 bad:
1535 if (ah)
1536 ath9k_hw_detach(ah);
1537
1538 return error;
1539 }
1540
1541 static int ath_attach(u16 devid, struct ath_softc *sc)
1542 {
1543 struct ieee80211_hw *hw = sc->hw;
1544 int error = 0;
1545
1546 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1547
1548 error = ath_init(devid, sc);
1549 if (error != 0)
1550 return error;
1551
1552 /* get mac address from hardware and set in mac80211 */
1553
1554 SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1555
1556 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1557 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1558 IEEE80211_HW_SIGNAL_DBM |
1559 IEEE80211_HW_AMPDU_AGGREGATION;
1560
1561 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah))
1562 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1563
1564 hw->wiphy->interface_modes =
1565 BIT(NL80211_IFTYPE_AP) |
1566 BIT(NL80211_IFTYPE_STATION) |
1567 BIT(NL80211_IFTYPE_ADHOC);
1568
1569 hw->queues = 4;
1570 hw->max_rates = 4;
1571 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1572 hw->sta_data_size = sizeof(struct ath_node);
1573 hw->vif_data_size = sizeof(struct ath_vap);
1574
1575 hw->rate_control_algorithm = "ath9k_rate_control";
1576
1577 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1578 setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1579 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1580 setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1581 }
1582
1583 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1584 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1585 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1586 &sc->sbands[IEEE80211_BAND_5GHZ];
1587
1588 /* initialize tx/rx engine */
1589 error = ath_tx_init(sc, ATH_TXBUF);
1590 if (error != 0)
1591 goto detach;
1592
1593 error = ath_rx_init(sc, ATH_RXBUF);
1594 if (error != 0)
1595 goto detach;
1596
1597 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1598 /* Initialze h/w Rfkill */
1599 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1600 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1601
1602 /* Initialize s/w rfkill */
1603 if (ath_init_sw_rfkill(sc))
1604 goto detach;
1605 #endif
1606
1607 error = ieee80211_register_hw(hw);
1608
1609 /* Initialize LED control */
1610 ath_init_leds(sc);
1611
1612 return 0;
1613 detach:
1614 ath_detach(sc);
1615 return error;
1616 }
1617
1618 int ath_reset(struct ath_softc *sc, bool retry_tx)
1619 {
1620 struct ath_hal *ah = sc->sc_ah;
1621 struct ieee80211_hw *hw = sc->hw;
1622 int r;
1623
1624 ath9k_hw_set_interrupts(ah, 0);
1625 ath_draintxq(sc, retry_tx);
1626 ath_stoprecv(sc);
1627 ath_flushrecv(sc);
1628
1629 spin_lock_bh(&sc->sc_resetlock);
1630 r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, false);
1631 if (r)
1632 DPRINTF(sc, ATH_DBG_FATAL,
1633 "Unable to reset hardware; reset status %u\n", r);
1634 spin_unlock_bh(&sc->sc_resetlock);
1635
1636 if (ath_startrecv(sc) != 0)
1637 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1638
1639 /*
1640 * We may be doing a reset in response to a request
1641 * that changes the channel so update any state that
1642 * might change as a result.
1643 */
1644 ath_cache_conf_rate(sc, &hw->conf);
1645
1646 ath_update_txpow(sc);
1647
1648 if (sc->sc_flags & SC_OP_BEACONS)
1649 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1650
1651 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1652
1653 if (retry_tx) {
1654 int i;
1655 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1656 if (ATH_TXQ_SETUP(sc, i)) {
1657 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1658 ath_txq_schedule(sc, &sc->tx.txq[i]);
1659 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1660 }
1661 }
1662 }
1663
1664 return r;
1665 }
1666
1667 /*
1668 * This function will allocate both the DMA descriptor structure, and the
1669 * buffers it contains. These are used to contain the descriptors used
1670 * by the system.
1671 */
1672 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1673 struct list_head *head, const char *name,
1674 int nbuf, int ndesc)
1675 {
1676 #define DS2PHYS(_dd, _ds) \
1677 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1678 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1679 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1680
1681 struct ath_desc *ds;
1682 struct ath_buf *bf;
1683 int i, bsize, error;
1684
1685 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1686 name, nbuf, ndesc);
1687
1688 /* ath_desc must be a multiple of DWORDs */
1689 if ((sizeof(struct ath_desc) % 4) != 0) {
1690 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1691 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1692 error = -ENOMEM;
1693 goto fail;
1694 }
1695
1696 dd->dd_name = name;
1697 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1698
1699 /*
1700 * Need additional DMA memory because we can't use
1701 * descriptors that cross the 4K page boundary. Assume
1702 * one skipped descriptor per 4K page.
1703 */
1704 if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1705 u32 ndesc_skipped =
1706 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1707 u32 dma_len;
1708
1709 while (ndesc_skipped) {
1710 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1711 dd->dd_desc_len += dma_len;
1712
1713 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1714 };
1715 }
1716
1717 /* allocate descriptors */
1718 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1719 &dd->dd_desc_paddr, GFP_ATOMIC);
1720 if (dd->dd_desc == NULL) {
1721 error = -ENOMEM;
1722 goto fail;
1723 }
1724 ds = dd->dd_desc;
1725 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1726 dd->dd_name, ds, (u32) dd->dd_desc_len,
1727 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1728
1729 /* allocate buffers */
1730 bsize = sizeof(struct ath_buf) * nbuf;
1731 bf = kmalloc(bsize, GFP_KERNEL);
1732 if (bf == NULL) {
1733 error = -ENOMEM;
1734 goto fail2;
1735 }
1736 memset(bf, 0, bsize);
1737 dd->dd_bufptr = bf;
1738
1739 INIT_LIST_HEAD(head);
1740 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1741 bf->bf_desc = ds;
1742 bf->bf_daddr = DS2PHYS(dd, ds);
1743
1744 if (!(sc->sc_ah->ah_caps.hw_caps &
1745 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1746 /*
1747 * Skip descriptor addresses which can cause 4KB
1748 * boundary crossing (addr + length) with a 32 dword
1749 * descriptor fetch.
1750 */
1751 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1752 ASSERT((caddr_t) bf->bf_desc <
1753 ((caddr_t) dd->dd_desc +
1754 dd->dd_desc_len));
1755
1756 ds += ndesc;
1757 bf->bf_desc = ds;
1758 bf->bf_daddr = DS2PHYS(dd, ds);
1759 }
1760 }
1761 list_add_tail(&bf->list, head);
1762 }
1763 return 0;
1764 fail2:
1765 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1766 dd->dd_desc_paddr);
1767 fail:
1768 memset(dd, 0, sizeof(*dd));
1769 return error;
1770 #undef ATH_DESC_4KB_BOUND_CHECK
1771 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1772 #undef DS2PHYS
1773 }
1774
1775 void ath_descdma_cleanup(struct ath_softc *sc,
1776 struct ath_descdma *dd,
1777 struct list_head *head)
1778 {
1779 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1780 dd->dd_desc_paddr);
1781
1782 INIT_LIST_HEAD(head);
1783 kfree(dd->dd_bufptr);
1784 memset(dd, 0, sizeof(*dd));
1785 }
1786
1787 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1788 {
1789 int qnum;
1790
1791 switch (queue) {
1792 case 0:
1793 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1794 break;
1795 case 1:
1796 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1797 break;
1798 case 2:
1799 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1800 break;
1801 case 3:
1802 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1803 break;
1804 default:
1805 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1806 break;
1807 }
1808
1809 return qnum;
1810 }
1811
1812 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1813 {
1814 int qnum;
1815
1816 switch (queue) {
1817 case ATH9K_WME_AC_VO:
1818 qnum = 0;
1819 break;
1820 case ATH9K_WME_AC_VI:
1821 qnum = 1;
1822 break;
1823 case ATH9K_WME_AC_BE:
1824 qnum = 2;
1825 break;
1826 case ATH9K_WME_AC_BK:
1827 qnum = 3;
1828 break;
1829 default:
1830 qnum = -1;
1831 break;
1832 }
1833
1834 return qnum;
1835 }
1836
1837 /**********************/
1838 /* mac80211 callbacks */
1839 /**********************/
1840
1841 static int ath9k_start(struct ieee80211_hw *hw)
1842 {
1843 struct ath_softc *sc = hw->priv;
1844 struct ieee80211_channel *curchan = hw->conf.channel;
1845 struct ath9k_channel *init_channel;
1846 int r, pos;
1847
1848 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1849 "initial channel: %d MHz\n", curchan->center_freq);
1850
1851 /* setup initial channel */
1852
1853 pos = ath_get_channel(sc, curchan);
1854 if (pos == -1) {
1855 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n", curchan->center_freq);
1856 return -EINVAL;
1857 }
1858
1859 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1860 sc->sc_ah->ah_channels[pos].chanmode =
1861 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1862 init_channel = &sc->sc_ah->ah_channels[pos];
1863
1864 /* Reset SERDES registers */
1865 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1866
1867 /*
1868 * The basic interface to setting the hardware in a good
1869 * state is ``reset''. On return the hardware is known to
1870 * be powered up and with interrupts disabled. This must
1871 * be followed by initialization of the appropriate bits
1872 * and then setup of the interrupt mask.
1873 */
1874 spin_lock_bh(&sc->sc_resetlock);
1875 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1876 if (r) {
1877 DPRINTF(sc, ATH_DBG_FATAL,
1878 "Unable to reset hardware; reset status %u "
1879 "(freq %u MHz)\n", r,
1880 curchan->center_freq);
1881 spin_unlock_bh(&sc->sc_resetlock);
1882 return r;
1883 }
1884 spin_unlock_bh(&sc->sc_resetlock);
1885
1886 /*
1887 * This is needed only to setup initial state
1888 * but it's best done after a reset.
1889 */
1890 ath_update_txpow(sc);
1891
1892 /*
1893 * Setup the hardware after reset:
1894 * The receive engine is set going.
1895 * Frame transmit is handled entirely
1896 * in the frame output path; there's nothing to do
1897 * here except setup the interrupt mask.
1898 */
1899 if (ath_startrecv(sc) != 0) {
1900 DPRINTF(sc, ATH_DBG_FATAL,
1901 "Unable to start recv logic\n");
1902 return -EIO;
1903 }
1904
1905 /* Setup our intr mask. */
1906 sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1907 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1908 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1909
1910 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1911 sc->sc_imask |= ATH9K_INT_GTT;
1912
1913 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1914 sc->sc_imask |= ATH9K_INT_CST;
1915
1916 /*
1917 * Enable MIB interrupts when there are hardware phy counters.
1918 * Note we only do this (at the moment) for station mode.
1919 */
1920 if (ath9k_hw_phycounters(sc->sc_ah) &&
1921 ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1922 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
1923 sc->sc_imask |= ATH9K_INT_MIB;
1924 /*
1925 * Some hardware processes the TIM IE and fires an
1926 * interrupt when the TIM bit is set. For hardware
1927 * that does, if not overridden by configuration,
1928 * enable the TIM interrupt when operating as station.
1929 */
1930 if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1931 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
1932 !sc->sc_config.swBeaconProcess)
1933 sc->sc_imask |= ATH9K_INT_TIM;
1934
1935 ath_cache_conf_rate(sc, &hw->conf);
1936
1937 sc->sc_flags &= ~SC_OP_INVALID;
1938
1939 /* Disable BMISS interrupt when we're not associated */
1940 sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1941 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1942
1943 ieee80211_wake_queues(sc->hw);
1944
1945 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1946 r = ath_start_rfkill_poll(sc);
1947 #endif
1948 return r;
1949 }
1950
1951 static int ath9k_tx(struct ieee80211_hw *hw,
1952 struct sk_buff *skb)
1953 {
1954 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1955 struct ath_softc *sc = hw->priv;
1956 struct ath_tx_control txctl;
1957 int hdrlen, padsize;
1958
1959 memset(&txctl, 0, sizeof(struct ath_tx_control));
1960
1961 /*
1962 * As a temporary workaround, assign seq# here; this will likely need
1963 * to be cleaned up to work better with Beacon transmission and virtual
1964 * BSSes.
1965 */
1966 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1967 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1968 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1969 sc->tx.seq_no += 0x10;
1970 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1971 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1972 }
1973
1974 /* Add the padding after the header if this is not already done */
1975 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1976 if (hdrlen & 3) {
1977 padsize = hdrlen % 4;
1978 if (skb_headroom(skb) < padsize)
1979 return -1;
1980 skb_push(skb, padsize);
1981 memmove(skb->data, skb->data + padsize, hdrlen);
1982 }
1983
1984 /* Check if a tx queue is available */
1985
1986 txctl.txq = ath_test_get_txq(sc, skb);
1987 if (!txctl.txq)
1988 goto exit;
1989
1990 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
1991
1992 if (ath_tx_start(sc, skb, &txctl) != 0) {
1993 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
1994 goto exit;
1995 }
1996
1997 return 0;
1998 exit:
1999 dev_kfree_skb_any(skb);
2000 return 0;
2001 }
2002
2003 static void ath9k_stop(struct ieee80211_hw *hw)
2004 {
2005 struct ath_softc *sc = hw->priv;
2006
2007 if (sc->sc_flags & SC_OP_INVALID) {
2008 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2009 return;
2010 }
2011
2012 DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
2013
2014 ieee80211_stop_queues(sc->hw);
2015
2016 /* make sure h/w will not generate any interrupt
2017 * before setting the invalid flag. */
2018 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2019
2020 if (!(sc->sc_flags & SC_OP_INVALID)) {
2021 ath_draintxq(sc, false);
2022 ath_stoprecv(sc);
2023 ath9k_hw_phy_disable(sc->sc_ah);
2024 } else
2025 sc->rx.rxlink = NULL;
2026
2027 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2028 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2029 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2030 #endif
2031 /* disable HAL and put h/w to sleep */
2032 ath9k_hw_disable(sc->sc_ah);
2033 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2034
2035 sc->sc_flags |= SC_OP_INVALID;
2036
2037 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2038 }
2039
2040 static int ath9k_add_interface(struct ieee80211_hw *hw,
2041 struct ieee80211_if_init_conf *conf)
2042 {
2043 struct ath_softc *sc = hw->priv;
2044 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2045 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2046
2047 /* Support only vap for now */
2048
2049 if (sc->sc_nvaps)
2050 return -ENOBUFS;
2051
2052 switch (conf->type) {
2053 case NL80211_IFTYPE_STATION:
2054 ic_opmode = NL80211_IFTYPE_STATION;
2055 break;
2056 case NL80211_IFTYPE_ADHOC:
2057 ic_opmode = NL80211_IFTYPE_ADHOC;
2058 break;
2059 case NL80211_IFTYPE_AP:
2060 ic_opmode = NL80211_IFTYPE_AP;
2061 break;
2062 default:
2063 DPRINTF(sc, ATH_DBG_FATAL,
2064 "Interface type %d not yet supported\n", conf->type);
2065 return -EOPNOTSUPP;
2066 }
2067
2068 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2069
2070 /* Set the VAP opmode */
2071 avp->av_opmode = ic_opmode;
2072 avp->av_bslot = -1;
2073
2074 if (ic_opmode == NL80211_IFTYPE_AP)
2075 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2076
2077 sc->sc_vaps[0] = conf->vif;
2078 sc->sc_nvaps++;
2079
2080 /* Set the device opmode */
2081 sc->sc_ah->ah_opmode = ic_opmode;
2082
2083 if (conf->type == NL80211_IFTYPE_AP) {
2084 /* TODO: is this a suitable place to start ANI for AP mode? */
2085 /* Start ANI */
2086 mod_timer(&sc->sc_ani.timer,
2087 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2088 }
2089
2090 return 0;
2091 }
2092
2093 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2094 struct ieee80211_if_init_conf *conf)
2095 {
2096 struct ath_softc *sc = hw->priv;
2097 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2098
2099 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2100
2101 /* Stop ANI */
2102 del_timer_sync(&sc->sc_ani.timer);
2103
2104 /* Reclaim beacon resources */
2105 if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2106 sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2107 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2108 ath_beacon_return(sc, avp);
2109 }
2110
2111 sc->sc_flags &= ~SC_OP_BEACONS;
2112
2113 sc->sc_vaps[0] = NULL;
2114 sc->sc_nvaps--;
2115 }
2116
2117 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2118 {
2119 struct ath_softc *sc = hw->priv;
2120 struct ieee80211_conf *conf = &hw->conf;
2121
2122 mutex_lock(&sc->mutex);
2123 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2124 struct ieee80211_channel *curchan = hw->conf.channel;
2125 int pos;
2126
2127 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2128 curchan->center_freq);
2129
2130 pos = ath_get_channel(sc, curchan);
2131 if (pos == -1) {
2132 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n",
2133 curchan->center_freq);
2134 mutex_unlock(&sc->mutex);
2135 return -EINVAL;
2136 }
2137
2138 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2139 sc->sc_ah->ah_channels[pos].chanmode =
2140 (curchan->band == IEEE80211_BAND_2GHZ) ?
2141 CHANNEL_G : CHANNEL_A;
2142
2143 if (conf_is_ht(conf)) {
2144 if (conf_is_ht40(conf))
2145 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
2146
2147 sc->sc_ah->ah_channels[pos].chanmode =
2148 ath_get_extchanmode(sc, curchan,
2149 conf->channel_type);
2150 }
2151
2152 ath_update_chainmask(sc, conf_is_ht(conf));
2153
2154 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2155 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2156 mutex_unlock(&sc->mutex);
2157 return -EINVAL;
2158 }
2159 }
2160
2161 if (changed & IEEE80211_CONF_CHANGE_POWER)
2162 sc->sc_config.txpowlimit = 2 * conf->power_level;
2163
2164 mutex_unlock(&sc->mutex);
2165 return 0;
2166 }
2167
2168 static int ath9k_config_interface(struct ieee80211_hw *hw,
2169 struct ieee80211_vif *vif,
2170 struct ieee80211_if_conf *conf)
2171 {
2172 struct ath_softc *sc = hw->priv;
2173 struct ath_hal *ah = sc->sc_ah;
2174 struct ath_vap *avp = (void *)vif->drv_priv;
2175 u32 rfilt = 0;
2176 int error, i;
2177
2178 /* TODO: Need to decide which hw opmode to use for multi-interface
2179 * cases */
2180 if (vif->type == NL80211_IFTYPE_AP &&
2181 ah->ah_opmode != NL80211_IFTYPE_AP) {
2182 ah->ah_opmode = NL80211_IFTYPE_STATION;
2183 ath9k_hw_setopmode(ah);
2184 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2185 /* Request full reset to get hw opmode changed properly */
2186 sc->sc_flags |= SC_OP_FULL_RESET;
2187 }
2188
2189 if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2190 !is_zero_ether_addr(conf->bssid)) {
2191 switch (vif->type) {
2192 case NL80211_IFTYPE_STATION:
2193 case NL80211_IFTYPE_ADHOC:
2194 /* Set BSSID */
2195 memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2196 sc->sc_curaid = 0;
2197 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2198 sc->sc_curaid);
2199
2200 /* Set aggregation protection mode parameters */
2201 sc->sc_config.ath_aggr_prot = 0;
2202
2203 DPRINTF(sc, ATH_DBG_CONFIG,
2204 "RX filter 0x%x bssid %pM aid 0x%x\n",
2205 rfilt, sc->sc_curbssid, sc->sc_curaid);
2206
2207 /* need to reconfigure the beacon */
2208 sc->sc_flags &= ~SC_OP_BEACONS ;
2209
2210 break;
2211 default:
2212 break;
2213 }
2214 }
2215
2216 if ((conf->changed & IEEE80211_IFCC_BEACON) &&
2217 ((vif->type == NL80211_IFTYPE_ADHOC) ||
2218 (vif->type == NL80211_IFTYPE_AP))) {
2219 /*
2220 * Allocate and setup the beacon frame.
2221 *
2222 * Stop any previous beacon DMA. This may be
2223 * necessary, for example, when an ibss merge
2224 * causes reconfiguration; we may be called
2225 * with beacon transmission active.
2226 */
2227 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2228
2229 error = ath_beacon_alloc(sc, 0);
2230 if (error != 0)
2231 return error;
2232
2233 ath_beacon_sync(sc, 0);
2234 }
2235
2236 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2237 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2238 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2239 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2240 ath9k_hw_keysetmac(sc->sc_ah,
2241 (u16)i,
2242 sc->sc_curbssid);
2243 }
2244
2245 /* Only legacy IBSS for now */
2246 if (vif->type == NL80211_IFTYPE_ADHOC)
2247 ath_update_chainmask(sc, 0);
2248
2249 return 0;
2250 }
2251
2252 #define SUPPORTED_FILTERS \
2253 (FIF_PROMISC_IN_BSS | \
2254 FIF_ALLMULTI | \
2255 FIF_CONTROL | \
2256 FIF_OTHER_BSS | \
2257 FIF_BCN_PRBRESP_PROMISC | \
2258 FIF_FCSFAIL)
2259
2260 /* FIXME: sc->sc_full_reset ? */
2261 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2262 unsigned int changed_flags,
2263 unsigned int *total_flags,
2264 int mc_count,
2265 struct dev_mc_list *mclist)
2266 {
2267 struct ath_softc *sc = hw->priv;
2268 u32 rfilt;
2269
2270 changed_flags &= SUPPORTED_FILTERS;
2271 *total_flags &= SUPPORTED_FILTERS;
2272
2273 sc->rx.rxfilter = *total_flags;
2274 rfilt = ath_calcrxfilter(sc);
2275 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2276
2277 if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2278 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2279 ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2280 }
2281
2282 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2283 }
2284
2285 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2286 struct ieee80211_vif *vif,
2287 enum sta_notify_cmd cmd,
2288 struct ieee80211_sta *sta)
2289 {
2290 struct ath_softc *sc = hw->priv;
2291
2292 switch (cmd) {
2293 case STA_NOTIFY_ADD:
2294 ath_node_attach(sc, sta);
2295 break;
2296 case STA_NOTIFY_REMOVE:
2297 ath_node_detach(sc, sta);
2298 break;
2299 default:
2300 break;
2301 }
2302 }
2303
2304 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2305 u16 queue,
2306 const struct ieee80211_tx_queue_params *params)
2307 {
2308 struct ath_softc *sc = hw->priv;
2309 struct ath9k_tx_queue_info qi;
2310 int ret = 0, qnum;
2311
2312 if (queue >= WME_NUM_AC)
2313 return 0;
2314
2315 qi.tqi_aifs = params->aifs;
2316 qi.tqi_cwmin = params->cw_min;
2317 qi.tqi_cwmax = params->cw_max;
2318 qi.tqi_burstTime = params->txop;
2319 qnum = ath_get_hal_qnum(queue, sc);
2320
2321 DPRINTF(sc, ATH_DBG_CONFIG,
2322 "Configure tx [queue/halq] [%d/%d], "
2323 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2324 queue, qnum, params->aifs, params->cw_min,
2325 params->cw_max, params->txop);
2326
2327 ret = ath_txq_update(sc, qnum, &qi);
2328 if (ret)
2329 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2330
2331 return ret;
2332 }
2333
2334 static int ath9k_set_key(struct ieee80211_hw *hw,
2335 enum set_key_cmd cmd,
2336 struct ieee80211_vif *vif,
2337 struct ieee80211_sta *sta,
2338 struct ieee80211_key_conf *key)
2339 {
2340 struct ath_softc *sc = hw->priv;
2341 int ret = 0;
2342
2343 DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2344
2345 switch (cmd) {
2346 case SET_KEY:
2347 ret = ath_key_config(sc, sta, key);
2348 if (ret >= 0) {
2349 key->hw_key_idx = ret;
2350 /* push IV and Michael MIC generation to stack */
2351 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2352 if (key->alg == ALG_TKIP)
2353 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2354 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2355 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2356 ret = 0;
2357 }
2358 break;
2359 case DISABLE_KEY:
2360 ath_key_delete(sc, key);
2361 break;
2362 default:
2363 ret = -EINVAL;
2364 }
2365
2366 return ret;
2367 }
2368
2369 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2370 struct ieee80211_vif *vif,
2371 struct ieee80211_bss_conf *bss_conf,
2372 u32 changed)
2373 {
2374 struct ath_softc *sc = hw->priv;
2375
2376 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2377 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2378 bss_conf->use_short_preamble);
2379 if (bss_conf->use_short_preamble)
2380 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2381 else
2382 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2383 }
2384
2385 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2386 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2387 bss_conf->use_cts_prot);
2388 if (bss_conf->use_cts_prot &&
2389 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2390 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2391 else
2392 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2393 }
2394
2395 if (changed & BSS_CHANGED_ASSOC) {
2396 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2397 bss_conf->assoc);
2398 ath9k_bss_assoc_info(sc, vif, bss_conf);
2399 }
2400 }
2401
2402 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2403 {
2404 u64 tsf;
2405 struct ath_softc *sc = hw->priv;
2406 struct ath_hal *ah = sc->sc_ah;
2407
2408 tsf = ath9k_hw_gettsf64(ah);
2409
2410 return tsf;
2411 }
2412
2413 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2414 {
2415 struct ath_softc *sc = hw->priv;
2416 struct ath_hal *ah = sc->sc_ah;
2417
2418 ath9k_hw_reset_tsf(ah);
2419 }
2420
2421 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2422 enum ieee80211_ampdu_mlme_action action,
2423 struct ieee80211_sta *sta,
2424 u16 tid, u16 *ssn)
2425 {
2426 struct ath_softc *sc = hw->priv;
2427 int ret = 0;
2428
2429 switch (action) {
2430 case IEEE80211_AMPDU_RX_START:
2431 if (!(sc->sc_flags & SC_OP_RXAGGR))
2432 ret = -ENOTSUPP;
2433 break;
2434 case IEEE80211_AMPDU_RX_STOP:
2435 break;
2436 case IEEE80211_AMPDU_TX_START:
2437 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2438 if (ret < 0)
2439 DPRINTF(sc, ATH_DBG_FATAL,
2440 "Unable to start TX aggregation\n");
2441 else
2442 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2443 break;
2444 case IEEE80211_AMPDU_TX_STOP:
2445 ret = ath_tx_aggr_stop(sc, sta, tid);
2446 if (ret < 0)
2447 DPRINTF(sc, ATH_DBG_FATAL,
2448 "Unable to stop TX aggregation\n");
2449
2450 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2451 break;
2452 case IEEE80211_AMPDU_TX_RESUME:
2453 ath_tx_aggr_resume(sc, sta, tid);
2454 break;
2455 default:
2456 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2457 }
2458
2459 return ret;
2460 }
2461
2462 static struct ieee80211_ops ath9k_ops = {
2463 .tx = ath9k_tx,
2464 .start = ath9k_start,
2465 .stop = ath9k_stop,
2466 .add_interface = ath9k_add_interface,
2467 .remove_interface = ath9k_remove_interface,
2468 .config = ath9k_config,
2469 .config_interface = ath9k_config_interface,
2470 .configure_filter = ath9k_configure_filter,
2471 .sta_notify = ath9k_sta_notify,
2472 .conf_tx = ath9k_conf_tx,
2473 .bss_info_changed = ath9k_bss_info_changed,
2474 .set_key = ath9k_set_key,
2475 .get_tsf = ath9k_get_tsf,
2476 .reset_tsf = ath9k_reset_tsf,
2477 .ampdu_action = ath9k_ampdu_action,
2478 };
2479
2480 static struct {
2481 u32 version;
2482 const char * name;
2483 } ath_mac_bb_names[] = {
2484 { AR_SREV_VERSION_5416_PCI, "5416" },
2485 { AR_SREV_VERSION_5416_PCIE, "5418" },
2486 { AR_SREV_VERSION_9100, "9100" },
2487 { AR_SREV_VERSION_9160, "9160" },
2488 { AR_SREV_VERSION_9280, "9280" },
2489 { AR_SREV_VERSION_9285, "9285" }
2490 };
2491
2492 static struct {
2493 u16 version;
2494 const char * name;
2495 } ath_rf_names[] = {
2496 { 0, "5133" },
2497 { AR_RAD5133_SREV_MAJOR, "5133" },
2498 { AR_RAD5122_SREV_MAJOR, "5122" },
2499 { AR_RAD2133_SREV_MAJOR, "2133" },
2500 { AR_RAD2122_SREV_MAJOR, "2122" }
2501 };
2502
2503 /*
2504 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2505 */
2506 static const char *
2507 ath_mac_bb_name(u32 mac_bb_version)
2508 {
2509 int i;
2510
2511 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2512 if (ath_mac_bb_names[i].version == mac_bb_version) {
2513 return ath_mac_bb_names[i].name;
2514 }
2515 }
2516
2517 return "????";
2518 }
2519
2520 /*
2521 * Return the RF name. "????" is returned if the RF is unknown.
2522 */
2523 static const char *
2524 ath_rf_name(u16 rf_version)
2525 {
2526 int i;
2527
2528 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2529 if (ath_rf_names[i].version == rf_version) {
2530 return ath_rf_names[i].name;
2531 }
2532 }
2533
2534 return "????";
2535 }
2536
2537 static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2538 {
2539 void __iomem *mem;
2540 struct ath_softc *sc;
2541 struct ieee80211_hw *hw;
2542 u8 csz;
2543 u32 val;
2544 int ret = 0;
2545 struct ath_hal *ah;
2546
2547 if (pci_enable_device(pdev))
2548 return -EIO;
2549
2550 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2551
2552 if (ret) {
2553 printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
2554 goto bad;
2555 }
2556
2557 ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2558
2559 if (ret) {
2560 printk(KERN_ERR "ath9k: 32-bit DMA consistent "
2561 "DMA enable failed\n");
2562 goto bad;
2563 }
2564
2565 /*
2566 * Cache line size is used to size and align various
2567 * structures used to communicate with the hardware.
2568 */
2569 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
2570 if (csz == 0) {
2571 /*
2572 * Linux 2.4.18 (at least) writes the cache line size
2573 * register as a 16-bit wide register which is wrong.
2574 * We must have this setup properly for rx buffer
2575 * DMA to work so force a reasonable value here if it
2576 * comes up zero.
2577 */
2578 csz = L1_CACHE_BYTES / sizeof(u32);
2579 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
2580 }
2581 /*
2582 * The default setting of latency timer yields poor results,
2583 * set it to the value used by other systems. It may be worth
2584 * tweaking this setting more.
2585 */
2586 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
2587
2588 pci_set_master(pdev);
2589
2590 /*
2591 * Disable the RETRY_TIMEOUT register (0x41) to keep
2592 * PCI Tx retries from interfering with C3 CPU state.
2593 */
2594 pci_read_config_dword(pdev, 0x40, &val);
2595 if ((val & 0x0000ff00) != 0)
2596 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2597
2598 ret = pci_request_region(pdev, 0, "ath9k");
2599 if (ret) {
2600 dev_err(&pdev->dev, "PCI memory region reserve error\n");
2601 ret = -ENODEV;
2602 goto bad;
2603 }
2604
2605 mem = pci_iomap(pdev, 0, 0);
2606 if (!mem) {
2607 printk(KERN_ERR "PCI memory map error\n") ;
2608 ret = -EIO;
2609 goto bad1;
2610 }
2611
2612 hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
2613 if (hw == NULL) {
2614 printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
2615 goto bad2;
2616 }
2617
2618 SET_IEEE80211_DEV(hw, &pdev->dev);
2619 pci_set_drvdata(pdev, hw);
2620
2621 sc = hw->priv;
2622 sc->hw = hw;
2623 sc->dev = &pdev->dev;
2624 sc->mem = mem;
2625
2626 if (ath_attach(id->device, sc) != 0) {
2627 ret = -ENODEV;
2628 goto bad3;
2629 }
2630
2631 /* setup interrupt service routine */
2632
2633 if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
2634 printk(KERN_ERR "%s: request_irq failed\n",
2635 wiphy_name(hw->wiphy));
2636 ret = -EIO;
2637 goto bad4;
2638 }
2639
2640 ah = sc->sc_ah;
2641 printk(KERN_INFO
2642 "%s: Atheros AR%s MAC/BB Rev:%x "
2643 "AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
2644 wiphy_name(hw->wiphy),
2645 ath_mac_bb_name(ah->ah_macVersion),
2646 ah->ah_macRev,
2647 ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2648 ah->ah_phyRev,
2649 (unsigned long)mem, pdev->irq);
2650
2651 return 0;
2652 bad4:
2653 ath_detach(sc);
2654 bad3:
2655 ieee80211_free_hw(hw);
2656 bad2:
2657 pci_iounmap(pdev, mem);
2658 bad1:
2659 pci_release_region(pdev, 0);
2660 bad:
2661 pci_disable_device(pdev);
2662 return ret;
2663 }
2664
2665 static void ath_pci_remove(struct pci_dev *pdev)
2666 {
2667 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2668 struct ath_softc *sc = hw->priv;
2669
2670 ath_detach(sc);
2671 if (pdev->irq)
2672 free_irq(pdev->irq, sc);
2673 pci_iounmap(pdev, sc->mem);
2674 pci_release_region(pdev, 0);
2675 pci_disable_device(pdev);
2676 ieee80211_free_hw(hw);
2677 }
2678
2679 #ifdef CONFIG_PM
2680
2681 static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2682 {
2683 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2684 struct ath_softc *sc = hw->priv;
2685
2686 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2687
2688 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2689 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2690 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2691 #endif
2692
2693 pci_save_state(pdev);
2694 pci_disable_device(pdev);
2695 pci_set_power_state(pdev, PCI_D3hot);
2696
2697 return 0;
2698 }
2699
2700 static int ath_pci_resume(struct pci_dev *pdev)
2701 {
2702 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2703 struct ath_softc *sc = hw->priv;
2704 u32 val;
2705 int err;
2706
2707 err = pci_enable_device(pdev);
2708 if (err)
2709 return err;
2710 pci_restore_state(pdev);
2711 /*
2712 * Suspend/Resume resets the PCI configuration space, so we have to
2713 * re-disable the RETRY_TIMEOUT register (0x41) to keep
2714 * PCI Tx retries from interfering with C3 CPU state
2715 */
2716 pci_read_config_dword(pdev, 0x40, &val);
2717 if ((val & 0x0000ff00) != 0)
2718 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2719
2720 /* Enable LED */
2721 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
2722 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2723 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2724
2725 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2726 /*
2727 * check the h/w rfkill state on resume
2728 * and start the rfkill poll timer
2729 */
2730 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2731 queue_delayed_work(sc->hw->workqueue,
2732 &sc->rf_kill.rfkill_poll, 0);
2733 #endif
2734
2735 return 0;
2736 }
2737
2738 #endif /* CONFIG_PM */
2739
2740 MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
2741
2742 static struct pci_driver ath_pci_driver = {
2743 .name = "ath9k",
2744 .id_table = ath_pci_id_table,
2745 .probe = ath_pci_probe,
2746 .remove = ath_pci_remove,
2747 #ifdef CONFIG_PM
2748 .suspend = ath_pci_suspend,
2749 .resume = ath_pci_resume,
2750 #endif /* CONFIG_PM */
2751 };
2752
2753 static int __init init_ath_pci(void)
2754 {
2755 int error;
2756
2757 printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
2758
2759 /* Register rate control algorithm */
2760 error = ath_rate_control_register();
2761 if (error != 0) {
2762 printk(KERN_ERR
2763 "Unable to register rate control algorithm: %d\n",
2764 error);
2765 ath_rate_control_unregister();
2766 return error;
2767 }
2768
2769 if (pci_register_driver(&ath_pci_driver) < 0) {
2770 printk(KERN_ERR
2771 "ath_pci: No devices found, driver not installed.\n");
2772 ath_rate_control_unregister();
2773 pci_unregister_driver(&ath_pci_driver);
2774 return -ENODEV;
2775 }
2776
2777 return 0;
2778 }
2779 module_init(init_ath_pci);
2780
2781 static void __exit exit_ath_pci(void)
2782 {
2783 ath_rate_control_unregister();
2784 pci_unregister_driver(&ath_pci_driver);
2785 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2786 }
2787 module_exit(exit_ath_pci);
This page took 0.253879 seconds and 6 git commands to generate.