Merge branch 'master' of /home/davem/src/GIT/linux-2.6/
[deliverable/linux.git] / drivers / net / wireless / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18
19 #define BITS_PER_BYTE 8
20 #define OFDM_PLCP_BITS 22
21 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
22 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
23 #define L_STF 8
24 #define L_LTF 8
25 #define L_SIG 4
26 #define HT_SIG 8
27 #define HT_STF 4
28 #define HT_LTF(_ns) (4 * (_ns))
29 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
30 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
31 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
32 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
33
34 #define OFDM_SIFS_TIME 16
35
36 static u32 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 { 52, 108 }, /* 8: BPSK */
47 { 104, 216 }, /* 9: QPSK 1/2 */
48 { 156, 324 }, /* 10: QPSK 3/4 */
49 { 208, 432 }, /* 11: 16-QAM 1/2 */
50 { 312, 648 }, /* 12: 16-QAM 3/4 */
51 { 416, 864 }, /* 13: 64-QAM 2/3 */
52 { 468, 972 }, /* 14: 64-QAM 3/4 */
53 { 520, 1080 }, /* 15: 64-QAM 5/6 */
54 };
55
56 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
57
58 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
59 struct ath_atx_tid *tid,
60 struct list_head *bf_head);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 struct list_head *bf_q,
63 int txok, int sendbar);
64 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
65 struct list_head *head);
66 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
67
68 /*********************/
69 /* Aggregation logic */
70 /*********************/
71
72 static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno)
73 {
74 struct ath_atx_tid *tid;
75 tid = ATH_AN_2_TID(an, tidno);
76
77 if (tid->state & AGGR_ADDBA_COMPLETE ||
78 tid->state & AGGR_ADDBA_PROGRESS)
79 return 1;
80 else
81 return 0;
82 }
83
84 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
85 {
86 struct ath_atx_ac *ac = tid->ac;
87
88 if (tid->paused)
89 return;
90
91 if (tid->sched)
92 return;
93
94 tid->sched = true;
95 list_add_tail(&tid->list, &ac->tid_q);
96
97 if (ac->sched)
98 return;
99
100 ac->sched = true;
101 list_add_tail(&ac->list, &txq->axq_acq);
102 }
103
104 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
105 {
106 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
107
108 spin_lock_bh(&txq->axq_lock);
109 tid->paused++;
110 spin_unlock_bh(&txq->axq_lock);
111 }
112
113 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
114 {
115 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
116
117 ASSERT(tid->paused > 0);
118 spin_lock_bh(&txq->axq_lock);
119
120 tid->paused--;
121
122 if (tid->paused > 0)
123 goto unlock;
124
125 if (list_empty(&tid->buf_q))
126 goto unlock;
127
128 ath_tx_queue_tid(txq, tid);
129 ath_txq_schedule(sc, txq);
130 unlock:
131 spin_unlock_bh(&txq->axq_lock);
132 }
133
134 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
135 {
136 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
137 struct ath_buf *bf;
138 struct list_head bf_head;
139 INIT_LIST_HEAD(&bf_head);
140
141 ASSERT(tid->paused > 0);
142 spin_lock_bh(&txq->axq_lock);
143
144 tid->paused--;
145
146 if (tid->paused > 0) {
147 spin_unlock_bh(&txq->axq_lock);
148 return;
149 }
150
151 while (!list_empty(&tid->buf_q)) {
152 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
153 ASSERT(!bf_isretried(bf));
154 list_move_tail(&bf->list, &bf_head);
155 ath_tx_send_normal(sc, txq, tid, &bf_head);
156 }
157
158 spin_unlock_bh(&txq->axq_lock);
159 }
160
161 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
162 int seqno)
163 {
164 int index, cindex;
165
166 index = ATH_BA_INDEX(tid->seq_start, seqno);
167 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
168
169 tid->tx_buf[cindex] = NULL;
170
171 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
172 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
173 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
174 }
175 }
176
177 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
178 struct ath_buf *bf)
179 {
180 int index, cindex;
181
182 if (bf_isretried(bf))
183 return;
184
185 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
186 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
187
188 ASSERT(tid->tx_buf[cindex] == NULL);
189 tid->tx_buf[cindex] = bf;
190
191 if (index >= ((tid->baw_tail - tid->baw_head) &
192 (ATH_TID_MAX_BUFS - 1))) {
193 tid->baw_tail = cindex;
194 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
195 }
196 }
197
198 /*
199 * TODO: For frame(s) that are in the retry state, we will reuse the
200 * sequence number(s) without setting the retry bit. The
201 * alternative is to give up on these and BAR the receiver's window
202 * forward.
203 */
204 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
205 struct ath_atx_tid *tid)
206
207 {
208 struct ath_buf *bf;
209 struct list_head bf_head;
210 INIT_LIST_HEAD(&bf_head);
211
212 for (;;) {
213 if (list_empty(&tid->buf_q))
214 break;
215
216 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
217 list_move_tail(&bf->list, &bf_head);
218
219 if (bf_isretried(bf))
220 ath_tx_update_baw(sc, tid, bf->bf_seqno);
221
222 spin_unlock(&txq->axq_lock);
223 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
224 spin_lock(&txq->axq_lock);
225 }
226
227 tid->seq_next = tid->seq_start;
228 tid->baw_tail = tid->baw_head;
229 }
230
231 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
232 {
233 struct sk_buff *skb;
234 struct ieee80211_hdr *hdr;
235
236 bf->bf_state.bf_type |= BUF_RETRY;
237 bf->bf_retries++;
238
239 skb = bf->bf_mpdu;
240 hdr = (struct ieee80211_hdr *)skb->data;
241 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
242 }
243
244 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
245 {
246 struct ath_buf *tbf;
247
248 spin_lock_bh(&sc->tx.txbuflock);
249 ASSERT(!list_empty((&sc->tx.txbuf)));
250 tbf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
251 list_del(&tbf->list);
252 spin_unlock_bh(&sc->tx.txbuflock);
253
254 ATH_TXBUF_RESET(tbf);
255
256 tbf->bf_mpdu = bf->bf_mpdu;
257 tbf->bf_buf_addr = bf->bf_buf_addr;
258 *(tbf->bf_desc) = *(bf->bf_desc);
259 tbf->bf_state = bf->bf_state;
260 tbf->bf_dmacontext = bf->bf_dmacontext;
261
262 return tbf;
263 }
264
265 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
266 struct ath_buf *bf, struct list_head *bf_q,
267 int txok)
268 {
269 struct ath_node *an = NULL;
270 struct sk_buff *skb;
271 struct ieee80211_sta *sta;
272 struct ieee80211_hdr *hdr;
273 struct ath_atx_tid *tid = NULL;
274 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
275 struct ath_desc *ds = bf_last->bf_desc;
276 struct list_head bf_head, bf_pending;
277 u16 seq_st = 0;
278 u32 ba[WME_BA_BMP_SIZE >> 5];
279 int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
280
281 skb = (struct sk_buff *)bf->bf_mpdu;
282 hdr = (struct ieee80211_hdr *)skb->data;
283
284 rcu_read_lock();
285
286 sta = ieee80211_find_sta(sc->hw, hdr->addr1);
287 if (!sta) {
288 rcu_read_unlock();
289 return;
290 }
291
292 an = (struct ath_node *)sta->drv_priv;
293 tid = ATH_AN_2_TID(an, bf->bf_tidno);
294
295 isaggr = bf_isaggr(bf);
296 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
297
298 if (isaggr && txok) {
299 if (ATH_DS_TX_BA(ds)) {
300 seq_st = ATH_DS_BA_SEQ(ds);
301 memcpy(ba, ATH_DS_BA_BITMAP(ds),
302 WME_BA_BMP_SIZE >> 3);
303 } else {
304 /*
305 * AR5416 can become deaf/mute when BA
306 * issue happens. Chip needs to be reset.
307 * But AP code may have sychronization issues
308 * when perform internal reset in this routine.
309 * Only enable reset in STA mode for now.
310 */
311 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
312 needreset = 1;
313 }
314 }
315
316 INIT_LIST_HEAD(&bf_pending);
317 INIT_LIST_HEAD(&bf_head);
318
319 while (bf) {
320 txfail = txpending = 0;
321 bf_next = bf->bf_next;
322
323 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
324 /* transmit completion, subframe is
325 * acked by block ack */
326 } else if (!isaggr && txok) {
327 /* transmit completion */
328 } else {
329 if (!(tid->state & AGGR_CLEANUP) &&
330 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
331 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
332 ath_tx_set_retry(sc, bf);
333 txpending = 1;
334 } else {
335 bf->bf_state.bf_type |= BUF_XRETRY;
336 txfail = 1;
337 sendbar = 1;
338 }
339 } else {
340 /*
341 * cleanup in progress, just fail
342 * the un-acked sub-frames
343 */
344 txfail = 1;
345 }
346 }
347
348 if (bf_next == NULL) {
349 INIT_LIST_HEAD(&bf_head);
350 } else {
351 ASSERT(!list_empty(bf_q));
352 list_move_tail(&bf->list, &bf_head);
353 }
354
355 if (!txpending) {
356 /*
357 * complete the acked-ones/xretried ones; update
358 * block-ack window
359 */
360 spin_lock_bh(&txq->axq_lock);
361 ath_tx_update_baw(sc, tid, bf->bf_seqno);
362 spin_unlock_bh(&txq->axq_lock);
363
364 ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
365 } else {
366 /* retry the un-acked ones */
367 if (bf->bf_next == NULL &&
368 bf_last->bf_status & ATH_BUFSTATUS_STALE) {
369 struct ath_buf *tbf;
370
371 tbf = ath_clone_txbuf(sc, bf_last);
372 ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc);
373 list_add_tail(&tbf->list, &bf_head);
374 } else {
375 /*
376 * Clear descriptor status words for
377 * software retry
378 */
379 ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc);
380 }
381
382 /*
383 * Put this buffer to the temporary pending
384 * queue to retain ordering
385 */
386 list_splice_tail_init(&bf_head, &bf_pending);
387 }
388
389 bf = bf_next;
390 }
391
392 if (tid->state & AGGR_CLEANUP) {
393 if (tid->baw_head == tid->baw_tail) {
394 tid->state &= ~AGGR_ADDBA_COMPLETE;
395 tid->addba_exchangeattempts = 0;
396 tid->state &= ~AGGR_CLEANUP;
397
398 /* send buffered frames as singles */
399 ath_tx_flush_tid(sc, tid);
400 }
401 rcu_read_unlock();
402 return;
403 }
404
405 /* prepend un-acked frames to the beginning of the pending frame queue */
406 if (!list_empty(&bf_pending)) {
407 spin_lock_bh(&txq->axq_lock);
408 list_splice(&bf_pending, &tid->buf_q);
409 ath_tx_queue_tid(txq, tid);
410 spin_unlock_bh(&txq->axq_lock);
411 }
412
413 rcu_read_unlock();
414
415 if (needreset)
416 ath_reset(sc, false);
417 }
418
419 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
420 struct ath_atx_tid *tid)
421 {
422 struct ath_rate_table *rate_table = sc->cur_rate_table;
423 struct sk_buff *skb;
424 struct ieee80211_tx_info *tx_info;
425 struct ieee80211_tx_rate *rates;
426 struct ath_tx_info_priv *tx_info_priv;
427 u32 max_4ms_framelen, frmlen;
428 u16 aggr_limit, legacy = 0, maxampdu;
429 int i;
430
431 skb = (struct sk_buff *)bf->bf_mpdu;
432 tx_info = IEEE80211_SKB_CB(skb);
433 rates = tx_info->control.rates;
434 tx_info_priv = (struct ath_tx_info_priv *)tx_info->rate_driver_data[0];
435
436 /*
437 * Find the lowest frame length among the rate series that will have a
438 * 4ms transmit duration.
439 * TODO - TXOP limit needs to be considered.
440 */
441 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
442
443 for (i = 0; i < 4; i++) {
444 if (rates[i].count) {
445 if (!WLAN_RC_PHY_HT(rate_table->info[rates[i].idx].phy)) {
446 legacy = 1;
447 break;
448 }
449
450 frmlen = rate_table->info[rates[i].idx].max_4ms_framelen;
451 max_4ms_framelen = min(max_4ms_framelen, frmlen);
452 }
453 }
454
455 /*
456 * limit aggregate size by the minimum rate if rate selected is
457 * not a probe rate, if rate selected is a probe rate then
458 * avoid aggregation of this packet.
459 */
460 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
461 return 0;
462
463 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_DEFAULT);
464
465 /*
466 * h/w can accept aggregates upto 16 bit lengths (65535).
467 * The IE, however can hold upto 65536, which shows up here
468 * as zero. Ignore 65536 since we are constrained by hw.
469 */
470 maxampdu = tid->an->maxampdu;
471 if (maxampdu)
472 aggr_limit = min(aggr_limit, maxampdu);
473
474 return aggr_limit;
475 }
476
477 /*
478 * Returns the number of delimiters to be added to
479 * meet the minimum required mpdudensity.
480 * caller should make sure that the rate is HT rate .
481 */
482 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
483 struct ath_buf *bf, u16 frmlen)
484 {
485 struct ath_rate_table *rt = sc->cur_rate_table;
486 struct sk_buff *skb = bf->bf_mpdu;
487 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
488 u32 nsymbits, nsymbols, mpdudensity;
489 u16 minlen;
490 u8 rc, flags, rix;
491 int width, half_gi, ndelim, mindelim;
492
493 /* Select standard number of delimiters based on frame length alone */
494 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
495
496 /*
497 * If encryption enabled, hardware requires some more padding between
498 * subframes.
499 * TODO - this could be improved to be dependent on the rate.
500 * The hardware can keep up at lower rates, but not higher rates
501 */
502 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
503 ndelim += ATH_AGGR_ENCRYPTDELIM;
504
505 /*
506 * Convert desired mpdu density from microeconds to bytes based
507 * on highest rate in rate series (i.e. first rate) to determine
508 * required minimum length for subframe. Take into account
509 * whether high rate is 20 or 40Mhz and half or full GI.
510 */
511 mpdudensity = tid->an->mpdudensity;
512
513 /*
514 * If there is no mpdu density restriction, no further calculation
515 * is needed.
516 */
517 if (mpdudensity == 0)
518 return ndelim;
519
520 rix = tx_info->control.rates[0].idx;
521 flags = tx_info->control.rates[0].flags;
522 rc = rt->info[rix].ratecode;
523 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
524 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
525
526 if (half_gi)
527 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
528 else
529 nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
530
531 if (nsymbols == 0)
532 nsymbols = 1;
533
534 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
535 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
536
537 if (frmlen < minlen) {
538 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
539 ndelim = max(mindelim, ndelim);
540 }
541
542 return ndelim;
543 }
544
545 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
546 struct ath_atx_tid *tid,
547 struct list_head *bf_q)
548 {
549 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
550 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
551 int rl = 0, nframes = 0, ndelim, prev_al = 0;
552 u16 aggr_limit = 0, al = 0, bpad = 0,
553 al_delta, h_baw = tid->baw_size / 2;
554 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
555
556 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
557
558 do {
559 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
560
561 /* do not step over block-ack window */
562 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
563 status = ATH_AGGR_BAW_CLOSED;
564 break;
565 }
566
567 if (!rl) {
568 aggr_limit = ath_lookup_rate(sc, bf, tid);
569 rl = 1;
570 }
571
572 /* do not exceed aggregation limit */
573 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
574
575 if (nframes &&
576 (aggr_limit < (al + bpad + al_delta + prev_al))) {
577 status = ATH_AGGR_LIMITED;
578 break;
579 }
580
581 /* do not exceed subframe limit */
582 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
583 status = ATH_AGGR_LIMITED;
584 break;
585 }
586 nframes++;
587
588 /* add padding for previous frame to aggregation length */
589 al += bpad + al_delta;
590
591 /*
592 * Get the delimiters needed to meet the MPDU
593 * density for this node.
594 */
595 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
596 bpad = PADBYTES(al_delta) + (ndelim << 2);
597
598 bf->bf_next = NULL;
599 bf->bf_desc->ds_link = 0;
600
601 /* link buffers of this frame to the aggregate */
602 ath_tx_addto_baw(sc, tid, bf);
603 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
604 list_move_tail(&bf->list, bf_q);
605 if (bf_prev) {
606 bf_prev->bf_next = bf;
607 bf_prev->bf_desc->ds_link = bf->bf_daddr;
608 }
609 bf_prev = bf;
610 } while (!list_empty(&tid->buf_q));
611
612 bf_first->bf_al = al;
613 bf_first->bf_nframes = nframes;
614
615 return status;
616 #undef PADBYTES
617 }
618
619 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
620 struct ath_atx_tid *tid)
621 {
622 struct ath_buf *bf;
623 enum ATH_AGGR_STATUS status;
624 struct list_head bf_q;
625
626 do {
627 if (list_empty(&tid->buf_q))
628 return;
629
630 INIT_LIST_HEAD(&bf_q);
631
632 status = ath_tx_form_aggr(sc, tid, &bf_q);
633
634 /*
635 * no frames picked up to be aggregated;
636 * block-ack window is not open.
637 */
638 if (list_empty(&bf_q))
639 break;
640
641 bf = list_first_entry(&bf_q, struct ath_buf, list);
642 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
643
644 /* if only one frame, send as non-aggregate */
645 if (bf->bf_nframes == 1) {
646 bf->bf_state.bf_type &= ~BUF_AGGR;
647 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
648 ath_buf_set_rate(sc, bf);
649 ath_tx_txqaddbuf(sc, txq, &bf_q);
650 continue;
651 }
652
653 /* setup first desc of aggregate */
654 bf->bf_state.bf_type |= BUF_AGGR;
655 ath_buf_set_rate(sc, bf);
656 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
657
658 /* anchor last desc of aggregate */
659 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
660
661 txq->axq_aggr_depth++;
662 ath_tx_txqaddbuf(sc, txq, &bf_q);
663
664 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
665 status != ATH_AGGR_BAW_CLOSED);
666 }
667
668 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
669 u16 tid, u16 *ssn)
670 {
671 struct ath_atx_tid *txtid;
672 struct ath_node *an;
673
674 an = (struct ath_node *)sta->drv_priv;
675
676 if (sc->sc_flags & SC_OP_TXAGGR) {
677 txtid = ATH_AN_2_TID(an, tid);
678 txtid->state |= AGGR_ADDBA_PROGRESS;
679 ath_tx_pause_tid(sc, txtid);
680 *ssn = txtid->seq_start;
681 }
682
683 return 0;
684 }
685
686 int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
687 {
688 struct ath_node *an = (struct ath_node *)sta->drv_priv;
689 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
690 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
691 struct ath_buf *bf;
692 struct list_head bf_head;
693 INIT_LIST_HEAD(&bf_head);
694
695 if (txtid->state & AGGR_CLEANUP)
696 return 0;
697
698 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
699 txtid->addba_exchangeattempts = 0;
700 return 0;
701 }
702
703 ath_tx_pause_tid(sc, txtid);
704
705 /* drop all software retried frames and mark this TID */
706 spin_lock_bh(&txq->axq_lock);
707 while (!list_empty(&txtid->buf_q)) {
708 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
709 if (!bf_isretried(bf)) {
710 /*
711 * NB: it's based on the assumption that
712 * software retried frame will always stay
713 * at the head of software queue.
714 */
715 break;
716 }
717 list_move_tail(&bf->list, &bf_head);
718 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
719 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
720 }
721 spin_unlock_bh(&txq->axq_lock);
722
723 if (txtid->baw_head != txtid->baw_tail) {
724 txtid->state |= AGGR_CLEANUP;
725 } else {
726 txtid->state &= ~AGGR_ADDBA_COMPLETE;
727 txtid->addba_exchangeattempts = 0;
728 ath_tx_flush_tid(sc, txtid);
729 }
730
731 return 0;
732 }
733
734 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
735 {
736 struct ath_atx_tid *txtid;
737 struct ath_node *an;
738
739 an = (struct ath_node *)sta->drv_priv;
740
741 if (sc->sc_flags & SC_OP_TXAGGR) {
742 txtid = ATH_AN_2_TID(an, tid);
743 txtid->baw_size =
744 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
745 txtid->state |= AGGR_ADDBA_COMPLETE;
746 txtid->state &= ~AGGR_ADDBA_PROGRESS;
747 ath_tx_resume_tid(sc, txtid);
748 }
749 }
750
751 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
752 {
753 struct ath_atx_tid *txtid;
754
755 if (!(sc->sc_flags & SC_OP_TXAGGR))
756 return false;
757
758 txtid = ATH_AN_2_TID(an, tidno);
759
760 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
761 if (!(txtid->state & AGGR_ADDBA_PROGRESS) &&
762 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
763 txtid->addba_exchangeattempts++;
764 return true;
765 }
766 }
767
768 return false;
769 }
770
771 /********************/
772 /* Queue Management */
773 /********************/
774
775 static u32 ath_txq_depth(struct ath_softc *sc, int qnum)
776 {
777 return sc->tx.txq[qnum].axq_depth;
778 }
779
780 static void ath_get_beaconconfig(struct ath_softc *sc, int if_id,
781 struct ath_beacon_config *conf)
782 {
783 struct ieee80211_hw *hw = sc->hw;
784
785 /* fill in beacon config data */
786
787 conf->beacon_interval = hw->conf.beacon_int;
788 conf->listen_interval = 100;
789 conf->dtim_count = 1;
790 conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval;
791 }
792
793 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
794 struct ath_txq *txq)
795 {
796 struct ath_atx_ac *ac, *ac_tmp;
797 struct ath_atx_tid *tid, *tid_tmp;
798
799 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
800 list_del(&ac->list);
801 ac->sched = false;
802 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
803 list_del(&tid->list);
804 tid->sched = false;
805 ath_tid_drain(sc, txq, tid);
806 }
807 }
808 }
809
810 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
811 {
812 struct ath_hw *ah = sc->sc_ah;
813 struct ath9k_tx_queue_info qi;
814 int qnum;
815
816 memset(&qi, 0, sizeof(qi));
817 qi.tqi_subtype = subtype;
818 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
819 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
820 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
821 qi.tqi_physCompBuf = 0;
822
823 /*
824 * Enable interrupts only for EOL and DESC conditions.
825 * We mark tx descriptors to receive a DESC interrupt
826 * when a tx queue gets deep; otherwise waiting for the
827 * EOL to reap descriptors. Note that this is done to
828 * reduce interrupt load and this only defers reaping
829 * descriptors, never transmitting frames. Aside from
830 * reducing interrupts this also permits more concurrency.
831 * The only potential downside is if the tx queue backs
832 * up in which case the top half of the kernel may backup
833 * due to a lack of tx descriptors.
834 *
835 * The UAPSD queue is an exception, since we take a desc-
836 * based intr on the EOSP frames.
837 */
838 if (qtype == ATH9K_TX_QUEUE_UAPSD)
839 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
840 else
841 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
842 TXQ_FLAG_TXDESCINT_ENABLE;
843 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
844 if (qnum == -1) {
845 /*
846 * NB: don't print a message, this happens
847 * normally on parts with too few tx queues
848 */
849 return NULL;
850 }
851 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
852 DPRINTF(sc, ATH_DBG_FATAL,
853 "qnum %u out of range, max %u!\n",
854 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
855 ath9k_hw_releasetxqueue(ah, qnum);
856 return NULL;
857 }
858 if (!ATH_TXQ_SETUP(sc, qnum)) {
859 struct ath_txq *txq = &sc->tx.txq[qnum];
860
861 txq->axq_qnum = qnum;
862 txq->axq_link = NULL;
863 INIT_LIST_HEAD(&txq->axq_q);
864 INIT_LIST_HEAD(&txq->axq_acq);
865 spin_lock_init(&txq->axq_lock);
866 txq->axq_depth = 0;
867 txq->axq_aggr_depth = 0;
868 txq->axq_totalqueued = 0;
869 txq->axq_linkbuf = NULL;
870 sc->tx.txqsetup |= 1<<qnum;
871 }
872 return &sc->tx.txq[qnum];
873 }
874
875 static int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
876 {
877 int qnum;
878
879 switch (qtype) {
880 case ATH9K_TX_QUEUE_DATA:
881 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
882 DPRINTF(sc, ATH_DBG_FATAL,
883 "HAL AC %u out of range, max %zu!\n",
884 haltype, ARRAY_SIZE(sc->tx.hwq_map));
885 return -1;
886 }
887 qnum = sc->tx.hwq_map[haltype];
888 break;
889 case ATH9K_TX_QUEUE_BEACON:
890 qnum = sc->beacon.beaconq;
891 break;
892 case ATH9K_TX_QUEUE_CAB:
893 qnum = sc->beacon.cabq->axq_qnum;
894 break;
895 default:
896 qnum = -1;
897 }
898 return qnum;
899 }
900
901 struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
902 {
903 struct ath_txq *txq = NULL;
904 int qnum;
905
906 qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
907 txq = &sc->tx.txq[qnum];
908
909 spin_lock_bh(&txq->axq_lock);
910
911 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
912 DPRINTF(sc, ATH_DBG_FATAL,
913 "TX queue: %d is full, depth: %d\n",
914 qnum, txq->axq_depth);
915 ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb));
916 txq->stopped = 1;
917 spin_unlock_bh(&txq->axq_lock);
918 return NULL;
919 }
920
921 spin_unlock_bh(&txq->axq_lock);
922
923 return txq;
924 }
925
926 int ath_txq_update(struct ath_softc *sc, int qnum,
927 struct ath9k_tx_queue_info *qinfo)
928 {
929 struct ath_hw *ah = sc->sc_ah;
930 int error = 0;
931 struct ath9k_tx_queue_info qi;
932
933 if (qnum == sc->beacon.beaconq) {
934 /*
935 * XXX: for beacon queue, we just save the parameter.
936 * It will be picked up by ath_beaconq_config when
937 * it's necessary.
938 */
939 sc->beacon.beacon_qi = *qinfo;
940 return 0;
941 }
942
943 ASSERT(sc->tx.txq[qnum].axq_qnum == qnum);
944
945 ath9k_hw_get_txq_props(ah, qnum, &qi);
946 qi.tqi_aifs = qinfo->tqi_aifs;
947 qi.tqi_cwmin = qinfo->tqi_cwmin;
948 qi.tqi_cwmax = qinfo->tqi_cwmax;
949 qi.tqi_burstTime = qinfo->tqi_burstTime;
950 qi.tqi_readyTime = qinfo->tqi_readyTime;
951
952 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
953 DPRINTF(sc, ATH_DBG_FATAL,
954 "Unable to update hardware queue %u!\n", qnum);
955 error = -EIO;
956 } else {
957 ath9k_hw_resettxqueue(ah, qnum);
958 }
959
960 return error;
961 }
962
963 int ath_cabq_update(struct ath_softc *sc)
964 {
965 struct ath9k_tx_queue_info qi;
966 int qnum = sc->beacon.cabq->axq_qnum;
967 struct ath_beacon_config conf;
968
969 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
970 /*
971 * Ensure the readytime % is within the bounds.
972 */
973 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
974 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
975 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
976 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
977
978 ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
979 qi.tqi_readyTime =
980 (conf.beacon_interval * sc->config.cabqReadytime) / 100;
981 ath_txq_update(sc, qnum, &qi);
982
983 return 0;
984 }
985
986 /*
987 * Drain a given TX queue (could be Beacon or Data)
988 *
989 * This assumes output has been stopped and
990 * we do not need to block ath_tx_tasklet.
991 */
992 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
993 {
994 struct ath_buf *bf, *lastbf;
995 struct list_head bf_head;
996
997 INIT_LIST_HEAD(&bf_head);
998
999 for (;;) {
1000 spin_lock_bh(&txq->axq_lock);
1001
1002 if (list_empty(&txq->axq_q)) {
1003 txq->axq_link = NULL;
1004 txq->axq_linkbuf = NULL;
1005 spin_unlock_bh(&txq->axq_lock);
1006 break;
1007 }
1008
1009 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1010
1011 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1012 list_del(&bf->list);
1013 spin_unlock_bh(&txq->axq_lock);
1014
1015 spin_lock_bh(&sc->tx.txbuflock);
1016 list_add_tail(&bf->list, &sc->tx.txbuf);
1017 spin_unlock_bh(&sc->tx.txbuflock);
1018 continue;
1019 }
1020
1021 lastbf = bf->bf_lastbf;
1022 if (!retry_tx)
1023 lastbf->bf_desc->ds_txstat.ts_flags =
1024 ATH9K_TX_SW_ABORTED;
1025
1026 /* remove ath_buf's of the same mpdu from txq */
1027 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1028 txq->axq_depth--;
1029
1030 spin_unlock_bh(&txq->axq_lock);
1031
1032 if (bf_isampdu(bf))
1033 ath_tx_complete_aggr(sc, txq, bf, &bf_head, 0);
1034 else
1035 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
1036 }
1037
1038 /* flush any pending frames if aggregation is enabled */
1039 if (sc->sc_flags & SC_OP_TXAGGR) {
1040 if (!retry_tx) {
1041 spin_lock_bh(&txq->axq_lock);
1042 ath_txq_drain_pending_buffers(sc, txq);
1043 spin_unlock_bh(&txq->axq_lock);
1044 }
1045 }
1046 }
1047
1048 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1049 {
1050 struct ath_hw *ah = sc->sc_ah;
1051 struct ath_txq *txq;
1052 int i, npend = 0;
1053
1054 if (sc->sc_flags & SC_OP_INVALID)
1055 return;
1056
1057 /* Stop beacon queue */
1058 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1059
1060 /* Stop data queues */
1061 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1062 if (ATH_TXQ_SETUP(sc, i)) {
1063 txq = &sc->tx.txq[i];
1064 ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1065 npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1066 }
1067 }
1068
1069 if (npend) {
1070 int r;
1071
1072 DPRINTF(sc, ATH_DBG_XMIT, "Unable to stop TxDMA. Reset HAL!\n");
1073
1074 spin_lock_bh(&sc->sc_resetlock);
1075 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, true);
1076 if (r)
1077 DPRINTF(sc, ATH_DBG_FATAL,
1078 "Unable to reset hardware; reset status %u\n",
1079 r);
1080 spin_unlock_bh(&sc->sc_resetlock);
1081 }
1082
1083 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1084 if (ATH_TXQ_SETUP(sc, i))
1085 ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1086 }
1087 }
1088
1089 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1090 {
1091 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1092 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1093 }
1094
1095 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1096 {
1097 struct ath_atx_ac *ac;
1098 struct ath_atx_tid *tid;
1099
1100 if (list_empty(&txq->axq_acq))
1101 return;
1102
1103 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1104 list_del(&ac->list);
1105 ac->sched = false;
1106
1107 do {
1108 if (list_empty(&ac->tid_q))
1109 return;
1110
1111 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1112 list_del(&tid->list);
1113 tid->sched = false;
1114
1115 if (tid->paused)
1116 continue;
1117
1118 if ((txq->axq_depth % 2) == 0)
1119 ath_tx_sched_aggr(sc, txq, tid);
1120
1121 /*
1122 * add tid to round-robin queue if more frames
1123 * are pending for the tid
1124 */
1125 if (!list_empty(&tid->buf_q))
1126 ath_tx_queue_tid(txq, tid);
1127
1128 break;
1129 } while (!list_empty(&ac->tid_q));
1130
1131 if (!list_empty(&ac->tid_q)) {
1132 if (!ac->sched) {
1133 ac->sched = true;
1134 list_add_tail(&ac->list, &txq->axq_acq);
1135 }
1136 }
1137 }
1138
1139 int ath_tx_setup(struct ath_softc *sc, int haltype)
1140 {
1141 struct ath_txq *txq;
1142
1143 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1144 DPRINTF(sc, ATH_DBG_FATAL,
1145 "HAL AC %u out of range, max %zu!\n",
1146 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1147 return 0;
1148 }
1149 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1150 if (txq != NULL) {
1151 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1152 return 1;
1153 } else
1154 return 0;
1155 }
1156
1157 /***********/
1158 /* TX, DMA */
1159 /***********/
1160
1161 /*
1162 * Insert a chain of ath_buf (descriptors) on a txq and
1163 * assume the descriptors are already chained together by caller.
1164 */
1165 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1166 struct list_head *head)
1167 {
1168 struct ath_hw *ah = sc->sc_ah;
1169 struct ath_buf *bf;
1170
1171 /*
1172 * Insert the frame on the outbound list and
1173 * pass it on to the hardware.
1174 */
1175
1176 if (list_empty(head))
1177 return;
1178
1179 bf = list_first_entry(head, struct ath_buf, list);
1180
1181 list_splice_tail_init(head, &txq->axq_q);
1182 txq->axq_depth++;
1183 txq->axq_totalqueued++;
1184 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
1185
1186 DPRINTF(sc, ATH_DBG_QUEUE,
1187 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1188
1189 if (txq->axq_link == NULL) {
1190 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1191 DPRINTF(sc, ATH_DBG_XMIT,
1192 "TXDP[%u] = %llx (%p)\n",
1193 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1194 } else {
1195 *txq->axq_link = bf->bf_daddr;
1196 DPRINTF(sc, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
1197 txq->axq_qnum, txq->axq_link,
1198 ito64(bf->bf_daddr), bf->bf_desc);
1199 }
1200 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
1201 ath9k_hw_txstart(ah, txq->axq_qnum);
1202 }
1203
1204 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
1205 {
1206 struct ath_buf *bf = NULL;
1207
1208 spin_lock_bh(&sc->tx.txbuflock);
1209
1210 if (unlikely(list_empty(&sc->tx.txbuf))) {
1211 spin_unlock_bh(&sc->tx.txbuflock);
1212 return NULL;
1213 }
1214
1215 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
1216 list_del(&bf->list);
1217
1218 spin_unlock_bh(&sc->tx.txbuflock);
1219
1220 return bf;
1221 }
1222
1223 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1224 struct list_head *bf_head,
1225 struct ath_tx_control *txctl)
1226 {
1227 struct ath_buf *bf;
1228
1229 bf = list_first_entry(bf_head, struct ath_buf, list);
1230 bf->bf_state.bf_type |= BUF_AMPDU;
1231
1232 /*
1233 * Do not queue to h/w when any of the following conditions is true:
1234 * - there are pending frames in software queue
1235 * - the TID is currently paused for ADDBA/BAR request
1236 * - seqno is not within block-ack window
1237 * - h/w queue depth exceeds low water mark
1238 */
1239 if (!list_empty(&tid->buf_q) || tid->paused ||
1240 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1241 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1242 /*
1243 * Add this frame to software queue for scheduling later
1244 * for aggregation.
1245 */
1246 list_move_tail(&bf->list, &tid->buf_q);
1247 ath_tx_queue_tid(txctl->txq, tid);
1248 return;
1249 }
1250
1251 /* Add sub-frame to BAW */
1252 ath_tx_addto_baw(sc, tid, bf);
1253
1254 /* Queue to h/w without aggregation */
1255 bf->bf_nframes = 1;
1256 bf->bf_lastbf = bf;
1257 ath_buf_set_rate(sc, bf);
1258 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1259 }
1260
1261 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1262 struct ath_atx_tid *tid,
1263 struct list_head *bf_head)
1264 {
1265 struct ath_buf *bf;
1266
1267 bf = list_first_entry(bf_head, struct ath_buf, list);
1268 bf->bf_state.bf_type &= ~BUF_AMPDU;
1269
1270 /* update starting sequence number for subsequent ADDBA request */
1271 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1272
1273 bf->bf_nframes = 1;
1274 bf->bf_lastbf = bf;
1275 ath_buf_set_rate(sc, bf);
1276 ath_tx_txqaddbuf(sc, txq, bf_head);
1277 }
1278
1279 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1280 {
1281 struct ieee80211_hdr *hdr;
1282 enum ath9k_pkt_type htype;
1283 __le16 fc;
1284
1285 hdr = (struct ieee80211_hdr *)skb->data;
1286 fc = hdr->frame_control;
1287
1288 if (ieee80211_is_beacon(fc))
1289 htype = ATH9K_PKT_TYPE_BEACON;
1290 else if (ieee80211_is_probe_resp(fc))
1291 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1292 else if (ieee80211_is_atim(fc))
1293 htype = ATH9K_PKT_TYPE_ATIM;
1294 else if (ieee80211_is_pspoll(fc))
1295 htype = ATH9K_PKT_TYPE_PSPOLL;
1296 else
1297 htype = ATH9K_PKT_TYPE_NORMAL;
1298
1299 return htype;
1300 }
1301
1302 static bool is_pae(struct sk_buff *skb)
1303 {
1304 struct ieee80211_hdr *hdr;
1305 __le16 fc;
1306
1307 hdr = (struct ieee80211_hdr *)skb->data;
1308 fc = hdr->frame_control;
1309
1310 if (ieee80211_is_data(fc)) {
1311 if (ieee80211_is_nullfunc(fc) ||
1312 /* Port Access Entity (IEEE 802.1X) */
1313 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1314 return true;
1315 }
1316 }
1317
1318 return false;
1319 }
1320
1321 static int get_hw_crypto_keytype(struct sk_buff *skb)
1322 {
1323 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1324
1325 if (tx_info->control.hw_key) {
1326 if (tx_info->control.hw_key->alg == ALG_WEP)
1327 return ATH9K_KEY_TYPE_WEP;
1328 else if (tx_info->control.hw_key->alg == ALG_TKIP)
1329 return ATH9K_KEY_TYPE_TKIP;
1330 else if (tx_info->control.hw_key->alg == ALG_CCMP)
1331 return ATH9K_KEY_TYPE_AES;
1332 }
1333
1334 return ATH9K_KEY_TYPE_CLEAR;
1335 }
1336
1337 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1338 struct ath_buf *bf)
1339 {
1340 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1341 struct ieee80211_hdr *hdr;
1342 struct ath_node *an;
1343 struct ath_atx_tid *tid;
1344 __le16 fc;
1345 u8 *qc;
1346
1347 if (!tx_info->control.sta)
1348 return;
1349
1350 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1351 hdr = (struct ieee80211_hdr *)skb->data;
1352 fc = hdr->frame_control;
1353
1354 if (ieee80211_is_data_qos(fc)) {
1355 qc = ieee80211_get_qos_ctl(hdr);
1356 bf->bf_tidno = qc[0] & 0xf;
1357 }
1358
1359 /*
1360 * For HT capable stations, we save tidno for later use.
1361 * We also override seqno set by upper layer with the one
1362 * in tx aggregation state.
1363 *
1364 * If fragmentation is on, the sequence number is
1365 * not overridden, since it has been
1366 * incremented by the fragmentation routine.
1367 *
1368 * FIXME: check if the fragmentation threshold exceeds
1369 * IEEE80211 max.
1370 */
1371 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1372 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
1373 IEEE80211_SEQ_SEQ_SHIFT);
1374 bf->bf_seqno = tid->seq_next;
1375 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1376 }
1377
1378 static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
1379 struct ath_txq *txq)
1380 {
1381 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1382 int flags = 0;
1383
1384 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1385 flags |= ATH9K_TXDESC_INTREQ;
1386
1387 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1388 flags |= ATH9K_TXDESC_NOACK;
1389
1390 return flags;
1391 }
1392
1393 /*
1394 * rix - rate index
1395 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1396 * width - 0 for 20 MHz, 1 for 40 MHz
1397 * half_gi - to use 4us v/s 3.6 us for symbol time
1398 */
1399 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1400 int width, int half_gi, bool shortPreamble)
1401 {
1402 struct ath_rate_table *rate_table = sc->cur_rate_table;
1403 u32 nbits, nsymbits, duration, nsymbols;
1404 u8 rc;
1405 int streams, pktlen;
1406
1407 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1408 rc = rate_table->info[rix].ratecode;
1409
1410 /* for legacy rates, use old function to compute packet duration */
1411 if (!IS_HT_RATE(rc))
1412 return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen,
1413 rix, shortPreamble);
1414
1415 /* find number of symbols: PLCP + data */
1416 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1417 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1418 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1419
1420 if (!half_gi)
1421 duration = SYMBOL_TIME(nsymbols);
1422 else
1423 duration = SYMBOL_TIME_HALFGI(nsymbols);
1424
1425 /* addup duration for legacy/ht training and signal fields */
1426 streams = HT_RC_2_STREAMS(rc);
1427 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1428
1429 return duration;
1430 }
1431
1432 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1433 {
1434 struct ath_rate_table *rt = sc->cur_rate_table;
1435 struct ath9k_11n_rate_series series[4];
1436 struct sk_buff *skb;
1437 struct ieee80211_tx_info *tx_info;
1438 struct ieee80211_tx_rate *rates;
1439 struct ieee80211_hdr *hdr;
1440 int i, flags = 0;
1441 u8 rix = 0, ctsrate = 0;
1442 bool is_pspoll;
1443
1444 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1445
1446 skb = (struct sk_buff *)bf->bf_mpdu;
1447 tx_info = IEEE80211_SKB_CB(skb);
1448 rates = tx_info->control.rates;
1449 hdr = (struct ieee80211_hdr *)skb->data;
1450 is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
1451
1452 /*
1453 * We check if Short Preamble is needed for the CTS rate by
1454 * checking the BSS's global flag.
1455 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1456 */
1457 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1458 ctsrate = rt->info[tx_info->control.rts_cts_rate_idx].ratecode |
1459 rt->info[tx_info->control.rts_cts_rate_idx].short_preamble;
1460 else
1461 ctsrate = rt->info[tx_info->control.rts_cts_rate_idx].ratecode;
1462
1463 /*
1464 * ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive.
1465 * Check the first rate in the series to decide whether RTS/CTS
1466 * or CTS-to-self has to be used.
1467 */
1468 if (rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1469 flags = ATH9K_TXDESC_CTSENA;
1470 else if (rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1471 flags = ATH9K_TXDESC_RTSENA;
1472
1473 /* FIXME: Handle aggregation protection */
1474 if (sc->config.ath_aggr_prot &&
1475 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
1476 flags = ATH9K_TXDESC_RTSENA;
1477 }
1478
1479 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1480 if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
1481 flags &= ~(ATH9K_TXDESC_RTSENA);
1482
1483 for (i = 0; i < 4; i++) {
1484 if (!rates[i].count || (rates[i].idx < 0))
1485 continue;
1486
1487 rix = rates[i].idx;
1488 series[i].Tries = rates[i].count;
1489 series[i].ChSel = sc->tx_chainmask;
1490
1491 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1492 series[i].Rate = rt->info[rix].ratecode |
1493 rt->info[rix].short_preamble;
1494 else
1495 series[i].Rate = rt->info[rix].ratecode;
1496
1497 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1498 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1499 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1500 series[i].RateFlags |= ATH9K_RATESERIES_2040;
1501 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1502 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1503
1504 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1505 (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0,
1506 (rates[i].flags & IEEE80211_TX_RC_SHORT_GI),
1507 (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE));
1508 }
1509
1510 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1511 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
1512 bf->bf_lastbf->bf_desc,
1513 !is_pspoll, ctsrate,
1514 0, series, 4, flags);
1515
1516 if (sc->config.ath_aggr_prot && flags)
1517 ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
1518 }
1519
1520 static int ath_tx_setup_buffer(struct ath_softc *sc, struct ath_buf *bf,
1521 struct sk_buff *skb,
1522 struct ath_tx_control *txctl)
1523 {
1524 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1525 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1526 struct ath_tx_info_priv *tx_info_priv;
1527 int hdrlen;
1528 __le16 fc;
1529
1530 tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
1531 if (unlikely(!tx_info_priv))
1532 return -ENOMEM;
1533 tx_info->rate_driver_data[0] = tx_info_priv;
1534 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1535 fc = hdr->frame_control;
1536
1537 ATH_TXBUF_RESET(bf);
1538
1539 bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
1540
1541 if ((conf_is_ht(&sc->hw->conf) && !is_pae(skb) &&
1542 (tx_info->flags & IEEE80211_TX_CTL_AMPDU)))
1543 bf->bf_state.bf_type |= BUF_HT;
1544
1545 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1546
1547 bf->bf_keytype = get_hw_crypto_keytype(skb);
1548 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1549 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1550 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1551 } else {
1552 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1553 }
1554
1555 if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR))
1556 assign_aggr_tid_seqno(skb, bf);
1557
1558 bf->bf_mpdu = skb;
1559
1560 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1561 skb->len, DMA_TO_DEVICE);
1562 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1563 bf->bf_mpdu = NULL;
1564 DPRINTF(sc, ATH_DBG_CONFIG,
1565 "dma_mapping_error() on TX\n");
1566 return -ENOMEM;
1567 }
1568
1569 bf->bf_buf_addr = bf->bf_dmacontext;
1570 return 0;
1571 }
1572
1573 /* FIXME: tx power */
1574 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1575 struct ath_tx_control *txctl)
1576 {
1577 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
1578 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1579 struct ath_node *an = NULL;
1580 struct list_head bf_head;
1581 struct ath_desc *ds;
1582 struct ath_atx_tid *tid;
1583 struct ath_hw *ah = sc->sc_ah;
1584 int frm_type;
1585
1586 frm_type = get_hw_packet_type(skb);
1587
1588 INIT_LIST_HEAD(&bf_head);
1589 list_add_tail(&bf->list, &bf_head);
1590
1591 ds = bf->bf_desc;
1592 ds->ds_link = 0;
1593 ds->ds_data = bf->bf_buf_addr;
1594
1595 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1596 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1597
1598 ath9k_hw_filltxdesc(ah, ds,
1599 skb->len, /* segment length */
1600 true, /* first segment */
1601 true, /* last segment */
1602 ds); /* first descriptor */
1603
1604 spin_lock_bh(&txctl->txq->axq_lock);
1605
1606 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1607 tx_info->control.sta) {
1608 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1609 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1610
1611 if (ath_aggr_query(sc, an, bf->bf_tidno)) {
1612 /*
1613 * Try aggregation if it's a unicast data frame
1614 * and the destination is HT capable.
1615 */
1616 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1617 } else {
1618 /*
1619 * Send this frame as regular when ADDBA
1620 * exchange is neither complete nor pending.
1621 */
1622 ath_tx_send_normal(sc, txctl->txq,
1623 tid, &bf_head);
1624 }
1625 } else {
1626 bf->bf_lastbf = bf;
1627 bf->bf_nframes = 1;
1628
1629 ath_buf_set_rate(sc, bf);
1630 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head);
1631 }
1632
1633 spin_unlock_bh(&txctl->txq->axq_lock);
1634 }
1635
1636 /* Upon failure caller should free skb */
1637 int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb,
1638 struct ath_tx_control *txctl)
1639 {
1640 struct ath_buf *bf;
1641 int r;
1642
1643 bf = ath_tx_get_buffer(sc);
1644 if (!bf) {
1645 DPRINTF(sc, ATH_DBG_XMIT, "TX buffers are full\n");
1646 return -1;
1647 }
1648
1649 r = ath_tx_setup_buffer(sc, bf, skb, txctl);
1650 if (unlikely(r)) {
1651 struct ath_txq *txq = txctl->txq;
1652
1653 DPRINTF(sc, ATH_DBG_FATAL, "TX mem alloc failure\n");
1654
1655 /* upon ath_tx_processq() this TX queue will be resumed, we
1656 * guarantee this will happen by knowing beforehand that
1657 * we will at least have to run TX completionon one buffer
1658 * on the queue */
1659 spin_lock_bh(&txq->axq_lock);
1660 if (ath_txq_depth(sc, txq->axq_qnum) > 1) {
1661 ieee80211_stop_queue(sc->hw,
1662 skb_get_queue_mapping(skb));
1663 txq->stopped = 1;
1664 }
1665 spin_unlock_bh(&txq->axq_lock);
1666
1667 spin_lock_bh(&sc->tx.txbuflock);
1668 list_add_tail(&bf->list, &sc->tx.txbuf);
1669 spin_unlock_bh(&sc->tx.txbuflock);
1670
1671 return r;
1672 }
1673
1674 ath_tx_start_dma(sc, bf, txctl);
1675
1676 return 0;
1677 }
1678
1679 void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb)
1680 {
1681 int hdrlen, padsize;
1682 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1683 struct ath_tx_control txctl;
1684
1685 memset(&txctl, 0, sizeof(struct ath_tx_control));
1686
1687 /*
1688 * As a temporary workaround, assign seq# here; this will likely need
1689 * to be cleaned up to work better with Beacon transmission and virtual
1690 * BSSes.
1691 */
1692 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1693 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1694 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1695 sc->tx.seq_no += 0x10;
1696 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1697 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1698 }
1699
1700 /* Add the padding after the header if this is not already done */
1701 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1702 if (hdrlen & 3) {
1703 padsize = hdrlen % 4;
1704 if (skb_headroom(skb) < padsize) {
1705 DPRINTF(sc, ATH_DBG_XMIT, "TX CABQ padding failed\n");
1706 dev_kfree_skb_any(skb);
1707 return;
1708 }
1709 skb_push(skb, padsize);
1710 memmove(skb->data, skb->data + padsize, hdrlen);
1711 }
1712
1713 txctl.txq = sc->beacon.cabq;
1714
1715 DPRINTF(sc, ATH_DBG_XMIT, "transmitting CABQ packet, skb: %p\n", skb);
1716
1717 if (ath_tx_start(sc, skb, &txctl) != 0) {
1718 DPRINTF(sc, ATH_DBG_XMIT, "CABQ TX failed\n");
1719 goto exit;
1720 }
1721
1722 return;
1723 exit:
1724 dev_kfree_skb_any(skb);
1725 }
1726
1727 /*****************/
1728 /* TX Completion */
1729 /*****************/
1730
1731 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1732 struct ath_xmit_status *tx_status)
1733 {
1734 struct ieee80211_hw *hw = sc->hw;
1735 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1736 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1737 int hdrlen, padsize;
1738
1739 DPRINTF(sc, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1740
1741 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
1742 tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
1743 kfree(tx_info_priv);
1744 tx_info->rate_driver_data[0] = NULL;
1745 }
1746
1747 if (tx_status->flags & ATH_TX_BAR) {
1748 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1749 tx_status->flags &= ~ATH_TX_BAR;
1750 }
1751
1752 if (!(tx_status->flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1753 /* Frame was ACKed */
1754 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1755 }
1756
1757 tx_info->status.rates[0].count = tx_status->retries + 1;
1758
1759 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1760 padsize = hdrlen & 3;
1761 if (padsize && hdrlen >= 24) {
1762 /*
1763 * Remove MAC header padding before giving the frame back to
1764 * mac80211.
1765 */
1766 memmove(skb->data + padsize, skb->data, hdrlen);
1767 skb_pull(skb, padsize);
1768 }
1769
1770 ieee80211_tx_status(hw, skb);
1771 }
1772
1773 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1774 struct list_head *bf_q,
1775 int txok, int sendbar)
1776 {
1777 struct sk_buff *skb = bf->bf_mpdu;
1778 struct ath_xmit_status tx_status;
1779 unsigned long flags;
1780
1781 /*
1782 * Set retry information.
1783 * NB: Don't use the information in the descriptor, because the frame
1784 * could be software retried.
1785 */
1786 tx_status.retries = bf->bf_retries;
1787 tx_status.flags = 0;
1788
1789 if (sendbar)
1790 tx_status.flags = ATH_TX_BAR;
1791
1792 if (!txok) {
1793 tx_status.flags |= ATH_TX_ERROR;
1794
1795 if (bf_isxretried(bf))
1796 tx_status.flags |= ATH_TX_XRETRY;
1797 }
1798
1799 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1800 ath_tx_complete(sc, skb, &tx_status);
1801
1802 /*
1803 * Return the list of ath_buf of this mpdu to free queue
1804 */
1805 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1806 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1807 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1808 }
1809
1810 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1811 int txok)
1812 {
1813 struct ath_buf *bf_last = bf->bf_lastbf;
1814 struct ath_desc *ds = bf_last->bf_desc;
1815 u16 seq_st = 0;
1816 u32 ba[WME_BA_BMP_SIZE >> 5];
1817 int ba_index;
1818 int nbad = 0;
1819 int isaggr = 0;
1820
1821 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
1822 return 0;
1823
1824 isaggr = bf_isaggr(bf);
1825 if (isaggr) {
1826 seq_st = ATH_DS_BA_SEQ(ds);
1827 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
1828 }
1829
1830 while (bf) {
1831 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1832 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1833 nbad++;
1834
1835 bf = bf->bf_next;
1836 }
1837
1838 return nbad;
1839 }
1840
1841 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds, int nbad)
1842 {
1843 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
1844 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1845 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1846 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1847
1848 tx_info_priv->update_rc = false;
1849 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
1850 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1851
1852 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
1853 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
1854 if (ieee80211_is_data(hdr->frame_control)) {
1855 memcpy(&tx_info_priv->tx, &ds->ds_txstat,
1856 sizeof(tx_info_priv->tx));
1857 tx_info_priv->n_frames = bf->bf_nframes;
1858 tx_info_priv->n_bad_frames = nbad;
1859 tx_info_priv->update_rc = true;
1860 }
1861 }
1862 }
1863
1864 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
1865 {
1866 int qnum;
1867
1868 spin_lock_bh(&txq->axq_lock);
1869 if (txq->stopped &&
1870 ath_txq_depth(sc, txq->axq_qnum) <= (ATH_TXBUF - 20)) {
1871 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1872 if (qnum != -1) {
1873 ieee80211_wake_queue(sc->hw, qnum);
1874 txq->stopped = 0;
1875 }
1876 }
1877 spin_unlock_bh(&txq->axq_lock);
1878 }
1879
1880 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1881 {
1882 struct ath_hw *ah = sc->sc_ah;
1883 struct ath_buf *bf, *lastbf, *bf_held = NULL;
1884 struct list_head bf_head;
1885 struct ath_desc *ds;
1886 int txok, nbad = 0;
1887 int status;
1888
1889 DPRINTF(sc, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
1890 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1891 txq->axq_link);
1892
1893 for (;;) {
1894 spin_lock_bh(&txq->axq_lock);
1895 if (list_empty(&txq->axq_q)) {
1896 txq->axq_link = NULL;
1897 txq->axq_linkbuf = NULL;
1898 spin_unlock_bh(&txq->axq_lock);
1899 break;
1900 }
1901 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1902
1903 /*
1904 * There is a race condition that a BH gets scheduled
1905 * after sw writes TxE and before hw re-load the last
1906 * descriptor to get the newly chained one.
1907 * Software must keep the last DONE descriptor as a
1908 * holding descriptor - software does so by marking
1909 * it with the STALE flag.
1910 */
1911 bf_held = NULL;
1912 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1913 bf_held = bf;
1914 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1915 txq->axq_link = NULL;
1916 txq->axq_linkbuf = NULL;
1917 spin_unlock_bh(&txq->axq_lock);
1918
1919 /*
1920 * The holding descriptor is the last
1921 * descriptor in queue. It's safe to remove
1922 * the last holding descriptor in BH context.
1923 */
1924 spin_lock_bh(&sc->tx.txbuflock);
1925 list_move_tail(&bf_held->list, &sc->tx.txbuf);
1926 spin_unlock_bh(&sc->tx.txbuflock);
1927
1928 break;
1929 } else {
1930 bf = list_entry(bf_held->list.next,
1931 struct ath_buf, list);
1932 }
1933 }
1934
1935 lastbf = bf->bf_lastbf;
1936 ds = lastbf->bf_desc;
1937
1938 status = ath9k_hw_txprocdesc(ah, ds);
1939 if (status == -EINPROGRESS) {
1940 spin_unlock_bh(&txq->axq_lock);
1941 break;
1942 }
1943 if (bf->bf_desc == txq->axq_lastdsWithCTS)
1944 txq->axq_lastdsWithCTS = NULL;
1945 if (ds == txq->axq_gatingds)
1946 txq->axq_gatingds = NULL;
1947
1948 /*
1949 * Remove ath_buf's of the same transmit unit from txq,
1950 * however leave the last descriptor back as the holding
1951 * descriptor for hw.
1952 */
1953 lastbf->bf_status |= ATH_BUFSTATUS_STALE;
1954 INIT_LIST_HEAD(&bf_head);
1955 if (!list_is_singular(&lastbf->list))
1956 list_cut_position(&bf_head,
1957 &txq->axq_q, lastbf->list.prev);
1958
1959 txq->axq_depth--;
1960 if (bf_isaggr(bf))
1961 txq->axq_aggr_depth--;
1962
1963 txok = (ds->ds_txstat.ts_status == 0);
1964 spin_unlock_bh(&txq->axq_lock);
1965
1966 if (bf_held) {
1967 spin_lock_bh(&sc->tx.txbuflock);
1968 list_move_tail(&bf_held->list, &sc->tx.txbuf);
1969 spin_unlock_bh(&sc->tx.txbuflock);
1970 }
1971
1972 if (!bf_isampdu(bf)) {
1973 /*
1974 * This frame is sent out as a single frame.
1975 * Use hardware retry status for this frame.
1976 */
1977 bf->bf_retries = ds->ds_txstat.ts_longretry;
1978 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
1979 bf->bf_state.bf_type |= BUF_XRETRY;
1980 nbad = 0;
1981 } else {
1982 nbad = ath_tx_num_badfrms(sc, bf, txok);
1983 }
1984
1985 ath_tx_rc_status(bf, ds, nbad);
1986
1987 if (bf_isampdu(bf))
1988 ath_tx_complete_aggr(sc, txq, bf, &bf_head, txok);
1989 else
1990 ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
1991
1992 ath_wake_mac80211_queue(sc, txq);
1993
1994 spin_lock_bh(&txq->axq_lock);
1995 if (sc->sc_flags & SC_OP_TXAGGR)
1996 ath_txq_schedule(sc, txq);
1997 spin_unlock_bh(&txq->axq_lock);
1998 }
1999 }
2000
2001
2002 void ath_tx_tasklet(struct ath_softc *sc)
2003 {
2004 int i;
2005 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2006
2007 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2008
2009 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2010 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2011 ath_tx_processq(sc, &sc->tx.txq[i]);
2012 }
2013 }
2014
2015 /*****************/
2016 /* Init, Cleanup */
2017 /*****************/
2018
2019 int ath_tx_init(struct ath_softc *sc, int nbufs)
2020 {
2021 int error = 0;
2022
2023 do {
2024 spin_lock_init(&sc->tx.txbuflock);
2025
2026 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2027 "tx", nbufs, 1);
2028 if (error != 0) {
2029 DPRINTF(sc, ATH_DBG_FATAL,
2030 "Failed to allocate tx descriptors: %d\n",
2031 error);
2032 break;
2033 }
2034
2035 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2036 "beacon", ATH_BCBUF, 1);
2037 if (error != 0) {
2038 DPRINTF(sc, ATH_DBG_FATAL,
2039 "Failed to allocate beacon descriptors: %d\n",
2040 error);
2041 break;
2042 }
2043
2044 } while (0);
2045
2046 if (error != 0)
2047 ath_tx_cleanup(sc);
2048
2049 return error;
2050 }
2051
2052 int ath_tx_cleanup(struct ath_softc *sc)
2053 {
2054 if (sc->beacon.bdma.dd_desc_len != 0)
2055 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2056
2057 if (sc->tx.txdma.dd_desc_len != 0)
2058 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2059
2060 return 0;
2061 }
2062
2063 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2064 {
2065 struct ath_atx_tid *tid;
2066 struct ath_atx_ac *ac;
2067 int tidno, acno;
2068
2069 for (tidno = 0, tid = &an->tid[tidno];
2070 tidno < WME_NUM_TID;
2071 tidno++, tid++) {
2072 tid->an = an;
2073 tid->tidno = tidno;
2074 tid->seq_start = tid->seq_next = 0;
2075 tid->baw_size = WME_MAX_BA;
2076 tid->baw_head = tid->baw_tail = 0;
2077 tid->sched = false;
2078 tid->paused = false;
2079 tid->state &= ~AGGR_CLEANUP;
2080 INIT_LIST_HEAD(&tid->buf_q);
2081 acno = TID_TO_WME_AC(tidno);
2082 tid->ac = &an->ac[acno];
2083 tid->state &= ~AGGR_ADDBA_COMPLETE;
2084 tid->state &= ~AGGR_ADDBA_PROGRESS;
2085 tid->addba_exchangeattempts = 0;
2086 }
2087
2088 for (acno = 0, ac = &an->ac[acno];
2089 acno < WME_NUM_AC; acno++, ac++) {
2090 ac->sched = false;
2091 INIT_LIST_HEAD(&ac->tid_q);
2092
2093 switch (acno) {
2094 case WME_AC_BE:
2095 ac->qnum = ath_tx_get_qnum(sc,
2096 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2097 break;
2098 case WME_AC_BK:
2099 ac->qnum = ath_tx_get_qnum(sc,
2100 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2101 break;
2102 case WME_AC_VI:
2103 ac->qnum = ath_tx_get_qnum(sc,
2104 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2105 break;
2106 case WME_AC_VO:
2107 ac->qnum = ath_tx_get_qnum(sc,
2108 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2109 break;
2110 }
2111 }
2112 }
2113
2114 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2115 {
2116 int i;
2117 struct ath_atx_ac *ac, *ac_tmp;
2118 struct ath_atx_tid *tid, *tid_tmp;
2119 struct ath_txq *txq;
2120
2121 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2122 if (ATH_TXQ_SETUP(sc, i)) {
2123 txq = &sc->tx.txq[i];
2124
2125 spin_lock(&txq->axq_lock);
2126
2127 list_for_each_entry_safe(ac,
2128 ac_tmp, &txq->axq_acq, list) {
2129 tid = list_first_entry(&ac->tid_q,
2130 struct ath_atx_tid, list);
2131 if (tid && tid->an != an)
2132 continue;
2133 list_del(&ac->list);
2134 ac->sched = false;
2135
2136 list_for_each_entry_safe(tid,
2137 tid_tmp, &ac->tid_q, list) {
2138 list_del(&tid->list);
2139 tid->sched = false;
2140 ath_tid_drain(sc, txq, tid);
2141 tid->state &= ~AGGR_ADDBA_COMPLETE;
2142 tid->addba_exchangeattempts = 0;
2143 tid->state &= ~AGGR_CLEANUP;
2144 }
2145 }
2146
2147 spin_unlock(&txq->axq_lock);
2148 }
2149 }
2150 }
This page took 0.074292 seconds and 6 git commands to generate.