ath9k: Enable Fractional N mode
[deliverable/linux.git] / drivers / net / wireless / ath9k / phy.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18
19 void
20 ath9k_hw_write_regs(struct ath_hw *ah, u32 modesIndex, u32 freqIndex,
21 int regWrites)
22 {
23 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
24 }
25
26 bool
27 ath9k_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
28 {
29 u32 channelSel = 0;
30 u32 bModeSynth = 0;
31 u32 aModeRefSel = 0;
32 u32 reg32 = 0;
33 u16 freq;
34 struct chan_centers centers;
35
36 ath9k_hw_get_channel_centers(ah, chan, &centers);
37 freq = centers.synth_center;
38
39 if (freq < 4800) {
40 u32 txctl;
41
42 if (((freq - 2192) % 5) == 0) {
43 channelSel = ((freq - 672) * 2 - 3040) / 10;
44 bModeSynth = 0;
45 } else if (((freq - 2224) % 5) == 0) {
46 channelSel = ((freq - 704) * 2 - 3040) / 10;
47 bModeSynth = 1;
48 } else {
49 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
50 "Invalid channel %u MHz\n", freq);
51 return false;
52 }
53
54 channelSel = (channelSel << 2) & 0xff;
55 channelSel = ath9k_hw_reverse_bits(channelSel, 8);
56
57 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
58 if (freq == 2484) {
59
60 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
61 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
62 } else {
63 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
64 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
65 }
66
67 } else if ((freq % 20) == 0 && freq >= 5120) {
68 channelSel =
69 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
70 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
71 } else if ((freq % 10) == 0) {
72 channelSel =
73 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
74 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
75 aModeRefSel = ath9k_hw_reverse_bits(2, 2);
76 else
77 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
78 } else if ((freq % 5) == 0) {
79 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
80 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
81 } else {
82 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
83 "Invalid channel %u MHz\n", freq);
84 return false;
85 }
86
87 reg32 =
88 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
89 (1 << 5) | 0x1;
90
91 REG_WRITE(ah, AR_PHY(0x37), reg32);
92
93 ah->curchan = chan;
94 ah->curchan_rad_index = -1;
95
96 return true;
97 }
98
99 bool
100 ath9k_hw_ar9280_set_channel(struct ath_hw *ah,
101 struct ath9k_channel *chan)
102 {
103 u16 bMode, fracMode, aModeRefSel = 0;
104 u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
105 struct chan_centers centers;
106 u32 refDivA = 24;
107
108 ath9k_hw_get_channel_centers(ah, chan, &centers);
109 freq = centers.synth_center;
110
111 reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
112 reg32 &= 0xc0000000;
113
114 if (freq < 4800) {
115 u32 txctl;
116
117 bMode = 1;
118 fracMode = 1;
119 aModeRefSel = 0;
120 channelSel = (freq * 0x10000) / 15;
121
122 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
123 if (freq == 2484) {
124
125 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
126 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
127 } else {
128 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
129 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
130 }
131 } else {
132 bMode = 0;
133 fracMode = 0;
134
135 switch(ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
136 case 0:
137 if ((freq % 20) == 0) {
138 aModeRefSel = 3;
139 } else if ((freq % 10) == 0) {
140 aModeRefSel = 2;
141 }
142 if (aModeRefSel)
143 break;
144 case 1:
145 default:
146 aModeRefSel = 0;
147 fracMode = 1;
148 refDivA = 1;
149 channelSel = (freq * 0x8000) / 15;
150
151 REG_RMW_FIELD(ah, AR_AN_SYNTH9,
152 AR_AN_SYNTH9_REFDIVA, refDivA);
153
154 }
155
156 if (!fracMode) {
157 ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
158 channelSel = ndiv & 0x1ff;
159 channelFrac = (ndiv & 0xfffffe00) * 2;
160 channelSel = (channelSel << 17) | channelFrac;
161 }
162 }
163
164 reg32 = reg32 |
165 (bMode << 29) |
166 (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
167
168 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
169
170 ah->curchan = chan;
171 ah->curchan_rad_index = -1;
172
173 return true;
174 }
175
176 static void
177 ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
178 u32 numBits, u32 firstBit,
179 u32 column)
180 {
181 u32 tmp32, mask, arrayEntry, lastBit;
182 int32_t bitPosition, bitsLeft;
183
184 tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
185 arrayEntry = (firstBit - 1) / 8;
186 bitPosition = (firstBit - 1) % 8;
187 bitsLeft = numBits;
188 while (bitsLeft > 0) {
189 lastBit = (bitPosition + bitsLeft > 8) ?
190 8 : bitPosition + bitsLeft;
191 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
192 (column * 8);
193 rfBuf[arrayEntry] &= ~mask;
194 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
195 (column * 8)) & mask;
196 bitsLeft -= 8 - bitPosition;
197 tmp32 = tmp32 >> (8 - bitPosition);
198 bitPosition = 0;
199 arrayEntry++;
200 }
201 }
202
203 bool
204 ath9k_hw_set_rf_regs(struct ath_hw *ah, struct ath9k_channel *chan,
205 u16 modesIndex)
206 {
207 u32 eepMinorRev;
208 u32 ob5GHz = 0, db5GHz = 0;
209 u32 ob2GHz = 0, db2GHz = 0;
210 int regWrites = 0;
211
212 if (AR_SREV_9280_10_OR_LATER(ah))
213 return true;
214
215 eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
216
217 RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
218
219 RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
220
221 RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
222
223 RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
224 modesIndex);
225 {
226 int i;
227 for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
228 ah->analogBank6Data[i] =
229 INI_RA(&ah->iniBank6TPC, i, modesIndex);
230 }
231 }
232
233 if (eepMinorRev >= 2) {
234 if (IS_CHAN_2GHZ(chan)) {
235 ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
236 db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
237 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
238 ob2GHz, 3, 197, 0);
239 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
240 db2GHz, 3, 194, 0);
241 } else {
242 ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
243 db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
244 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
245 ob5GHz, 3, 203, 0);
246 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
247 db5GHz, 3, 200, 0);
248 }
249 }
250
251 RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
252
253 REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
254 regWrites);
255 REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
256 regWrites);
257 REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
258 regWrites);
259 REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
260 regWrites);
261 REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
262 regWrites);
263 REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
264 regWrites);
265
266 return true;
267 }
268
269 void
270 ath9k_hw_rfdetach(struct ath_hw *ah)
271 {
272 if (ah->analogBank0Data != NULL) {
273 kfree(ah->analogBank0Data);
274 ah->analogBank0Data = NULL;
275 }
276 if (ah->analogBank1Data != NULL) {
277 kfree(ah->analogBank1Data);
278 ah->analogBank1Data = NULL;
279 }
280 if (ah->analogBank2Data != NULL) {
281 kfree(ah->analogBank2Data);
282 ah->analogBank2Data = NULL;
283 }
284 if (ah->analogBank3Data != NULL) {
285 kfree(ah->analogBank3Data);
286 ah->analogBank3Data = NULL;
287 }
288 if (ah->analogBank6Data != NULL) {
289 kfree(ah->analogBank6Data);
290 ah->analogBank6Data = NULL;
291 }
292 if (ah->analogBank6TPCData != NULL) {
293 kfree(ah->analogBank6TPCData);
294 ah->analogBank6TPCData = NULL;
295 }
296 if (ah->analogBank7Data != NULL) {
297 kfree(ah->analogBank7Data);
298 ah->analogBank7Data = NULL;
299 }
300 if (ah->addac5416_21 != NULL) {
301 kfree(ah->addac5416_21);
302 ah->addac5416_21 = NULL;
303 }
304 if (ah->bank6Temp != NULL) {
305 kfree(ah->bank6Temp);
306 ah->bank6Temp = NULL;
307 }
308 }
309
310 bool ath9k_hw_init_rf(struct ath_hw *ah, int *status)
311 {
312 if (!AR_SREV_9280_10_OR_LATER(ah)) {
313 ah->analogBank0Data =
314 kzalloc((sizeof(u32) *
315 ah->iniBank0.ia_rows), GFP_KERNEL);
316 ah->analogBank1Data =
317 kzalloc((sizeof(u32) *
318 ah->iniBank1.ia_rows), GFP_KERNEL);
319 ah->analogBank2Data =
320 kzalloc((sizeof(u32) *
321 ah->iniBank2.ia_rows), GFP_KERNEL);
322 ah->analogBank3Data =
323 kzalloc((sizeof(u32) *
324 ah->iniBank3.ia_rows), GFP_KERNEL);
325 ah->analogBank6Data =
326 kzalloc((sizeof(u32) *
327 ah->iniBank6.ia_rows), GFP_KERNEL);
328 ah->analogBank6TPCData =
329 kzalloc((sizeof(u32) *
330 ah->iniBank6TPC.ia_rows), GFP_KERNEL);
331 ah->analogBank7Data =
332 kzalloc((sizeof(u32) *
333 ah->iniBank7.ia_rows), GFP_KERNEL);
334
335 if (ah->analogBank0Data == NULL
336 || ah->analogBank1Data == NULL
337 || ah->analogBank2Data == NULL
338 || ah->analogBank3Data == NULL
339 || ah->analogBank6Data == NULL
340 || ah->analogBank6TPCData == NULL
341 || ah->analogBank7Data == NULL) {
342 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
343 "Cannot allocate RF banks\n");
344 *status = -ENOMEM;
345 return false;
346 }
347
348 ah->addac5416_21 =
349 kzalloc((sizeof(u32) *
350 ah->iniAddac.ia_rows *
351 ah->iniAddac.ia_columns), GFP_KERNEL);
352 if (ah->addac5416_21 == NULL) {
353 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
354 "Cannot allocate addac5416_21\n");
355 *status = -ENOMEM;
356 return false;
357 }
358
359 ah->bank6Temp =
360 kzalloc((sizeof(u32) *
361 ah->iniBank6.ia_rows), GFP_KERNEL);
362 if (ah->bank6Temp == NULL) {
363 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
364 "Cannot allocate bank6Temp\n");
365 *status = -ENOMEM;
366 return false;
367 }
368 }
369
370 return true;
371 }
372
373 void
374 ath9k_hw_decrease_chain_power(struct ath_hw *ah, struct ath9k_channel *chan)
375 {
376 int i, regWrites = 0;
377 u32 bank6SelMask;
378 u32 *bank6Temp = ah->bank6Temp;
379
380 switch (ah->diversity_control) {
381 case ATH9K_ANT_FIXED_A:
382 bank6SelMask =
383 (ah->
384 antenna_switch_swap & ANTSWAP_AB) ? REDUCE_CHAIN_0 :
385 REDUCE_CHAIN_1;
386 break;
387 case ATH9K_ANT_FIXED_B:
388 bank6SelMask =
389 (ah->
390 antenna_switch_swap & ANTSWAP_AB) ? REDUCE_CHAIN_1 :
391 REDUCE_CHAIN_0;
392 break;
393 case ATH9K_ANT_VARIABLE:
394 return;
395 break;
396 default:
397 return;
398 break;
399 }
400
401 for (i = 0; i < ah->iniBank6.ia_rows; i++)
402 bank6Temp[i] = ah->analogBank6Data[i];
403
404 REG_WRITE(ah, AR_PHY_BASE + 0xD8, bank6SelMask);
405
406 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 189, 0);
407 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 190, 0);
408 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 191, 0);
409 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 192, 0);
410 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 193, 0);
411 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 222, 0);
412 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 245, 0);
413 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 246, 0);
414 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 247, 0);
415
416 REG_WRITE_RF_ARRAY(&ah->iniBank6, bank6Temp, regWrites);
417
418 REG_WRITE(ah, AR_PHY_BASE + 0xD8, 0x00000053);
419 #ifdef ALTER_SWITCH
420 REG_WRITE(ah, PHY_SWITCH_CHAIN_0,
421 (REG_READ(ah, PHY_SWITCH_CHAIN_0) & ~0x38)
422 | ((REG_READ(ah, PHY_SWITCH_CHAIN_0) >> 3) & 0x38));
423 #endif
424 }
This page took 0.070235 seconds and 5 git commands to generate.