Merge branch 'fix/asoc' into for-linus
[deliverable/linux.git] / drivers / net / wireless / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "core.h"
18
19 #define BITS_PER_BYTE 8
20 #define OFDM_PLCP_BITS 22
21 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
22 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
23 #define L_STF 8
24 #define L_LTF 8
25 #define L_SIG 4
26 #define HT_SIG 8
27 #define HT_STF 4
28 #define HT_LTF(_ns) (4 * (_ns))
29 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
30 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
31 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
32 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
33
34 #define OFDM_SIFS_TIME 16
35
36 static u32 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 { 52, 108 }, /* 8: BPSK */
47 { 104, 216 }, /* 9: QPSK 1/2 */
48 { 156, 324 }, /* 10: QPSK 3/4 */
49 { 208, 432 }, /* 11: 16-QAM 1/2 */
50 { 312, 648 }, /* 12: 16-QAM 3/4 */
51 { 416, 864 }, /* 13: 64-QAM 2/3 */
52 { 468, 972 }, /* 14: 64-QAM 3/4 */
53 { 520, 1080 }, /* 15: 64-QAM 5/6 */
54 };
55
56 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
57
58 /*
59 * Insert a chain of ath_buf (descriptors) on a txq and
60 * assume the descriptors are already chained together by caller.
61 * NB: must be called with txq lock held
62 */
63
64 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
65 struct list_head *head)
66 {
67 struct ath_hal *ah = sc->sc_ah;
68 struct ath_buf *bf;
69
70 /*
71 * Insert the frame on the outbound list and
72 * pass it on to the hardware.
73 */
74
75 if (list_empty(head))
76 return;
77
78 bf = list_first_entry(head, struct ath_buf, list);
79
80 list_splice_tail_init(head, &txq->axq_q);
81 txq->axq_depth++;
82 txq->axq_totalqueued++;
83 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
84
85 DPRINTF(sc, ATH_DBG_QUEUE,
86 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
87
88 if (txq->axq_link == NULL) {
89 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
90 DPRINTF(sc, ATH_DBG_XMIT,
91 "TXDP[%u] = %llx (%p)\n",
92 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
93 } else {
94 *txq->axq_link = bf->bf_daddr;
95 DPRINTF(sc, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
96 txq->axq_qnum, txq->axq_link,
97 ito64(bf->bf_daddr), bf->bf_desc);
98 }
99 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
100 ath9k_hw_txstart(ah, txq->axq_qnum);
101 }
102
103 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
104 struct ath_xmit_status *tx_status)
105 {
106 struct ieee80211_hw *hw = sc->hw;
107 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
108 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
109 int hdrlen, padsize;
110
111 DPRINTF(sc, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
112
113 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
114 tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
115 kfree(tx_info_priv);
116 tx_info->rate_driver_data[0] = NULL;
117 }
118
119 if (tx_status->flags & ATH_TX_BAR) {
120 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
121 tx_status->flags &= ~ATH_TX_BAR;
122 }
123
124 if (!(tx_status->flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
125 /* Frame was ACKed */
126 tx_info->flags |= IEEE80211_TX_STAT_ACK;
127 }
128
129 tx_info->status.rates[0].count = tx_status->retries + 1;
130
131 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
132 padsize = hdrlen & 3;
133 if (padsize && hdrlen >= 24) {
134 /*
135 * Remove MAC header padding before giving the frame back to
136 * mac80211.
137 */
138 memmove(skb->data + padsize, skb->data, hdrlen);
139 skb_pull(skb, padsize);
140 }
141
142 ieee80211_tx_status(hw, skb);
143 }
144
145 /* Check if it's okay to send out aggregates */
146
147 static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno)
148 {
149 struct ath_atx_tid *tid;
150 tid = ATH_AN_2_TID(an, tidno);
151
152 if (tid->state & AGGR_ADDBA_COMPLETE ||
153 tid->state & AGGR_ADDBA_PROGRESS)
154 return 1;
155 else
156 return 0;
157 }
158
159 static void ath_get_beaconconfig(struct ath_softc *sc, int if_id,
160 struct ath_beacon_config *conf)
161 {
162 struct ieee80211_hw *hw = sc->hw;
163
164 /* fill in beacon config data */
165
166 conf->beacon_interval = hw->conf.beacon_int;
167 conf->listen_interval = 100;
168 conf->dtim_count = 1;
169 conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval;
170 }
171
172 /* Calculate Atheros packet type from IEEE80211 packet header */
173
174 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
175 {
176 struct ieee80211_hdr *hdr;
177 enum ath9k_pkt_type htype;
178 __le16 fc;
179
180 hdr = (struct ieee80211_hdr *)skb->data;
181 fc = hdr->frame_control;
182
183 if (ieee80211_is_beacon(fc))
184 htype = ATH9K_PKT_TYPE_BEACON;
185 else if (ieee80211_is_probe_resp(fc))
186 htype = ATH9K_PKT_TYPE_PROBE_RESP;
187 else if (ieee80211_is_atim(fc))
188 htype = ATH9K_PKT_TYPE_ATIM;
189 else if (ieee80211_is_pspoll(fc))
190 htype = ATH9K_PKT_TYPE_PSPOLL;
191 else
192 htype = ATH9K_PKT_TYPE_NORMAL;
193
194 return htype;
195 }
196
197 static bool is_pae(struct sk_buff *skb)
198 {
199 struct ieee80211_hdr *hdr;
200 __le16 fc;
201
202 hdr = (struct ieee80211_hdr *)skb->data;
203 fc = hdr->frame_control;
204
205 if (ieee80211_is_data(fc)) {
206 if (ieee80211_is_nullfunc(fc) ||
207 /* Port Access Entity (IEEE 802.1X) */
208 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
209 return true;
210 }
211 }
212
213 return false;
214 }
215
216 static int get_hw_crypto_keytype(struct sk_buff *skb)
217 {
218 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
219
220 if (tx_info->control.hw_key) {
221 if (tx_info->control.hw_key->alg == ALG_WEP)
222 return ATH9K_KEY_TYPE_WEP;
223 else if (tx_info->control.hw_key->alg == ALG_TKIP)
224 return ATH9K_KEY_TYPE_TKIP;
225 else if (tx_info->control.hw_key->alg == ALG_CCMP)
226 return ATH9K_KEY_TYPE_AES;
227 }
228
229 return ATH9K_KEY_TYPE_CLEAR;
230 }
231
232 /* Called only when tx aggregation is enabled and HT is supported */
233
234 static void assign_aggr_tid_seqno(struct sk_buff *skb,
235 struct ath_buf *bf)
236 {
237 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
238 struct ieee80211_hdr *hdr;
239 struct ath_node *an;
240 struct ath_atx_tid *tid;
241 __le16 fc;
242 u8 *qc;
243
244 if (!tx_info->control.sta)
245 return;
246
247 an = (struct ath_node *)tx_info->control.sta->drv_priv;
248 hdr = (struct ieee80211_hdr *)skb->data;
249 fc = hdr->frame_control;
250
251 /* Get tidno */
252
253 if (ieee80211_is_data_qos(fc)) {
254 qc = ieee80211_get_qos_ctl(hdr);
255 bf->bf_tidno = qc[0] & 0xf;
256 }
257
258 /* Get seqno */
259 /* For HT capable stations, we save tidno for later use.
260 * We also override seqno set by upper layer with the one
261 * in tx aggregation state.
262 *
263 * If fragmentation is on, the sequence number is
264 * not overridden, since it has been
265 * incremented by the fragmentation routine.
266 *
267 * FIXME: check if the fragmentation threshold exceeds
268 * IEEE80211 max.
269 */
270 tid = ATH_AN_2_TID(an, bf->bf_tidno);
271 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
272 IEEE80211_SEQ_SEQ_SHIFT);
273 bf->bf_seqno = tid->seq_next;
274 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
275 }
276
277 static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
278 struct ath_txq *txq)
279 {
280 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
281 int flags = 0;
282
283 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
284 flags |= ATH9K_TXDESC_INTREQ;
285
286 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
287 flags |= ATH9K_TXDESC_NOACK;
288 if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
289 flags |= ATH9K_TXDESC_RTSENA;
290
291 return flags;
292 }
293
294 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
295 {
296 struct ath_buf *bf = NULL;
297
298 spin_lock_bh(&sc->tx.txbuflock);
299
300 if (unlikely(list_empty(&sc->tx.txbuf))) {
301 spin_unlock_bh(&sc->tx.txbuflock);
302 return NULL;
303 }
304
305 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
306 list_del(&bf->list);
307
308 spin_unlock_bh(&sc->tx.txbuflock);
309
310 return bf;
311 }
312
313 /* To complete a chain of buffers associated a frame */
314
315 static void ath_tx_complete_buf(struct ath_softc *sc,
316 struct ath_buf *bf,
317 struct list_head *bf_q,
318 int txok, int sendbar)
319 {
320 struct sk_buff *skb = bf->bf_mpdu;
321 struct ath_xmit_status tx_status;
322 unsigned long flags;
323
324 /*
325 * Set retry information.
326 * NB: Don't use the information in the descriptor, because the frame
327 * could be software retried.
328 */
329 tx_status.retries = bf->bf_retries;
330 tx_status.flags = 0;
331
332 if (sendbar)
333 tx_status.flags = ATH_TX_BAR;
334
335 if (!txok) {
336 tx_status.flags |= ATH_TX_ERROR;
337
338 if (bf_isxretried(bf))
339 tx_status.flags |= ATH_TX_XRETRY;
340 }
341
342 /* Unmap this frame */
343 pci_unmap_single(sc->pdev,
344 bf->bf_dmacontext,
345 skb->len,
346 PCI_DMA_TODEVICE);
347 /* complete this frame */
348 ath_tx_complete(sc, skb, &tx_status);
349
350 /*
351 * Return the list of ath_buf of this mpdu to free queue
352 */
353 spin_lock_irqsave(&sc->tx.txbuflock, flags);
354 list_splice_tail_init(bf_q, &sc->tx.txbuf);
355 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
356 }
357
358 /*
359 * queue up a dest/ac pair for tx scheduling
360 * NB: must be called with txq lock held
361 */
362
363 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
364 {
365 struct ath_atx_ac *ac = tid->ac;
366
367 /*
368 * if tid is paused, hold off
369 */
370 if (tid->paused)
371 return;
372
373 /*
374 * add tid to ac atmost once
375 */
376 if (tid->sched)
377 return;
378
379 tid->sched = true;
380 list_add_tail(&tid->list, &ac->tid_q);
381
382 /*
383 * add node ac to txq atmost once
384 */
385 if (ac->sched)
386 return;
387
388 ac->sched = true;
389 list_add_tail(&ac->list, &txq->axq_acq);
390 }
391
392 /* pause a tid */
393
394 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
395 {
396 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
397
398 spin_lock_bh(&txq->axq_lock);
399
400 tid->paused++;
401
402 spin_unlock_bh(&txq->axq_lock);
403 }
404
405 /* resume a tid and schedule aggregate */
406
407 void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
408 {
409 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
410
411 ASSERT(tid->paused > 0);
412 spin_lock_bh(&txq->axq_lock);
413
414 tid->paused--;
415
416 if (tid->paused > 0)
417 goto unlock;
418
419 if (list_empty(&tid->buf_q))
420 goto unlock;
421
422 /*
423 * Add this TID to scheduler and try to send out aggregates
424 */
425 ath_tx_queue_tid(txq, tid);
426 ath_txq_schedule(sc, txq);
427 unlock:
428 spin_unlock_bh(&txq->axq_lock);
429 }
430
431 /* Compute the number of bad frames */
432
433 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
434 int txok)
435 {
436 struct ath_buf *bf_last = bf->bf_lastbf;
437 struct ath_desc *ds = bf_last->bf_desc;
438 u16 seq_st = 0;
439 u32 ba[WME_BA_BMP_SIZE >> 5];
440 int ba_index;
441 int nbad = 0;
442 int isaggr = 0;
443
444 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
445 return 0;
446
447 isaggr = bf_isaggr(bf);
448 if (isaggr) {
449 seq_st = ATH_DS_BA_SEQ(ds);
450 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
451 }
452
453 while (bf) {
454 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
455 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
456 nbad++;
457
458 bf = bf->bf_next;
459 }
460
461 return nbad;
462 }
463
464 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
465 {
466 struct sk_buff *skb;
467 struct ieee80211_hdr *hdr;
468
469 bf->bf_state.bf_type |= BUF_RETRY;
470 bf->bf_retries++;
471
472 skb = bf->bf_mpdu;
473 hdr = (struct ieee80211_hdr *)skb->data;
474 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
475 }
476
477 /* Update block ack window */
478
479 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
480 int seqno)
481 {
482 int index, cindex;
483
484 index = ATH_BA_INDEX(tid->seq_start, seqno);
485 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
486
487 tid->tx_buf[cindex] = NULL;
488
489 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
490 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
491 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
492 }
493 }
494
495 /*
496 * ath_pkt_dur - compute packet duration (NB: not NAV)
497 *
498 * rix - rate index
499 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
500 * width - 0 for 20 MHz, 1 for 40 MHz
501 * half_gi - to use 4us v/s 3.6 us for symbol time
502 */
503 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
504 int width, int half_gi, bool shortPreamble)
505 {
506 struct ath_rate_table *rate_table = sc->cur_rate_table;
507 u32 nbits, nsymbits, duration, nsymbols;
508 u8 rc;
509 int streams, pktlen;
510
511 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
512 rc = rate_table->info[rix].ratecode;
513
514 /* for legacy rates, use old function to compute packet duration */
515 if (!IS_HT_RATE(rc))
516 return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen,
517 rix, shortPreamble);
518
519 /* find number of symbols: PLCP + data */
520 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
521 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
522 nsymbols = (nbits + nsymbits - 1) / nsymbits;
523
524 if (!half_gi)
525 duration = SYMBOL_TIME(nsymbols);
526 else
527 duration = SYMBOL_TIME_HALFGI(nsymbols);
528
529 /* addup duration for legacy/ht training and signal fields */
530 streams = HT_RC_2_STREAMS(rc);
531 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
532
533 return duration;
534 }
535
536 /* Rate module function to set rate related fields in tx descriptor */
537
538 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
539 {
540 struct ath_hal *ah = sc->sc_ah;
541 struct ath_rate_table *rt;
542 struct ath_desc *ds = bf->bf_desc;
543 struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
544 struct ath9k_11n_rate_series series[4];
545 struct sk_buff *skb;
546 struct ieee80211_tx_info *tx_info;
547 struct ieee80211_tx_rate *rates;
548 struct ieee80211_hdr *hdr;
549 int i, flags, rtsctsena = 0;
550 u32 ctsduration = 0;
551 u8 rix = 0, cix, ctsrate = 0;
552 __le16 fc;
553
554 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
555
556 skb = (struct sk_buff *)bf->bf_mpdu;
557 hdr = (struct ieee80211_hdr *)skb->data;
558 fc = hdr->frame_control;
559 tx_info = IEEE80211_SKB_CB(skb);
560 rates = tx_info->control.rates;
561
562 if (ieee80211_has_morefrags(fc) ||
563 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
564 rates[1].count = rates[2].count = rates[3].count = 0;
565 rates[1].idx = rates[2].idx = rates[3].idx = 0;
566 rates[0].count = ATH_TXMAXTRY;
567 }
568
569 /* get the cix for the lowest valid rix */
570 rt = sc->cur_rate_table;
571 for (i = 3; i >= 0; i--) {
572 if (rates[i].count && (rates[i].idx >= 0)) {
573 rix = rates[i].idx;
574 break;
575 }
576 }
577
578 flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
579 cix = rt->info[rix].ctrl_rate;
580
581 /*
582 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
583 * just CTS. Note that this is only done for OFDM/HT unicast frames.
584 */
585 if (sc->sc_protmode != PROT_M_NONE && !(bf->bf_flags & ATH9K_TXDESC_NOACK)
586 && (rt->info[rix].phy == WLAN_RC_PHY_OFDM ||
587 WLAN_RC_PHY_HT(rt->info[rix].phy))) {
588 if (sc->sc_protmode == PROT_M_RTSCTS)
589 flags = ATH9K_TXDESC_RTSENA;
590 else if (sc->sc_protmode == PROT_M_CTSONLY)
591 flags = ATH9K_TXDESC_CTSENA;
592
593 cix = rt->info[sc->sc_protrix].ctrl_rate;
594 rtsctsena = 1;
595 }
596
597 /* For 11n, the default behavior is to enable RTS for hw retried frames.
598 * We enable the global flag here and let rate series flags determine
599 * which rates will actually use RTS.
600 */
601 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
602 /* 802.11g protection not needed, use our default behavior */
603 if (!rtsctsena)
604 flags = ATH9K_TXDESC_RTSENA;
605 }
606
607 /* Set protection if aggregate protection on */
608 if (sc->sc_config.ath_aggr_prot &&
609 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
610 flags = ATH9K_TXDESC_RTSENA;
611 cix = rt->info[sc->sc_protrix].ctrl_rate;
612 rtsctsena = 1;
613 }
614
615 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
616 if (bf_isaggr(bf) && (bf->bf_al > ah->ah_caps.rts_aggr_limit))
617 flags &= ~(ATH9K_TXDESC_RTSENA);
618
619 /*
620 * CTS transmit rate is derived from the transmit rate by looking in the
621 * h/w rate table. We must also factor in whether or not a short
622 * preamble is to be used. NB: cix is set above where RTS/CTS is enabled
623 */
624 ctsrate = rt->info[cix].ratecode |
625 (bf_isshpreamble(bf) ? rt->info[cix].short_preamble : 0);
626
627 for (i = 0; i < 4; i++) {
628 if (!rates[i].count || (rates[i].idx < 0))
629 continue;
630
631 rix = rates[i].idx;
632
633 series[i].Rate = rt->info[rix].ratecode |
634 (bf_isshpreamble(bf) ? rt->info[rix].short_preamble : 0);
635
636 series[i].Tries = rates[i].count;
637
638 series[i].RateFlags = (
639 (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) ?
640 ATH9K_RATESERIES_RTS_CTS : 0) |
641 ((rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ?
642 ATH9K_RATESERIES_2040 : 0) |
643 ((rates[i].flags & IEEE80211_TX_RC_SHORT_GI) ?
644 ATH9K_RATESERIES_HALFGI : 0);
645
646 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
647 (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0,
648 (rates[i].flags & IEEE80211_TX_RC_SHORT_GI),
649 bf_isshpreamble(bf));
650
651 series[i].ChSel = sc->sc_tx_chainmask;
652
653 if (rtsctsena)
654 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
655 }
656
657 /* set dur_update_en for l-sig computation except for PS-Poll frames */
658 ath9k_hw_set11n_ratescenario(ah, ds, lastds, !bf_ispspoll(bf),
659 ctsrate, ctsduration,
660 series, 4, flags);
661
662 if (sc->sc_config.ath_aggr_prot && flags)
663 ath9k_hw_set11n_burstduration(ah, ds, 8192);
664 }
665
666 /*
667 * Function to send a normal HT (non-AMPDU) frame
668 * NB: must be called with txq lock held
669 */
670 static int ath_tx_send_normal(struct ath_softc *sc,
671 struct ath_txq *txq,
672 struct ath_atx_tid *tid,
673 struct list_head *bf_head)
674 {
675 struct ath_buf *bf;
676
677 BUG_ON(list_empty(bf_head));
678
679 bf = list_first_entry(bf_head, struct ath_buf, list);
680 bf->bf_state.bf_type &= ~BUF_AMPDU; /* regular HT frame */
681
682 /* update starting sequence number for subsequent ADDBA request */
683 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
684
685 /* Queue to h/w without aggregation */
686 bf->bf_nframes = 1;
687 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
688 ath_buf_set_rate(sc, bf);
689 ath_tx_txqaddbuf(sc, txq, bf_head);
690
691 return 0;
692 }
693
694 /* flush tid's software queue and send frames as non-ampdu's */
695
696 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
697 {
698 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
699 struct ath_buf *bf;
700 struct list_head bf_head;
701 INIT_LIST_HEAD(&bf_head);
702
703 ASSERT(tid->paused > 0);
704 spin_lock_bh(&txq->axq_lock);
705
706 tid->paused--;
707
708 if (tid->paused > 0) {
709 spin_unlock_bh(&txq->axq_lock);
710 return;
711 }
712
713 while (!list_empty(&tid->buf_q)) {
714 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
715 ASSERT(!bf_isretried(bf));
716 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
717 ath_tx_send_normal(sc, txq, tid, &bf_head);
718 }
719
720 spin_unlock_bh(&txq->axq_lock);
721 }
722
723 /* Completion routine of an aggregate */
724
725 static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
726 struct ath_txq *txq,
727 struct ath_buf *bf,
728 struct list_head *bf_q,
729 int txok)
730 {
731 struct ath_node *an = NULL;
732 struct sk_buff *skb;
733 struct ieee80211_tx_info *tx_info;
734 struct ath_atx_tid *tid = NULL;
735 struct ath_buf *bf_last = bf->bf_lastbf;
736 struct ath_desc *ds = bf_last->bf_desc;
737 struct ath_buf *bf_next, *bf_lastq = NULL;
738 struct list_head bf_head, bf_pending;
739 u16 seq_st = 0;
740 u32 ba[WME_BA_BMP_SIZE >> 5];
741 int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
742
743 skb = (struct sk_buff *)bf->bf_mpdu;
744 tx_info = IEEE80211_SKB_CB(skb);
745
746 if (tx_info->control.sta) {
747 an = (struct ath_node *)tx_info->control.sta->drv_priv;
748 tid = ATH_AN_2_TID(an, bf->bf_tidno);
749 }
750
751 isaggr = bf_isaggr(bf);
752 if (isaggr) {
753 if (txok) {
754 if (ATH_DS_TX_BA(ds)) {
755 /*
756 * extract starting sequence and
757 * block-ack bitmap
758 */
759 seq_st = ATH_DS_BA_SEQ(ds);
760 memcpy(ba,
761 ATH_DS_BA_BITMAP(ds),
762 WME_BA_BMP_SIZE >> 3);
763 } else {
764 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
765
766 /*
767 * AR5416 can become deaf/mute when BA
768 * issue happens. Chip needs to be reset.
769 * But AP code may have sychronization issues
770 * when perform internal reset in this routine.
771 * Only enable reset in STA mode for now.
772 */
773 if (sc->sc_ah->ah_opmode ==
774 NL80211_IFTYPE_STATION)
775 needreset = 1;
776 }
777 } else {
778 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
779 }
780 }
781
782 INIT_LIST_HEAD(&bf_pending);
783 INIT_LIST_HEAD(&bf_head);
784
785 while (bf) {
786 txfail = txpending = 0;
787 bf_next = bf->bf_next;
788
789 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
790 /* transmit completion, subframe is
791 * acked by block ack */
792 } else if (!isaggr && txok) {
793 /* transmit completion */
794 } else {
795
796 if (!(tid->state & AGGR_CLEANUP) &&
797 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
798 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
799 ath_tx_set_retry(sc, bf);
800 txpending = 1;
801 } else {
802 bf->bf_state.bf_type |= BUF_XRETRY;
803 txfail = 1;
804 sendbar = 1;
805 }
806 } else {
807 /*
808 * cleanup in progress, just fail
809 * the un-acked sub-frames
810 */
811 txfail = 1;
812 }
813 }
814 /*
815 * Remove ath_buf's of this sub-frame from aggregate queue.
816 */
817 if (bf_next == NULL) { /* last subframe in the aggregate */
818 ASSERT(bf->bf_lastfrm == bf_last);
819
820 /*
821 * The last descriptor of the last sub frame could be
822 * a holding descriptor for h/w. If that's the case,
823 * bf->bf_lastfrm won't be in the bf_q.
824 * Make sure we handle bf_q properly here.
825 */
826
827 if (!list_empty(bf_q)) {
828 bf_lastq = list_entry(bf_q->prev,
829 struct ath_buf, list);
830 list_cut_position(&bf_head,
831 bf_q, &bf_lastq->list);
832 } else {
833 /*
834 * XXX: if the last subframe only has one
835 * descriptor which is also being used as
836 * a holding descriptor. Then the ath_buf
837 * is not in the bf_q at all.
838 */
839 INIT_LIST_HEAD(&bf_head);
840 }
841 } else {
842 ASSERT(!list_empty(bf_q));
843 list_cut_position(&bf_head,
844 bf_q, &bf->bf_lastfrm->list);
845 }
846
847 if (!txpending) {
848 /*
849 * complete the acked-ones/xretried ones; update
850 * block-ack window
851 */
852 spin_lock_bh(&txq->axq_lock);
853 ath_tx_update_baw(sc, tid, bf->bf_seqno);
854 spin_unlock_bh(&txq->axq_lock);
855
856 /* complete this sub-frame */
857 ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
858 } else {
859 /*
860 * retry the un-acked ones
861 */
862 /*
863 * XXX: if the last descriptor is holding descriptor,
864 * in order to requeue the frame to software queue, we
865 * need to allocate a new descriptor and
866 * copy the content of holding descriptor to it.
867 */
868 if (bf->bf_next == NULL &&
869 bf_last->bf_status & ATH_BUFSTATUS_STALE) {
870 struct ath_buf *tbf;
871
872 /* allocate new descriptor */
873 spin_lock_bh(&sc->tx.txbuflock);
874 ASSERT(!list_empty((&sc->tx.txbuf)));
875 tbf = list_first_entry(&sc->tx.txbuf,
876 struct ath_buf, list);
877 list_del(&tbf->list);
878 spin_unlock_bh(&sc->tx.txbuflock);
879
880 ATH_TXBUF_RESET(tbf);
881
882 /* copy descriptor content */
883 tbf->bf_mpdu = bf_last->bf_mpdu;
884 tbf->bf_buf_addr = bf_last->bf_buf_addr;
885 *(tbf->bf_desc) = *(bf_last->bf_desc);
886
887 /* link it to the frame */
888 if (bf_lastq) {
889 bf_lastq->bf_desc->ds_link =
890 tbf->bf_daddr;
891 bf->bf_lastfrm = tbf;
892 ath9k_hw_cleartxdesc(sc->sc_ah,
893 bf->bf_lastfrm->bf_desc);
894 } else {
895 tbf->bf_state = bf_last->bf_state;
896 tbf->bf_lastfrm = tbf;
897 ath9k_hw_cleartxdesc(sc->sc_ah,
898 tbf->bf_lastfrm->bf_desc);
899
900 /* copy the DMA context */
901 tbf->bf_dmacontext =
902 bf_last->bf_dmacontext;
903 }
904 list_add_tail(&tbf->list, &bf_head);
905 } else {
906 /*
907 * Clear descriptor status words for
908 * software retry
909 */
910 ath9k_hw_cleartxdesc(sc->sc_ah,
911 bf->bf_lastfrm->bf_desc);
912 }
913
914 /*
915 * Put this buffer to the temporary pending
916 * queue to retain ordering
917 */
918 list_splice_tail_init(&bf_head, &bf_pending);
919 }
920
921 bf = bf_next;
922 }
923
924 if (tid->state & AGGR_CLEANUP) {
925 /* check to see if we're done with cleaning the h/w queue */
926 spin_lock_bh(&txq->axq_lock);
927
928 if (tid->baw_head == tid->baw_tail) {
929 tid->state &= ~AGGR_ADDBA_COMPLETE;
930 tid->addba_exchangeattempts = 0;
931 spin_unlock_bh(&txq->axq_lock);
932
933 tid->state &= ~AGGR_CLEANUP;
934
935 /* send buffered frames as singles */
936 ath_tx_flush_tid(sc, tid);
937 } else
938 spin_unlock_bh(&txq->axq_lock);
939
940 return;
941 }
942
943 /*
944 * prepend un-acked frames to the beginning of the pending frame queue
945 */
946 if (!list_empty(&bf_pending)) {
947 spin_lock_bh(&txq->axq_lock);
948 /* Note: we _prepend_, we _do_not_ at to
949 * the end of the queue ! */
950 list_splice(&bf_pending, &tid->buf_q);
951 ath_tx_queue_tid(txq, tid);
952 spin_unlock_bh(&txq->axq_lock);
953 }
954
955 if (needreset)
956 ath_reset(sc, false);
957
958 return;
959 }
960
961 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds, int nbad)
962 {
963 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
964 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
965 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
966
967 tx_info_priv->update_rc = false;
968 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
969 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
970
971 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
972 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
973 if (bf_isdata(bf)) {
974 memcpy(&tx_info_priv->tx, &ds->ds_txstat,
975 sizeof(tx_info_priv->tx));
976 tx_info_priv->n_frames = bf->bf_nframes;
977 tx_info_priv->n_bad_frames = nbad;
978 tx_info_priv->update_rc = true;
979 }
980 }
981 }
982
983 /* Process completed xmit descriptors from the specified queue */
984
985 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
986 {
987 struct ath_hal *ah = sc->sc_ah;
988 struct ath_buf *bf, *lastbf, *bf_held = NULL;
989 struct list_head bf_head;
990 struct ath_desc *ds;
991 int txok, nbad = 0;
992 int status;
993
994 DPRINTF(sc, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
995 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
996 txq->axq_link);
997
998 for (;;) {
999 spin_lock_bh(&txq->axq_lock);
1000 if (list_empty(&txq->axq_q)) {
1001 txq->axq_link = NULL;
1002 txq->axq_linkbuf = NULL;
1003 spin_unlock_bh(&txq->axq_lock);
1004 break;
1005 }
1006 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1007
1008 /*
1009 * There is a race condition that a BH gets scheduled
1010 * after sw writes TxE and before hw re-load the last
1011 * descriptor to get the newly chained one.
1012 * Software must keep the last DONE descriptor as a
1013 * holding descriptor - software does so by marking
1014 * it with the STALE flag.
1015 */
1016 bf_held = NULL;
1017 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1018 bf_held = bf;
1019 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1020 /* FIXME:
1021 * The holding descriptor is the last
1022 * descriptor in queue. It's safe to remove
1023 * the last holding descriptor in BH context.
1024 */
1025 spin_unlock_bh(&txq->axq_lock);
1026 break;
1027 } else {
1028 /* Lets work with the next buffer now */
1029 bf = list_entry(bf_held->list.next,
1030 struct ath_buf, list);
1031 }
1032 }
1033
1034 lastbf = bf->bf_lastbf;
1035 ds = lastbf->bf_desc; /* NB: last decriptor */
1036
1037 status = ath9k_hw_txprocdesc(ah, ds);
1038 if (status == -EINPROGRESS) {
1039 spin_unlock_bh(&txq->axq_lock);
1040 break;
1041 }
1042 if (bf->bf_desc == txq->axq_lastdsWithCTS)
1043 txq->axq_lastdsWithCTS = NULL;
1044 if (ds == txq->axq_gatingds)
1045 txq->axq_gatingds = NULL;
1046
1047 /*
1048 * Remove ath_buf's of the same transmit unit from txq,
1049 * however leave the last descriptor back as the holding
1050 * descriptor for hw.
1051 */
1052 lastbf->bf_status |= ATH_BUFSTATUS_STALE;
1053 INIT_LIST_HEAD(&bf_head);
1054
1055 if (!list_is_singular(&lastbf->list))
1056 list_cut_position(&bf_head,
1057 &txq->axq_q, lastbf->list.prev);
1058
1059 txq->axq_depth--;
1060
1061 if (bf_isaggr(bf))
1062 txq->axq_aggr_depth--;
1063
1064 txok = (ds->ds_txstat.ts_status == 0);
1065
1066 spin_unlock_bh(&txq->axq_lock);
1067
1068 if (bf_held) {
1069 list_del(&bf_held->list);
1070 spin_lock_bh(&sc->tx.txbuflock);
1071 list_add_tail(&bf_held->list, &sc->tx.txbuf);
1072 spin_unlock_bh(&sc->tx.txbuflock);
1073 }
1074
1075 if (!bf_isampdu(bf)) {
1076 /*
1077 * This frame is sent out as a single frame.
1078 * Use hardware retry status for this frame.
1079 */
1080 bf->bf_retries = ds->ds_txstat.ts_longretry;
1081 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
1082 bf->bf_state.bf_type |= BUF_XRETRY;
1083 nbad = 0;
1084 } else {
1085 nbad = ath_tx_num_badfrms(sc, bf, txok);
1086 }
1087
1088 ath_tx_rc_status(bf, ds, nbad);
1089
1090 /*
1091 * Complete this transmit unit
1092 */
1093 if (bf_isampdu(bf))
1094 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok);
1095 else
1096 ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
1097
1098 /* Wake up mac80211 queue */
1099
1100 spin_lock_bh(&txq->axq_lock);
1101 if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <=
1102 (ATH_TXBUF - 20)) {
1103 int qnum;
1104 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1105 if (qnum != -1) {
1106 ieee80211_wake_queue(sc->hw, qnum);
1107 txq->stopped = 0;
1108 }
1109
1110 }
1111
1112 /*
1113 * schedule any pending packets if aggregation is enabled
1114 */
1115 if (sc->sc_flags & SC_OP_TXAGGR)
1116 ath_txq_schedule(sc, txq);
1117 spin_unlock_bh(&txq->axq_lock);
1118 }
1119 }
1120
1121 static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
1122 {
1123 struct ath_hal *ah = sc->sc_ah;
1124
1125 (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1126 DPRINTF(sc, ATH_DBG_XMIT, "tx queue [%u] %x, link %p\n",
1127 txq->axq_qnum, ath9k_hw_gettxbuf(ah, txq->axq_qnum),
1128 txq->axq_link);
1129 }
1130
1131 /* Drain only the data queues */
1132
1133 static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
1134 {
1135 struct ath_hal *ah = sc->sc_ah;
1136 int i, status, npend = 0;
1137
1138 if (!(sc->sc_flags & SC_OP_INVALID)) {
1139 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1140 if (ATH_TXQ_SETUP(sc, i)) {
1141 ath_tx_stopdma(sc, &sc->tx.txq[i]);
1142 /* The TxDMA may not really be stopped.
1143 * Double check the hal tx pending count */
1144 npend += ath9k_hw_numtxpending(ah,
1145 sc->tx.txq[i].axq_qnum);
1146 }
1147 }
1148 }
1149
1150 if (npend) {
1151 /* TxDMA not stopped, reset the hal */
1152 DPRINTF(sc, ATH_DBG_XMIT, "Unable to stop TxDMA. Reset HAL!\n");
1153
1154 spin_lock_bh(&sc->sc_resetlock);
1155 if (!ath9k_hw_reset(ah,
1156 sc->sc_ah->ah_curchan,
1157 sc->tx_chan_width,
1158 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1159 sc->sc_ht_extprotspacing, true, &status)) {
1160
1161 DPRINTF(sc, ATH_DBG_FATAL,
1162 "Unable to reset hardware; hal status %u\n",
1163 status);
1164 }
1165 spin_unlock_bh(&sc->sc_resetlock);
1166 }
1167
1168 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1169 if (ATH_TXQ_SETUP(sc, i))
1170 ath_tx_draintxq(sc, &sc->tx.txq[i], retry_tx);
1171 }
1172 }
1173
1174 /* Add a sub-frame to block ack window */
1175
1176 static void ath_tx_addto_baw(struct ath_softc *sc,
1177 struct ath_atx_tid *tid,
1178 struct ath_buf *bf)
1179 {
1180 int index, cindex;
1181
1182 if (bf_isretried(bf))
1183 return;
1184
1185 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
1186 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1187
1188 ASSERT(tid->tx_buf[cindex] == NULL);
1189 tid->tx_buf[cindex] = bf;
1190
1191 if (index >= ((tid->baw_tail - tid->baw_head) &
1192 (ATH_TID_MAX_BUFS - 1))) {
1193 tid->baw_tail = cindex;
1194 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
1195 }
1196 }
1197
1198 /*
1199 * Function to send an A-MPDU
1200 * NB: must be called with txq lock held
1201 */
1202 static int ath_tx_send_ampdu(struct ath_softc *sc,
1203 struct ath_atx_tid *tid,
1204 struct list_head *bf_head,
1205 struct ath_tx_control *txctl)
1206 {
1207 struct ath_buf *bf;
1208
1209 BUG_ON(list_empty(bf_head));
1210
1211 bf = list_first_entry(bf_head, struct ath_buf, list);
1212 bf->bf_state.bf_type |= BUF_AMPDU;
1213
1214 /*
1215 * Do not queue to h/w when any of the following conditions is true:
1216 * - there are pending frames in software queue
1217 * - the TID is currently paused for ADDBA/BAR request
1218 * - seqno is not within block-ack window
1219 * - h/w queue depth exceeds low water mark
1220 */
1221 if (!list_empty(&tid->buf_q) || tid->paused ||
1222 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1223 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1224 /*
1225 * Add this frame to software queue for scheduling later
1226 * for aggregation.
1227 */
1228 list_splice_tail_init(bf_head, &tid->buf_q);
1229 ath_tx_queue_tid(txctl->txq, tid);
1230 return 0;
1231 }
1232
1233 /* Add sub-frame to BAW */
1234 ath_tx_addto_baw(sc, tid, bf);
1235
1236 /* Queue to h/w without aggregation */
1237 bf->bf_nframes = 1;
1238 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
1239 ath_buf_set_rate(sc, bf);
1240 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1241
1242 return 0;
1243 }
1244
1245 /*
1246 * looks up the rate
1247 * returns aggr limit based on lowest of the rates
1248 */
1249 static u32 ath_lookup_rate(struct ath_softc *sc,
1250 struct ath_buf *bf,
1251 struct ath_atx_tid *tid)
1252 {
1253 struct ath_rate_table *rate_table = sc->cur_rate_table;
1254 struct sk_buff *skb;
1255 struct ieee80211_tx_info *tx_info;
1256 struct ieee80211_tx_rate *rates;
1257 struct ath_tx_info_priv *tx_info_priv;
1258 u32 max_4ms_framelen, frame_length;
1259 u16 aggr_limit, legacy = 0, maxampdu;
1260 int i;
1261
1262 skb = (struct sk_buff *)bf->bf_mpdu;
1263 tx_info = IEEE80211_SKB_CB(skb);
1264 rates = tx_info->control.rates;
1265 tx_info_priv =
1266 (struct ath_tx_info_priv *)tx_info->rate_driver_data[0];
1267
1268 /*
1269 * Find the lowest frame length among the rate series that will have a
1270 * 4ms transmit duration.
1271 * TODO - TXOP limit needs to be considered.
1272 */
1273 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
1274
1275 for (i = 0; i < 4; i++) {
1276 if (rates[i].count) {
1277 if (!WLAN_RC_PHY_HT(rate_table->info[rates[i].idx].phy)) {
1278 legacy = 1;
1279 break;
1280 }
1281
1282 frame_length =
1283 rate_table->info[rates[i].idx].max_4ms_framelen;
1284 max_4ms_framelen = min(max_4ms_framelen, frame_length);
1285 }
1286 }
1287
1288 /*
1289 * limit aggregate size by the minimum rate if rate selected is
1290 * not a probe rate, if rate selected is a probe rate then
1291 * avoid aggregation of this packet.
1292 */
1293 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
1294 return 0;
1295
1296 aggr_limit = min(max_4ms_framelen,
1297 (u32)ATH_AMPDU_LIMIT_DEFAULT);
1298
1299 /*
1300 * h/w can accept aggregates upto 16 bit lengths (65535).
1301 * The IE, however can hold upto 65536, which shows up here
1302 * as zero. Ignore 65536 since we are constrained by hw.
1303 */
1304 maxampdu = tid->an->maxampdu;
1305 if (maxampdu)
1306 aggr_limit = min(aggr_limit, maxampdu);
1307
1308 return aggr_limit;
1309 }
1310
1311 /*
1312 * returns the number of delimiters to be added to
1313 * meet the minimum required mpdudensity.
1314 * caller should make sure that the rate is HT rate .
1315 */
1316 static int ath_compute_num_delims(struct ath_softc *sc,
1317 struct ath_atx_tid *tid,
1318 struct ath_buf *bf,
1319 u16 frmlen)
1320 {
1321 struct ath_rate_table *rt = sc->cur_rate_table;
1322 struct sk_buff *skb = bf->bf_mpdu;
1323 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1324 u32 nsymbits, nsymbols, mpdudensity;
1325 u16 minlen;
1326 u8 rc, flags, rix;
1327 int width, half_gi, ndelim, mindelim;
1328
1329 /* Select standard number of delimiters based on frame length alone */
1330 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
1331
1332 /*
1333 * If encryption enabled, hardware requires some more padding between
1334 * subframes.
1335 * TODO - this could be improved to be dependent on the rate.
1336 * The hardware can keep up at lower rates, but not higher rates
1337 */
1338 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
1339 ndelim += ATH_AGGR_ENCRYPTDELIM;
1340
1341 /*
1342 * Convert desired mpdu density from microeconds to bytes based
1343 * on highest rate in rate series (i.e. first rate) to determine
1344 * required minimum length for subframe. Take into account
1345 * whether high rate is 20 or 40Mhz and half or full GI.
1346 */
1347 mpdudensity = tid->an->mpdudensity;
1348
1349 /*
1350 * If there is no mpdu density restriction, no further calculation
1351 * is needed.
1352 */
1353 if (mpdudensity == 0)
1354 return ndelim;
1355
1356 rix = tx_info->control.rates[0].idx;
1357 flags = tx_info->control.rates[0].flags;
1358 rc = rt->info[rix].ratecode;
1359 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
1360 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
1361
1362 if (half_gi)
1363 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
1364 else
1365 nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
1366
1367 if (nsymbols == 0)
1368 nsymbols = 1;
1369
1370 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1371 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
1372
1373 /* Is frame shorter than required minimum length? */
1374 if (frmlen < minlen) {
1375 /* Get the minimum number of delimiters required. */
1376 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
1377 ndelim = max(mindelim, ndelim);
1378 }
1379
1380 return ndelim;
1381 }
1382
1383 /*
1384 * For aggregation from software buffer queue.
1385 * NB: must be called with txq lock held
1386 */
1387 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
1388 struct ath_atx_tid *tid,
1389 struct list_head *bf_q,
1390 struct ath_buf **bf_last,
1391 struct aggr_rifs_param *param,
1392 int *prev_frames)
1393 {
1394 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1395 struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL;
1396 struct list_head bf_head;
1397 int rl = 0, nframes = 0, ndelim;
1398 u16 aggr_limit = 0, al = 0, bpad = 0,
1399 al_delta, h_baw = tid->baw_size / 2;
1400 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
1401 int prev_al = 0;
1402 INIT_LIST_HEAD(&bf_head);
1403
1404 BUG_ON(list_empty(&tid->buf_q));
1405
1406 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
1407
1408 do {
1409 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1410
1411 /*
1412 * do not step over block-ack window
1413 */
1414 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
1415 status = ATH_AGGR_BAW_CLOSED;
1416 break;
1417 }
1418
1419 if (!rl) {
1420 aggr_limit = ath_lookup_rate(sc, bf, tid);
1421 rl = 1;
1422 }
1423
1424 /*
1425 * do not exceed aggregation limit
1426 */
1427 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
1428
1429 if (nframes && (aggr_limit <
1430 (al + bpad + al_delta + prev_al))) {
1431 status = ATH_AGGR_LIMITED;
1432 break;
1433 }
1434
1435 /*
1436 * do not exceed subframe limit
1437 */
1438 if ((nframes + *prev_frames) >=
1439 min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
1440 status = ATH_AGGR_LIMITED;
1441 break;
1442 }
1443
1444 /*
1445 * add padding for previous frame to aggregation length
1446 */
1447 al += bpad + al_delta;
1448
1449 /*
1450 * Get the delimiters needed to meet the MPDU
1451 * density for this node.
1452 */
1453 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
1454
1455 bpad = PADBYTES(al_delta) + (ndelim << 2);
1456
1457 bf->bf_next = NULL;
1458 bf->bf_lastfrm->bf_desc->ds_link = 0;
1459
1460 /*
1461 * this packet is part of an aggregate
1462 * - remove all descriptors belonging to this frame from
1463 * software queue
1464 * - add it to block ack window
1465 * - set up descriptors for aggregation
1466 */
1467 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1468 ath_tx_addto_baw(sc, tid, bf);
1469
1470 list_for_each_entry(tbf, &bf_head, list) {
1471 ath9k_hw_set11n_aggr_middle(sc->sc_ah,
1472 tbf->bf_desc, ndelim);
1473 }
1474
1475 /*
1476 * link buffers of this frame to the aggregate
1477 */
1478 list_splice_tail_init(&bf_head, bf_q);
1479 nframes++;
1480
1481 if (bf_prev) {
1482 bf_prev->bf_next = bf;
1483 bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr;
1484 }
1485 bf_prev = bf;
1486
1487 #ifdef AGGR_NOSHORT
1488 /*
1489 * terminate aggregation on a small packet boundary
1490 */
1491 if (bf->bf_frmlen < ATH_AGGR_MINPLEN) {
1492 status = ATH_AGGR_SHORTPKT;
1493 break;
1494 }
1495 #endif
1496 } while (!list_empty(&tid->buf_q));
1497
1498 bf_first->bf_al = al;
1499 bf_first->bf_nframes = nframes;
1500 *bf_last = bf_prev;
1501 return status;
1502 #undef PADBYTES
1503 }
1504
1505 /*
1506 * process pending frames possibly doing a-mpdu aggregation
1507 * NB: must be called with txq lock held
1508 */
1509 static void ath_tx_sched_aggr(struct ath_softc *sc,
1510 struct ath_txq *txq, struct ath_atx_tid *tid)
1511 {
1512 struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL;
1513 enum ATH_AGGR_STATUS status;
1514 struct list_head bf_q;
1515 struct aggr_rifs_param param = {0, 0, 0, 0, NULL};
1516 int prev_frames = 0;
1517
1518 do {
1519 if (list_empty(&tid->buf_q))
1520 return;
1521
1522 INIT_LIST_HEAD(&bf_q);
1523
1524 status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, &param,
1525 &prev_frames);
1526
1527 /*
1528 * no frames picked up to be aggregated; block-ack
1529 * window is not open
1530 */
1531 if (list_empty(&bf_q))
1532 break;
1533
1534 bf = list_first_entry(&bf_q, struct ath_buf, list);
1535 bf_last = list_entry(bf_q.prev, struct ath_buf, list);
1536 bf->bf_lastbf = bf_last;
1537
1538 /*
1539 * if only one frame, send as non-aggregate
1540 */
1541 if (bf->bf_nframes == 1) {
1542 ASSERT(bf->bf_lastfrm == bf_last);
1543
1544 bf->bf_state.bf_type &= ~BUF_AGGR;
1545 /*
1546 * clear aggr bits for every descriptor
1547 * XXX TODO: is there a way to optimize it?
1548 */
1549 list_for_each_entry(tbf, &bf_q, list) {
1550 ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc);
1551 }
1552
1553 ath_buf_set_rate(sc, bf);
1554 ath_tx_txqaddbuf(sc, txq, &bf_q);
1555 continue;
1556 }
1557
1558 /*
1559 * setup first desc with rate and aggr info
1560 */
1561 bf->bf_state.bf_type |= BUF_AGGR;
1562 ath_buf_set_rate(sc, bf);
1563 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
1564
1565 /*
1566 * anchor last frame of aggregate correctly
1567 */
1568 ASSERT(bf_lastaggr);
1569 ASSERT(bf_lastaggr->bf_lastfrm == bf_last);
1570 tbf = bf_lastaggr;
1571 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1572
1573 /* XXX: We don't enter into this loop, consider removing this */
1574 while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) {
1575 tbf = list_entry(tbf->list.next, struct ath_buf, list);
1576 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1577 }
1578
1579 txq->axq_aggr_depth++;
1580
1581 /*
1582 * Normal aggregate, queue to hardware
1583 */
1584 ath_tx_txqaddbuf(sc, txq, &bf_q);
1585
1586 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
1587 status != ATH_AGGR_BAW_CLOSED);
1588 }
1589
1590 /* Called with txq lock held */
1591
1592 static void ath_tid_drain(struct ath_softc *sc,
1593 struct ath_txq *txq,
1594 struct ath_atx_tid *tid)
1595
1596 {
1597 struct ath_buf *bf;
1598 struct list_head bf_head;
1599 INIT_LIST_HEAD(&bf_head);
1600
1601 for (;;) {
1602 if (list_empty(&tid->buf_q))
1603 break;
1604 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1605
1606 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1607
1608 /* update baw for software retried frame */
1609 if (bf_isretried(bf))
1610 ath_tx_update_baw(sc, tid, bf->bf_seqno);
1611
1612 /*
1613 * do not indicate packets while holding txq spinlock.
1614 * unlock is intentional here
1615 */
1616 spin_unlock(&txq->axq_lock);
1617
1618 /* complete this sub-frame */
1619 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
1620
1621 spin_lock(&txq->axq_lock);
1622 }
1623
1624 /*
1625 * TODO: For frame(s) that are in the retry state, we will reuse the
1626 * sequence number(s) without setting the retry bit. The
1627 * alternative is to give up on these and BAR the receiver's window
1628 * forward.
1629 */
1630 tid->seq_next = tid->seq_start;
1631 tid->baw_tail = tid->baw_head;
1632 }
1633
1634 /*
1635 * Drain all pending buffers
1636 * NB: must be called with txq lock held
1637 */
1638 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1639 struct ath_txq *txq)
1640 {
1641 struct ath_atx_ac *ac, *ac_tmp;
1642 struct ath_atx_tid *tid, *tid_tmp;
1643
1644 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1645 list_del(&ac->list);
1646 ac->sched = false;
1647 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1648 list_del(&tid->list);
1649 tid->sched = false;
1650 ath_tid_drain(sc, txq, tid);
1651 }
1652 }
1653 }
1654
1655 static int ath_tx_setup_buffer(struct ath_softc *sc, struct ath_buf *bf,
1656 struct sk_buff *skb,
1657 struct ath_tx_control *txctl)
1658 {
1659 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1660 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1661 struct ath_tx_info_priv *tx_info_priv;
1662 int hdrlen;
1663 __le16 fc;
1664
1665 tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
1666 if (unlikely(!tx_info_priv))
1667 return -ENOMEM;
1668 tx_info->rate_driver_data[0] = tx_info_priv;
1669 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1670 fc = hdr->frame_control;
1671
1672 ATH_TXBUF_RESET(bf);
1673
1674 /* Frame type */
1675
1676 bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
1677
1678 ieee80211_is_data(fc) ?
1679 (bf->bf_state.bf_type |= BUF_DATA) :
1680 (bf->bf_state.bf_type &= ~BUF_DATA);
1681 ieee80211_is_back_req(fc) ?
1682 (bf->bf_state.bf_type |= BUF_BAR) :
1683 (bf->bf_state.bf_type &= ~BUF_BAR);
1684 ieee80211_is_pspoll(fc) ?
1685 (bf->bf_state.bf_type |= BUF_PSPOLL) :
1686 (bf->bf_state.bf_type &= ~BUF_PSPOLL);
1687 (sc->sc_flags & SC_OP_PREAMBLE_SHORT) ?
1688 (bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
1689 (bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
1690 (sc->hw->conf.ht.enabled && !is_pae(skb) &&
1691 (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) ?
1692 (bf->bf_state.bf_type |= BUF_HT) :
1693 (bf->bf_state.bf_type &= ~BUF_HT);
1694
1695 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1696
1697 /* Crypto */
1698
1699 bf->bf_keytype = get_hw_crypto_keytype(skb);
1700
1701 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1702 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1703 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1704 } else {
1705 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1706 }
1707
1708 /* Assign seqno, tidno */
1709
1710 if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR))
1711 assign_aggr_tid_seqno(skb, bf);
1712
1713 /* DMA setup */
1714 bf->bf_mpdu = skb;
1715
1716 bf->bf_dmacontext = pci_map_single(sc->pdev, skb->data,
1717 skb->len, PCI_DMA_TODEVICE);
1718 if (unlikely(pci_dma_mapping_error(sc->pdev, bf->bf_dmacontext))) {
1719 bf->bf_mpdu = NULL;
1720 DPRINTF(sc, ATH_DBG_CONFIG,
1721 "pci_dma_mapping_error() on TX\n");
1722 return -ENOMEM;
1723 }
1724
1725 bf->bf_buf_addr = bf->bf_dmacontext;
1726 return 0;
1727 }
1728
1729 /* FIXME: tx power */
1730 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1731 struct ath_tx_control *txctl)
1732 {
1733 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
1734 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1735 struct ath_node *an = NULL;
1736 struct list_head bf_head;
1737 struct ath_desc *ds;
1738 struct ath_atx_tid *tid;
1739 struct ath_hal *ah = sc->sc_ah;
1740 int frm_type;
1741
1742 frm_type = get_hw_packet_type(skb);
1743
1744 INIT_LIST_HEAD(&bf_head);
1745 list_add_tail(&bf->list, &bf_head);
1746
1747 /* setup descriptor */
1748
1749 ds = bf->bf_desc;
1750 ds->ds_link = 0;
1751 ds->ds_data = bf->bf_buf_addr;
1752
1753 /* Formulate first tx descriptor with tx controls */
1754
1755 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1756 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1757
1758 ath9k_hw_filltxdesc(ah, ds,
1759 skb->len, /* segment length */
1760 true, /* first segment */
1761 true, /* last segment */
1762 ds); /* first descriptor */
1763
1764 bf->bf_lastfrm = bf;
1765
1766 spin_lock_bh(&txctl->txq->axq_lock);
1767
1768 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1769 tx_info->control.sta) {
1770 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1771 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1772
1773 if (ath_aggr_query(sc, an, bf->bf_tidno)) {
1774 /*
1775 * Try aggregation if it's a unicast data frame
1776 * and the destination is HT capable.
1777 */
1778 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1779 } else {
1780 /*
1781 * Send this frame as regular when ADDBA
1782 * exchange is neither complete nor pending.
1783 */
1784 ath_tx_send_normal(sc, txctl->txq,
1785 tid, &bf_head);
1786 }
1787 } else {
1788 bf->bf_lastbf = bf;
1789 bf->bf_nframes = 1;
1790
1791 ath_buf_set_rate(sc, bf);
1792 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head);
1793 }
1794
1795 spin_unlock_bh(&txctl->txq->axq_lock);
1796 }
1797
1798 /* Upon failure caller should free skb */
1799 int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb,
1800 struct ath_tx_control *txctl)
1801 {
1802 struct ath_buf *bf;
1803 int r;
1804
1805 /* Check if a tx buffer is available */
1806
1807 bf = ath_tx_get_buffer(sc);
1808 if (!bf) {
1809 DPRINTF(sc, ATH_DBG_XMIT, "TX buffers are full\n");
1810 return -1;
1811 }
1812
1813 r = ath_tx_setup_buffer(sc, bf, skb, txctl);
1814 if (unlikely(r)) {
1815 struct ath_txq *txq = txctl->txq;
1816
1817 DPRINTF(sc, ATH_DBG_FATAL, "TX mem alloc failure\n");
1818
1819 /* upon ath_tx_processq() this TX queue will be resumed, we
1820 * guarantee this will happen by knowing beforehand that
1821 * we will at least have to run TX completionon one buffer
1822 * on the queue */
1823 spin_lock_bh(&txq->axq_lock);
1824 if (ath_txq_depth(sc, txq->axq_qnum) > 1) {
1825 ieee80211_stop_queue(sc->hw,
1826 skb_get_queue_mapping(skb));
1827 txq->stopped = 1;
1828 }
1829 spin_unlock_bh(&txq->axq_lock);
1830
1831 spin_lock_bh(&sc->tx.txbuflock);
1832 list_add_tail(&bf->list, &sc->tx.txbuf);
1833 spin_unlock_bh(&sc->tx.txbuflock);
1834
1835 return r;
1836 }
1837
1838 ath_tx_start_dma(sc, bf, txctl);
1839
1840 return 0;
1841 }
1842
1843 /* Initialize TX queue and h/w */
1844
1845 int ath_tx_init(struct ath_softc *sc, int nbufs)
1846 {
1847 int error = 0;
1848
1849 do {
1850 spin_lock_init(&sc->tx.txbuflock);
1851
1852 /* Setup tx descriptors */
1853 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
1854 "tx", nbufs, 1);
1855 if (error != 0) {
1856 DPRINTF(sc, ATH_DBG_FATAL,
1857 "Failed to allocate tx descriptors: %d\n",
1858 error);
1859 break;
1860 }
1861
1862 /* XXX allocate beacon state together with vap */
1863 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
1864 "beacon", ATH_BCBUF, 1);
1865 if (error != 0) {
1866 DPRINTF(sc, ATH_DBG_FATAL,
1867 "Failed to allocate beacon descriptors: %d\n",
1868 error);
1869 break;
1870 }
1871
1872 } while (0);
1873
1874 if (error != 0)
1875 ath_tx_cleanup(sc);
1876
1877 return error;
1878 }
1879
1880 /* Reclaim all tx queue resources */
1881
1882 int ath_tx_cleanup(struct ath_softc *sc)
1883 {
1884 /* cleanup beacon descriptors */
1885 if (sc->beacon.bdma.dd_desc_len != 0)
1886 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
1887
1888 /* cleanup tx descriptors */
1889 if (sc->tx.txdma.dd_desc_len != 0)
1890 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
1891
1892 return 0;
1893 }
1894
1895 /* Setup a h/w transmit queue */
1896
1897 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1898 {
1899 struct ath_hal *ah = sc->sc_ah;
1900 struct ath9k_tx_queue_info qi;
1901 int qnum;
1902
1903 memset(&qi, 0, sizeof(qi));
1904 qi.tqi_subtype = subtype;
1905 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1906 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1907 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1908 qi.tqi_physCompBuf = 0;
1909
1910 /*
1911 * Enable interrupts only for EOL and DESC conditions.
1912 * We mark tx descriptors to receive a DESC interrupt
1913 * when a tx queue gets deep; otherwise waiting for the
1914 * EOL to reap descriptors. Note that this is done to
1915 * reduce interrupt load and this only defers reaping
1916 * descriptors, never transmitting frames. Aside from
1917 * reducing interrupts this also permits more concurrency.
1918 * The only potential downside is if the tx queue backs
1919 * up in which case the top half of the kernel may backup
1920 * due to a lack of tx descriptors.
1921 *
1922 * The UAPSD queue is an exception, since we take a desc-
1923 * based intr on the EOSP frames.
1924 */
1925 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1926 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1927 else
1928 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1929 TXQ_FLAG_TXDESCINT_ENABLE;
1930 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1931 if (qnum == -1) {
1932 /*
1933 * NB: don't print a message, this happens
1934 * normally on parts with too few tx queues
1935 */
1936 return NULL;
1937 }
1938 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
1939 DPRINTF(sc, ATH_DBG_FATAL,
1940 "qnum %u out of range, max %u!\n",
1941 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
1942 ath9k_hw_releasetxqueue(ah, qnum);
1943 return NULL;
1944 }
1945 if (!ATH_TXQ_SETUP(sc, qnum)) {
1946 struct ath_txq *txq = &sc->tx.txq[qnum];
1947
1948 txq->axq_qnum = qnum;
1949 txq->axq_link = NULL;
1950 INIT_LIST_HEAD(&txq->axq_q);
1951 INIT_LIST_HEAD(&txq->axq_acq);
1952 spin_lock_init(&txq->axq_lock);
1953 txq->axq_depth = 0;
1954 txq->axq_aggr_depth = 0;
1955 txq->axq_totalqueued = 0;
1956 txq->axq_linkbuf = NULL;
1957 sc->tx.txqsetup |= 1<<qnum;
1958 }
1959 return &sc->tx.txq[qnum];
1960 }
1961
1962 /* Reclaim resources for a setup queue */
1963
1964 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1965 {
1966 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1967 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1968 }
1969
1970 /*
1971 * Setup a hardware data transmit queue for the specified
1972 * access control. The hal may not support all requested
1973 * queues in which case it will return a reference to a
1974 * previously setup queue. We record the mapping from ac's
1975 * to h/w queues for use by ath_tx_start and also track
1976 * the set of h/w queues being used to optimize work in the
1977 * transmit interrupt handler and related routines.
1978 */
1979
1980 int ath_tx_setup(struct ath_softc *sc, int haltype)
1981 {
1982 struct ath_txq *txq;
1983
1984 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1985 DPRINTF(sc, ATH_DBG_FATAL,
1986 "HAL AC %u out of range, max %zu!\n",
1987 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1988 return 0;
1989 }
1990 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1991 if (txq != NULL) {
1992 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1993 return 1;
1994 } else
1995 return 0;
1996 }
1997
1998 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
1999 {
2000 int qnum;
2001
2002 switch (qtype) {
2003 case ATH9K_TX_QUEUE_DATA:
2004 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
2005 DPRINTF(sc, ATH_DBG_FATAL,
2006 "HAL AC %u out of range, max %zu!\n",
2007 haltype, ARRAY_SIZE(sc->tx.hwq_map));
2008 return -1;
2009 }
2010 qnum = sc->tx.hwq_map[haltype];
2011 break;
2012 case ATH9K_TX_QUEUE_BEACON:
2013 qnum = sc->beacon.beaconq;
2014 break;
2015 case ATH9K_TX_QUEUE_CAB:
2016 qnum = sc->beacon.cabq->axq_qnum;
2017 break;
2018 default:
2019 qnum = -1;
2020 }
2021 return qnum;
2022 }
2023
2024 /* Get a transmit queue, if available */
2025
2026 struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
2027 {
2028 struct ath_txq *txq = NULL;
2029 int qnum;
2030
2031 qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
2032 txq = &sc->tx.txq[qnum];
2033
2034 spin_lock_bh(&txq->axq_lock);
2035
2036 /* Try to avoid running out of descriptors */
2037 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
2038 DPRINTF(sc, ATH_DBG_FATAL,
2039 "TX queue: %d is full, depth: %d\n",
2040 qnum, txq->axq_depth);
2041 ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb));
2042 txq->stopped = 1;
2043 spin_unlock_bh(&txq->axq_lock);
2044 return NULL;
2045 }
2046
2047 spin_unlock_bh(&txq->axq_lock);
2048
2049 return txq;
2050 }
2051
2052 /* Update parameters for a transmit queue */
2053
2054 int ath_txq_update(struct ath_softc *sc, int qnum,
2055 struct ath9k_tx_queue_info *qinfo)
2056 {
2057 struct ath_hal *ah = sc->sc_ah;
2058 int error = 0;
2059 struct ath9k_tx_queue_info qi;
2060
2061 if (qnum == sc->beacon.beaconq) {
2062 /*
2063 * XXX: for beacon queue, we just save the parameter.
2064 * It will be picked up by ath_beaconq_config when
2065 * it's necessary.
2066 */
2067 sc->beacon.beacon_qi = *qinfo;
2068 return 0;
2069 }
2070
2071 ASSERT(sc->tx.txq[qnum].axq_qnum == qnum);
2072
2073 ath9k_hw_get_txq_props(ah, qnum, &qi);
2074 qi.tqi_aifs = qinfo->tqi_aifs;
2075 qi.tqi_cwmin = qinfo->tqi_cwmin;
2076 qi.tqi_cwmax = qinfo->tqi_cwmax;
2077 qi.tqi_burstTime = qinfo->tqi_burstTime;
2078 qi.tqi_readyTime = qinfo->tqi_readyTime;
2079
2080 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
2081 DPRINTF(sc, ATH_DBG_FATAL,
2082 "Unable to update hardware queue %u!\n", qnum);
2083 error = -EIO;
2084 } else {
2085 ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */
2086 }
2087
2088 return error;
2089 }
2090
2091 int ath_cabq_update(struct ath_softc *sc)
2092 {
2093 struct ath9k_tx_queue_info qi;
2094 int qnum = sc->beacon.cabq->axq_qnum;
2095 struct ath_beacon_config conf;
2096
2097 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
2098 /*
2099 * Ensure the readytime % is within the bounds.
2100 */
2101 if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
2102 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
2103 else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
2104 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
2105
2106 ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
2107 qi.tqi_readyTime =
2108 (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
2109 ath_txq_update(sc, qnum, &qi);
2110
2111 return 0;
2112 }
2113
2114 /* Deferred processing of transmit interrupt */
2115
2116 void ath_tx_tasklet(struct ath_softc *sc)
2117 {
2118 int i;
2119 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2120
2121 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2122
2123 /*
2124 * Process each active queue.
2125 */
2126 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2127 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2128 ath_tx_processq(sc, &sc->tx.txq[i]);
2129 }
2130 }
2131
2132 void ath_tx_draintxq(struct ath_softc *sc,
2133 struct ath_txq *txq, bool retry_tx)
2134 {
2135 struct ath_buf *bf, *lastbf;
2136 struct list_head bf_head;
2137
2138 INIT_LIST_HEAD(&bf_head);
2139
2140 /*
2141 * NB: this assumes output has been stopped and
2142 * we do not need to block ath_tx_tasklet
2143 */
2144 for (;;) {
2145 spin_lock_bh(&txq->axq_lock);
2146
2147 if (list_empty(&txq->axq_q)) {
2148 txq->axq_link = NULL;
2149 txq->axq_linkbuf = NULL;
2150 spin_unlock_bh(&txq->axq_lock);
2151 break;
2152 }
2153
2154 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2155
2156 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
2157 list_del(&bf->list);
2158 spin_unlock_bh(&txq->axq_lock);
2159
2160 spin_lock_bh(&sc->tx.txbuflock);
2161 list_add_tail(&bf->list, &sc->tx.txbuf);
2162 spin_unlock_bh(&sc->tx.txbuflock);
2163 continue;
2164 }
2165
2166 lastbf = bf->bf_lastbf;
2167 if (!retry_tx)
2168 lastbf->bf_desc->ds_txstat.ts_flags =
2169 ATH9K_TX_SW_ABORTED;
2170
2171 /* remove ath_buf's of the same mpdu from txq */
2172 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
2173 txq->axq_depth--;
2174
2175 spin_unlock_bh(&txq->axq_lock);
2176
2177 if (bf_isampdu(bf))
2178 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0);
2179 else
2180 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2181 }
2182
2183 /* flush any pending frames if aggregation is enabled */
2184 if (sc->sc_flags & SC_OP_TXAGGR) {
2185 if (!retry_tx) {
2186 spin_lock_bh(&txq->axq_lock);
2187 ath_txq_drain_pending_buffers(sc, txq);
2188 spin_unlock_bh(&txq->axq_lock);
2189 }
2190 }
2191 }
2192
2193 /* Drain the transmit queues and reclaim resources */
2194
2195 void ath_draintxq(struct ath_softc *sc, bool retry_tx)
2196 {
2197 /* stop beacon queue. The beacon will be freed when
2198 * we go to INIT state */
2199 if (!(sc->sc_flags & SC_OP_INVALID)) {
2200 (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2201 DPRINTF(sc, ATH_DBG_XMIT, "beacon queue %x\n",
2202 ath9k_hw_gettxbuf(sc->sc_ah, sc->beacon.beaconq));
2203 }
2204
2205 ath_drain_txdataq(sc, retry_tx);
2206 }
2207
2208 u32 ath_txq_depth(struct ath_softc *sc, int qnum)
2209 {
2210 return sc->tx.txq[qnum].axq_depth;
2211 }
2212
2213 u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum)
2214 {
2215 return sc->tx.txq[qnum].axq_aggr_depth;
2216 }
2217
2218 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
2219 {
2220 struct ath_atx_tid *txtid;
2221
2222 if (!(sc->sc_flags & SC_OP_TXAGGR))
2223 return false;
2224
2225 txtid = ATH_AN_2_TID(an, tidno);
2226
2227 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
2228 if (!(txtid->state & AGGR_ADDBA_PROGRESS) &&
2229 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
2230 txtid->addba_exchangeattempts++;
2231 return true;
2232 }
2233 }
2234
2235 return false;
2236 }
2237
2238 /* Start TX aggregation */
2239
2240 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
2241 u16 tid, u16 *ssn)
2242 {
2243 struct ath_atx_tid *txtid;
2244 struct ath_node *an;
2245
2246 an = (struct ath_node *)sta->drv_priv;
2247
2248 if (sc->sc_flags & SC_OP_TXAGGR) {
2249 txtid = ATH_AN_2_TID(an, tid);
2250 txtid->state |= AGGR_ADDBA_PROGRESS;
2251 ath_tx_pause_tid(sc, txtid);
2252 }
2253
2254 return 0;
2255 }
2256
2257 /* Stop tx aggregation */
2258
2259 int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
2260 {
2261 struct ath_node *an = (struct ath_node *)sta->drv_priv;
2262
2263 ath_tx_aggr_teardown(sc, an, tid);
2264 return 0;
2265 }
2266
2267 /* Resume tx aggregation */
2268
2269 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
2270 {
2271 struct ath_atx_tid *txtid;
2272 struct ath_node *an;
2273
2274 an = (struct ath_node *)sta->drv_priv;
2275
2276 if (sc->sc_flags & SC_OP_TXAGGR) {
2277 txtid = ATH_AN_2_TID(an, tid);
2278 txtid->baw_size =
2279 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
2280 txtid->state |= AGGR_ADDBA_COMPLETE;
2281 txtid->state &= ~AGGR_ADDBA_PROGRESS;
2282 ath_tx_resume_tid(sc, txtid);
2283 }
2284 }
2285
2286 /*
2287 * Performs transmit side cleanup when TID changes from aggregated to
2288 * unaggregated.
2289 * - Pause the TID and mark cleanup in progress
2290 * - Discard all retry frames from the s/w queue.
2291 */
2292
2293 void ath_tx_aggr_teardown(struct ath_softc *sc, struct ath_node *an, u8 tid)
2294 {
2295 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
2296 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
2297 struct ath_buf *bf;
2298 struct list_head bf_head;
2299 INIT_LIST_HEAD(&bf_head);
2300
2301 if (txtid->state & AGGR_CLEANUP) /* cleanup is in progress */
2302 return;
2303
2304 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
2305 txtid->addba_exchangeattempts = 0;
2306 return;
2307 }
2308
2309 /* TID must be paused first */
2310 ath_tx_pause_tid(sc, txtid);
2311
2312 /* drop all software retried frames and mark this TID */
2313 spin_lock_bh(&txq->axq_lock);
2314 while (!list_empty(&txtid->buf_q)) {
2315 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
2316 if (!bf_isretried(bf)) {
2317 /*
2318 * NB: it's based on the assumption that
2319 * software retried frame will always stay
2320 * at the head of software queue.
2321 */
2322 break;
2323 }
2324 list_cut_position(&bf_head,
2325 &txtid->buf_q, &bf->bf_lastfrm->list);
2326 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
2327
2328 /* complete this sub-frame */
2329 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2330 }
2331
2332 if (txtid->baw_head != txtid->baw_tail) {
2333 spin_unlock_bh(&txq->axq_lock);
2334 txtid->state |= AGGR_CLEANUP;
2335 } else {
2336 txtid->state &= ~AGGR_ADDBA_COMPLETE;
2337 txtid->addba_exchangeattempts = 0;
2338 spin_unlock_bh(&txq->axq_lock);
2339 ath_tx_flush_tid(sc, txtid);
2340 }
2341 }
2342
2343 /*
2344 * Tx scheduling logic
2345 * NB: must be called with txq lock held
2346 */
2347
2348 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
2349 {
2350 struct ath_atx_ac *ac;
2351 struct ath_atx_tid *tid;
2352
2353 /* nothing to schedule */
2354 if (list_empty(&txq->axq_acq))
2355 return;
2356 /*
2357 * get the first node/ac pair on the queue
2358 */
2359 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
2360 list_del(&ac->list);
2361 ac->sched = false;
2362
2363 /*
2364 * process a single tid per destination
2365 */
2366 do {
2367 /* nothing to schedule */
2368 if (list_empty(&ac->tid_q))
2369 return;
2370
2371 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
2372 list_del(&tid->list);
2373 tid->sched = false;
2374
2375 if (tid->paused) /* check next tid to keep h/w busy */
2376 continue;
2377
2378 if ((txq->axq_depth % 2) == 0)
2379 ath_tx_sched_aggr(sc, txq, tid);
2380
2381 /*
2382 * add tid to round-robin queue if more frames
2383 * are pending for the tid
2384 */
2385 if (!list_empty(&tid->buf_q))
2386 ath_tx_queue_tid(txq, tid);
2387
2388 /* only schedule one TID at a time */
2389 break;
2390 } while (!list_empty(&ac->tid_q));
2391
2392 /*
2393 * schedule AC if more TIDs need processing
2394 */
2395 if (!list_empty(&ac->tid_q)) {
2396 /*
2397 * add dest ac to txq if not already added
2398 */
2399 if (!ac->sched) {
2400 ac->sched = true;
2401 list_add_tail(&ac->list, &txq->axq_acq);
2402 }
2403 }
2404 }
2405
2406 /* Initialize per-node transmit state */
2407
2408 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2409 {
2410 struct ath_atx_tid *tid;
2411 struct ath_atx_ac *ac;
2412 int tidno, acno;
2413
2414 /*
2415 * Init per tid tx state
2416 */
2417 for (tidno = 0, tid = &an->tid[tidno];
2418 tidno < WME_NUM_TID;
2419 tidno++, tid++) {
2420 tid->an = an;
2421 tid->tidno = tidno;
2422 tid->seq_start = tid->seq_next = 0;
2423 tid->baw_size = WME_MAX_BA;
2424 tid->baw_head = tid->baw_tail = 0;
2425 tid->sched = false;
2426 tid->paused = false;
2427 tid->state &= ~AGGR_CLEANUP;
2428 INIT_LIST_HEAD(&tid->buf_q);
2429
2430 acno = TID_TO_WME_AC(tidno);
2431 tid->ac = &an->ac[acno];
2432
2433 /* ADDBA state */
2434 tid->state &= ~AGGR_ADDBA_COMPLETE;
2435 tid->state &= ~AGGR_ADDBA_PROGRESS;
2436 tid->addba_exchangeattempts = 0;
2437 }
2438
2439 /*
2440 * Init per ac tx state
2441 */
2442 for (acno = 0, ac = &an->ac[acno];
2443 acno < WME_NUM_AC; acno++, ac++) {
2444 ac->sched = false;
2445 INIT_LIST_HEAD(&ac->tid_q);
2446
2447 switch (acno) {
2448 case WME_AC_BE:
2449 ac->qnum = ath_tx_get_qnum(sc,
2450 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2451 break;
2452 case WME_AC_BK:
2453 ac->qnum = ath_tx_get_qnum(sc,
2454 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2455 break;
2456 case WME_AC_VI:
2457 ac->qnum = ath_tx_get_qnum(sc,
2458 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2459 break;
2460 case WME_AC_VO:
2461 ac->qnum = ath_tx_get_qnum(sc,
2462 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2463 break;
2464 }
2465 }
2466 }
2467
2468 /* Cleanupthe pending buffers for the node. */
2469
2470 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2471 {
2472 int i;
2473 struct ath_atx_ac *ac, *ac_tmp;
2474 struct ath_atx_tid *tid, *tid_tmp;
2475 struct ath_txq *txq;
2476 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2477 if (ATH_TXQ_SETUP(sc, i)) {
2478 txq = &sc->tx.txq[i];
2479
2480 spin_lock(&txq->axq_lock);
2481
2482 list_for_each_entry_safe(ac,
2483 ac_tmp, &txq->axq_acq, list) {
2484 tid = list_first_entry(&ac->tid_q,
2485 struct ath_atx_tid, list);
2486 if (tid && tid->an != an)
2487 continue;
2488 list_del(&ac->list);
2489 ac->sched = false;
2490
2491 list_for_each_entry_safe(tid,
2492 tid_tmp, &ac->tid_q, list) {
2493 list_del(&tid->list);
2494 tid->sched = false;
2495 ath_tid_drain(sc, txq, tid);
2496 tid->state &= ~AGGR_ADDBA_COMPLETE;
2497 tid->addba_exchangeattempts = 0;
2498 tid->state &= ~AGGR_CLEANUP;
2499 }
2500 }
2501
2502 spin_unlock(&txq->axq_lock);
2503 }
2504 }
2505 }
2506
2507 void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb)
2508 {
2509 int hdrlen, padsize;
2510 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2511 struct ath_tx_control txctl;
2512
2513 memset(&txctl, 0, sizeof(struct ath_tx_control));
2514
2515 /*
2516 * As a temporary workaround, assign seq# here; this will likely need
2517 * to be cleaned up to work better with Beacon transmission and virtual
2518 * BSSes.
2519 */
2520 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2521 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2522 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2523 sc->tx.seq_no += 0x10;
2524 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2525 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2526 }
2527
2528 /* Add the padding after the header if this is not already done */
2529 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2530 if (hdrlen & 3) {
2531 padsize = hdrlen % 4;
2532 if (skb_headroom(skb) < padsize) {
2533 DPRINTF(sc, ATH_DBG_XMIT, "TX CABQ padding failed\n");
2534 dev_kfree_skb_any(skb);
2535 return;
2536 }
2537 skb_push(skb, padsize);
2538 memmove(skb->data, skb->data + padsize, hdrlen);
2539 }
2540
2541 txctl.txq = sc->beacon.cabq;
2542
2543 DPRINTF(sc, ATH_DBG_XMIT, "transmitting CABQ packet, skb: %p\n", skb);
2544
2545 if (ath_tx_start(sc, skb, &txctl) != 0) {
2546 DPRINTF(sc, ATH_DBG_XMIT, "CABQ TX failed\n");
2547 goto exit;
2548 }
2549
2550 return;
2551 exit:
2552 dev_kfree_skb_any(skb);
2553 }
This page took 0.102417 seconds and 6 git commands to generate.