ath9k: Use a single opmode variable
[deliverable/linux.git] / drivers / net / wireless / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 /*
18 * Implementation of transmit path.
19 */
20
21 #include "core.h"
22
23 #define BITS_PER_BYTE 8
24 #define OFDM_PLCP_BITS 22
25 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
26 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
27 #define L_STF 8
28 #define L_LTF 8
29 #define L_SIG 4
30 #define HT_SIG 8
31 #define HT_STF 4
32 #define HT_LTF(_ns) (4 * (_ns))
33 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
34 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
35 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
36 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
37
38 #define OFDM_SIFS_TIME 16
39
40 static u32 bits_per_symbol[][2] = {
41 /* 20MHz 40MHz */
42 { 26, 54 }, /* 0: BPSK */
43 { 52, 108 }, /* 1: QPSK 1/2 */
44 { 78, 162 }, /* 2: QPSK 3/4 */
45 { 104, 216 }, /* 3: 16-QAM 1/2 */
46 { 156, 324 }, /* 4: 16-QAM 3/4 */
47 { 208, 432 }, /* 5: 64-QAM 2/3 */
48 { 234, 486 }, /* 6: 64-QAM 3/4 */
49 { 260, 540 }, /* 7: 64-QAM 5/6 */
50 { 52, 108 }, /* 8: BPSK */
51 { 104, 216 }, /* 9: QPSK 1/2 */
52 { 156, 324 }, /* 10: QPSK 3/4 */
53 { 208, 432 }, /* 11: 16-QAM 1/2 */
54 { 312, 648 }, /* 12: 16-QAM 3/4 */
55 { 416, 864 }, /* 13: 64-QAM 2/3 */
56 { 468, 972 }, /* 14: 64-QAM 3/4 */
57 { 520, 1080 }, /* 15: 64-QAM 5/6 */
58 };
59
60 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
61
62 /*
63 * Insert a chain of ath_buf (descriptors) on a multicast txq
64 * but do NOT start tx DMA on this queue.
65 * NB: must be called with txq lock held
66 */
67
68 static void ath_tx_mcastqaddbuf(struct ath_softc *sc,
69 struct ath_txq *txq,
70 struct list_head *head)
71 {
72 struct ath_hal *ah = sc->sc_ah;
73 struct ath_buf *bf;
74
75 if (list_empty(head))
76 return;
77
78 /*
79 * Insert the frame on the outbound list and
80 * pass it on to the hardware.
81 */
82 bf = list_first_entry(head, struct ath_buf, list);
83
84 /*
85 * The CAB queue is started from the SWBA handler since
86 * frames only go out on DTIM and to avoid possible races.
87 */
88 ath9k_hw_set_interrupts(ah, 0);
89
90 /*
91 * If there is anything in the mcastq, we want to set
92 * the "more data" bit in the last item in the queue to
93 * indicate that there is "more data". It makes sense to add
94 * it here since you are *always* going to have
95 * more data when adding to this queue, no matter where
96 * you call from.
97 */
98
99 if (txq->axq_depth) {
100 struct ath_buf *lbf;
101 struct ieee80211_hdr *hdr;
102
103 /*
104 * Add the "more data flag" to the last frame
105 */
106
107 lbf = list_entry(txq->axq_q.prev, struct ath_buf, list);
108 hdr = (struct ieee80211_hdr *)
109 ((struct sk_buff *)(lbf->bf_mpdu))->data;
110 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
111 }
112
113 /*
114 * Now, concat the frame onto the queue
115 */
116 list_splice_tail_init(head, &txq->axq_q);
117 txq->axq_depth++;
118 txq->axq_totalqueued++;
119 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
120
121 DPRINTF(sc, ATH_DBG_QUEUE,
122 "%s: txq depth = %d\n", __func__, txq->axq_depth);
123 if (txq->axq_link != NULL) {
124 *txq->axq_link = bf->bf_daddr;
125 DPRINTF(sc, ATH_DBG_XMIT,
126 "%s: link[%u](%p)=%llx (%p)\n",
127 __func__,
128 txq->axq_qnum, txq->axq_link,
129 ito64(bf->bf_daddr), bf->bf_desc);
130 }
131 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
132 ath9k_hw_set_interrupts(ah, sc->sc_imask);
133 }
134
135 /*
136 * Insert a chain of ath_buf (descriptors) on a txq and
137 * assume the descriptors are already chained together by caller.
138 * NB: must be called with txq lock held
139 */
140
141 static void ath_tx_txqaddbuf(struct ath_softc *sc,
142 struct ath_txq *txq, struct list_head *head)
143 {
144 struct ath_hal *ah = sc->sc_ah;
145 struct ath_buf *bf;
146 /*
147 * Insert the frame on the outbound list and
148 * pass it on to the hardware.
149 */
150
151 if (list_empty(head))
152 return;
153
154 bf = list_first_entry(head, struct ath_buf, list);
155
156 list_splice_tail_init(head, &txq->axq_q);
157 txq->axq_depth++;
158 txq->axq_totalqueued++;
159 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
160
161 DPRINTF(sc, ATH_DBG_QUEUE,
162 "%s: txq depth = %d\n", __func__, txq->axq_depth);
163
164 if (txq->axq_link == NULL) {
165 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
166 DPRINTF(sc, ATH_DBG_XMIT,
167 "%s: TXDP[%u] = %llx (%p)\n",
168 __func__, txq->axq_qnum,
169 ito64(bf->bf_daddr), bf->bf_desc);
170 } else {
171 *txq->axq_link = bf->bf_daddr;
172 DPRINTF(sc, ATH_DBG_XMIT, "%s: link[%u] (%p)=%llx (%p)\n",
173 __func__,
174 txq->axq_qnum, txq->axq_link,
175 ito64(bf->bf_daddr), bf->bf_desc);
176 }
177 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
178 ath9k_hw_txstart(ah, txq->axq_qnum);
179 }
180
181 /* Get transmit rate index using rate in Kbps */
182
183 static int ath_tx_findindex(const struct ath9k_rate_table *rt, int rate)
184 {
185 int i;
186 int ndx = 0;
187
188 for (i = 0; i < rt->rateCount; i++) {
189 if (rt->info[i].rateKbps == rate) {
190 ndx = i;
191 break;
192 }
193 }
194
195 return ndx;
196 }
197
198 /* Check if it's okay to send out aggregates */
199
200 static int ath_aggr_query(struct ath_softc *sc,
201 struct ath_node *an, u8 tidno)
202 {
203 struct ath_atx_tid *tid;
204 tid = ATH_AN_2_TID(an, tidno);
205
206 if (tid->addba_exchangecomplete || tid->addba_exchangeinprogress)
207 return 1;
208 else
209 return 0;
210 }
211
212 static enum ath9k_pkt_type get_hal_packet_type(struct ieee80211_hdr *hdr)
213 {
214 enum ath9k_pkt_type htype;
215 __le16 fc;
216
217 fc = hdr->frame_control;
218
219 /* Calculate Atheros packet type from IEEE80211 packet header */
220
221 if (ieee80211_is_beacon(fc))
222 htype = ATH9K_PKT_TYPE_BEACON;
223 else if (ieee80211_is_probe_resp(fc))
224 htype = ATH9K_PKT_TYPE_PROBE_RESP;
225 else if (ieee80211_is_atim(fc))
226 htype = ATH9K_PKT_TYPE_ATIM;
227 else if (ieee80211_is_pspoll(fc))
228 htype = ATH9K_PKT_TYPE_PSPOLL;
229 else
230 htype = ATH9K_PKT_TYPE_NORMAL;
231
232 return htype;
233 }
234
235 static void fill_min_rates(struct sk_buff *skb, struct ath_tx_control *txctl)
236 {
237 struct ieee80211_hdr *hdr;
238 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
239 struct ath_tx_info_priv *tx_info_priv;
240 __le16 fc;
241
242 hdr = (struct ieee80211_hdr *)skb->data;
243 fc = hdr->frame_control;
244 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
245
246 if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) {
247 txctl->use_minrate = 1;
248 txctl->min_rate = tx_info_priv->min_rate;
249 } else if (ieee80211_is_data(fc)) {
250 if (ieee80211_is_nullfunc(fc) ||
251 /* Port Access Entity (IEEE 802.1X) */
252 (skb->protocol == cpu_to_be16(0x888E))) {
253 txctl->use_minrate = 1;
254 txctl->min_rate = tx_info_priv->min_rate;
255 }
256 if (is_multicast_ether_addr(hdr->addr1))
257 txctl->mcast_rate = tx_info_priv->min_rate;
258 }
259
260 }
261
262 /* This function will setup additional txctl information, mostly rate stuff */
263 /* FIXME: seqno, ps */
264 static int ath_tx_prepare(struct ath_softc *sc,
265 struct sk_buff *skb,
266 struct ath_tx_control *txctl)
267 {
268 struct ieee80211_hw *hw = sc->hw;
269 struct ieee80211_hdr *hdr;
270 struct ath_rc_series *rcs;
271 struct ath_txq *txq = NULL;
272 const struct ath9k_rate_table *rt;
273 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
274 struct ath_tx_info_priv *tx_info_priv;
275 int hdrlen;
276 u8 rix, antenna;
277 __le16 fc;
278 u8 *qc;
279
280 memset(txctl, 0, sizeof(struct ath_tx_control));
281
282 txctl->dev = sc;
283 hdr = (struct ieee80211_hdr *)skb->data;
284 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
285 fc = hdr->frame_control;
286
287 rt = sc->sc_currates;
288 BUG_ON(!rt);
289
290 /* Fill misc fields */
291
292 spin_lock_bh(&sc->node_lock);
293 txctl->an = ath_node_get(sc, hdr->addr1);
294 /* create a temp node, if the node is not there already */
295 if (!txctl->an)
296 txctl->an = ath_node_attach(sc, hdr->addr1, 0);
297 spin_unlock_bh(&sc->node_lock);
298
299 if (ieee80211_is_data_qos(fc)) {
300 qc = ieee80211_get_qos_ctl(hdr);
301 txctl->tidno = qc[0] & 0xf;
302 }
303
304 txctl->if_id = 0;
305 txctl->nextfraglen = 0;
306 txctl->frmlen = skb->len + FCS_LEN - (hdrlen & 3);
307 txctl->txpower = MAX_RATE_POWER; /* FIXME */
308
309 /* Fill Key related fields */
310
311 txctl->keytype = ATH9K_KEY_TYPE_CLEAR;
312 txctl->keyix = ATH9K_TXKEYIX_INVALID;
313
314 if (tx_info->control.hw_key) {
315 txctl->keyix = tx_info->control.hw_key->hw_key_idx;
316 txctl->frmlen += tx_info->control.icv_len;
317
318 if (sc->sc_keytype == ATH9K_CIPHER_WEP)
319 txctl->keytype = ATH9K_KEY_TYPE_WEP;
320 else if (sc->sc_keytype == ATH9K_CIPHER_TKIP)
321 txctl->keytype = ATH9K_KEY_TYPE_TKIP;
322 else if (sc->sc_keytype == ATH9K_CIPHER_AES_CCM)
323 txctl->keytype = ATH9K_KEY_TYPE_AES;
324 }
325
326 /* Fill packet type */
327
328 txctl->atype = get_hal_packet_type(hdr);
329
330 /* Fill qnum */
331
332 txctl->qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
333 txq = &sc->sc_txq[txctl->qnum];
334 spin_lock_bh(&txq->axq_lock);
335
336 /* Try to avoid running out of descriptors */
337 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
338 DPRINTF(sc, ATH_DBG_FATAL,
339 "%s: TX queue: %d is full, depth: %d\n",
340 __func__,
341 txctl->qnum,
342 txq->axq_depth);
343 ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
344 txq->stopped = 1;
345 spin_unlock_bh(&txq->axq_lock);
346 return -1;
347 }
348
349 spin_unlock_bh(&txq->axq_lock);
350
351 /* Fill rate */
352
353 fill_min_rates(skb, txctl);
354
355 /* Fill flags */
356
357 txctl->flags = ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
358
359 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
360 tx_info->flags |= ATH9K_TXDESC_NOACK;
361 if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS)
362 tx_info->flags |= ATH9K_TXDESC_RTSENA;
363
364 /*
365 * Setup for rate calculations.
366 */
367 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
368 rcs = tx_info_priv->rcs;
369
370 if (ieee80211_is_data(fc) && !txctl->use_minrate) {
371
372 /* Enable HT only for DATA frames and not for EAPOL */
373 txctl->ht = (hw->conf.ht_conf.ht_supported &&
374 (tx_info->flags & IEEE80211_TX_CTL_AMPDU));
375
376 if (is_multicast_ether_addr(hdr->addr1)) {
377 rcs[0].rix = (u8)
378 ath_tx_findindex(rt, txctl->mcast_rate);
379
380 /*
381 * mcast packets are not re-tried.
382 */
383 rcs[0].tries = 1;
384 }
385 /* For HT capable stations, we save tidno for later use.
386 * We also override seqno set by upper layer with the one
387 * in tx aggregation state.
388 *
389 * First, the fragmentation stat is determined.
390 * If fragmentation is on, the sequence number is
391 * not overridden, since it has been
392 * incremented by the fragmentation routine.
393 */
394 if (likely(!(txctl->flags & ATH9K_TXDESC_FRAG_IS_ON)) &&
395 txctl->ht && sc->sc_txaggr) {
396 struct ath_atx_tid *tid;
397
398 tid = ATH_AN_2_TID(txctl->an, txctl->tidno);
399
400 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
401 IEEE80211_SEQ_SEQ_SHIFT);
402 txctl->seqno = tid->seq_next;
403 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
404 }
405 } else {
406 /* for management and control frames,
407 * or for NULL and EAPOL frames */
408 if (txctl->min_rate)
409 rcs[0].rix = ath_rate_findrateix(sc, txctl->min_rate);
410 else
411 rcs[0].rix = 0;
412 rcs[0].tries = ATH_MGT_TXMAXTRY;
413 }
414 rix = rcs[0].rix;
415
416 /*
417 * Calculate duration. This logically belongs in the 802.11
418 * layer but it lacks sufficient information to calculate it.
419 */
420 if ((txctl->flags & ATH9K_TXDESC_NOACK) == 0 && !ieee80211_is_ctl(fc)) {
421 u16 dur;
422 /*
423 * XXX not right with fragmentation.
424 */
425 if (sc->sc_flags & ATH_PREAMBLE_SHORT)
426 dur = rt->info[rix].spAckDuration;
427 else
428 dur = rt->info[rix].lpAckDuration;
429
430 if (le16_to_cpu(hdr->frame_control) &
431 IEEE80211_FCTL_MOREFRAGS) {
432 dur += dur; /* Add additional 'SIFS + ACK' */
433
434 /*
435 ** Compute size of next fragment in order to compute
436 ** durations needed to update NAV.
437 ** The last fragment uses the ACK duration only.
438 ** Add time for next fragment.
439 */
440 dur += ath9k_hw_computetxtime(sc->sc_ah, rt,
441 txctl->nextfraglen,
442 rix, sc->sc_flags & ATH_PREAMBLE_SHORT);
443 }
444
445 if (ieee80211_has_morefrags(fc) ||
446 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
447 /*
448 ** Force hardware to use computed duration for next
449 ** fragment by disabling multi-rate retry, which
450 ** updates duration based on the multi-rate
451 ** duration table.
452 */
453 rcs[1].tries = rcs[2].tries = rcs[3].tries = 0;
454 rcs[1].rix = rcs[2].rix = rcs[3].rix = 0;
455 /* reset tries but keep rate index */
456 rcs[0].tries = ATH_TXMAXTRY;
457 }
458
459 hdr->duration_id = cpu_to_le16(dur);
460 }
461
462 /*
463 * Determine if a tx interrupt should be generated for
464 * this descriptor. We take a tx interrupt to reap
465 * descriptors when the h/w hits an EOL condition or
466 * when the descriptor is specifically marked to generate
467 * an interrupt. We periodically mark descriptors in this
468 * way to insure timely replenishing of the supply needed
469 * for sending frames. Defering interrupts reduces system
470 * load and potentially allows more concurrent work to be
471 * done but if done to aggressively can cause senders to
472 * backup.
473 *
474 * NB: use >= to deal with sc_txintrperiod changing
475 * dynamically through sysctl.
476 */
477 spin_lock_bh(&txq->axq_lock);
478 if ((++txq->axq_intrcnt >= sc->sc_txintrperiod)) {
479 txctl->flags |= ATH9K_TXDESC_INTREQ;
480 txq->axq_intrcnt = 0;
481 }
482 spin_unlock_bh(&txq->axq_lock);
483
484 if (is_multicast_ether_addr(hdr->addr1)) {
485 antenna = sc->sc_mcastantenna + 1;
486 sc->sc_mcastantenna = (sc->sc_mcastantenna + 1) & 0x1;
487 } else
488 antenna = sc->sc_txantenna;
489
490 #ifdef USE_LEGACY_HAL
491 txctl->antenna = antenna;
492 #endif
493 return 0;
494 }
495
496 /* To complete a chain of buffers associated a frame */
497
498 static void ath_tx_complete_buf(struct ath_softc *sc,
499 struct ath_buf *bf,
500 struct list_head *bf_q,
501 int txok, int sendbar)
502 {
503 struct sk_buff *skb = bf->bf_mpdu;
504 struct ath_xmit_status tx_status;
505 dma_addr_t *pa;
506
507 /*
508 * Set retry information.
509 * NB: Don't use the information in the descriptor, because the frame
510 * could be software retried.
511 */
512 tx_status.retries = bf->bf_retries;
513 tx_status.flags = 0;
514
515 if (sendbar)
516 tx_status.flags = ATH_TX_BAR;
517
518 if (!txok) {
519 tx_status.flags |= ATH_TX_ERROR;
520
521 if (bf_isxretried(bf))
522 tx_status.flags |= ATH_TX_XRETRY;
523 }
524 /* Unmap this frame */
525 pa = get_dma_mem_context(bf, bf_dmacontext);
526 pci_unmap_single(sc->pdev,
527 *pa,
528 skb->len,
529 PCI_DMA_TODEVICE);
530 /* complete this frame */
531 ath_tx_complete(sc, skb, &tx_status, bf->bf_node);
532
533 /*
534 * Return the list of ath_buf of this mpdu to free queue
535 */
536 spin_lock_bh(&sc->sc_txbuflock);
537 list_splice_tail_init(bf_q, &sc->sc_txbuf);
538 spin_unlock_bh(&sc->sc_txbuflock);
539 }
540
541 /*
542 * queue up a dest/ac pair for tx scheduling
543 * NB: must be called with txq lock held
544 */
545
546 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
547 {
548 struct ath_atx_ac *ac = tid->ac;
549
550 /*
551 * if tid is paused, hold off
552 */
553 if (tid->paused)
554 return;
555
556 /*
557 * add tid to ac atmost once
558 */
559 if (tid->sched)
560 return;
561
562 tid->sched = true;
563 list_add_tail(&tid->list, &ac->tid_q);
564
565 /*
566 * add node ac to txq atmost once
567 */
568 if (ac->sched)
569 return;
570
571 ac->sched = true;
572 list_add_tail(&ac->list, &txq->axq_acq);
573 }
574
575 /* pause a tid */
576
577 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
578 {
579 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
580
581 spin_lock_bh(&txq->axq_lock);
582
583 tid->paused++;
584
585 spin_unlock_bh(&txq->axq_lock);
586 }
587
588 /* resume a tid and schedule aggregate */
589
590 void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
591 {
592 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
593
594 ASSERT(tid->paused > 0);
595 spin_lock_bh(&txq->axq_lock);
596
597 tid->paused--;
598
599 if (tid->paused > 0)
600 goto unlock;
601
602 if (list_empty(&tid->buf_q))
603 goto unlock;
604
605 /*
606 * Add this TID to scheduler and try to send out aggregates
607 */
608 ath_tx_queue_tid(txq, tid);
609 ath_txq_schedule(sc, txq);
610 unlock:
611 spin_unlock_bh(&txq->axq_lock);
612 }
613
614 /* Compute the number of bad frames */
615
616 static int ath_tx_num_badfrms(struct ath_softc *sc,
617 struct ath_buf *bf, int txok)
618 {
619 struct ath_node *an = bf->bf_node;
620 int isnodegone = (an->an_flags & ATH_NODE_CLEAN);
621 struct ath_buf *bf_last = bf->bf_lastbf;
622 struct ath_desc *ds = bf_last->bf_desc;
623 u16 seq_st = 0;
624 u32 ba[WME_BA_BMP_SIZE >> 5];
625 int ba_index;
626 int nbad = 0;
627 int isaggr = 0;
628
629 if (isnodegone || ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
630 return 0;
631
632 isaggr = bf_isaggr(bf);
633 if (isaggr) {
634 seq_st = ATH_DS_BA_SEQ(ds);
635 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
636 }
637
638 while (bf) {
639 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
640 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
641 nbad++;
642
643 bf = bf->bf_next;
644 }
645
646 return nbad;
647 }
648
649 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
650 {
651 struct sk_buff *skb;
652 struct ieee80211_hdr *hdr;
653
654 bf->bf_state.bf_type |= BUF_RETRY;
655 bf->bf_retries++;
656
657 skb = bf->bf_mpdu;
658 hdr = (struct ieee80211_hdr *)skb->data;
659 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
660 }
661
662 /* Update block ack window */
663
664 static void ath_tx_update_baw(struct ath_softc *sc,
665 struct ath_atx_tid *tid, int seqno)
666 {
667 int index, cindex;
668
669 index = ATH_BA_INDEX(tid->seq_start, seqno);
670 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
671
672 tid->tx_buf[cindex] = NULL;
673
674 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
675 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
676 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
677 }
678 }
679
680 /*
681 * ath_pkt_dur - compute packet duration (NB: not NAV)
682 *
683 * rix - rate index
684 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
685 * width - 0 for 20 MHz, 1 for 40 MHz
686 * half_gi - to use 4us v/s 3.6 us for symbol time
687 */
688
689 static u32 ath_pkt_duration(struct ath_softc *sc,
690 u8 rix,
691 struct ath_buf *bf,
692 int width,
693 int half_gi,
694 bool shortPreamble)
695 {
696 const struct ath9k_rate_table *rt = sc->sc_currates;
697 u32 nbits, nsymbits, duration, nsymbols;
698 u8 rc;
699 int streams, pktlen;
700
701 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
702 rc = rt->info[rix].rateCode;
703
704 /*
705 * for legacy rates, use old function to compute packet duration
706 */
707 if (!IS_HT_RATE(rc))
708 return ath9k_hw_computetxtime(sc->sc_ah,
709 rt,
710 pktlen,
711 rix,
712 shortPreamble);
713 /*
714 * find number of symbols: PLCP + data
715 */
716 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
717 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
718 nsymbols = (nbits + nsymbits - 1) / nsymbits;
719
720 if (!half_gi)
721 duration = SYMBOL_TIME(nsymbols);
722 else
723 duration = SYMBOL_TIME_HALFGI(nsymbols);
724
725 /*
726 * addup duration for legacy/ht training and signal fields
727 */
728 streams = HT_RC_2_STREAMS(rc);
729 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
730 return duration;
731 }
732
733 /* Rate module function to set rate related fields in tx descriptor */
734
735 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
736 {
737 struct ath_hal *ah = sc->sc_ah;
738 const struct ath9k_rate_table *rt;
739 struct ath_desc *ds = bf->bf_desc;
740 struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
741 struct ath9k_11n_rate_series series[4];
742 int i, flags, rtsctsena = 0, dynamic_mimops = 0;
743 u32 ctsduration = 0;
744 u8 rix = 0, cix, ctsrate = 0;
745 u32 aggr_limit_with_rts = sc->sc_rtsaggrlimit;
746 struct ath_node *an = (struct ath_node *) bf->bf_node;
747
748 /*
749 * get the cix for the lowest valid rix.
750 */
751 rt = sc->sc_currates;
752 for (i = 4; i--;) {
753 if (bf->bf_rcs[i].tries) {
754 rix = bf->bf_rcs[i].rix;
755 break;
756 }
757 }
758 flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
759 cix = rt->info[rix].controlRate;
760
761 /*
762 * If 802.11g protection is enabled, determine whether
763 * to use RTS/CTS or just CTS. Note that this is only
764 * done for OFDM/HT unicast frames.
765 */
766 if (sc->sc_protmode != PROT_M_NONE &&
767 (rt->info[rix].phy == PHY_OFDM ||
768 rt->info[rix].phy == PHY_HT) &&
769 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
770 if (sc->sc_protmode == PROT_M_RTSCTS)
771 flags = ATH9K_TXDESC_RTSENA;
772 else if (sc->sc_protmode == PROT_M_CTSONLY)
773 flags = ATH9K_TXDESC_CTSENA;
774
775 cix = rt->info[sc->sc_protrix].controlRate;
776 rtsctsena = 1;
777 }
778
779 /* For 11n, the default behavior is to enable RTS for
780 * hw retried frames. We enable the global flag here and
781 * let rate series flags determine which rates will actually
782 * use RTS.
783 */
784 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
785 BUG_ON(!an);
786 /*
787 * 802.11g protection not needed, use our default behavior
788 */
789 if (!rtsctsena)
790 flags = ATH9K_TXDESC_RTSENA;
791 /*
792 * For dynamic MIMO PS, RTS needs to precede the first aggregate
793 * and the second aggregate should have any protection at all.
794 */
795 if (an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) {
796 if (!bf_isaggrburst(bf)) {
797 flags = ATH9K_TXDESC_RTSENA;
798 dynamic_mimops = 1;
799 } else {
800 flags = 0;
801 }
802 }
803 }
804
805 /*
806 * Set protection if aggregate protection on
807 */
808 if (sc->sc_config.ath_aggr_prot &&
809 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
810 flags = ATH9K_TXDESC_RTSENA;
811 cix = rt->info[sc->sc_protrix].controlRate;
812 rtsctsena = 1;
813 }
814
815 /*
816 * For AR5416 - RTS cannot be followed by a frame larger than 8K.
817 */
818 if (bf_isaggr(bf) && (bf->bf_al > aggr_limit_with_rts)) {
819 /*
820 * Ensure that in the case of SM Dynamic power save
821 * while we are bursting the second aggregate the
822 * RTS is cleared.
823 */
824 flags &= ~(ATH9K_TXDESC_RTSENA);
825 }
826
827 /*
828 * CTS transmit rate is derived from the transmit rate
829 * by looking in the h/w rate table. We must also factor
830 * in whether or not a short preamble is to be used.
831 */
832 /* NB: cix is set above where RTS/CTS is enabled */
833 BUG_ON(cix == 0xff);
834 ctsrate = rt->info[cix].rateCode |
835 (bf_isshpreamble(bf) ? rt->info[cix].shortPreamble : 0);
836
837 /*
838 * Setup HAL rate series
839 */
840 memzero(series, sizeof(struct ath9k_11n_rate_series) * 4);
841
842 for (i = 0; i < 4; i++) {
843 if (!bf->bf_rcs[i].tries)
844 continue;
845
846 rix = bf->bf_rcs[i].rix;
847
848 series[i].Rate = rt->info[rix].rateCode |
849 (bf_isshpreamble(bf) ? rt->info[rix].shortPreamble : 0);
850
851 series[i].Tries = bf->bf_rcs[i].tries;
852
853 series[i].RateFlags = (
854 (bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ?
855 ATH9K_RATESERIES_RTS_CTS : 0) |
856 ((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ?
857 ATH9K_RATESERIES_2040 : 0) |
858 ((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ?
859 ATH9K_RATESERIES_HALFGI : 0);
860
861 series[i].PktDuration = ath_pkt_duration(
862 sc, rix, bf,
863 (bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) != 0,
864 (bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG),
865 bf_isshpreamble(bf));
866
867 if ((an->an_smmode == ATH_SM_PWRSAV_STATIC) &&
868 (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG) == 0) {
869 /*
870 * When sending to an HT node that has enabled static
871 * SM/MIMO power save, send at single stream rates but
872 * use maximum allowed transmit chains per user,
873 * hardware, regulatory, or country limits for
874 * better range.
875 */
876 series[i].ChSel = sc->sc_tx_chainmask;
877 } else {
878 if (bf_isht(bf))
879 series[i].ChSel =
880 ath_chainmask_sel_logic(sc, an);
881 else
882 series[i].ChSel = sc->sc_tx_chainmask;
883 }
884
885 if (rtsctsena)
886 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
887
888 /*
889 * Set RTS for all rates if node is in dynamic powersave
890 * mode and we are using dual stream rates.
891 */
892 if (dynamic_mimops && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG))
893 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
894 }
895
896 /*
897 * For non-HT devices, calculate RTS/CTS duration in software
898 * and disable multi-rate retry.
899 */
900 if (flags && !(ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)) {
901 /*
902 * Compute the transmit duration based on the frame
903 * size and the size of an ACK frame. We call into the
904 * HAL to do the computation since it depends on the
905 * characteristics of the actual PHY being used.
906 *
907 * NB: CTS is assumed the same size as an ACK so we can
908 * use the precalculated ACK durations.
909 */
910 if (flags & ATH9K_TXDESC_RTSENA) { /* SIFS + CTS */
911 ctsduration += bf_isshpreamble(bf) ?
912 rt->info[cix].spAckDuration :
913 rt->info[cix].lpAckDuration;
914 }
915
916 ctsduration += series[0].PktDuration;
917
918 if ((bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { /* SIFS + ACK */
919 ctsduration += bf_isshpreamble(bf) ?
920 rt->info[rix].spAckDuration :
921 rt->info[rix].lpAckDuration;
922 }
923
924 /*
925 * Disable multi-rate retry when using RTS/CTS by clearing
926 * series 1, 2 and 3.
927 */
928 memzero(&series[1], sizeof(struct ath9k_11n_rate_series) * 3);
929 }
930
931 /*
932 * set dur_update_en for l-sig computation except for PS-Poll frames
933 */
934 ath9k_hw_set11n_ratescenario(ah, ds, lastds,
935 !bf_ispspoll(bf),
936 ctsrate,
937 ctsduration,
938 series, 4, flags);
939 if (sc->sc_config.ath_aggr_prot && flags)
940 ath9k_hw_set11n_burstduration(ah, ds, 8192);
941 }
942
943 /*
944 * Function to send a normal HT (non-AMPDU) frame
945 * NB: must be called with txq lock held
946 */
947
948 static int ath_tx_send_normal(struct ath_softc *sc,
949 struct ath_txq *txq,
950 struct ath_atx_tid *tid,
951 struct list_head *bf_head)
952 {
953 struct ath_buf *bf;
954 struct sk_buff *skb;
955 struct ieee80211_tx_info *tx_info;
956 struct ath_tx_info_priv *tx_info_priv;
957
958 BUG_ON(list_empty(bf_head));
959
960 bf = list_first_entry(bf_head, struct ath_buf, list);
961 bf->bf_state.bf_type &= ~BUF_AMPDU; /* regular HT frame */
962
963 skb = (struct sk_buff *)bf->bf_mpdu;
964 tx_info = IEEE80211_SKB_CB(skb);
965 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
966 memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
967
968 /* update starting sequence number for subsequent ADDBA request */
969 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
970
971 /* Queue to h/w without aggregation */
972 bf->bf_nframes = 1;
973 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
974 ath_buf_set_rate(sc, bf);
975 ath_tx_txqaddbuf(sc, txq, bf_head);
976
977 return 0;
978 }
979
980 /* flush tid's software queue and send frames as non-ampdu's */
981
982 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
983 {
984 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
985 struct ath_buf *bf;
986 struct list_head bf_head;
987 INIT_LIST_HEAD(&bf_head);
988
989 ASSERT(tid->paused > 0);
990 spin_lock_bh(&txq->axq_lock);
991
992 tid->paused--;
993
994 if (tid->paused > 0) {
995 spin_unlock_bh(&txq->axq_lock);
996 return;
997 }
998
999 while (!list_empty(&tid->buf_q)) {
1000 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1001 ASSERT(!bf_isretried(bf));
1002 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1003 ath_tx_send_normal(sc, txq, tid, &bf_head);
1004 }
1005
1006 spin_unlock_bh(&txq->axq_lock);
1007 }
1008
1009 /* Completion routine of an aggregate */
1010
1011 static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
1012 struct ath_txq *txq,
1013 struct ath_buf *bf,
1014 struct list_head *bf_q,
1015 int txok)
1016 {
1017 struct ath_node *an = bf->bf_node;
1018 struct ath_atx_tid *tid = ATH_AN_2_TID(an, bf->bf_tidno);
1019 struct ath_buf *bf_last = bf->bf_lastbf;
1020 struct ath_desc *ds = bf_last->bf_desc;
1021 struct ath_buf *bf_next, *bf_lastq = NULL;
1022 struct list_head bf_head, bf_pending;
1023 u16 seq_st = 0;
1024 u32 ba[WME_BA_BMP_SIZE >> 5];
1025 int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
1026 int isnodegone = (an->an_flags & ATH_NODE_CLEAN);
1027
1028 isaggr = bf_isaggr(bf);
1029 if (isaggr) {
1030 if (txok) {
1031 if (ATH_DS_TX_BA(ds)) {
1032 /*
1033 * extract starting sequence and
1034 * block-ack bitmap
1035 */
1036 seq_st = ATH_DS_BA_SEQ(ds);
1037 memcpy(ba,
1038 ATH_DS_BA_BITMAP(ds),
1039 WME_BA_BMP_SIZE >> 3);
1040 } else {
1041 memzero(ba, WME_BA_BMP_SIZE >> 3);
1042
1043 /*
1044 * AR5416 can become deaf/mute when BA
1045 * issue happens. Chip needs to be reset.
1046 * But AP code may have sychronization issues
1047 * when perform internal reset in this routine.
1048 * Only enable reset in STA mode for now.
1049 */
1050 if (sc->sc_ah->ah_opmode == ATH9K_M_STA)
1051 needreset = 1;
1052 }
1053 } else {
1054 memzero(ba, WME_BA_BMP_SIZE >> 3);
1055 }
1056 }
1057
1058 INIT_LIST_HEAD(&bf_pending);
1059 INIT_LIST_HEAD(&bf_head);
1060
1061 while (bf) {
1062 txfail = txpending = 0;
1063 bf_next = bf->bf_next;
1064
1065 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
1066 /* transmit completion, subframe is
1067 * acked by block ack */
1068 } else if (!isaggr && txok) {
1069 /* transmit completion */
1070 } else {
1071
1072 if (!tid->cleanup_inprogress && !isnodegone &&
1073 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
1074 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
1075 ath_tx_set_retry(sc, bf);
1076 txpending = 1;
1077 } else {
1078 bf->bf_state.bf_type |= BUF_XRETRY;
1079 txfail = 1;
1080 sendbar = 1;
1081 }
1082 } else {
1083 /*
1084 * cleanup in progress, just fail
1085 * the un-acked sub-frames
1086 */
1087 txfail = 1;
1088 }
1089 }
1090 /*
1091 * Remove ath_buf's of this sub-frame from aggregate queue.
1092 */
1093 if (bf_next == NULL) { /* last subframe in the aggregate */
1094 ASSERT(bf->bf_lastfrm == bf_last);
1095
1096 /*
1097 * The last descriptor of the last sub frame could be
1098 * a holding descriptor for h/w. If that's the case,
1099 * bf->bf_lastfrm won't be in the bf_q.
1100 * Make sure we handle bf_q properly here.
1101 */
1102
1103 if (!list_empty(bf_q)) {
1104 bf_lastq = list_entry(bf_q->prev,
1105 struct ath_buf, list);
1106 list_cut_position(&bf_head,
1107 bf_q, &bf_lastq->list);
1108 } else {
1109 /*
1110 * XXX: if the last subframe only has one
1111 * descriptor which is also being used as
1112 * a holding descriptor. Then the ath_buf
1113 * is not in the bf_q at all.
1114 */
1115 INIT_LIST_HEAD(&bf_head);
1116 }
1117 } else {
1118 ASSERT(!list_empty(bf_q));
1119 list_cut_position(&bf_head,
1120 bf_q, &bf->bf_lastfrm->list);
1121 }
1122
1123 if (!txpending) {
1124 /*
1125 * complete the acked-ones/xretried ones; update
1126 * block-ack window
1127 */
1128 spin_lock_bh(&txq->axq_lock);
1129 ath_tx_update_baw(sc, tid, bf->bf_seqno);
1130 spin_unlock_bh(&txq->axq_lock);
1131
1132 /* complete this sub-frame */
1133 ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
1134 } else {
1135 /*
1136 * retry the un-acked ones
1137 */
1138 /*
1139 * XXX: if the last descriptor is holding descriptor,
1140 * in order to requeue the frame to software queue, we
1141 * need to allocate a new descriptor and
1142 * copy the content of holding descriptor to it.
1143 */
1144 if (bf->bf_next == NULL &&
1145 bf_last->bf_status & ATH_BUFSTATUS_STALE) {
1146 struct ath_buf *tbf;
1147
1148 /* allocate new descriptor */
1149 spin_lock_bh(&sc->sc_txbuflock);
1150 ASSERT(!list_empty((&sc->sc_txbuf)));
1151 tbf = list_first_entry(&sc->sc_txbuf,
1152 struct ath_buf, list);
1153 list_del(&tbf->list);
1154 spin_unlock_bh(&sc->sc_txbuflock);
1155
1156 ATH_TXBUF_RESET(tbf);
1157
1158 /* copy descriptor content */
1159 tbf->bf_mpdu = bf_last->bf_mpdu;
1160 tbf->bf_node = bf_last->bf_node;
1161 tbf->bf_buf_addr = bf_last->bf_buf_addr;
1162 *(tbf->bf_desc) = *(bf_last->bf_desc);
1163
1164 /* link it to the frame */
1165 if (bf_lastq) {
1166 bf_lastq->bf_desc->ds_link =
1167 tbf->bf_daddr;
1168 bf->bf_lastfrm = tbf;
1169 ath9k_hw_cleartxdesc(sc->sc_ah,
1170 bf->bf_lastfrm->bf_desc);
1171 } else {
1172 tbf->bf_state = bf_last->bf_state;
1173 tbf->bf_lastfrm = tbf;
1174 ath9k_hw_cleartxdesc(sc->sc_ah,
1175 tbf->bf_lastfrm->bf_desc);
1176
1177 /* copy the DMA context */
1178 copy_dma_mem_context(
1179 get_dma_mem_context(tbf,
1180 bf_dmacontext),
1181 get_dma_mem_context(bf_last,
1182 bf_dmacontext));
1183 }
1184 list_add_tail(&tbf->list, &bf_head);
1185 } else {
1186 /*
1187 * Clear descriptor status words for
1188 * software retry
1189 */
1190 ath9k_hw_cleartxdesc(sc->sc_ah,
1191 bf->bf_lastfrm->bf_desc);
1192 }
1193
1194 /*
1195 * Put this buffer to the temporary pending
1196 * queue to retain ordering
1197 */
1198 list_splice_tail_init(&bf_head, &bf_pending);
1199 }
1200
1201 bf = bf_next;
1202 }
1203
1204 /*
1205 * node is already gone. no more assocication
1206 * with the node. the node might have been freed
1207 * any node acces can result in panic.note tid
1208 * is part of the node.
1209 */
1210 if (isnodegone)
1211 return;
1212
1213 if (tid->cleanup_inprogress) {
1214 /* check to see if we're done with cleaning the h/w queue */
1215 spin_lock_bh(&txq->axq_lock);
1216
1217 if (tid->baw_head == tid->baw_tail) {
1218 tid->addba_exchangecomplete = 0;
1219 tid->addba_exchangeattempts = 0;
1220 spin_unlock_bh(&txq->axq_lock);
1221
1222 tid->cleanup_inprogress = false;
1223
1224 /* send buffered frames as singles */
1225 ath_tx_flush_tid(sc, tid);
1226 } else
1227 spin_unlock_bh(&txq->axq_lock);
1228
1229 return;
1230 }
1231
1232 /*
1233 * prepend un-acked frames to the beginning of the pending frame queue
1234 */
1235 if (!list_empty(&bf_pending)) {
1236 spin_lock_bh(&txq->axq_lock);
1237 /* Note: we _prepend_, we _do_not_ at to
1238 * the end of the queue ! */
1239 list_splice(&bf_pending, &tid->buf_q);
1240 ath_tx_queue_tid(txq, tid);
1241 spin_unlock_bh(&txq->axq_lock);
1242 }
1243
1244 if (needreset)
1245 ath_reset(sc, false);
1246
1247 return;
1248 }
1249
1250 /* Process completed xmit descriptors from the specified queue */
1251
1252 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1253 {
1254 struct ath_hal *ah = sc->sc_ah;
1255 struct ath_buf *bf, *lastbf, *bf_held = NULL;
1256 struct list_head bf_head;
1257 struct ath_desc *ds, *tmp_ds;
1258 struct sk_buff *skb;
1259 struct ieee80211_tx_info *tx_info;
1260 struct ath_tx_info_priv *tx_info_priv;
1261 int nacked, txok, nbad = 0, isrifs = 0;
1262 int status;
1263
1264 DPRINTF(sc, ATH_DBG_QUEUE,
1265 "%s: tx queue %d (%x), link %p\n", __func__,
1266 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1267 txq->axq_link);
1268
1269 nacked = 0;
1270 for (;;) {
1271 spin_lock_bh(&txq->axq_lock);
1272 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
1273 if (list_empty(&txq->axq_q)) {
1274 txq->axq_link = NULL;
1275 txq->axq_linkbuf = NULL;
1276 spin_unlock_bh(&txq->axq_lock);
1277 break;
1278 }
1279 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1280
1281 /*
1282 * There is a race condition that a BH gets scheduled
1283 * after sw writes TxE and before hw re-load the last
1284 * descriptor to get the newly chained one.
1285 * Software must keep the last DONE descriptor as a
1286 * holding descriptor - software does so by marking
1287 * it with the STALE flag.
1288 */
1289 bf_held = NULL;
1290 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1291 bf_held = bf;
1292 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1293 /* FIXME:
1294 * The holding descriptor is the last
1295 * descriptor in queue. It's safe to remove
1296 * the last holding descriptor in BH context.
1297 */
1298 spin_unlock_bh(&txq->axq_lock);
1299 break;
1300 } else {
1301 /* Lets work with the next buffer now */
1302 bf = list_entry(bf_held->list.next,
1303 struct ath_buf, list);
1304 }
1305 }
1306
1307 lastbf = bf->bf_lastbf;
1308 ds = lastbf->bf_desc; /* NB: last decriptor */
1309
1310 status = ath9k_hw_txprocdesc(ah, ds);
1311 if (status == -EINPROGRESS) {
1312 spin_unlock_bh(&txq->axq_lock);
1313 break;
1314 }
1315 if (bf->bf_desc == txq->axq_lastdsWithCTS)
1316 txq->axq_lastdsWithCTS = NULL;
1317 if (ds == txq->axq_gatingds)
1318 txq->axq_gatingds = NULL;
1319
1320 /*
1321 * Remove ath_buf's of the same transmit unit from txq,
1322 * however leave the last descriptor back as the holding
1323 * descriptor for hw.
1324 */
1325 lastbf->bf_status |= ATH_BUFSTATUS_STALE;
1326 INIT_LIST_HEAD(&bf_head);
1327
1328 if (!list_is_singular(&lastbf->list))
1329 list_cut_position(&bf_head,
1330 &txq->axq_q, lastbf->list.prev);
1331
1332 txq->axq_depth--;
1333
1334 if (bf_isaggr(bf))
1335 txq->axq_aggr_depth--;
1336
1337 txok = (ds->ds_txstat.ts_status == 0);
1338
1339 spin_unlock_bh(&txq->axq_lock);
1340
1341 if (bf_held) {
1342 list_del(&bf_held->list);
1343 spin_lock_bh(&sc->sc_txbuflock);
1344 list_add_tail(&bf_held->list, &sc->sc_txbuf);
1345 spin_unlock_bh(&sc->sc_txbuflock);
1346 }
1347
1348 if (!bf_isampdu(bf)) {
1349 /*
1350 * This frame is sent out as a single frame.
1351 * Use hardware retry status for this frame.
1352 */
1353 bf->bf_retries = ds->ds_txstat.ts_longretry;
1354 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
1355 bf->bf_state.bf_type |= BUF_XRETRY;
1356 nbad = 0;
1357 } else {
1358 nbad = ath_tx_num_badfrms(sc, bf, txok);
1359 }
1360 skb = bf->bf_mpdu;
1361 tx_info = IEEE80211_SKB_CB(skb);
1362 tx_info_priv = (struct ath_tx_info_priv *)
1363 tx_info->driver_data[0];
1364 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
1365 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1366 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
1367 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
1368 if (ds->ds_txstat.ts_status == 0)
1369 nacked++;
1370
1371 if (bf_isdata(bf)) {
1372 if (isrifs)
1373 tmp_ds = bf->bf_rifslast->bf_desc;
1374 else
1375 tmp_ds = ds;
1376 memcpy(&tx_info_priv->tx,
1377 &tmp_ds->ds_txstat,
1378 sizeof(tx_info_priv->tx));
1379 tx_info_priv->n_frames = bf->bf_nframes;
1380 tx_info_priv->n_bad_frames = nbad;
1381 }
1382 }
1383
1384 /*
1385 * Complete this transmit unit
1386 */
1387 if (bf_isampdu(bf))
1388 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok);
1389 else
1390 ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
1391
1392 /* Wake up mac80211 queue */
1393
1394 spin_lock_bh(&txq->axq_lock);
1395 if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <=
1396 (ATH_TXBUF - 20)) {
1397 int qnum;
1398 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1399 if (qnum != -1) {
1400 ieee80211_wake_queue(sc->hw, qnum);
1401 txq->stopped = 0;
1402 }
1403
1404 }
1405
1406 /*
1407 * schedule any pending packets if aggregation is enabled
1408 */
1409 if (sc->sc_txaggr)
1410 ath_txq_schedule(sc, txq);
1411 spin_unlock_bh(&txq->axq_lock);
1412 }
1413 return nacked;
1414 }
1415
1416 static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
1417 {
1418 struct ath_hal *ah = sc->sc_ah;
1419
1420 (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1421 DPRINTF(sc, ATH_DBG_XMIT, "%s: tx queue [%u] %x, link %p\n",
1422 __func__, txq->axq_qnum,
1423 ath9k_hw_gettxbuf(ah, txq->axq_qnum), txq->axq_link);
1424 }
1425
1426 /* Drain only the data queues */
1427
1428 static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
1429 {
1430 struct ath_hal *ah = sc->sc_ah;
1431 int i;
1432 int npend = 0;
1433 enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc);
1434
1435 /* XXX return value */
1436 if (!sc->sc_invalid) {
1437 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1438 if (ATH_TXQ_SETUP(sc, i)) {
1439 ath_tx_stopdma(sc, &sc->sc_txq[i]);
1440
1441 /* The TxDMA may not really be stopped.
1442 * Double check the hal tx pending count */
1443 npend += ath9k_hw_numtxpending(ah,
1444 sc->sc_txq[i].axq_qnum);
1445 }
1446 }
1447 }
1448
1449 if (npend) {
1450 int status;
1451
1452 /* TxDMA not stopped, reset the hal */
1453 DPRINTF(sc, ATH_DBG_XMIT,
1454 "%s: Unable to stop TxDMA. Reset HAL!\n", __func__);
1455
1456 spin_lock_bh(&sc->sc_resetlock);
1457 if (!ath9k_hw_reset(ah,
1458 &sc->sc_curchan, ht_macmode,
1459 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1460 sc->sc_ht_extprotspacing, true, &status)) {
1461
1462 DPRINTF(sc, ATH_DBG_FATAL,
1463 "%s: unable to reset hardware; hal status %u\n",
1464 __func__,
1465 status);
1466 }
1467 spin_unlock_bh(&sc->sc_resetlock);
1468 }
1469
1470 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1471 if (ATH_TXQ_SETUP(sc, i))
1472 ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx);
1473 }
1474 }
1475
1476 /* Add a sub-frame to block ack window */
1477
1478 static void ath_tx_addto_baw(struct ath_softc *sc,
1479 struct ath_atx_tid *tid,
1480 struct ath_buf *bf)
1481 {
1482 int index, cindex;
1483
1484 if (bf_isretried(bf))
1485 return;
1486
1487 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
1488 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1489
1490 ASSERT(tid->tx_buf[cindex] == NULL);
1491 tid->tx_buf[cindex] = bf;
1492
1493 if (index >= ((tid->baw_tail - tid->baw_head) &
1494 (ATH_TID_MAX_BUFS - 1))) {
1495 tid->baw_tail = cindex;
1496 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
1497 }
1498 }
1499
1500 /*
1501 * Function to send an A-MPDU
1502 * NB: must be called with txq lock held
1503 */
1504
1505 static int ath_tx_send_ampdu(struct ath_softc *sc,
1506 struct ath_txq *txq,
1507 struct ath_atx_tid *tid,
1508 struct list_head *bf_head,
1509 struct ath_tx_control *txctl)
1510 {
1511 struct ath_buf *bf;
1512 struct sk_buff *skb;
1513 struct ieee80211_tx_info *tx_info;
1514 struct ath_tx_info_priv *tx_info_priv;
1515
1516 BUG_ON(list_empty(bf_head));
1517
1518 bf = list_first_entry(bf_head, struct ath_buf, list);
1519 bf->bf_state.bf_type |= BUF_AMPDU;
1520 bf->bf_seqno = txctl->seqno; /* save seqno and tidno in buffer */
1521 bf->bf_tidno = txctl->tidno;
1522
1523 /*
1524 * Do not queue to h/w when any of the following conditions is true:
1525 * - there are pending frames in software queue
1526 * - the TID is currently paused for ADDBA/BAR request
1527 * - seqno is not within block-ack window
1528 * - h/w queue depth exceeds low water mark
1529 */
1530 if (!list_empty(&tid->buf_q) || tid->paused ||
1531 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1532 txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1533 /*
1534 * Add this frame to software queue for scheduling later
1535 * for aggregation.
1536 */
1537 list_splice_tail_init(bf_head, &tid->buf_q);
1538 ath_tx_queue_tid(txq, tid);
1539 return 0;
1540 }
1541
1542 skb = (struct sk_buff *)bf->bf_mpdu;
1543 tx_info = IEEE80211_SKB_CB(skb);
1544 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
1545 memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
1546
1547 /* Add sub-frame to BAW */
1548 ath_tx_addto_baw(sc, tid, bf);
1549
1550 /* Queue to h/w without aggregation */
1551 bf->bf_nframes = 1;
1552 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
1553 ath_buf_set_rate(sc, bf);
1554 ath_tx_txqaddbuf(sc, txq, bf_head);
1555 return 0;
1556 }
1557
1558 /*
1559 * looks up the rate
1560 * returns aggr limit based on lowest of the rates
1561 */
1562
1563 static u32 ath_lookup_rate(struct ath_softc *sc,
1564 struct ath_buf *bf)
1565 {
1566 const struct ath9k_rate_table *rt = sc->sc_currates;
1567 struct sk_buff *skb;
1568 struct ieee80211_tx_info *tx_info;
1569 struct ath_tx_info_priv *tx_info_priv;
1570 u32 max_4ms_framelen, frame_length;
1571 u16 aggr_limit, legacy = 0, maxampdu;
1572 int i;
1573
1574
1575 skb = (struct sk_buff *)bf->bf_mpdu;
1576 tx_info = IEEE80211_SKB_CB(skb);
1577 tx_info_priv = (struct ath_tx_info_priv *)
1578 tx_info->driver_data[0];
1579 memcpy(bf->bf_rcs,
1580 tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
1581
1582 /*
1583 * Find the lowest frame length among the rate series that will have a
1584 * 4ms transmit duration.
1585 * TODO - TXOP limit needs to be considered.
1586 */
1587 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
1588
1589 for (i = 0; i < 4; i++) {
1590 if (bf->bf_rcs[i].tries) {
1591 frame_length = bf->bf_rcs[i].max_4ms_framelen;
1592
1593 if (rt->info[bf->bf_rcs[i].rix].phy != PHY_HT) {
1594 legacy = 1;
1595 break;
1596 }
1597
1598 max_4ms_framelen = min(max_4ms_framelen, frame_length);
1599 }
1600 }
1601
1602 /*
1603 * limit aggregate size by the minimum rate if rate selected is
1604 * not a probe rate, if rate selected is a probe rate then
1605 * avoid aggregation of this packet.
1606 */
1607 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
1608 return 0;
1609
1610 aggr_limit = min(max_4ms_framelen,
1611 (u32)ATH_AMPDU_LIMIT_DEFAULT);
1612
1613 /*
1614 * h/w can accept aggregates upto 16 bit lengths (65535).
1615 * The IE, however can hold upto 65536, which shows up here
1616 * as zero. Ignore 65536 since we are constrained by hw.
1617 */
1618 maxampdu = sc->sc_ht_info.maxampdu;
1619 if (maxampdu)
1620 aggr_limit = min(aggr_limit, maxampdu);
1621
1622 return aggr_limit;
1623 }
1624
1625 /*
1626 * returns the number of delimiters to be added to
1627 * meet the minimum required mpdudensity.
1628 * caller should make sure that the rate is HT rate .
1629 */
1630
1631 static int ath_compute_num_delims(struct ath_softc *sc,
1632 struct ath_buf *bf,
1633 u16 frmlen)
1634 {
1635 const struct ath9k_rate_table *rt = sc->sc_currates;
1636 u32 nsymbits, nsymbols, mpdudensity;
1637 u16 minlen;
1638 u8 rc, flags, rix;
1639 int width, half_gi, ndelim, mindelim;
1640
1641 /* Select standard number of delimiters based on frame length alone */
1642 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
1643
1644 /*
1645 * If encryption enabled, hardware requires some more padding between
1646 * subframes.
1647 * TODO - this could be improved to be dependent on the rate.
1648 * The hardware can keep up at lower rates, but not higher rates
1649 */
1650 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
1651 ndelim += ATH_AGGR_ENCRYPTDELIM;
1652
1653 /*
1654 * Convert desired mpdu density from microeconds to bytes based
1655 * on highest rate in rate series (i.e. first rate) to determine
1656 * required minimum length for subframe. Take into account
1657 * whether high rate is 20 or 40Mhz and half or full GI.
1658 */
1659 mpdudensity = sc->sc_ht_info.mpdudensity;
1660
1661 /*
1662 * If there is no mpdu density restriction, no further calculation
1663 * is needed.
1664 */
1665 if (mpdudensity == 0)
1666 return ndelim;
1667
1668 rix = bf->bf_rcs[0].rix;
1669 flags = bf->bf_rcs[0].flags;
1670 rc = rt->info[rix].rateCode;
1671 width = (flags & ATH_RC_CW40_FLAG) ? 1 : 0;
1672 half_gi = (flags & ATH_RC_SGI_FLAG) ? 1 : 0;
1673
1674 if (half_gi)
1675 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
1676 else
1677 nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
1678
1679 if (nsymbols == 0)
1680 nsymbols = 1;
1681
1682 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1683 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
1684
1685 /* Is frame shorter than required minimum length? */
1686 if (frmlen < minlen) {
1687 /* Get the minimum number of delimiters required. */
1688 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
1689 ndelim = max(mindelim, ndelim);
1690 }
1691
1692 return ndelim;
1693 }
1694
1695 /*
1696 * For aggregation from software buffer queue.
1697 * NB: must be called with txq lock held
1698 */
1699
1700 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
1701 struct ath_atx_tid *tid,
1702 struct list_head *bf_q,
1703 struct ath_buf **bf_last,
1704 struct aggr_rifs_param *param,
1705 int *prev_frames)
1706 {
1707 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1708 struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL;
1709 struct list_head bf_head;
1710 int rl = 0, nframes = 0, ndelim;
1711 u16 aggr_limit = 0, al = 0, bpad = 0,
1712 al_delta, h_baw = tid->baw_size / 2;
1713 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
1714 int prev_al = 0, is_ds_rate = 0;
1715 INIT_LIST_HEAD(&bf_head);
1716
1717 BUG_ON(list_empty(&tid->buf_q));
1718
1719 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
1720
1721 do {
1722 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1723
1724 /*
1725 * do not step over block-ack window
1726 */
1727 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
1728 status = ATH_AGGR_BAW_CLOSED;
1729 break;
1730 }
1731
1732 if (!rl) {
1733 aggr_limit = ath_lookup_rate(sc, bf);
1734 rl = 1;
1735 /*
1736 * Is rate dual stream
1737 */
1738 is_ds_rate =
1739 (bf->bf_rcs[0].flags & ATH_RC_DS_FLAG) ? 1 : 0;
1740 }
1741
1742 /*
1743 * do not exceed aggregation limit
1744 */
1745 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
1746
1747 if (nframes && (aggr_limit <
1748 (al + bpad + al_delta + prev_al))) {
1749 status = ATH_AGGR_LIMITED;
1750 break;
1751 }
1752
1753 /*
1754 * do not exceed subframe limit
1755 */
1756 if ((nframes + *prev_frames) >=
1757 min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
1758 status = ATH_AGGR_LIMITED;
1759 break;
1760 }
1761
1762 /*
1763 * add padding for previous frame to aggregation length
1764 */
1765 al += bpad + al_delta;
1766
1767 /*
1768 * Get the delimiters needed to meet the MPDU
1769 * density for this node.
1770 */
1771 ndelim = ath_compute_num_delims(sc, bf_first, bf->bf_frmlen);
1772
1773 bpad = PADBYTES(al_delta) + (ndelim << 2);
1774
1775 bf->bf_next = NULL;
1776 bf->bf_lastfrm->bf_desc->ds_link = 0;
1777
1778 /*
1779 * this packet is part of an aggregate
1780 * - remove all descriptors belonging to this frame from
1781 * software queue
1782 * - add it to block ack window
1783 * - set up descriptors for aggregation
1784 */
1785 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1786 ath_tx_addto_baw(sc, tid, bf);
1787
1788 list_for_each_entry(tbf, &bf_head, list) {
1789 ath9k_hw_set11n_aggr_middle(sc->sc_ah,
1790 tbf->bf_desc, ndelim);
1791 }
1792
1793 /*
1794 * link buffers of this frame to the aggregate
1795 */
1796 list_splice_tail_init(&bf_head, bf_q);
1797 nframes++;
1798
1799 if (bf_prev) {
1800 bf_prev->bf_next = bf;
1801 bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr;
1802 }
1803 bf_prev = bf;
1804
1805 #ifdef AGGR_NOSHORT
1806 /*
1807 * terminate aggregation on a small packet boundary
1808 */
1809 if (bf->bf_frmlen < ATH_AGGR_MINPLEN) {
1810 status = ATH_AGGR_SHORTPKT;
1811 break;
1812 }
1813 #endif
1814 } while (!list_empty(&tid->buf_q));
1815
1816 bf_first->bf_al = al;
1817 bf_first->bf_nframes = nframes;
1818 *bf_last = bf_prev;
1819 return status;
1820 #undef PADBYTES
1821 }
1822
1823 /*
1824 * process pending frames possibly doing a-mpdu aggregation
1825 * NB: must be called with txq lock held
1826 */
1827
1828 static void ath_tx_sched_aggr(struct ath_softc *sc,
1829 struct ath_txq *txq, struct ath_atx_tid *tid)
1830 {
1831 struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL;
1832 enum ATH_AGGR_STATUS status;
1833 struct list_head bf_q;
1834 struct aggr_rifs_param param = {0, 0, 0, 0, NULL};
1835 int prev_frames = 0;
1836
1837 do {
1838 if (list_empty(&tid->buf_q))
1839 return;
1840
1841 INIT_LIST_HEAD(&bf_q);
1842
1843 status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, &param,
1844 &prev_frames);
1845
1846 /*
1847 * no frames picked up to be aggregated; block-ack
1848 * window is not open
1849 */
1850 if (list_empty(&bf_q))
1851 break;
1852
1853 bf = list_first_entry(&bf_q, struct ath_buf, list);
1854 bf_last = list_entry(bf_q.prev, struct ath_buf, list);
1855 bf->bf_lastbf = bf_last;
1856
1857 /*
1858 * if only one frame, send as non-aggregate
1859 */
1860 if (bf->bf_nframes == 1) {
1861 ASSERT(bf->bf_lastfrm == bf_last);
1862
1863 bf->bf_state.bf_type &= ~BUF_AGGR;
1864 /*
1865 * clear aggr bits for every descriptor
1866 * XXX TODO: is there a way to optimize it?
1867 */
1868 list_for_each_entry(tbf, &bf_q, list) {
1869 ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc);
1870 }
1871
1872 ath_buf_set_rate(sc, bf);
1873 ath_tx_txqaddbuf(sc, txq, &bf_q);
1874 continue;
1875 }
1876
1877 /*
1878 * setup first desc with rate and aggr info
1879 */
1880 bf->bf_state.bf_type |= BUF_AGGR;
1881 ath_buf_set_rate(sc, bf);
1882 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
1883
1884 /*
1885 * anchor last frame of aggregate correctly
1886 */
1887 ASSERT(bf_lastaggr);
1888 ASSERT(bf_lastaggr->bf_lastfrm == bf_last);
1889 tbf = bf_lastaggr;
1890 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1891
1892 /* XXX: We don't enter into this loop, consider removing this */
1893 while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) {
1894 tbf = list_entry(tbf->list.next, struct ath_buf, list);
1895 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1896 }
1897
1898 txq->axq_aggr_depth++;
1899
1900 /*
1901 * Normal aggregate, queue to hardware
1902 */
1903 ath_tx_txqaddbuf(sc, txq, &bf_q);
1904
1905 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
1906 status != ATH_AGGR_BAW_CLOSED);
1907 }
1908
1909 /* Called with txq lock held */
1910
1911 static void ath_tid_drain(struct ath_softc *sc,
1912 struct ath_txq *txq,
1913 struct ath_atx_tid *tid,
1914 bool bh_flag)
1915 {
1916 struct ath_buf *bf;
1917 struct list_head bf_head;
1918 INIT_LIST_HEAD(&bf_head);
1919
1920 for (;;) {
1921 if (list_empty(&tid->buf_q))
1922 break;
1923 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1924
1925 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1926
1927 /* update baw for software retried frame */
1928 if (bf_isretried(bf))
1929 ath_tx_update_baw(sc, tid, bf->bf_seqno);
1930
1931 /*
1932 * do not indicate packets while holding txq spinlock.
1933 * unlock is intentional here
1934 */
1935 if (likely(bh_flag))
1936 spin_unlock_bh(&txq->axq_lock);
1937 else
1938 spin_unlock(&txq->axq_lock);
1939
1940 /* complete this sub-frame */
1941 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
1942
1943 if (likely(bh_flag))
1944 spin_lock_bh(&txq->axq_lock);
1945 else
1946 spin_lock(&txq->axq_lock);
1947 }
1948
1949 /*
1950 * TODO: For frame(s) that are in the retry state, we will reuse the
1951 * sequence number(s) without setting the retry bit. The
1952 * alternative is to give up on these and BAR the receiver's window
1953 * forward.
1954 */
1955 tid->seq_next = tid->seq_start;
1956 tid->baw_tail = tid->baw_head;
1957 }
1958
1959 /*
1960 * Drain all pending buffers
1961 * NB: must be called with txq lock held
1962 */
1963
1964 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1965 struct ath_txq *txq,
1966 bool bh_flag)
1967 {
1968 struct ath_atx_ac *ac, *ac_tmp;
1969 struct ath_atx_tid *tid, *tid_tmp;
1970
1971 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1972 list_del(&ac->list);
1973 ac->sched = false;
1974 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1975 list_del(&tid->list);
1976 tid->sched = false;
1977 ath_tid_drain(sc, txq, tid, bh_flag);
1978 }
1979 }
1980 }
1981
1982 static int ath_tx_start_dma(struct ath_softc *sc,
1983 struct sk_buff *skb,
1984 struct scatterlist *sg,
1985 u32 n_sg,
1986 struct ath_tx_control *txctl)
1987 {
1988 struct ath_node *an = txctl->an;
1989 struct ath_buf *bf = NULL;
1990 struct list_head bf_head;
1991 struct ath_desc *ds;
1992 struct ath_hal *ah = sc->sc_ah;
1993 struct ath_txq *txq = &sc->sc_txq[txctl->qnum];
1994 struct ath_tx_info_priv *tx_info_priv;
1995 struct ath_rc_series *rcs;
1996 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1997 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1998 __le16 fc = hdr->frame_control;
1999
2000 /* For each sglist entry, allocate an ath_buf for DMA */
2001 INIT_LIST_HEAD(&bf_head);
2002 spin_lock_bh(&sc->sc_txbuflock);
2003 if (unlikely(list_empty(&sc->sc_txbuf))) {
2004 spin_unlock_bh(&sc->sc_txbuflock);
2005 return -ENOMEM;
2006 }
2007
2008 bf = list_first_entry(&sc->sc_txbuf, struct ath_buf, list);
2009 list_del(&bf->list);
2010 spin_unlock_bh(&sc->sc_txbuflock);
2011
2012 list_add_tail(&bf->list, &bf_head);
2013
2014 /* set up this buffer */
2015 ATH_TXBUF_RESET(bf);
2016 bf->bf_frmlen = txctl->frmlen;
2017
2018 ieee80211_is_data(fc) ?
2019 (bf->bf_state.bf_type |= BUF_DATA) :
2020 (bf->bf_state.bf_type &= ~BUF_DATA);
2021 ieee80211_is_back_req(fc) ?
2022 (bf->bf_state.bf_type |= BUF_BAR) :
2023 (bf->bf_state.bf_type &= ~BUF_BAR);
2024 ieee80211_is_pspoll(fc) ?
2025 (bf->bf_state.bf_type |= BUF_PSPOLL) :
2026 (bf->bf_state.bf_type &= ~BUF_PSPOLL);
2027 (sc->sc_flags & ATH_PREAMBLE_SHORT) ?
2028 (bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
2029 (bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
2030
2031 bf->bf_flags = txctl->flags;
2032 bf->bf_keytype = txctl->keytype;
2033 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
2034 rcs = tx_info_priv->rcs;
2035 bf->bf_rcs[0] = rcs[0];
2036 bf->bf_rcs[1] = rcs[1];
2037 bf->bf_rcs[2] = rcs[2];
2038 bf->bf_rcs[3] = rcs[3];
2039 bf->bf_node = an;
2040 bf->bf_mpdu = skb;
2041 bf->bf_buf_addr = sg_dma_address(sg);
2042
2043 /* setup descriptor */
2044 ds = bf->bf_desc;
2045 ds->ds_link = 0;
2046 ds->ds_data = bf->bf_buf_addr;
2047
2048 /*
2049 * Save the DMA context in the first ath_buf
2050 */
2051 copy_dma_mem_context(get_dma_mem_context(bf, bf_dmacontext),
2052 get_dma_mem_context(txctl, dmacontext));
2053
2054 /*
2055 * Formulate first tx descriptor with tx controls.
2056 */
2057 ath9k_hw_set11n_txdesc(ah,
2058 ds,
2059 bf->bf_frmlen, /* frame length */
2060 txctl->atype, /* Atheros packet type */
2061 min(txctl->txpower, (u16)60), /* txpower */
2062 txctl->keyix, /* key cache index */
2063 txctl->keytype, /* key type */
2064 txctl->flags); /* flags */
2065 ath9k_hw_filltxdesc(ah,
2066 ds,
2067 sg_dma_len(sg), /* segment length */
2068 true, /* first segment */
2069 (n_sg == 1) ? true : false, /* last segment */
2070 ds); /* first descriptor */
2071
2072 bf->bf_lastfrm = bf;
2073 (txctl->ht) ?
2074 (bf->bf_state.bf_type |= BUF_HT) :
2075 (bf->bf_state.bf_type &= ~BUF_HT);
2076
2077 spin_lock_bh(&txq->axq_lock);
2078
2079 if (txctl->ht && sc->sc_txaggr) {
2080 struct ath_atx_tid *tid = ATH_AN_2_TID(an, txctl->tidno);
2081 if (ath_aggr_query(sc, an, txctl->tidno)) {
2082 /*
2083 * Try aggregation if it's a unicast data frame
2084 * and the destination is HT capable.
2085 */
2086 ath_tx_send_ampdu(sc, txq, tid, &bf_head, txctl);
2087 } else {
2088 /*
2089 * Send this frame as regular when ADDBA exchange
2090 * is neither complete nor pending.
2091 */
2092 ath_tx_send_normal(sc, txq, tid, &bf_head);
2093 }
2094 } else {
2095 bf->bf_lastbf = bf;
2096 bf->bf_nframes = 1;
2097 ath_buf_set_rate(sc, bf);
2098
2099 if (ieee80211_is_back_req(fc)) {
2100 /* This is required for resuming tid
2101 * during BAR completion */
2102 bf->bf_tidno = txctl->tidno;
2103 }
2104
2105 if (is_multicast_ether_addr(hdr->addr1)) {
2106 struct ath_vap *avp = sc->sc_vaps[txctl->if_id];
2107
2108 /*
2109 * When servicing one or more stations in power-save
2110 * mode (or) if there is some mcast data waiting on
2111 * mcast queue (to prevent out of order delivery of
2112 * mcast,bcast packets) multicast frames must be
2113 * buffered until after the beacon. We use the private
2114 * mcast queue for that.
2115 */
2116 /* XXX? more bit in 802.11 frame header */
2117 spin_lock_bh(&avp->av_mcastq.axq_lock);
2118 if (txctl->ps || avp->av_mcastq.axq_depth)
2119 ath_tx_mcastqaddbuf(sc,
2120 &avp->av_mcastq, &bf_head);
2121 else
2122 ath_tx_txqaddbuf(sc, txq, &bf_head);
2123 spin_unlock_bh(&avp->av_mcastq.axq_lock);
2124 } else
2125 ath_tx_txqaddbuf(sc, txq, &bf_head);
2126 }
2127 spin_unlock_bh(&txq->axq_lock);
2128 return 0;
2129 }
2130
2131 static void xmit_map_sg(struct ath_softc *sc,
2132 struct sk_buff *skb,
2133 dma_addr_t *pa,
2134 struct ath_tx_control *txctl)
2135 {
2136 struct ath_xmit_status tx_status;
2137 struct ath_atx_tid *tid;
2138 struct scatterlist sg;
2139
2140 *pa = pci_map_single(sc->pdev, skb->data, skb->len, PCI_DMA_TODEVICE);
2141
2142 /* setup S/G list */
2143 memset(&sg, 0, sizeof(struct scatterlist));
2144 sg_dma_address(&sg) = *pa;
2145 sg_dma_len(&sg) = skb->len;
2146
2147 if (ath_tx_start_dma(sc, skb, &sg, 1, txctl) != 0) {
2148 /*
2149 * We have to do drop frame here.
2150 */
2151 pci_unmap_single(sc->pdev, *pa, skb->len, PCI_DMA_TODEVICE);
2152
2153 tx_status.retries = 0;
2154 tx_status.flags = ATH_TX_ERROR;
2155
2156 if (txctl->ht && sc->sc_txaggr) {
2157 /* Reclaim the seqno. */
2158 tid = ATH_AN_2_TID((struct ath_node *)
2159 txctl->an, txctl->tidno);
2160 DECR(tid->seq_next, IEEE80211_SEQ_MAX);
2161 }
2162 ath_tx_complete(sc, skb, &tx_status, txctl->an);
2163 }
2164 }
2165
2166 /* Initialize TX queue and h/w */
2167
2168 int ath_tx_init(struct ath_softc *sc, int nbufs)
2169 {
2170 int error = 0;
2171
2172 do {
2173 spin_lock_init(&sc->sc_txbuflock);
2174
2175 /* Setup tx descriptors */
2176 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2177 "tx", nbufs, 1);
2178 if (error != 0) {
2179 DPRINTF(sc, ATH_DBG_FATAL,
2180 "%s: failed to allocate tx descriptors: %d\n",
2181 __func__, error);
2182 break;
2183 }
2184
2185 /* XXX allocate beacon state together with vap */
2186 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2187 "beacon", ATH_BCBUF, 1);
2188 if (error != 0) {
2189 DPRINTF(sc, ATH_DBG_FATAL,
2190 "%s: failed to allocate "
2191 "beacon descripotrs: %d\n",
2192 __func__, error);
2193 break;
2194 }
2195
2196 } while (0);
2197
2198 if (error != 0)
2199 ath_tx_cleanup(sc);
2200
2201 return error;
2202 }
2203
2204 /* Reclaim all tx queue resources */
2205
2206 int ath_tx_cleanup(struct ath_softc *sc)
2207 {
2208 /* cleanup beacon descriptors */
2209 if (sc->sc_bdma.dd_desc_len != 0)
2210 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2211
2212 /* cleanup tx descriptors */
2213 if (sc->sc_txdma.dd_desc_len != 0)
2214 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2215
2216 return 0;
2217 }
2218
2219 /* Setup a h/w transmit queue */
2220
2221 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2222 {
2223 struct ath_hal *ah = sc->sc_ah;
2224 struct ath9k_tx_queue_info qi;
2225 int qnum;
2226
2227 memzero(&qi, sizeof(qi));
2228 qi.tqi_subtype = subtype;
2229 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
2230 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
2231 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
2232 qi.tqi_physCompBuf = 0;
2233
2234 /*
2235 * Enable interrupts only for EOL and DESC conditions.
2236 * We mark tx descriptors to receive a DESC interrupt
2237 * when a tx queue gets deep; otherwise waiting for the
2238 * EOL to reap descriptors. Note that this is done to
2239 * reduce interrupt load and this only defers reaping
2240 * descriptors, never transmitting frames. Aside from
2241 * reducing interrupts this also permits more concurrency.
2242 * The only potential downside is if the tx queue backs
2243 * up in which case the top half of the kernel may backup
2244 * due to a lack of tx descriptors.
2245 *
2246 * The UAPSD queue is an exception, since we take a desc-
2247 * based intr on the EOSP frames.
2248 */
2249 if (qtype == ATH9K_TX_QUEUE_UAPSD)
2250 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
2251 else
2252 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
2253 TXQ_FLAG_TXDESCINT_ENABLE;
2254 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
2255 if (qnum == -1) {
2256 /*
2257 * NB: don't print a message, this happens
2258 * normally on parts with too few tx queues
2259 */
2260 return NULL;
2261 }
2262 if (qnum >= ARRAY_SIZE(sc->sc_txq)) {
2263 DPRINTF(sc, ATH_DBG_FATAL,
2264 "%s: hal qnum %u out of range, max %u!\n",
2265 __func__, qnum, (unsigned int)ARRAY_SIZE(sc->sc_txq));
2266 ath9k_hw_releasetxqueue(ah, qnum);
2267 return NULL;
2268 }
2269 if (!ATH_TXQ_SETUP(sc, qnum)) {
2270 struct ath_txq *txq = &sc->sc_txq[qnum];
2271
2272 txq->axq_qnum = qnum;
2273 txq->axq_link = NULL;
2274 INIT_LIST_HEAD(&txq->axq_q);
2275 INIT_LIST_HEAD(&txq->axq_acq);
2276 spin_lock_init(&txq->axq_lock);
2277 txq->axq_depth = 0;
2278 txq->axq_aggr_depth = 0;
2279 txq->axq_totalqueued = 0;
2280 txq->axq_intrcnt = 0;
2281 txq->axq_linkbuf = NULL;
2282 sc->sc_txqsetup |= 1<<qnum;
2283 }
2284 return &sc->sc_txq[qnum];
2285 }
2286
2287 /* Reclaim resources for a setup queue */
2288
2289 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2290 {
2291 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2292 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2293 }
2294
2295 /*
2296 * Setup a hardware data transmit queue for the specified
2297 * access control. The hal may not support all requested
2298 * queues in which case it will return a reference to a
2299 * previously setup queue. We record the mapping from ac's
2300 * to h/w queues for use by ath_tx_start and also track
2301 * the set of h/w queues being used to optimize work in the
2302 * transmit interrupt handler and related routines.
2303 */
2304
2305 int ath_tx_setup(struct ath_softc *sc, int haltype)
2306 {
2307 struct ath_txq *txq;
2308
2309 if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
2310 DPRINTF(sc, ATH_DBG_FATAL,
2311 "%s: HAL AC %u out of range, max %zu!\n",
2312 __func__, haltype, ARRAY_SIZE(sc->sc_haltype2q));
2313 return 0;
2314 }
2315 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
2316 if (txq != NULL) {
2317 sc->sc_haltype2q[haltype] = txq->axq_qnum;
2318 return 1;
2319 } else
2320 return 0;
2321 }
2322
2323 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
2324 {
2325 int qnum;
2326
2327 switch (qtype) {
2328 case ATH9K_TX_QUEUE_DATA:
2329 if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
2330 DPRINTF(sc, ATH_DBG_FATAL,
2331 "%s: HAL AC %u out of range, max %zu!\n",
2332 __func__,
2333 haltype, ARRAY_SIZE(sc->sc_haltype2q));
2334 return -1;
2335 }
2336 qnum = sc->sc_haltype2q[haltype];
2337 break;
2338 case ATH9K_TX_QUEUE_BEACON:
2339 qnum = sc->sc_bhalq;
2340 break;
2341 case ATH9K_TX_QUEUE_CAB:
2342 qnum = sc->sc_cabq->axq_qnum;
2343 break;
2344 default:
2345 qnum = -1;
2346 }
2347 return qnum;
2348 }
2349
2350 /* Update parameters for a transmit queue */
2351
2352 int ath_txq_update(struct ath_softc *sc, int qnum,
2353 struct ath9k_tx_queue_info *qinfo)
2354 {
2355 struct ath_hal *ah = sc->sc_ah;
2356 int error = 0;
2357 struct ath9k_tx_queue_info qi;
2358
2359 if (qnum == sc->sc_bhalq) {
2360 /*
2361 * XXX: for beacon queue, we just save the parameter.
2362 * It will be picked up by ath_beaconq_config when
2363 * it's necessary.
2364 */
2365 sc->sc_beacon_qi = *qinfo;
2366 return 0;
2367 }
2368
2369 ASSERT(sc->sc_txq[qnum].axq_qnum == qnum);
2370
2371 ath9k_hw_get_txq_props(ah, qnum, &qi);
2372 qi.tqi_aifs = qinfo->tqi_aifs;
2373 qi.tqi_cwmin = qinfo->tqi_cwmin;
2374 qi.tqi_cwmax = qinfo->tqi_cwmax;
2375 qi.tqi_burstTime = qinfo->tqi_burstTime;
2376 qi.tqi_readyTime = qinfo->tqi_readyTime;
2377
2378 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
2379 DPRINTF(sc, ATH_DBG_FATAL,
2380 "%s: unable to update hardware queue %u!\n",
2381 __func__, qnum);
2382 error = -EIO;
2383 } else {
2384 ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */
2385 }
2386
2387 return error;
2388 }
2389
2390 int ath_cabq_update(struct ath_softc *sc)
2391 {
2392 struct ath9k_tx_queue_info qi;
2393 int qnum = sc->sc_cabq->axq_qnum;
2394 struct ath_beacon_config conf;
2395
2396 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
2397 /*
2398 * Ensure the readytime % is within the bounds.
2399 */
2400 if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
2401 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
2402 else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
2403 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
2404
2405 ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
2406 qi.tqi_readyTime =
2407 (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
2408 ath_txq_update(sc, qnum, &qi);
2409
2410 return 0;
2411 }
2412
2413 int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb)
2414 {
2415 struct ath_tx_control txctl;
2416 int error = 0;
2417
2418 error = ath_tx_prepare(sc, skb, &txctl);
2419 if (error == 0)
2420 /*
2421 * Start DMA mapping.
2422 * ath_tx_start_dma() will be called either synchronously
2423 * or asynchrounsly once DMA is complete.
2424 */
2425 xmit_map_sg(sc, skb,
2426 get_dma_mem_context(&txctl, dmacontext),
2427 &txctl);
2428 else
2429 ath_node_put(sc, txctl.an, ATH9K_BH_STATUS_CHANGE);
2430
2431 /* failed packets will be dropped by the caller */
2432 return error;
2433 }
2434
2435 /* Deferred processing of transmit interrupt */
2436
2437 void ath_tx_tasklet(struct ath_softc *sc)
2438 {
2439 u64 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2440 int i, nacked = 0;
2441 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2442
2443 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2444
2445 /*
2446 * Process each active queue.
2447 */
2448 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2449 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2450 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
2451 }
2452 if (nacked)
2453 sc->sc_lastrx = tsf;
2454 }
2455
2456 void ath_tx_draintxq(struct ath_softc *sc,
2457 struct ath_txq *txq, bool retry_tx)
2458 {
2459 struct ath_buf *bf, *lastbf;
2460 struct list_head bf_head;
2461
2462 INIT_LIST_HEAD(&bf_head);
2463
2464 /*
2465 * NB: this assumes output has been stopped and
2466 * we do not need to block ath_tx_tasklet
2467 */
2468 for (;;) {
2469 spin_lock_bh(&txq->axq_lock);
2470
2471 if (list_empty(&txq->axq_q)) {
2472 txq->axq_link = NULL;
2473 txq->axq_linkbuf = NULL;
2474 spin_unlock_bh(&txq->axq_lock);
2475 break;
2476 }
2477
2478 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2479
2480 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
2481 list_del(&bf->list);
2482 spin_unlock_bh(&txq->axq_lock);
2483
2484 spin_lock_bh(&sc->sc_txbuflock);
2485 list_add_tail(&bf->list, &sc->sc_txbuf);
2486 spin_unlock_bh(&sc->sc_txbuflock);
2487 continue;
2488 }
2489
2490 lastbf = bf->bf_lastbf;
2491 if (!retry_tx)
2492 lastbf->bf_desc->ds_txstat.ts_flags =
2493 ATH9K_TX_SW_ABORTED;
2494
2495 /* remove ath_buf's of the same mpdu from txq */
2496 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
2497 txq->axq_depth--;
2498
2499 spin_unlock_bh(&txq->axq_lock);
2500
2501 if (bf_isampdu(bf))
2502 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0);
2503 else
2504 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2505 }
2506
2507 /* flush any pending frames if aggregation is enabled */
2508 if (sc->sc_txaggr) {
2509 if (!retry_tx) {
2510 spin_lock_bh(&txq->axq_lock);
2511 ath_txq_drain_pending_buffers(sc, txq,
2512 ATH9K_BH_STATUS_CHANGE);
2513 spin_unlock_bh(&txq->axq_lock);
2514 }
2515 }
2516 }
2517
2518 /* Drain the transmit queues and reclaim resources */
2519
2520 void ath_draintxq(struct ath_softc *sc, bool retry_tx)
2521 {
2522 /* stop beacon queue. The beacon will be freed when
2523 * we go to INIT state */
2524 if (!sc->sc_invalid) {
2525 (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
2526 DPRINTF(sc, ATH_DBG_XMIT, "%s: beacon queue %x\n", __func__,
2527 ath9k_hw_gettxbuf(sc->sc_ah, sc->sc_bhalq));
2528 }
2529
2530 ath_drain_txdataq(sc, retry_tx);
2531 }
2532
2533 u32 ath_txq_depth(struct ath_softc *sc, int qnum)
2534 {
2535 return sc->sc_txq[qnum].axq_depth;
2536 }
2537
2538 u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum)
2539 {
2540 return sc->sc_txq[qnum].axq_aggr_depth;
2541 }
2542
2543 /* Check if an ADDBA is required. A valid node must be passed. */
2544 enum ATH_AGGR_CHECK ath_tx_aggr_check(struct ath_softc *sc,
2545 struct ath_node *an,
2546 u8 tidno)
2547 {
2548 struct ath_atx_tid *txtid;
2549 DECLARE_MAC_BUF(mac);
2550
2551 if (!sc->sc_txaggr)
2552 return AGGR_NOT_REQUIRED;
2553
2554 /* ADDBA exchange must be completed before sending aggregates */
2555 txtid = ATH_AN_2_TID(an, tidno);
2556
2557 if (txtid->addba_exchangecomplete)
2558 return AGGR_EXCHANGE_DONE;
2559
2560 if (txtid->cleanup_inprogress)
2561 return AGGR_CLEANUP_PROGRESS;
2562
2563 if (txtid->addba_exchangeinprogress)
2564 return AGGR_EXCHANGE_PROGRESS;
2565
2566 if (!txtid->addba_exchangecomplete) {
2567 if (!txtid->addba_exchangeinprogress &&
2568 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
2569 txtid->addba_exchangeattempts++;
2570 return AGGR_REQUIRED;
2571 }
2572 }
2573
2574 return AGGR_NOT_REQUIRED;
2575 }
2576
2577 /* Start TX aggregation */
2578
2579 int ath_tx_aggr_start(struct ath_softc *sc,
2580 const u8 *addr,
2581 u16 tid,
2582 u16 *ssn)
2583 {
2584 struct ath_atx_tid *txtid;
2585 struct ath_node *an;
2586
2587 spin_lock_bh(&sc->node_lock);
2588 an = ath_node_find(sc, (u8 *) addr);
2589 spin_unlock_bh(&sc->node_lock);
2590
2591 if (!an) {
2592 DPRINTF(sc, ATH_DBG_AGGR,
2593 "%s: Node not found to initialize "
2594 "TX aggregation\n", __func__);
2595 return -1;
2596 }
2597
2598 if (sc->sc_txaggr) {
2599 txtid = ATH_AN_2_TID(an, tid);
2600 txtid->addba_exchangeinprogress = 1;
2601 ath_tx_pause_tid(sc, txtid);
2602 }
2603
2604 return 0;
2605 }
2606
2607 /* Stop tx aggregation */
2608
2609 int ath_tx_aggr_stop(struct ath_softc *sc,
2610 const u8 *addr,
2611 u16 tid)
2612 {
2613 struct ath_node *an;
2614
2615 spin_lock_bh(&sc->node_lock);
2616 an = ath_node_find(sc, (u8 *) addr);
2617 spin_unlock_bh(&sc->node_lock);
2618
2619 if (!an) {
2620 DPRINTF(sc, ATH_DBG_AGGR,
2621 "%s: TX aggr stop for non-existent node\n", __func__);
2622 return -1;
2623 }
2624
2625 ath_tx_aggr_teardown(sc, an, tid);
2626 return 0;
2627 }
2628
2629 /*
2630 * Performs transmit side cleanup when TID changes from aggregated to
2631 * unaggregated.
2632 * - Pause the TID and mark cleanup in progress
2633 * - Discard all retry frames from the s/w queue.
2634 */
2635
2636 void ath_tx_aggr_teardown(struct ath_softc *sc,
2637 struct ath_node *an, u8 tid)
2638 {
2639 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
2640 struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum];
2641 struct ath_buf *bf;
2642 struct list_head bf_head;
2643 INIT_LIST_HEAD(&bf_head);
2644
2645 DPRINTF(sc, ATH_DBG_AGGR, "%s: teardown TX aggregation\n", __func__);
2646
2647 if (txtid->cleanup_inprogress) /* cleanup is in progress */
2648 return;
2649
2650 if (!txtid->addba_exchangecomplete) {
2651 txtid->addba_exchangeattempts = 0;
2652 return;
2653 }
2654
2655 /* TID must be paused first */
2656 ath_tx_pause_tid(sc, txtid);
2657
2658 /* drop all software retried frames and mark this TID */
2659 spin_lock_bh(&txq->axq_lock);
2660 while (!list_empty(&txtid->buf_q)) {
2661 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
2662 if (!bf_isretried(bf)) {
2663 /*
2664 * NB: it's based on the assumption that
2665 * software retried frame will always stay
2666 * at the head of software queue.
2667 */
2668 break;
2669 }
2670 list_cut_position(&bf_head,
2671 &txtid->buf_q, &bf->bf_lastfrm->list);
2672 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
2673
2674 /* complete this sub-frame */
2675 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2676 }
2677
2678 if (txtid->baw_head != txtid->baw_tail) {
2679 spin_unlock_bh(&txq->axq_lock);
2680 txtid->cleanup_inprogress = true;
2681 } else {
2682 txtid->addba_exchangecomplete = 0;
2683 txtid->addba_exchangeattempts = 0;
2684 spin_unlock_bh(&txq->axq_lock);
2685 ath_tx_flush_tid(sc, txtid);
2686 }
2687 }
2688
2689 /*
2690 * Tx scheduling logic
2691 * NB: must be called with txq lock held
2692 */
2693
2694 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
2695 {
2696 struct ath_atx_ac *ac;
2697 struct ath_atx_tid *tid;
2698
2699 /* nothing to schedule */
2700 if (list_empty(&txq->axq_acq))
2701 return;
2702 /*
2703 * get the first node/ac pair on the queue
2704 */
2705 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
2706 list_del(&ac->list);
2707 ac->sched = false;
2708
2709 /*
2710 * process a single tid per destination
2711 */
2712 do {
2713 /* nothing to schedule */
2714 if (list_empty(&ac->tid_q))
2715 return;
2716
2717 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
2718 list_del(&tid->list);
2719 tid->sched = false;
2720
2721 if (tid->paused) /* check next tid to keep h/w busy */
2722 continue;
2723
2724 if (!(tid->an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) ||
2725 ((txq->axq_depth % 2) == 0)) {
2726 ath_tx_sched_aggr(sc, txq, tid);
2727 }
2728
2729 /*
2730 * add tid to round-robin queue if more frames
2731 * are pending for the tid
2732 */
2733 if (!list_empty(&tid->buf_q))
2734 ath_tx_queue_tid(txq, tid);
2735
2736 /* only schedule one TID at a time */
2737 break;
2738 } while (!list_empty(&ac->tid_q));
2739
2740 /*
2741 * schedule AC if more TIDs need processing
2742 */
2743 if (!list_empty(&ac->tid_q)) {
2744 /*
2745 * add dest ac to txq if not already added
2746 */
2747 if (!ac->sched) {
2748 ac->sched = true;
2749 list_add_tail(&ac->list, &txq->axq_acq);
2750 }
2751 }
2752 }
2753
2754 /* Initialize per-node transmit state */
2755
2756 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2757 {
2758 if (sc->sc_txaggr) {
2759 struct ath_atx_tid *tid;
2760 struct ath_atx_ac *ac;
2761 int tidno, acno;
2762
2763 sc->sc_ht_info.maxampdu = ATH_AMPDU_LIMIT_DEFAULT;
2764
2765 /*
2766 * Init per tid tx state
2767 */
2768 for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno];
2769 tidno < WME_NUM_TID;
2770 tidno++, tid++) {
2771 tid->an = an;
2772 tid->tidno = tidno;
2773 tid->seq_start = tid->seq_next = 0;
2774 tid->baw_size = WME_MAX_BA;
2775 tid->baw_head = tid->baw_tail = 0;
2776 tid->sched = false;
2777 tid->paused = false;
2778 tid->cleanup_inprogress = false;
2779 INIT_LIST_HEAD(&tid->buf_q);
2780
2781 acno = TID_TO_WME_AC(tidno);
2782 tid->ac = &an->an_aggr.tx.ac[acno];
2783
2784 /* ADDBA state */
2785 tid->addba_exchangecomplete = 0;
2786 tid->addba_exchangeinprogress = 0;
2787 tid->addba_exchangeattempts = 0;
2788 }
2789
2790 /*
2791 * Init per ac tx state
2792 */
2793 for (acno = 0, ac = &an->an_aggr.tx.ac[acno];
2794 acno < WME_NUM_AC; acno++, ac++) {
2795 ac->sched = false;
2796 INIT_LIST_HEAD(&ac->tid_q);
2797
2798 switch (acno) {
2799 case WME_AC_BE:
2800 ac->qnum = ath_tx_get_qnum(sc,
2801 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2802 break;
2803 case WME_AC_BK:
2804 ac->qnum = ath_tx_get_qnum(sc,
2805 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2806 break;
2807 case WME_AC_VI:
2808 ac->qnum = ath_tx_get_qnum(sc,
2809 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2810 break;
2811 case WME_AC_VO:
2812 ac->qnum = ath_tx_get_qnum(sc,
2813 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2814 break;
2815 }
2816 }
2817 }
2818 }
2819
2820 /* Cleanupthe pending buffers for the node. */
2821
2822 void ath_tx_node_cleanup(struct ath_softc *sc,
2823 struct ath_node *an, bool bh_flag)
2824 {
2825 int i;
2826 struct ath_atx_ac *ac, *ac_tmp;
2827 struct ath_atx_tid *tid, *tid_tmp;
2828 struct ath_txq *txq;
2829 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2830 if (ATH_TXQ_SETUP(sc, i)) {
2831 txq = &sc->sc_txq[i];
2832
2833 if (likely(bh_flag))
2834 spin_lock_bh(&txq->axq_lock);
2835 else
2836 spin_lock(&txq->axq_lock);
2837
2838 list_for_each_entry_safe(ac,
2839 ac_tmp, &txq->axq_acq, list) {
2840 tid = list_first_entry(&ac->tid_q,
2841 struct ath_atx_tid, list);
2842 if (tid && tid->an != an)
2843 continue;
2844 list_del(&ac->list);
2845 ac->sched = false;
2846
2847 list_for_each_entry_safe(tid,
2848 tid_tmp, &ac->tid_q, list) {
2849 list_del(&tid->list);
2850 tid->sched = false;
2851 ath_tid_drain(sc, txq, tid, bh_flag);
2852 tid->addba_exchangecomplete = 0;
2853 tid->addba_exchangeattempts = 0;
2854 tid->cleanup_inprogress = false;
2855 }
2856 }
2857
2858 if (likely(bh_flag))
2859 spin_unlock_bh(&txq->axq_lock);
2860 else
2861 spin_unlock(&txq->axq_lock);
2862 }
2863 }
2864 }
2865
2866 /* Cleanup per node transmit state */
2867
2868 void ath_tx_node_free(struct ath_softc *sc, struct ath_node *an)
2869 {
2870 if (sc->sc_txaggr) {
2871 struct ath_atx_tid *tid;
2872 int tidno, i;
2873
2874 /* Init per tid rx state */
2875 for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno];
2876 tidno < WME_NUM_TID;
2877 tidno++, tid++) {
2878
2879 for (i = 0; i < ATH_TID_MAX_BUFS; i++)
2880 ASSERT(tid->tx_buf[i] == NULL);
2881 }
2882 }
2883 }
This page took 0.090264 seconds and 5 git commands to generate.