8e1528d487b5cee14d2f45cda352bd12d5efb798
[deliverable/linux.git] / drivers / net / wireless / ath9k / rc.c
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include "core.h"
19
20 static struct ath_rate_table ar5416_11na_ratetable = {
21 42,
22 {
23 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
24 5400, 0x0b, 0x00, 12,
25 0, 2, 1, 0, 0, 0, 0, 0 },
26 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
27 7800, 0x0f, 0x00, 18,
28 0, 3, 1, 1, 1, 1, 1, 0 },
29 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
30 10000, 0x0a, 0x00, 24,
31 2, 4, 2, 2, 2, 2, 2, 0 },
32 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
33 13900, 0x0e, 0x00, 36,
34 2, 6, 2, 3, 3, 3, 3, 0 },
35 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
36 17300, 0x09, 0x00, 48,
37 4, 10, 3, 4, 4, 4, 4, 0 },
38 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
39 23000, 0x0d, 0x00, 72,
40 4, 14, 3, 5, 5, 5, 5, 0 },
41 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
42 27400, 0x08, 0x00, 96,
43 4, 20, 3, 6, 6, 6, 6, 0 },
44 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
45 29300, 0x0c, 0x00, 108,
46 4, 23, 3, 7, 7, 7, 7, 0 },
47 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
48 6400, 0x80, 0x00, 0,
49 0, 2, 3, 8, 24, 8, 24, 3216 },
50 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
51 12700, 0x81, 0x00, 1,
52 2, 4, 3, 9, 25, 9, 25, 6434 },
53 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
54 18800, 0x82, 0x00, 2,
55 2, 6, 3, 10, 26, 10, 26, 9650 },
56 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
57 25000, 0x83, 0x00, 3,
58 4, 10, 3, 11, 27, 11, 27, 12868 },
59 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
60 36700, 0x84, 0x00, 4,
61 4, 14, 3, 12, 28, 12, 28, 19304 },
62 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
63 48100, 0x85, 0x00, 5,
64 4, 20, 3, 13, 29, 13, 29, 25740 },
65 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
66 53500, 0x86, 0x00, 6,
67 4, 23, 3, 14, 30, 14, 30, 28956 },
68 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
69 59000, 0x87, 0x00, 7,
70 4, 25, 3, 15, 31, 15, 32, 32180 },
71 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
72 12700, 0x88, 0x00,
73 8, 0, 2, 3, 16, 33, 16, 33, 6430 },
74 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
75 24800, 0x89, 0x00, 9,
76 2, 4, 3, 17, 34, 17, 34, 12860 },
77 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
78 36600, 0x8a, 0x00, 10,
79 2, 6, 3, 18, 35, 18, 35, 19300 },
80 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
81 48100, 0x8b, 0x00, 11,
82 4, 10, 3, 19, 36, 19, 36, 25736 },
83 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
84 69500, 0x8c, 0x00, 12,
85 4, 14, 3, 20, 37, 20, 37, 38600 },
86 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
87 89500, 0x8d, 0x00, 13,
88 4, 20, 3, 21, 38, 21, 38, 51472 },
89 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
90 98900, 0x8e, 0x00, 14,
91 4, 23, 3, 22, 39, 22, 39, 57890 },
92 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
93 108300, 0x8f, 0x00, 15,
94 4, 25, 3, 23, 40, 23, 41, 64320 },
95 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
96 13200, 0x80, 0x00, 0,
97 0, 2, 3, 8, 24, 24, 24, 6684 },
98 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
99 25900, 0x81, 0x00, 1,
100 2, 4, 3, 9, 25, 25, 25, 13368 },
101 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
102 38600, 0x82, 0x00, 2,
103 2, 6, 3, 10, 26, 26, 26, 20052 },
104 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
105 49800, 0x83, 0x00, 3,
106 4, 10, 3, 11, 27, 27, 27, 26738 },
107 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
108 72200, 0x84, 0x00, 4,
109 4, 14, 3, 12, 28, 28, 28, 40104 },
110 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
111 92900, 0x85, 0x00, 5,
112 4, 20, 3, 13, 29, 29, 29, 53476 },
113 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
114 102700, 0x86, 0x00, 6,
115 4, 23, 3, 14, 30, 30, 30, 60156 },
116 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
117 112000, 0x87, 0x00, 7,
118 4, 25, 3, 15, 31, 32, 32, 66840 },
119 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
120 122000, 0x87, 0x00, 7,
121 4, 25, 3, 15, 31, 32, 32, 74200 },
122 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
123 25800, 0x88, 0x00, 8,
124 0, 2, 3, 16, 33, 33, 33, 13360 },
125 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
126 49800, 0x89, 0x00, 9,
127 2, 4, 3, 17, 34, 34, 34, 26720 },
128 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
129 71900, 0x8a, 0x00, 10,
130 2, 6, 3, 18, 35, 35, 35, 40080 },
131 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
132 92500, 0x8b, 0x00, 11,
133 4, 10, 3, 19, 36, 36, 36, 53440 },
134 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
135 130300, 0x8c, 0x00, 12,
136 4, 14, 3, 20, 37, 37, 37, 80160 },
137 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
138 162800, 0x8d, 0x00, 13,
139 4, 20, 3, 21, 38, 38, 38, 106880 },
140 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
141 178200, 0x8e, 0x00, 14,
142 4, 23, 3, 22, 39, 39, 39, 120240 },
143 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
144 192100, 0x8f, 0x00, 15,
145 4, 25, 3, 23, 40, 41, 41, 133600 },
146 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
147 207000, 0x8f, 0x00, 15,
148 4, 25, 3, 23, 40, 41, 41, 148400 },
149 },
150 50, /* probe interval */
151 50, /* rssi reduce interval */
152 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
153 };
154
155 /* 4ms frame limit not used for NG mode. The values filled
156 * for HT are the 64K max aggregate limit */
157
158 static struct ath_rate_table ar5416_11ng_ratetable = {
159 46,
160 {
161 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
162 900, 0x1b, 0x00, 2,
163 0, 0, 1, 0, 0, 0, 0, 0 },
164 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
165 1900, 0x1a, 0x04, 4,
166 1, 1, 1, 1, 1, 1, 1, 0 },
167 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
168 4900, 0x19, 0x04, 11,
169 2, 2, 2, 2, 2, 2, 2, 0 },
170 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
171 8100, 0x18, 0x04, 22,
172 3, 3, 2, 3, 3, 3, 3, 0 },
173 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
174 5400, 0x0b, 0x00, 12,
175 4, 2, 1, 4, 4, 4, 4, 0 },
176 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
177 7800, 0x0f, 0x00, 18,
178 4, 3, 1, 5, 5, 5, 5, 0 },
179 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
180 10100, 0x0a, 0x00, 24,
181 6, 4, 1, 6, 6, 6, 6, 0 },
182 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
183 14100, 0x0e, 0x00, 36,
184 6, 6, 2, 7, 7, 7, 7, 0 },
185 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
186 17700, 0x09, 0x00, 48,
187 8, 10, 3, 8, 8, 8, 8, 0 },
188 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
189 23700, 0x0d, 0x00, 72,
190 8, 14, 3, 9, 9, 9, 9, 0 },
191 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
192 27400, 0x08, 0x00, 96,
193 8, 20, 3, 10, 10, 10, 10, 0 },
194 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
195 30900, 0x0c, 0x00, 108,
196 8, 23, 3, 11, 11, 11, 11, 0 },
197 { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
198 6400, 0x80, 0x00, 0,
199 4, 2, 3, 12, 28, 12, 28, 3216 },
200 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
201 12700, 0x81, 0x00, 1,
202 6, 4, 3, 13, 29, 13, 29, 6434 },
203 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
204 18800, 0x82, 0x00, 2,
205 6, 6, 3, 14, 30, 14, 30, 9650 },
206 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
207 25000, 0x83, 0x00, 3,
208 8, 10, 3, 15, 31, 15, 31, 12868 },
209 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
210 36700, 0x84, 0x00, 4,
211 8, 14, 3, 16, 32, 16, 32, 19304 },
212 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
213 48100, 0x85, 0x00, 5,
214 8, 20, 3, 17, 33, 17, 33, 25740 },
215 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
216 53500, 0x86, 0x00, 6,
217 8, 23, 3, 18, 34, 18, 34, 28956 },
218 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
219 59000, 0x87, 0x00, 7,
220 8, 25, 3, 19, 35, 19, 36, 32180 },
221 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
222 12700, 0x88, 0x00, 8,
223 4, 2, 3, 20, 37, 20, 37, 6430 },
224 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
225 24800, 0x89, 0x00, 9,
226 6, 4, 3, 21, 38, 21, 38, 12860 },
227 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
228 36600, 0x8a, 0x00, 10,
229 6, 6, 3, 22, 39, 22, 39, 19300 },
230 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
231 48100, 0x8b, 0x00, 11,
232 8, 10, 3, 23, 40, 23, 40, 25736 },
233 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
234 69500, 0x8c, 0x00, 12,
235 8, 14, 3, 24, 41, 24, 41, 38600 },
236 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
237 89500, 0x8d, 0x00, 13,
238 8, 20, 3, 25, 42, 25, 42, 51472 },
239 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
240 98900, 0x8e, 0x00, 14,
241 8, 23, 3, 26, 43, 26, 44, 57890 },
242 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
243 108300, 0x8f, 0x00, 15,
244 8, 25, 3, 27, 44, 27, 45, 64320 },
245 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
246 13200, 0x80, 0x00, 0,
247 8, 2, 3, 12, 28, 28, 28, 6684 },
248 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
249 25900, 0x81, 0x00, 1,
250 8, 4, 3, 13, 29, 29, 29, 13368 },
251 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
252 38600, 0x82, 0x00, 2,
253 8, 6, 3, 14, 30, 30, 30, 20052 },
254 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
255 49800, 0x83, 0x00, 3,
256 8, 10, 3, 15, 31, 31, 31, 26738 },
257 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
258 72200, 0x84, 0x00, 4,
259 8, 14, 3, 16, 32, 32, 32, 40104 },
260 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
261 92900, 0x85, 0x00, 5,
262 8, 20, 3, 17, 33, 33, 33, 53476 },
263 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
264 102700, 0x86, 0x00, 6,
265 8, 23, 3, 18, 34, 34, 34, 60156 },
266 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
267 112000, 0x87, 0x00, 7,
268 8, 23, 3, 19, 35, 36, 36, 66840 },
269 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
270 122000, 0x87, 0x00, 7,
271 8, 25, 3, 19, 35, 36, 36, 74200 },
272 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
273 25800, 0x88, 0x00, 8,
274 8, 2, 3, 20, 37, 37, 37, 13360 },
275 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
276 49800, 0x89, 0x00, 9,
277 8, 4, 3, 21, 38, 38, 38, 26720 },
278 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
279 71900, 0x8a, 0x00, 10,
280 8, 6, 3, 22, 39, 39, 39, 40080 },
281 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
282 92500, 0x8b, 0x00, 11,
283 8, 10, 3, 23, 40, 40, 40, 53440 },
284 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
285 130300, 0x8c, 0x00, 12,
286 8, 14, 3, 24, 41, 41, 41, 80160 },
287 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
288 162800, 0x8d, 0x00, 13,
289 8, 20, 3, 25, 42, 42, 42, 106880 },
290 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
291 178200, 0x8e, 0x00, 14,
292 8, 23, 3, 26, 43, 43, 43, 120240 },
293 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
294 192100, 0x8f, 0x00, 15,
295 8, 23, 3, 27, 44, 45, 45, 133600 },
296 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
297 207000, 0x8f, 0x00, 15,
298 8, 25, 3, 27, 44, 45, 45, 148400 },
299 },
300 50, /* probe interval */
301 50, /* rssi reduce interval */
302 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
303 };
304
305 static struct ath_rate_table ar5416_11a_ratetable = {
306 8,
307 {
308 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
309 5400, 0x0b, 0x00, (0x80|12),
310 0, 2, 1, 0, 0 },
311 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
312 7800, 0x0f, 0x00, 18,
313 0, 3, 1, 1, 0 },
314 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
315 10000, 0x0a, 0x00, (0x80|24),
316 2, 4, 2, 2, 0 },
317 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
318 13900, 0x0e, 0x00, 36,
319 2, 6, 2, 3, 0 },
320 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
321 17300, 0x09, 0x00, (0x80|48),
322 4, 10, 3, 4, 0 },
323 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
324 23000, 0x0d, 0x00, 72,
325 4, 14, 3, 5, 0 },
326 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
327 27400, 0x08, 0x00, 96,
328 4, 19, 3, 6, 0 },
329 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
330 29300, 0x0c, 0x00, 108,
331 4, 23, 3, 7, 0 },
332 },
333 50, /* probe interval */
334 50, /* rssi reduce interval */
335 0, /* Phy rates allowed initially */
336 };
337
338 static struct ath_rate_table ar5416_11g_ratetable = {
339 12,
340 {
341 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
342 900, 0x1b, 0x00, 2,
343 0, 0, 1, 0, 0 },
344 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
345 1900, 0x1a, 0x04, 4,
346 1, 1, 1, 1, 0 },
347 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
348 4900, 0x19, 0x04, 11,
349 2, 2, 2, 2, 0 },
350 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
351 8100, 0x18, 0x04, 22,
352 3, 3, 2, 3, 0 },
353 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
354 5400, 0x0b, 0x00, 12,
355 4, 2, 1, 4, 0 },
356 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
357 7800, 0x0f, 0x00, 18,
358 4, 3, 1, 5, 0 },
359 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
360 10000, 0x0a, 0x00, 24,
361 6, 4, 1, 6, 0 },
362 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
363 13900, 0x0e, 0x00, 36,
364 6, 6, 2, 7, 0 },
365 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
366 17300, 0x09, 0x00, 48,
367 8, 10, 3, 8, 0 },
368 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
369 23000, 0x0d, 0x00, 72,
370 8, 14, 3, 9, 0 },
371 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
372 27400, 0x08, 0x00, 96,
373 8, 19, 3, 10, 0 },
374 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
375 29300, 0x0c, 0x00, 108,
376 8, 23, 3, 11, 0 },
377 },
378 50, /* probe interval */
379 50, /* rssi reduce interval */
380 0, /* Phy rates allowed initially */
381 };
382
383 static struct ath_rate_table ar5416_11b_ratetable = {
384 4,
385 {
386 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
387 900, 0x1b, 0x00, (0x80|2),
388 0, 0, 1, 0, 0 },
389 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
390 1800, 0x1a, 0x04, (0x80|4),
391 1, 1, 1, 1, 0 },
392 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
393 4300, 0x19, 0x04, (0x80|11),
394 1, 2, 2, 2, 0 },
395 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
396 7100, 0x18, 0x04, (0x80|22),
397 1, 4, 100, 3, 0 },
398 },
399 100, /* probe interval */
400 100, /* rssi reduce interval */
401 0, /* Phy rates allowed initially */
402 };
403
404 static inline int8_t median(int8_t a, int8_t b, int8_t c)
405 {
406 if (a >= b) {
407 if (b >= c)
408 return b;
409 else if (a > c)
410 return c;
411 else
412 return a;
413 } else {
414 if (a >= c)
415 return a;
416 else if (b >= c)
417 return c;
418 else
419 return b;
420 }
421 }
422
423 static void ath_rc_sort_validrates(struct ath_rate_table *rate_table,
424 struct ath_rate_priv *ath_rc_priv)
425 {
426 u8 i, j, idx, idx_next;
427
428 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
429 for (j = 0; j <= i-1; j++) {
430 idx = ath_rc_priv->valid_rate_index[j];
431 idx_next = ath_rc_priv->valid_rate_index[j+1];
432
433 if (rate_table->info[idx].ratekbps >
434 rate_table->info[idx_next].ratekbps) {
435 ath_rc_priv->valid_rate_index[j] = idx_next;
436 ath_rc_priv->valid_rate_index[j+1] = idx;
437 }
438 }
439 }
440 }
441
442 static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
443 {
444 u8 i;
445
446 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
447 ath_rc_priv->valid_rate_index[i] = 0;
448 }
449
450 static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
451 u8 index, int valid_tx_rate)
452 {
453 ASSERT(index <= ath_rc_priv->rate_table_size);
454 ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
455 }
456
457 static inline int ath_rc_isvalid_txmask(struct ath_rate_priv *ath_rc_priv,
458 u8 index)
459 {
460 ASSERT(index <= ath_rc_priv->rate_table_size);
461 return ath_rc_priv->valid_rate_index[index];
462 }
463
464 static inline int ath_rc_get_nextvalid_txrate(struct ath_rate_table *rate_table,
465 struct ath_rate_priv *ath_rc_priv,
466 u8 cur_valid_txrate,
467 u8 *next_idx)
468 {
469 u8 i;
470
471 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
472 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
473 *next_idx = ath_rc_priv->valid_rate_index[i+1];
474 return 1;
475 }
476 }
477
478 /* No more valid rates */
479 *next_idx = 0;
480
481 return 0;
482 }
483
484 /* Return true only for single stream */
485
486 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
487 {
488 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
489 return 0;
490 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
491 return 0;
492 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
493 return 0;
494 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
495 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
496 return 0;
497 if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
498 return 0;
499 return 1;
500 }
501
502 static inline int
503 ath_rc_get_nextlowervalid_txrate(struct ath_rate_table *rate_table,
504 struct ath_rate_priv *ath_rc_priv,
505 u8 cur_valid_txrate, u8 *next_idx)
506 {
507 int8_t i;
508
509 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
510 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
511 *next_idx = ath_rc_priv->valid_rate_index[i-1];
512 return 1;
513 }
514 }
515
516 return 0;
517 }
518
519 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
520 struct ath_rate_table *rate_table,
521 u32 capflag)
522 {
523 u8 i, hi = 0;
524 u32 valid;
525
526 for (i = 0; i < rate_table->rate_cnt; i++) {
527 valid = (ath_rc_priv->single_stream ?
528 rate_table->info[i].valid_single_stream :
529 rate_table->info[i].valid);
530 if (valid == 1) {
531 u32 phy = rate_table->info[i].phy;
532 u8 valid_rate_count = 0;
533
534 if (!ath_rc_valid_phyrate(phy, capflag, 0))
535 continue;
536
537 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
538
539 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
540 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
541 ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
542 hi = A_MAX(hi, i);
543 }
544 }
545
546 return hi;
547 }
548
549 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
550 struct ath_rate_table *rate_table,
551 struct ath_rateset *rateset,
552 u32 capflag)
553 {
554 u8 i, j, hi = 0;
555
556 /* Use intersection of working rates and valid rates */
557 for (i = 0; i < rateset->rs_nrates; i++) {
558 for (j = 0; j < rate_table->rate_cnt; j++) {
559 u32 phy = rate_table->info[j].phy;
560 u32 valid = (ath_rc_priv->single_stream ?
561 rate_table->info[j].valid_single_stream :
562 rate_table->info[j].valid);
563 u8 rate = rateset->rs_rates[i];
564 u8 dot11rate = rate_table->info[j].dot11rate;
565
566 /* We allow a rate only if its valid and the
567 * capflag matches one of the validity
568 * (VALID/VALID_20/VALID_40) flags */
569
570 if (((rate & 0x7F) == (dot11rate & 0x7F)) &&
571 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
572 WLAN_RC_CAP_MODE(capflag)) &&
573 !WLAN_RC_PHY_HT(phy)) {
574 u8 valid_rate_count = 0;
575
576 if (!ath_rc_valid_phyrate(phy, capflag, 0))
577 continue;
578
579 valid_rate_count =
580 ath_rc_priv->valid_phy_ratecnt[phy];
581
582 ath_rc_priv->valid_phy_rateidx[phy]
583 [valid_rate_count] = j;
584 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
585 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
586 hi = A_MAX(hi, j);
587 }
588 }
589 }
590
591 return hi;
592 }
593
594 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
595 struct ath_rate_table *rate_table,
596 u8 *mcs_set, u32 capflag)
597 {
598 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
599
600 u8 i, j, hi = 0;
601
602 /* Use intersection of working rates and valid rates */
603 for (i = 0; i < rateset->rs_nrates; i++) {
604 for (j = 0; j < rate_table->rate_cnt; j++) {
605 u32 phy = rate_table->info[j].phy;
606 u32 valid = (ath_rc_priv->single_stream ?
607 rate_table->info[j].valid_single_stream :
608 rate_table->info[j].valid);
609 u8 rate = rateset->rs_rates[i];
610 u8 dot11rate = rate_table->info[j].dot11rate;
611
612 if (((rate & 0x7F) != (dot11rate & 0x7F)) ||
613 !WLAN_RC_PHY_HT(phy) ||
614 !WLAN_RC_PHY_HT_VALID(valid, capflag))
615 continue;
616
617 if (!ath_rc_valid_phyrate(phy, capflag, 0))
618 continue;
619
620 ath_rc_priv->valid_phy_rateidx[phy]
621 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
622 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
623 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
624 hi = A_MAX(hi, j);
625 }
626 }
627
628 return hi;
629 }
630
631 static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
632 struct ath_rate_priv *ath_rc_priv,
633 struct ath_rate_table *rate_table,
634 int probe_allowed, int *is_probing,
635 int is_retry)
636 {
637 u32 dt, best_thruput, this_thruput, now_msec;
638 u8 rate, next_rate, best_rate, maxindex, minindex;
639 int8_t rssi_last, rssi_reduce = 0, index = 0;
640
641 *is_probing = 0;
642
643 rssi_last = median(ath_rc_priv->rssi_last,
644 ath_rc_priv->rssi_last_prev,
645 ath_rc_priv->rssi_last_prev2);
646
647 /*
648 * Age (reduce) last ack rssi based on how old it is.
649 * The bizarre numbers are so the delta is 160msec,
650 * meaning we divide by 16.
651 * 0msec <= dt <= 25msec: don't derate
652 * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
653 * 185msec <= dt: derate by 10dB
654 */
655
656 now_msec = jiffies_to_msecs(jiffies);
657 dt = now_msec - ath_rc_priv->rssi_time;
658
659 if (dt >= 185)
660 rssi_reduce = 10;
661 else if (dt >= 25)
662 rssi_reduce = (u8)((dt - 25) >> 4);
663
664 /* Now reduce rssi_last by rssi_reduce */
665 if (rssi_last < rssi_reduce)
666 rssi_last = 0;
667 else
668 rssi_last -= rssi_reduce;
669
670 /*
671 * Now look up the rate in the rssi table and return it.
672 * If no rates match then we return 0 (lowest rate)
673 */
674
675 best_thruput = 0;
676 maxindex = ath_rc_priv->max_valid_rate-1;
677
678 minindex = 0;
679 best_rate = minindex;
680
681 /*
682 * Try the higher rate first. It will reduce memory moving time
683 * if we have very good channel characteristics.
684 */
685 for (index = maxindex; index >= minindex ; index--) {
686 u8 per_thres;
687
688 rate = ath_rc_priv->valid_rate_index[index];
689 if (rate > ath_rc_priv->rate_max_phy)
690 continue;
691
692 /*
693 * For TCP the average collision rate is around 11%,
694 * so we ignore PERs less than this. This is to
695 * prevent the rate we are currently using (whose
696 * PER might be in the 10-15 range because of TCP
697 * collisions) looking worse than the next lower
698 * rate whose PER has decayed close to 0. If we
699 * used to next lower rate, its PER would grow to
700 * 10-15 and we would be worse off then staying
701 * at the current rate.
702 */
703 per_thres = ath_rc_priv->state[rate].per;
704 if (per_thres < 12)
705 per_thres = 12;
706
707 this_thruput = rate_table->info[rate].user_ratekbps *
708 (100 - per_thres);
709
710 if (best_thruput <= this_thruput) {
711 best_thruput = this_thruput;
712 best_rate = rate;
713 }
714 }
715
716 rate = best_rate;
717
718 /* if we are retrying for more than half the number
719 * of max retries, use the min rate for the next retry
720 */
721 if (is_retry)
722 rate = ath_rc_priv->valid_rate_index[minindex];
723
724 ath_rc_priv->rssi_last_lookup = rssi_last;
725
726 /*
727 * Must check the actual rate (ratekbps) to account for
728 * non-monoticity of 11g's rate table
729 */
730
731 if (rate >= ath_rc_priv->rate_max_phy && probe_allowed) {
732 rate = ath_rc_priv->rate_max_phy;
733
734 /* Probe the next allowed phy state */
735 /* FIXME:XXXX Check to make sure ratMax is checked properly */
736 if (ath_rc_get_nextvalid_txrate(rate_table,
737 ath_rc_priv, rate, &next_rate) &&
738 (now_msec - ath_rc_priv->probe_time >
739 rate_table->probe_interval) &&
740 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
741 rate = next_rate;
742 ath_rc_priv->probe_rate = rate;
743 ath_rc_priv->probe_time = now_msec;
744 ath_rc_priv->hw_maxretry_pktcnt = 0;
745 *is_probing = 1;
746 }
747 }
748
749 if (rate > (ath_rc_priv->rate_table_size - 1))
750 rate = ath_rc_priv->rate_table_size - 1;
751
752 ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) ||
753 (rate_table->info[rate].valid_single_stream &&
754 ath_rc_priv->single_stream));
755
756 return rate;
757 }
758
759 static void ath_rc_rate_set_series(struct ath_rate_table *rate_table ,
760 struct ieee80211_tx_rate *rate,
761 u8 tries, u8 rix, int rtsctsenable)
762 {
763 rate->count = tries;
764 rate->idx = rix;
765
766 if (rtsctsenable)
767 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
768 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
769 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
770 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
771 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
772 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy))
773 rate->flags |= IEEE80211_TX_RC_MCS;
774 }
775
776 static u8 ath_rc_rate_getidx(struct ath_softc *sc,
777 struct ath_rate_priv *ath_rc_priv,
778 struct ath_rate_table *rate_table,
779 u8 rix, u16 stepdown,
780 u16 min_rate)
781 {
782 u32 j;
783 u8 nextindex;
784
785 if (min_rate) {
786 for (j = RATE_TABLE_SIZE; j > 0; j--) {
787 if (ath_rc_get_nextlowervalid_txrate(rate_table,
788 ath_rc_priv, rix, &nextindex))
789 rix = nextindex;
790 else
791 break;
792 }
793 } else {
794 for (j = stepdown; j > 0; j--) {
795 if (ath_rc_get_nextlowervalid_txrate(rate_table,
796 ath_rc_priv, rix, &nextindex))
797 rix = nextindex;
798 else
799 break;
800 }
801 }
802 return rix;
803 }
804
805 static void ath_rc_ratefind(struct ath_softc *sc,
806 struct ath_rate_priv *ath_rc_priv,
807 int num_tries, int num_rates,
808 struct ieee80211_tx_info *tx_info, int *is_probe,
809 int is_retry)
810 {
811 u8 try_per_rate = 0, i = 0, rix, nrix;
812 struct ath_rate_table *rate_table;
813 struct ieee80211_tx_rate *rates = tx_info->control.rates;
814
815 rate_table = sc->cur_rate_table;
816 rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table, 1,
817 is_probe, is_retry);
818 nrix = rix;
819
820 if (*is_probe) {
821 /* set one try for probe rates. For the
822 * probes don't enable rts */
823 ath_rc_rate_set_series(rate_table,
824 &rates[i++], 1, nrix, 0);
825
826 try_per_rate = (num_tries/num_rates);
827 /* Get the next tried/allowed rate. No RTS for the next series
828 * after the probe rate
829 */
830 nrix = ath_rc_rate_getidx(sc,
831 ath_rc_priv, rate_table, nrix, 1, 0);
832 ath_rc_rate_set_series(rate_table,
833 &rates[i++], try_per_rate, nrix, 0);
834 } else {
835 try_per_rate = (num_tries/num_rates);
836 /* Set the choosen rate. No RTS for first series entry. */
837 ath_rc_rate_set_series(rate_table,
838 &rates[i++], try_per_rate, nrix, 0);
839 }
840
841 /* Fill in the other rates for multirate retry */
842 for ( ; i < num_rates; i++) {
843 u8 try_num;
844 u8 min_rate;
845
846 try_num = ((i + 1) == num_rates) ?
847 num_tries - (try_per_rate * i) : try_per_rate ;
848 min_rate = (((i + 1) == num_rates) && 0);
849
850 nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
851 rate_table, nrix, 1, min_rate);
852 /* All other rates in the series have RTS enabled */
853 ath_rc_rate_set_series(rate_table,
854 &rates[i], try_num, nrix, 1);
855 }
856
857 /*
858 * NB:Change rate series to enable aggregation when operating
859 * at lower MCS rates. When first rate in series is MCS2
860 * in HT40 @ 2.4GHz, series should look like:
861 *
862 * {MCS2, MCS1, MCS0, MCS0}.
863 *
864 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
865 * look like:
866 *
867 * {MCS3, MCS2, MCS1, MCS1}
868 *
869 * So, set fourth rate in series to be same as third one for
870 * above conditions.
871 */
872 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
873 (conf_is_ht(&sc->hw->conf))) {
874 u8 dot11rate = rate_table->info[rix].dot11rate;
875 u8 phy = rate_table->info[rix].phy;
876 if (i == 4 &&
877 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
878 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
879 rates[3].idx = rates[2].idx;
880 rates[3].flags = rates[2].flags;
881 }
882 }
883 }
884
885 static bool ath_rc_update_per(struct ath_softc *sc,
886 struct ath_rate_table *rate_table,
887 struct ath_rate_priv *ath_rc_priv,
888 struct ath_tx_info_priv *tx_info_priv,
889 int tx_rate, int xretries, int retries,
890 u32 now_msec)
891 {
892 bool state_change = false;
893 int count;
894 u8 last_per;
895 static u32 nretry_to_per_lookup[10] = {
896 100 * 0 / 1,
897 100 * 1 / 4,
898 100 * 1 / 2,
899 100 * 3 / 4,
900 100 * 4 / 5,
901 100 * 5 / 6,
902 100 * 6 / 7,
903 100 * 7 / 8,
904 100 * 8 / 9,
905 100 * 9 / 10
906 };
907
908 last_per = ath_rc_priv->state[tx_rate].per;
909
910 if (xretries) {
911 if (xretries == 1) {
912 ath_rc_priv->state[tx_rate].per += 30;
913 if (ath_rc_priv->state[tx_rate].per > 100)
914 ath_rc_priv->state[tx_rate].per = 100;
915 } else {
916 /* xretries == 2 */
917 count = ARRAY_SIZE(nretry_to_per_lookup);
918 if (retries >= count)
919 retries = count - 1;
920
921 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
922 ath_rc_priv->state[tx_rate].per =
923 (u8)(last_per - (last_per >> 3) + (100 >> 3));
924 }
925
926 /* xretries == 1 or 2 */
927
928 if (ath_rc_priv->probe_rate == tx_rate)
929 ath_rc_priv->probe_rate = 0;
930
931 } else { /* xretries == 0 */
932 count = ARRAY_SIZE(nretry_to_per_lookup);
933 if (retries >= count)
934 retries = count - 1;
935
936 if (tx_info_priv->n_bad_frames) {
937 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
938 * Assuming that n_frames is not 0. The current PER
939 * from the retries is 100 * retries / (retries+1),
940 * since the first retries attempts failed, and the
941 * next one worked. For the one that worked,
942 * n_bad_frames subframes out of n_frames wored,
943 * so the PER for that part is
944 * 100 * n_bad_frames / n_frames, and it contributes
945 * 100 * n_bad_frames / (n_frames * (retries+1)) to
946 * the above PER. The expression below is a
947 * simplified version of the sum of these two terms.
948 */
949 if (tx_info_priv->n_frames > 0) {
950 int n_frames, n_bad_frames;
951 u8 cur_per, new_per;
952
953 n_bad_frames = retries * tx_info_priv->n_frames +
954 tx_info_priv->n_bad_frames;
955 n_frames = tx_info_priv->n_frames * (retries + 1);
956 cur_per = (100 * n_bad_frames / n_frames) >> 3;
957 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
958 ath_rc_priv->state[tx_rate].per = new_per;
959 }
960 } else {
961 ath_rc_priv->state[tx_rate].per =
962 (u8)(last_per - (last_per >> 3) +
963 (nretry_to_per_lookup[retries] >> 3));
964 }
965
966 ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev;
967 ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last;
968 ath_rc_priv->rssi_last = tx_info_priv->tx.ts_rssi;
969 ath_rc_priv->rssi_time = now_msec;
970
971 /*
972 * If we got at most one retry then increase the max rate if
973 * this was a probe. Otherwise, ignore the probe.
974 */
975 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
976 if (retries > 0 || 2 * tx_info_priv->n_bad_frames >
977 tx_info_priv->n_frames) {
978 /*
979 * Since we probed with just a single attempt,
980 * any retries means the probe failed. Also,
981 * if the attempt worked, but more than half
982 * the subframes were bad then also consider
983 * the probe a failure.
984 */
985 ath_rc_priv->probe_rate = 0;
986 } else {
987 u8 probe_rate = 0;
988
989 ath_rc_priv->rate_max_phy =
990 ath_rc_priv->probe_rate;
991 probe_rate = ath_rc_priv->probe_rate;
992
993 if (ath_rc_priv->state[probe_rate].per > 30)
994 ath_rc_priv->state[probe_rate].per = 20;
995
996 ath_rc_priv->probe_rate = 0;
997
998 /*
999 * Since this probe succeeded, we allow the next
1000 * probe twice as soon. This allows the maxRate
1001 * to move up faster if the probes are
1002 * succesful.
1003 */
1004 ath_rc_priv->probe_time =
1005 now_msec - rate_table->probe_interval / 2;
1006 }
1007 }
1008
1009 if (retries > 0) {
1010 /*
1011 * Don't update anything. We don't know if
1012 * this was because of collisions or poor signal.
1013 *
1014 * Later: if rssi_ack is close to
1015 * ath_rc_priv->state[txRate].rssi_thres and we see lots
1016 * of retries, then we could increase
1017 * ath_rc_priv->state[txRate].rssi_thres.
1018 */
1019 ath_rc_priv->hw_maxretry_pktcnt = 0;
1020 } else {
1021 int32_t rssi_ackAvg;
1022 int8_t rssi_thres;
1023 int8_t rssi_ack_vmin;
1024
1025 /*
1026 * It worked with no retries. First ignore bogus (small)
1027 * rssi_ack values.
1028 */
1029 if (tx_rate == ath_rc_priv->rate_max_phy &&
1030 ath_rc_priv->hw_maxretry_pktcnt < 255) {
1031 ath_rc_priv->hw_maxretry_pktcnt++;
1032 }
1033
1034 if (tx_info_priv->tx.ts_rssi <
1035 rate_table->info[tx_rate].rssi_ack_validmin)
1036 goto exit;
1037
1038 /* Average the rssi */
1039 if (tx_rate != ath_rc_priv->rssi_sum_rate) {
1040 ath_rc_priv->rssi_sum_rate = tx_rate;
1041 ath_rc_priv->rssi_sum =
1042 ath_rc_priv->rssi_sum_cnt = 0;
1043 }
1044
1045 ath_rc_priv->rssi_sum += tx_info_priv->tx.ts_rssi;
1046 ath_rc_priv->rssi_sum_cnt++;
1047
1048 if (ath_rc_priv->rssi_sum_cnt < 4)
1049 goto exit;
1050
1051 rssi_ackAvg =
1052 (ath_rc_priv->rssi_sum + 2) / 4;
1053 rssi_thres =
1054 ath_rc_priv->state[tx_rate].rssi_thres;
1055 rssi_ack_vmin =
1056 rate_table->info[tx_rate].rssi_ack_validmin;
1057
1058 ath_rc_priv->rssi_sum =
1059 ath_rc_priv->rssi_sum_cnt = 0;
1060
1061 /* Now reduce the current rssi threshold */
1062 if ((rssi_ackAvg < rssi_thres + 2) &&
1063 (rssi_thres > rssi_ack_vmin)) {
1064 ath_rc_priv->state[tx_rate].rssi_thres--;
1065 }
1066
1067 state_change = true;
1068 }
1069 }
1070 exit:
1071 return state_change;
1072 }
1073
1074 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1075 If you can make sense of all this, you really need to go out more. */
1076
1077 static void ath_rc_update_ht(struct ath_softc *sc,
1078 struct ath_rate_priv *ath_rc_priv,
1079 struct ath_tx_info_priv *tx_info_priv,
1080 int tx_rate, int xretries, int retries)
1081 {
1082 #define CHK_RSSI(rate) \
1083 ((ath_rc_priv->state[(rate)].rssi_thres + \
1084 rate_table->info[(rate)].rssi_ack_deltamin) > \
1085 ath_rc_priv->state[(rate)+1].rssi_thres)
1086
1087 u32 now_msec = jiffies_to_msecs(jiffies);
1088 int rate;
1089 u8 last_per;
1090 bool state_change = false;
1091 struct ath_rate_table *rate_table = sc->cur_rate_table;
1092 int size = ath_rc_priv->rate_table_size;
1093
1094 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1095 return;
1096
1097 /* To compensate for some imbalance between ctrl and ext. channel */
1098
1099 if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
1100 tx_info_priv->tx.ts_rssi =
1101 tx_info_priv->tx.ts_rssi < 3 ? 0 :
1102 tx_info_priv->tx.ts_rssi - 3;
1103
1104 last_per = ath_rc_priv->state[tx_rate].per;
1105
1106 /* Update PER first */
1107 state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
1108 tx_info_priv, tx_rate, xretries,
1109 retries, now_msec);
1110
1111 /*
1112 * If this rate looks bad (high PER) then stop using it for
1113 * a while (except if we are probing).
1114 */
1115 if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 &&
1116 rate_table->info[tx_rate].ratekbps <=
1117 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1118 ath_rc_get_nextlowervalid_txrate(rate_table, ath_rc_priv,
1119 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1120
1121 /* Don't probe for a little while. */
1122 ath_rc_priv->probe_time = now_msec;
1123 }
1124
1125 if (state_change) {
1126 /*
1127 * Make sure the rates above this have higher rssi thresholds.
1128 * (Note: Monotonicity is kept within the OFDM rates and
1129 * within the CCK rates. However, no adjustment is
1130 * made to keep the rssi thresholds monotonically
1131 * increasing between the CCK and OFDM rates.)
1132 */
1133 for (rate = tx_rate; rate < size - 1; rate++) {
1134 if (rate_table->info[rate+1].phy !=
1135 rate_table->info[tx_rate].phy)
1136 break;
1137
1138 if (CHK_RSSI(rate)) {
1139 ath_rc_priv->state[rate+1].rssi_thres =
1140 ath_rc_priv->state[rate].rssi_thres +
1141 rate_table->info[rate].rssi_ack_deltamin;
1142 }
1143 }
1144
1145 /* Make sure the rates below this have lower rssi thresholds. */
1146 for (rate = tx_rate - 1; rate >= 0; rate--) {
1147 if (rate_table->info[rate].phy !=
1148 rate_table->info[tx_rate].phy)
1149 break;
1150
1151 if (CHK_RSSI(rate)) {
1152 if (ath_rc_priv->state[rate+1].rssi_thres <
1153 rate_table->info[rate].rssi_ack_deltamin)
1154 ath_rc_priv->state[rate].rssi_thres = 0;
1155 else {
1156 ath_rc_priv->state[rate].rssi_thres =
1157 ath_rc_priv->state[rate+1].rssi_thres -
1158 rate_table->info[rate].rssi_ack_deltamin;
1159 }
1160
1161 if (ath_rc_priv->state[rate].rssi_thres <
1162 rate_table->info[rate].rssi_ack_validmin) {
1163 ath_rc_priv->state[rate].rssi_thres =
1164 rate_table->info[rate].rssi_ack_validmin;
1165 }
1166 }
1167 }
1168 }
1169
1170 /* Make sure the rates below this have lower PER */
1171 /* Monotonicity is kept only for rates below the current rate. */
1172 if (ath_rc_priv->state[tx_rate].per < last_per) {
1173 for (rate = tx_rate - 1; rate >= 0; rate--) {
1174 if (rate_table->info[rate].phy !=
1175 rate_table->info[tx_rate].phy)
1176 break;
1177
1178 if (ath_rc_priv->state[rate].per >
1179 ath_rc_priv->state[rate+1].per) {
1180 ath_rc_priv->state[rate].per =
1181 ath_rc_priv->state[rate+1].per;
1182 }
1183 }
1184 }
1185
1186 /* Maintain monotonicity for rates above the current rate */
1187 for (rate = tx_rate; rate < size - 1; rate++) {
1188 if (ath_rc_priv->state[rate+1].per <
1189 ath_rc_priv->state[rate].per)
1190 ath_rc_priv->state[rate+1].per =
1191 ath_rc_priv->state[rate].per;
1192 }
1193
1194 /* Every so often, we reduce the thresholds and
1195 * PER (different for CCK and OFDM). */
1196 if (now_msec - ath_rc_priv->rssi_down_time >=
1197 rate_table->rssi_reduce_interval) {
1198
1199 for (rate = 0; rate < size; rate++) {
1200 if (ath_rc_priv->state[rate].rssi_thres >
1201 rate_table->info[rate].rssi_ack_validmin)
1202 ath_rc_priv->state[rate].rssi_thres -= 1;
1203 }
1204 ath_rc_priv->rssi_down_time = now_msec;
1205 }
1206
1207 /* Every so often, we reduce the thresholds
1208 * and PER (different for CCK and OFDM). */
1209 if (now_msec - ath_rc_priv->per_down_time >=
1210 rate_table->rssi_reduce_interval) {
1211 for (rate = 0; rate < size; rate++) {
1212 ath_rc_priv->state[rate].per =
1213 7 * ath_rc_priv->state[rate].per / 8;
1214 }
1215
1216 ath_rc_priv->per_down_time = now_msec;
1217 }
1218
1219 #undef CHK_RSSI
1220 }
1221
1222 static int ath_rc_get_rateindex(struct ath_rate_table *rate_table,
1223 struct ieee80211_tx_rate *rate)
1224 {
1225 int rix;
1226
1227 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1228 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
1229 rix = rate_table->info[rate->idx].ht_index;
1230 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1231 rix = rate_table->info[rate->idx].sgi_index;
1232 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1233 rix = rate_table->info[rate->idx].cw40index;
1234 else
1235 rix = rate_table->info[rate->idx].base_index;
1236
1237 return rix;
1238 }
1239
1240 static void ath_rc_tx_status(struct ath_softc *sc,
1241 struct ath_rate_priv *ath_rc_priv,
1242 struct ieee80211_tx_info *tx_info,
1243 int final_ts_idx, int xretries, int long_retry)
1244 {
1245 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1246 struct ath_rate_table *rate_table;
1247 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1248 u8 flags;
1249 u32 i = 0, rix;
1250
1251 rate_table = sc->cur_rate_table;
1252
1253 /*
1254 * If the first rate is not the final index, there
1255 * are intermediate rate failures to be processed.
1256 */
1257 if (final_ts_idx != 0) {
1258 /* Process intermediate rates that failed.*/
1259 for (i = 0; i < final_ts_idx ; i++) {
1260 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1261 flags = rates[i].flags;
1262
1263 /* If HT40 and we have switched mode from
1264 * 40 to 20 => don't update */
1265
1266 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1267 (ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG))
1268 return;
1269
1270 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1271 ath_rc_update_ht(sc, ath_rc_priv,
1272 tx_info_priv, rix,
1273 xretries ? 1 : 2,
1274 rates[i].count);
1275 }
1276 }
1277 } else {
1278 /*
1279 * Handle the special case of MIMO PS burst, where the second
1280 * aggregate is sent out with only one rate and one try.
1281 * Treating it as an excessive retry penalizes the rate
1282 * inordinately.
1283 */
1284 if (rates[0].count == 1 && xretries == 1)
1285 xretries = 2;
1286 }
1287
1288 flags = rates[i].flags;
1289
1290 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1291 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1292 (ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG)) {
1293 return;
1294 }
1295
1296 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1297 ath_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix,
1298 xretries, long_retry);
1299 }
1300
1301 static struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1302 enum ieee80211_band band,
1303 bool is_ht, bool is_cw_40)
1304 {
1305 int mode = 0;
1306
1307 switch(band) {
1308 case IEEE80211_BAND_2GHZ:
1309 mode = ATH9K_MODE_11G;
1310 if (is_ht)
1311 mode = ATH9K_MODE_11NG_HT20;
1312 if (is_cw_40)
1313 mode = ATH9K_MODE_11NG_HT40PLUS;
1314 break;
1315 case IEEE80211_BAND_5GHZ:
1316 mode = ATH9K_MODE_11A;
1317 if (is_ht)
1318 mode = ATH9K_MODE_11NA_HT20;
1319 if (is_cw_40)
1320 mode = ATH9K_MODE_11NA_HT40PLUS;
1321 break;
1322 default:
1323 DPRINTF(sc, ATH_DBG_CONFIG, "Invalid band\n");
1324 return NULL;
1325 }
1326
1327 BUG_ON(mode >= ATH9K_MODE_MAX);
1328
1329 DPRINTF(sc, ATH_DBG_CONFIG, "Choosing rate table for mode: %d\n", mode);
1330 return sc->hw_rate_table[mode];
1331 }
1332
1333 static void ath_rc_init(struct ath_softc *sc,
1334 struct ath_rate_priv *ath_rc_priv,
1335 struct ieee80211_supported_band *sband,
1336 struct ieee80211_sta *sta)
1337 {
1338 struct ath_rate_table *rate_table = NULL;
1339 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1340 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1341 u8 i, j, k, hi = 0, hthi = 0;
1342
1343 /* FIXME: Adhoc */
1344 if ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1345 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)) {
1346 bool is_cw_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1347 rate_table = ath_choose_rate_table(sc, sband->band,
1348 sta->ht_cap.ht_supported,
1349 is_cw_40);
1350 } else if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP) {
1351 /* cur_rate_table would be set on init through config() */
1352 rate_table = sc->cur_rate_table;
1353 }
1354
1355 if (!rate_table) {
1356 DPRINTF(sc, ATH_DBG_FATAL, "Rate table not initialized\n");
1357 return;
1358 }
1359
1360 if (sta->ht_cap.ht_supported) {
1361 ath_rc_priv->ht_cap = WLAN_RC_HT_FLAG;
1362 if (sc->sc_tx_chainmask != 1)
1363 ath_rc_priv->ht_cap |= WLAN_RC_DS_FLAG;
1364 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
1365 ath_rc_priv->ht_cap |= WLAN_RC_40_FLAG;
1366 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
1367 ath_rc_priv->ht_cap |= WLAN_RC_SGI_FLAG;
1368 }
1369
1370 /* Initial rate table size. Will change depending
1371 * on the working rate set */
1372 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1373
1374 /* Initialize thresholds according to the global rate table */
1375 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1376 ath_rc_priv->state[i].rssi_thres =
1377 rate_table->info[i].rssi_ack_validmin;
1378 ath_rc_priv->state[i].per = 0;
1379 }
1380
1381 /* Determine the valid rates */
1382 ath_rc_init_valid_txmask(ath_rc_priv);
1383
1384 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1385 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1386 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1387 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1388 }
1389 ath_rc_priv->rc_phy_mode = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG);
1390
1391 /* Set stream capability */
1392 ath_rc_priv->single_stream = (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? 0 : 1;
1393
1394 if (!rateset->rs_nrates) {
1395 /* No working rate, just initialize valid rates */
1396 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1397 ath_rc_priv->ht_cap);
1398 } else {
1399 /* Use intersection of working rates and valid rates */
1400 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1401 rateset, ath_rc_priv->ht_cap);
1402 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1403 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1404 rate_table,
1405 ht_mcs,
1406 ath_rc_priv->ht_cap);
1407 }
1408 hi = A_MAX(hi, hthi);
1409 }
1410
1411 ath_rc_priv->rate_table_size = hi + 1;
1412 ath_rc_priv->rate_max_phy = 0;
1413 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1414
1415 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1416 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1417 ath_rc_priv->valid_rate_index[k++] =
1418 ath_rc_priv->valid_phy_rateidx[i][j];
1419 }
1420
1421 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1422 || !ath_rc_priv->valid_phy_ratecnt[i])
1423 continue;
1424
1425 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1426 }
1427 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1428 ASSERT(k <= RATE_TABLE_SIZE);
1429
1430 ath_rc_priv->max_valid_rate = k;
1431 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1432 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1433 sc->cur_rate_table = rate_table;
1434 }
1435
1436 /* Rate Control callbacks */
1437 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1438 struct ieee80211_sta *sta, void *priv_sta,
1439 struct sk_buff *skb)
1440 {
1441 struct ath_softc *sc = priv;
1442 struct ath_rate_priv *ath_rc_priv = priv_sta;
1443 struct ath_tx_info_priv *tx_info_priv = NULL;
1444 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1445 struct ieee80211_hdr *hdr;
1446 int final_ts_idx, tx_status = 0, is_underrun = 0;
1447 __le16 fc;
1448
1449 hdr = (struct ieee80211_hdr *)skb->data;
1450 fc = hdr->frame_control;
1451 tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1452 final_ts_idx = tx_info_priv->tx.ts_rateindex;
1453
1454 if (!priv_sta || !ieee80211_is_data(fc) ||
1455 !tx_info_priv->update_rc)
1456 goto exit;
1457
1458 if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT)
1459 goto exit;
1460
1461 /*
1462 * If underrun error is seen assume it as an excessive retry only
1463 * if prefetch trigger level have reached the max (0x3f for 5416)
1464 * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
1465 * times. This affects how ratectrl updates PER for the failed rate.
1466 */
1467 if (tx_info_priv->tx.ts_flags &
1468 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
1469 ((sc->sc_ah->ah_txTrigLevel) >= ath_rc_priv->tx_triglevel_max)) {
1470 tx_status = 1;
1471 is_underrun = 1;
1472 }
1473
1474 if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
1475 (tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
1476 tx_status = 1;
1477
1478 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1479 (is_underrun) ? ATH_11N_TXMAXTRY :
1480 tx_info_priv->tx.ts_longretry);
1481
1482 exit:
1483 kfree(tx_info_priv);
1484 }
1485
1486 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1487 struct ieee80211_tx_rate_control *txrc)
1488 {
1489 struct ieee80211_supported_band *sband = txrc->sband;
1490 struct sk_buff *skb = txrc->skb;
1491 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1492 struct ath_softc *sc = priv;
1493 struct ieee80211_hw *hw = sc->hw;
1494 struct ath_rate_priv *ath_rc_priv = priv_sta;
1495 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1496 int is_probe = 0;
1497 __le16 fc = hdr->frame_control;
1498
1499 /* lowest rate for management and multicast/broadcast frames */
1500 if (!ieee80211_is_data(fc) || is_multicast_ether_addr(hdr->addr1) ||
1501 !sta) {
1502 tx_info->control.rates[0].idx = rate_lowest_index(sband, sta);
1503 tx_info->control.rates[0].count =
1504 is_multicast_ether_addr(hdr->addr1) ? 1 : ATH_MGT_TXMAXTRY;
1505 return;
1506 }
1507
1508 /* Find tx rate for unicast frames */
1509 ath_rc_ratefind(sc, ath_rc_priv, ATH_11N_TXMAXTRY, 4,
1510 tx_info, &is_probe, false);
1511
1512 /* Check if aggregation has to be enabled for this tid */
1513 if (conf_is_ht(&hw->conf)) {
1514 if (ieee80211_is_data_qos(fc)) {
1515 u8 *qc, tid;
1516 struct ath_node *an;
1517
1518 qc = ieee80211_get_qos_ctl(hdr);
1519 tid = qc[0] & 0xf;
1520 an = (struct ath_node *)sta->drv_priv;
1521
1522 if(ath_tx_aggr_check(sc, an, tid))
1523 ieee80211_start_tx_ba_session(hw, hdr->addr1, tid);
1524 }
1525 }
1526 }
1527
1528 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1529 struct ieee80211_sta *sta, void *priv_sta)
1530 {
1531 struct ath_softc *sc = priv;
1532 struct ath_rate_priv *ath_rc_priv = priv_sta;
1533 int i, j = 0;
1534
1535 for (i = 0; i < sband->n_bitrates; i++) {
1536 if (sta->supp_rates[sband->band] & BIT(i)) {
1537 ath_rc_priv->neg_rates.rs_rates[j]
1538 = (sband->bitrates[i].bitrate * 2) / 10;
1539 j++;
1540 }
1541 }
1542 ath_rc_priv->neg_rates.rs_nrates = j;
1543
1544 if (sta->ht_cap.ht_supported) {
1545 for (i = 0, j = 0; i < 77; i++) {
1546 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1547 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1548 if (j == ATH_RATE_MAX)
1549 break;
1550 }
1551 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1552 }
1553
1554 ath_rc_init(sc, priv_sta, sband, sta);
1555 }
1556
1557 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1558 {
1559 return hw->priv;
1560 }
1561
1562 static void ath_rate_free(void *priv)
1563 {
1564 return;
1565 }
1566
1567 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1568 {
1569 struct ath_softc *sc = priv;
1570 struct ath_rate_priv *rate_priv;
1571
1572 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1573 if (!rate_priv) {
1574 DPRINTF(sc, ATH_DBG_FATAL,
1575 "Unable to allocate private rc structure\n");
1576 return NULL;
1577 }
1578
1579 rate_priv->rssi_down_time = jiffies_to_msecs(jiffies);
1580 rate_priv->tx_triglevel_max = sc->sc_ah->ah_caps.tx_triglevel_max;
1581
1582 return rate_priv;
1583 }
1584
1585 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1586 void *priv_sta)
1587 {
1588 struct ath_rate_priv *rate_priv = priv_sta;
1589 kfree(rate_priv);
1590 }
1591
1592 static struct rate_control_ops ath_rate_ops = {
1593 .module = NULL,
1594 .name = "ath9k_rate_control",
1595 .tx_status = ath_tx_status,
1596 .get_rate = ath_get_rate,
1597 .rate_init = ath_rate_init,
1598 .alloc = ath_rate_alloc,
1599 .free = ath_rate_free,
1600 .alloc_sta = ath_rate_alloc_sta,
1601 .free_sta = ath_rate_free_sta,
1602 };
1603
1604 static void ath_setup_rate_table(struct ath_softc *sc,
1605 struct ath_rate_table *rate_table)
1606 {
1607 int i;
1608
1609 for (i = 0; i < rate_table->rate_cnt; i++) {
1610 u8 cix = rate_table->info[i].ctrl_rate;
1611
1612 rate_table->info[i].lpAckDuration =
1613 ath9k_hw_computetxtime(sc->sc_ah, rate_table,
1614 WLAN_CTRL_FRAME_SIZE,
1615 cix,
1616 false);
1617 rate_table->info[i].spAckDuration =
1618 ath9k_hw_computetxtime(sc->sc_ah, rate_table,
1619 WLAN_CTRL_FRAME_SIZE,
1620 cix,
1621 true);
1622 }
1623 }
1624
1625 void ath_rate_attach(struct ath_softc *sc)
1626 {
1627 sc->hw_rate_table[ATH9K_MODE_11B] =
1628 &ar5416_11b_ratetable;
1629 sc->hw_rate_table[ATH9K_MODE_11A] =
1630 &ar5416_11a_ratetable;
1631 sc->hw_rate_table[ATH9K_MODE_11G] =
1632 &ar5416_11g_ratetable;
1633 sc->hw_rate_table[ATH9K_MODE_11NA_HT20] =
1634 &ar5416_11na_ratetable;
1635 sc->hw_rate_table[ATH9K_MODE_11NG_HT20] =
1636 &ar5416_11ng_ratetable;
1637 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
1638 &ar5416_11na_ratetable;
1639 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
1640 &ar5416_11na_ratetable;
1641 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
1642 &ar5416_11ng_ratetable;
1643 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
1644 &ar5416_11ng_ratetable;
1645
1646 ath_setup_rate_table(sc, &ar5416_11b_ratetable);
1647 ath_setup_rate_table(sc, &ar5416_11a_ratetable);
1648 ath_setup_rate_table(sc, &ar5416_11g_ratetable);
1649 ath_setup_rate_table(sc, &ar5416_11na_ratetable);
1650 ath_setup_rate_table(sc, &ar5416_11ng_ratetable);
1651 }
1652
1653 int ath_rate_control_register(void)
1654 {
1655 return ieee80211_rate_control_register(&ath_rate_ops);
1656 }
1657
1658 void ath_rate_control_unregister(void)
1659 {
1660 ieee80211_rate_control_unregister(&ath_rate_ops);
1661 }
This page took 0.07592 seconds and 5 git commands to generate.