[PATCH] kconfig: stricter error checking for .config
[deliverable/linux.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35 #define IPW2200_VERSION "1.0.0"
36 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
37 #define DRV_COPYRIGHT "Copyright(c) 2003-2004 Intel Corporation"
38 #define DRV_VERSION IPW2200_VERSION
39
40 MODULE_DESCRIPTION(DRV_DESCRIPTION);
41 MODULE_VERSION(DRV_VERSION);
42 MODULE_AUTHOR(DRV_COPYRIGHT);
43 MODULE_LICENSE("GPL");
44
45 static int debug = 0;
46 static int channel = 0;
47 static char *ifname;
48 static int mode = 0;
49
50 static u32 ipw_debug_level;
51 static int associate = 1;
52 static int auto_create = 1;
53 static int disable = 0;
54 static const char ipw_modes[] = {
55 'a', 'b', 'g', '?'
56 };
57
58 static void ipw_rx(struct ipw_priv *priv);
59 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
60 struct clx2_tx_queue *txq, int qindex);
61 static int ipw_queue_reset(struct ipw_priv *priv);
62
63 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
64 int len, int sync);
65
66 static void ipw_tx_queue_free(struct ipw_priv *);
67
68 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
69 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
70 static void ipw_rx_queue_replenish(void *);
71
72 static int ipw_up(struct ipw_priv *);
73 static void ipw_down(struct ipw_priv *);
74 static int ipw_config(struct ipw_priv *);
75 static int init_supported_rates(struct ipw_priv *priv,
76 struct ipw_supported_rates *prates);
77
78 static u8 band_b_active_channel[MAX_B_CHANNELS] = {
79 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0
80 };
81 static u8 band_a_active_channel[MAX_A_CHANNELS] = {
82 36, 40, 44, 48, 149, 153, 157, 161, 165, 52, 56, 60, 64, 0
83 };
84
85 static int is_valid_channel(int mode_mask, int channel)
86 {
87 int i;
88
89 if (!channel)
90 return 0;
91
92 if (mode_mask & IEEE_A)
93 for (i = 0; i < MAX_A_CHANNELS; i++)
94 if (band_a_active_channel[i] == channel)
95 return IEEE_A;
96
97 if (mode_mask & (IEEE_B | IEEE_G))
98 for (i = 0; i < MAX_B_CHANNELS; i++)
99 if (band_b_active_channel[i] == channel)
100 return mode_mask & (IEEE_B | IEEE_G);
101
102 return 0;
103 }
104
105 static char *snprint_line(char *buf, size_t count,
106 const u8 * data, u32 len, u32 ofs)
107 {
108 int out, i, j, l;
109 char c;
110
111 out = snprintf(buf, count, "%08X", ofs);
112
113 for (l = 0, i = 0; i < 2; i++) {
114 out += snprintf(buf + out, count - out, " ");
115 for (j = 0; j < 8 && l < len; j++, l++)
116 out += snprintf(buf + out, count - out, "%02X ",
117 data[(i * 8 + j)]);
118 for (; j < 8; j++)
119 out += snprintf(buf + out, count - out, " ");
120 }
121
122 out += snprintf(buf + out, count - out, " ");
123 for (l = 0, i = 0; i < 2; i++) {
124 out += snprintf(buf + out, count - out, " ");
125 for (j = 0; j < 8 && l < len; j++, l++) {
126 c = data[(i * 8 + j)];
127 if (!isascii(c) || !isprint(c))
128 c = '.';
129
130 out += snprintf(buf + out, count - out, "%c", c);
131 }
132
133 for (; j < 8; j++)
134 out += snprintf(buf + out, count - out, " ");
135 }
136
137 return buf;
138 }
139
140 static void printk_buf(int level, const u8 * data, u32 len)
141 {
142 char line[81];
143 u32 ofs = 0;
144 if (!(ipw_debug_level & level))
145 return;
146
147 while (len) {
148 printk(KERN_DEBUG "%s\n",
149 snprint_line(line, sizeof(line), &data[ofs],
150 min(len, 16U), ofs));
151 ofs += 16;
152 len -= min(len, 16U);
153 }
154 }
155
156 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
157 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
158
159 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
160 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
161
162 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
163 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
164 {
165 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
166 __LINE__, (u32) (b), (u32) (c));
167 _ipw_write_reg8(a, b, c);
168 }
169
170 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
171 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
172 {
173 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
174 __LINE__, (u32) (b), (u32) (c));
175 _ipw_write_reg16(a, b, c);
176 }
177
178 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
179 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
180 {
181 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
182 __LINE__, (u32) (b), (u32) (c));
183 _ipw_write_reg32(a, b, c);
184 }
185
186 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
187 #define ipw_write8(ipw, ofs, val) \
188 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
189 _ipw_write8(ipw, ofs, val)
190
191 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
192 #define ipw_write16(ipw, ofs, val) \
193 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
194 _ipw_write16(ipw, ofs, val)
195
196 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
197 #define ipw_write32(ipw, ofs, val) \
198 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
199 _ipw_write32(ipw, ofs, val)
200
201 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
202 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
203 {
204 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
205 return _ipw_read8(ipw, ofs);
206 }
207
208 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
209
210 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
211 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
212 {
213 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
214 return _ipw_read16(ipw, ofs);
215 }
216
217 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
218
219 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
220 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
221 {
222 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
223 return _ipw_read32(ipw, ofs);
224 }
225
226 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
227
228 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
229 #define ipw_read_indirect(a, b, c, d) \
230 IPW_DEBUG_IO("%s %d: read_inddirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
231 _ipw_read_indirect(a, b, c, d)
232
233 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
234 int num);
235 #define ipw_write_indirect(a, b, c, d) \
236 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
237 _ipw_write_indirect(a, b, c, d)
238
239 /* indirect write s */
240 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
241 {
242 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
243 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg);
244 _ipw_write32(priv, CX2_INDIRECT_DATA, value);
245 }
246
247 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
248 {
249 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
250 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
251 _ipw_write8(priv, CX2_INDIRECT_DATA, value);
252 IPW_DEBUG_IO(" reg = 0x%8lX : value = 0x%8X\n",
253 (unsigned long)(priv->hw_base + CX2_INDIRECT_DATA), value);
254 }
255
256 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
257 {
258 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
259 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
260 _ipw_write16(priv, CX2_INDIRECT_DATA, value);
261 }
262
263 /* indirect read s */
264
265 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
266 {
267 u32 word;
268 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
269 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
270 word = _ipw_read32(priv, CX2_INDIRECT_DATA);
271 return (word >> ((reg & 0x3) * 8)) & 0xff;
272 }
273
274 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
275 {
276 u32 value;
277
278 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
279
280 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg);
281 value = _ipw_read32(priv, CX2_INDIRECT_DATA);
282 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
283 return value;
284 }
285
286 /* iterative/auto-increment 32 bit reads and writes */
287 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
288 int num)
289 {
290 u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK;
291 u32 dif_len = addr - aligned_addr;
292 u32 aligned_len;
293 u32 i;
294
295 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
296
297 /* Read the first nibble byte by byte */
298 if (unlikely(dif_len)) {
299 /* Start reading at aligned_addr + dif_len */
300 _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
301 for (i = dif_len; i < 4; i++, buf++)
302 *buf = _ipw_read8(priv, CX2_INDIRECT_DATA + i);
303 num -= dif_len;
304 aligned_addr += 4;
305 }
306
307 /* Read DWs through autoinc register */
308 _ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr);
309 aligned_len = num & CX2_INDIRECT_ADDR_MASK;
310 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
311 *(u32 *) buf = ipw_read32(priv, CX2_AUTOINC_DATA);
312
313 /* Copy the last nibble */
314 dif_len = num - aligned_len;
315 _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
316 for (i = 0; i < dif_len; i++, buf++)
317 *buf = ipw_read8(priv, CX2_INDIRECT_DATA + i);
318 }
319
320 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
321 int num)
322 {
323 u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK;
324 u32 dif_len = addr - aligned_addr;
325 u32 aligned_len;
326 u32 i;
327
328 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
329
330 /* Write the first nibble byte by byte */
331 if (unlikely(dif_len)) {
332 /* Start writing at aligned_addr + dif_len */
333 _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
334 for (i = dif_len; i < 4; i++, buf++)
335 _ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf);
336 num -= dif_len;
337 aligned_addr += 4;
338 }
339
340 /* Write DWs through autoinc register */
341 _ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr);
342 aligned_len = num & CX2_INDIRECT_ADDR_MASK;
343 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
344 _ipw_write32(priv, CX2_AUTOINC_DATA, *(u32 *) buf);
345
346 /* Copy the last nibble */
347 dif_len = num - aligned_len;
348 _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
349 for (i = 0; i < dif_len; i++, buf++)
350 _ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf);
351 }
352
353 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
354 int num)
355 {
356 memcpy_toio((priv->hw_base + addr), buf, num);
357 }
358
359 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
360 {
361 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
362 }
363
364 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
365 {
366 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
367 }
368
369 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
370 {
371 if (priv->status & STATUS_INT_ENABLED)
372 return;
373 priv->status |= STATUS_INT_ENABLED;
374 ipw_write32(priv, CX2_INTA_MASK_R, CX2_INTA_MASK_ALL);
375 }
376
377 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
378 {
379 if (!(priv->status & STATUS_INT_ENABLED))
380 return;
381 priv->status &= ~STATUS_INT_ENABLED;
382 ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
383 }
384
385 static char *ipw_error_desc(u32 val)
386 {
387 switch (val) {
388 case IPW_FW_ERROR_OK:
389 return "ERROR_OK";
390 case IPW_FW_ERROR_FAIL:
391 return "ERROR_FAIL";
392 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
393 return "MEMORY_UNDERFLOW";
394 case IPW_FW_ERROR_MEMORY_OVERFLOW:
395 return "MEMORY_OVERFLOW";
396 case IPW_FW_ERROR_BAD_PARAM:
397 return "ERROR_BAD_PARAM";
398 case IPW_FW_ERROR_BAD_CHECKSUM:
399 return "ERROR_BAD_CHECKSUM";
400 case IPW_FW_ERROR_NMI_INTERRUPT:
401 return "ERROR_NMI_INTERRUPT";
402 case IPW_FW_ERROR_BAD_DATABASE:
403 return "ERROR_BAD_DATABASE";
404 case IPW_FW_ERROR_ALLOC_FAIL:
405 return "ERROR_ALLOC_FAIL";
406 case IPW_FW_ERROR_DMA_UNDERRUN:
407 return "ERROR_DMA_UNDERRUN";
408 case IPW_FW_ERROR_DMA_STATUS:
409 return "ERROR_DMA_STATUS";
410 case IPW_FW_ERROR_DINOSTATUS_ERROR:
411 return "ERROR_DINOSTATUS_ERROR";
412 case IPW_FW_ERROR_EEPROMSTATUS_ERROR:
413 return "ERROR_EEPROMSTATUS_ERROR";
414 case IPW_FW_ERROR_SYSASSERT:
415 return "ERROR_SYSASSERT";
416 case IPW_FW_ERROR_FATAL_ERROR:
417 return "ERROR_FATALSTATUS_ERROR";
418 default:
419 return "UNKNOWNSTATUS_ERROR";
420 }
421 }
422
423 static void ipw_dump_nic_error_log(struct ipw_priv *priv)
424 {
425 u32 desc, time, blink1, blink2, ilink1, ilink2, idata, i, count, base;
426
427 base = ipw_read32(priv, IPWSTATUS_ERROR_LOG);
428 count = ipw_read_reg32(priv, base);
429
430 if (ERROR_START_OFFSET <= count * ERROR_ELEM_SIZE) {
431 IPW_ERROR("Start IPW Error Log Dump:\n");
432 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
433 priv->status, priv->config);
434 }
435
436 for (i = ERROR_START_OFFSET;
437 i <= count * ERROR_ELEM_SIZE; i += ERROR_ELEM_SIZE) {
438 desc = ipw_read_reg32(priv, base + i);
439 time = ipw_read_reg32(priv, base + i + 1 * sizeof(u32));
440 blink1 = ipw_read_reg32(priv, base + i + 2 * sizeof(u32));
441 blink2 = ipw_read_reg32(priv, base + i + 3 * sizeof(u32));
442 ilink1 = ipw_read_reg32(priv, base + i + 4 * sizeof(u32));
443 ilink2 = ipw_read_reg32(priv, base + i + 5 * sizeof(u32));
444 idata = ipw_read_reg32(priv, base + i + 6 * sizeof(u32));
445
446 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
447 ipw_error_desc(desc), time, blink1, blink2,
448 ilink1, ilink2, idata);
449 }
450 }
451
452 static void ipw_dump_nic_event_log(struct ipw_priv *priv)
453 {
454 u32 ev, time, data, i, count, base;
455
456 base = ipw_read32(priv, IPW_EVENT_LOG);
457 count = ipw_read_reg32(priv, base);
458
459 if (EVENT_START_OFFSET <= count * EVENT_ELEM_SIZE)
460 IPW_ERROR("Start IPW Event Log Dump:\n");
461
462 for (i = EVENT_START_OFFSET;
463 i <= count * EVENT_ELEM_SIZE; i += EVENT_ELEM_SIZE) {
464 ev = ipw_read_reg32(priv, base + i);
465 time = ipw_read_reg32(priv, base + i + 1 * sizeof(u32));
466 data = ipw_read_reg32(priv, base + i + 2 * sizeof(u32));
467
468 #ifdef CONFIG_IPW_DEBUG
469 IPW_ERROR("%i\t0x%08x\t%i\n", time, data, ev);
470 #endif
471 }
472 }
473
474 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
475 {
476 u32 addr, field_info, field_len, field_count, total_len;
477
478 IPW_DEBUG_ORD("ordinal = %i\n", ord);
479
480 if (!priv || !val || !len) {
481 IPW_DEBUG_ORD("Invalid argument\n");
482 return -EINVAL;
483 }
484
485 /* verify device ordinal tables have been initialized */
486 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
487 IPW_DEBUG_ORD("Access ordinals before initialization\n");
488 return -EINVAL;
489 }
490
491 switch (IPW_ORD_TABLE_ID_MASK & ord) {
492 case IPW_ORD_TABLE_0_MASK:
493 /*
494 * TABLE 0: Direct access to a table of 32 bit values
495 *
496 * This is a very simple table with the data directly
497 * read from the table
498 */
499
500 /* remove the table id from the ordinal */
501 ord &= IPW_ORD_TABLE_VALUE_MASK;
502
503 /* boundary check */
504 if (ord > priv->table0_len) {
505 IPW_DEBUG_ORD("ordinal value (%i) longer then "
506 "max (%i)\n", ord, priv->table0_len);
507 return -EINVAL;
508 }
509
510 /* verify we have enough room to store the value */
511 if (*len < sizeof(u32)) {
512 IPW_DEBUG_ORD("ordinal buffer length too small, "
513 "need %zd\n", sizeof(u32));
514 return -EINVAL;
515 }
516
517 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
518 ord, priv->table0_addr + (ord << 2));
519
520 *len = sizeof(u32);
521 ord <<= 2;
522 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
523 break;
524
525 case IPW_ORD_TABLE_1_MASK:
526 /*
527 * TABLE 1: Indirect access to a table of 32 bit values
528 *
529 * This is a fairly large table of u32 values each
530 * representing starting addr for the data (which is
531 * also a u32)
532 */
533
534 /* remove the table id from the ordinal */
535 ord &= IPW_ORD_TABLE_VALUE_MASK;
536
537 /* boundary check */
538 if (ord > priv->table1_len) {
539 IPW_DEBUG_ORD("ordinal value too long\n");
540 return -EINVAL;
541 }
542
543 /* verify we have enough room to store the value */
544 if (*len < sizeof(u32)) {
545 IPW_DEBUG_ORD("ordinal buffer length too small, "
546 "need %zd\n", sizeof(u32));
547 return -EINVAL;
548 }
549
550 *((u32 *) val) =
551 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
552 *len = sizeof(u32);
553 break;
554
555 case IPW_ORD_TABLE_2_MASK:
556 /*
557 * TABLE 2: Indirect access to a table of variable sized values
558 *
559 * This table consist of six values, each containing
560 * - dword containing the starting offset of the data
561 * - dword containing the lengh in the first 16bits
562 * and the count in the second 16bits
563 */
564
565 /* remove the table id from the ordinal */
566 ord &= IPW_ORD_TABLE_VALUE_MASK;
567
568 /* boundary check */
569 if (ord > priv->table2_len) {
570 IPW_DEBUG_ORD("ordinal value too long\n");
571 return -EINVAL;
572 }
573
574 /* get the address of statistic */
575 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
576
577 /* get the second DW of statistics ;
578 * two 16-bit words - first is length, second is count */
579 field_info =
580 ipw_read_reg32(priv,
581 priv->table2_addr + (ord << 3) +
582 sizeof(u32));
583
584 /* get each entry length */
585 field_len = *((u16 *) & field_info);
586
587 /* get number of entries */
588 field_count = *(((u16 *) & field_info) + 1);
589
590 /* abort if not enought memory */
591 total_len = field_len * field_count;
592 if (total_len > *len) {
593 *len = total_len;
594 return -EINVAL;
595 }
596
597 *len = total_len;
598 if (!total_len)
599 return 0;
600
601 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
602 "field_info = 0x%08x\n",
603 addr, total_len, field_info);
604 ipw_read_indirect(priv, addr, val, total_len);
605 break;
606
607 default:
608 IPW_DEBUG_ORD("Invalid ordinal!\n");
609 return -EINVAL;
610
611 }
612
613 return 0;
614 }
615
616 static void ipw_init_ordinals(struct ipw_priv *priv)
617 {
618 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
619 priv->table0_len = ipw_read32(priv, priv->table0_addr);
620
621 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
622 priv->table0_addr, priv->table0_len);
623
624 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
625 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
626
627 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
628 priv->table1_addr, priv->table1_len);
629
630 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
631 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
632 priv->table2_len &= 0x0000ffff; /* use first two bytes */
633
634 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
635 priv->table2_addr, priv->table2_len);
636
637 }
638
639 /*
640 * The following adds a new attribute to the sysfs representation
641 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
642 * used for controling the debug level.
643 *
644 * See the level definitions in ipw for details.
645 */
646 static ssize_t show_debug_level(struct device_driver *d, char *buf)
647 {
648 return sprintf(buf, "0x%08X\n", ipw_debug_level);
649 }
650 static ssize_t store_debug_level(struct device_driver *d,
651 const char *buf, size_t count)
652 {
653 char *p = (char *)buf;
654 u32 val;
655
656 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
657 p++;
658 if (p[0] == 'x' || p[0] == 'X')
659 p++;
660 val = simple_strtoul(p, &p, 16);
661 } else
662 val = simple_strtoul(p, &p, 10);
663 if (p == buf)
664 printk(KERN_INFO DRV_NAME
665 ": %s is not in hex or decimal form.\n", buf);
666 else
667 ipw_debug_level = val;
668
669 return strnlen(buf, count);
670 }
671
672 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
673 show_debug_level, store_debug_level);
674
675 static ssize_t show_status(struct device *d,
676 struct device_attribute *attr, char *buf)
677 {
678 struct ipw_priv *p = d->driver_data;
679 return sprintf(buf, "0x%08x\n", (int)p->status);
680 }
681
682 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
683
684 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
685 char *buf)
686 {
687 struct ipw_priv *p = d->driver_data;
688 return sprintf(buf, "0x%08x\n", (int)p->config);
689 }
690
691 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
692
693 static ssize_t show_nic_type(struct device *d,
694 struct device_attribute *attr, char *buf)
695 {
696 struct ipw_priv *p = d->driver_data;
697 u8 type = p->eeprom[EEPROM_NIC_TYPE];
698
699 switch (type) {
700 case EEPROM_NIC_TYPE_STANDARD:
701 return sprintf(buf, "STANDARD\n");
702 case EEPROM_NIC_TYPE_DELL:
703 return sprintf(buf, "DELL\n");
704 case EEPROM_NIC_TYPE_FUJITSU:
705 return sprintf(buf, "FUJITSU\n");
706 case EEPROM_NIC_TYPE_IBM:
707 return sprintf(buf, "IBM\n");
708 case EEPROM_NIC_TYPE_HP:
709 return sprintf(buf, "HP\n");
710 }
711
712 return sprintf(buf, "UNKNOWN\n");
713 }
714
715 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
716
717 static ssize_t dump_error_log(struct device *d,
718 struct device_attribute *attr, const char *buf,
719 size_t count)
720 {
721 char *p = (char *)buf;
722
723 if (p[0] == '1')
724 ipw_dump_nic_error_log((struct ipw_priv *)d->driver_data);
725
726 return strnlen(buf, count);
727 }
728
729 static DEVICE_ATTR(dump_errors, S_IWUSR, NULL, dump_error_log);
730
731 static ssize_t dump_event_log(struct device *d,
732 struct device_attribute *attr, const char *buf,
733 size_t count)
734 {
735 char *p = (char *)buf;
736
737 if (p[0] == '1')
738 ipw_dump_nic_event_log((struct ipw_priv *)d->driver_data);
739
740 return strnlen(buf, count);
741 }
742
743 static DEVICE_ATTR(dump_events, S_IWUSR, NULL, dump_event_log);
744
745 static ssize_t show_ucode_version(struct device *d,
746 struct device_attribute *attr, char *buf)
747 {
748 u32 len = sizeof(u32), tmp = 0;
749 struct ipw_priv *p = d->driver_data;
750
751 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
752 return 0;
753
754 return sprintf(buf, "0x%08x\n", tmp);
755 }
756
757 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
758
759 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
760 char *buf)
761 {
762 u32 len = sizeof(u32), tmp = 0;
763 struct ipw_priv *p = d->driver_data;
764
765 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
766 return 0;
767
768 return sprintf(buf, "0x%08x\n", tmp);
769 }
770
771 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
772
773 /*
774 * Add a device attribute to view/control the delay between eeprom
775 * operations.
776 */
777 static ssize_t show_eeprom_delay(struct device *d,
778 struct device_attribute *attr, char *buf)
779 {
780 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
781 return sprintf(buf, "%i\n", n);
782 }
783 static ssize_t store_eeprom_delay(struct device *d,
784 struct device_attribute *attr,
785 const char *buf, size_t count)
786 {
787 struct ipw_priv *p = d->driver_data;
788 sscanf(buf, "%i", &p->eeprom_delay);
789 return strnlen(buf, count);
790 }
791
792 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
793 show_eeprom_delay, store_eeprom_delay);
794
795 static ssize_t show_command_event_reg(struct device *d,
796 struct device_attribute *attr, char *buf)
797 {
798 u32 reg = 0;
799 struct ipw_priv *p = d->driver_data;
800
801 reg = ipw_read_reg32(p, CX2_INTERNAL_CMD_EVENT);
802 return sprintf(buf, "0x%08x\n", reg);
803 }
804 static ssize_t store_command_event_reg(struct device *d,
805 struct device_attribute *attr,
806 const char *buf, size_t count)
807 {
808 u32 reg;
809 struct ipw_priv *p = d->driver_data;
810
811 sscanf(buf, "%x", &reg);
812 ipw_write_reg32(p, CX2_INTERNAL_CMD_EVENT, reg);
813 return strnlen(buf, count);
814 }
815
816 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
817 show_command_event_reg, store_command_event_reg);
818
819 static ssize_t show_mem_gpio_reg(struct device *d,
820 struct device_attribute *attr, char *buf)
821 {
822 u32 reg = 0;
823 struct ipw_priv *p = d->driver_data;
824
825 reg = ipw_read_reg32(p, 0x301100);
826 return sprintf(buf, "0x%08x\n", reg);
827 }
828 static ssize_t store_mem_gpio_reg(struct device *d,
829 struct device_attribute *attr,
830 const char *buf, size_t count)
831 {
832 u32 reg;
833 struct ipw_priv *p = d->driver_data;
834
835 sscanf(buf, "%x", &reg);
836 ipw_write_reg32(p, 0x301100, reg);
837 return strnlen(buf, count);
838 }
839
840 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
841 show_mem_gpio_reg, store_mem_gpio_reg);
842
843 static ssize_t show_indirect_dword(struct device *d,
844 struct device_attribute *attr, char *buf)
845 {
846 u32 reg = 0;
847 struct ipw_priv *priv = d->driver_data;
848 if (priv->status & STATUS_INDIRECT_DWORD)
849 reg = ipw_read_reg32(priv, priv->indirect_dword);
850 else
851 reg = 0;
852
853 return sprintf(buf, "0x%08x\n", reg);
854 }
855 static ssize_t store_indirect_dword(struct device *d,
856 struct device_attribute *attr,
857 const char *buf, size_t count)
858 {
859 struct ipw_priv *priv = d->driver_data;
860
861 sscanf(buf, "%x", &priv->indirect_dword);
862 priv->status |= STATUS_INDIRECT_DWORD;
863 return strnlen(buf, count);
864 }
865
866 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
867 show_indirect_dword, store_indirect_dword);
868
869 static ssize_t show_indirect_byte(struct device *d,
870 struct device_attribute *attr, char *buf)
871 {
872 u8 reg = 0;
873 struct ipw_priv *priv = d->driver_data;
874 if (priv->status & STATUS_INDIRECT_BYTE)
875 reg = ipw_read_reg8(priv, priv->indirect_byte);
876 else
877 reg = 0;
878
879 return sprintf(buf, "0x%02x\n", reg);
880 }
881 static ssize_t store_indirect_byte(struct device *d,
882 struct device_attribute *attr,
883 const char *buf, size_t count)
884 {
885 struct ipw_priv *priv = d->driver_data;
886
887 sscanf(buf, "%x", &priv->indirect_byte);
888 priv->status |= STATUS_INDIRECT_BYTE;
889 return strnlen(buf, count);
890 }
891
892 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
893 show_indirect_byte, store_indirect_byte);
894
895 static ssize_t show_direct_dword(struct device *d,
896 struct device_attribute *attr, char *buf)
897 {
898 u32 reg = 0;
899 struct ipw_priv *priv = d->driver_data;
900
901 if (priv->status & STATUS_DIRECT_DWORD)
902 reg = ipw_read32(priv, priv->direct_dword);
903 else
904 reg = 0;
905
906 return sprintf(buf, "0x%08x\n", reg);
907 }
908 static ssize_t store_direct_dword(struct device *d,
909 struct device_attribute *attr,
910 const char *buf, size_t count)
911 {
912 struct ipw_priv *priv = d->driver_data;
913
914 sscanf(buf, "%x", &priv->direct_dword);
915 priv->status |= STATUS_DIRECT_DWORD;
916 return strnlen(buf, count);
917 }
918
919 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
920 show_direct_dword, store_direct_dword);
921
922 static inline int rf_kill_active(struct ipw_priv *priv)
923 {
924 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
925 priv->status |= STATUS_RF_KILL_HW;
926 else
927 priv->status &= ~STATUS_RF_KILL_HW;
928
929 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
930 }
931
932 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
933 char *buf)
934 {
935 /* 0 - RF kill not enabled
936 1 - SW based RF kill active (sysfs)
937 2 - HW based RF kill active
938 3 - Both HW and SW baed RF kill active */
939 struct ipw_priv *priv = d->driver_data;
940 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
941 (rf_kill_active(priv) ? 0x2 : 0x0);
942 return sprintf(buf, "%i\n", val);
943 }
944
945 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
946 {
947 if ((disable_radio ? 1 : 0) ==
948 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
949 return 0;
950
951 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
952 disable_radio ? "OFF" : "ON");
953
954 if (disable_radio) {
955 priv->status |= STATUS_RF_KILL_SW;
956
957 if (priv->workqueue) {
958 cancel_delayed_work(&priv->request_scan);
959 }
960 wake_up_interruptible(&priv->wait_command_queue);
961 queue_work(priv->workqueue, &priv->down);
962 } else {
963 priv->status &= ~STATUS_RF_KILL_SW;
964 if (rf_kill_active(priv)) {
965 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
966 "disabled by HW switch\n");
967 /* Make sure the RF_KILL check timer is running */
968 cancel_delayed_work(&priv->rf_kill);
969 queue_delayed_work(priv->workqueue, &priv->rf_kill,
970 2 * HZ);
971 } else
972 queue_work(priv->workqueue, &priv->up);
973 }
974
975 return 1;
976 }
977
978 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
979 const char *buf, size_t count)
980 {
981 struct ipw_priv *priv = d->driver_data;
982
983 ipw_radio_kill_sw(priv, buf[0] == '1');
984
985 return count;
986 }
987
988 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
989
990 static void ipw_irq_tasklet(struct ipw_priv *priv)
991 {
992 u32 inta, inta_mask, handled = 0;
993 unsigned long flags;
994 int rc = 0;
995
996 spin_lock_irqsave(&priv->lock, flags);
997
998 inta = ipw_read32(priv, CX2_INTA_RW);
999 inta_mask = ipw_read32(priv, CX2_INTA_MASK_R);
1000 inta &= (CX2_INTA_MASK_ALL & inta_mask);
1001
1002 /* Add any cached INTA values that need to be handled */
1003 inta |= priv->isr_inta;
1004
1005 /* handle all the justifications for the interrupt */
1006 if (inta & CX2_INTA_BIT_RX_TRANSFER) {
1007 ipw_rx(priv);
1008 handled |= CX2_INTA_BIT_RX_TRANSFER;
1009 }
1010
1011 if (inta & CX2_INTA_BIT_TX_CMD_QUEUE) {
1012 IPW_DEBUG_HC("Command completed.\n");
1013 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1014 priv->status &= ~STATUS_HCMD_ACTIVE;
1015 wake_up_interruptible(&priv->wait_command_queue);
1016 handled |= CX2_INTA_BIT_TX_CMD_QUEUE;
1017 }
1018
1019 if (inta & CX2_INTA_BIT_TX_QUEUE_1) {
1020 IPW_DEBUG_TX("TX_QUEUE_1\n");
1021 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1022 handled |= CX2_INTA_BIT_TX_QUEUE_1;
1023 }
1024
1025 if (inta & CX2_INTA_BIT_TX_QUEUE_2) {
1026 IPW_DEBUG_TX("TX_QUEUE_2\n");
1027 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1028 handled |= CX2_INTA_BIT_TX_QUEUE_2;
1029 }
1030
1031 if (inta & CX2_INTA_BIT_TX_QUEUE_3) {
1032 IPW_DEBUG_TX("TX_QUEUE_3\n");
1033 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1034 handled |= CX2_INTA_BIT_TX_QUEUE_3;
1035 }
1036
1037 if (inta & CX2_INTA_BIT_TX_QUEUE_4) {
1038 IPW_DEBUG_TX("TX_QUEUE_4\n");
1039 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1040 handled |= CX2_INTA_BIT_TX_QUEUE_4;
1041 }
1042
1043 if (inta & CX2_INTA_BIT_STATUS_CHANGE) {
1044 IPW_WARNING("STATUS_CHANGE\n");
1045 handled |= CX2_INTA_BIT_STATUS_CHANGE;
1046 }
1047
1048 if (inta & CX2_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1049 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1050 handled |= CX2_INTA_BIT_BEACON_PERIOD_EXPIRED;
1051 }
1052
1053 if (inta & CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1054 IPW_WARNING("HOST_CMD_DONE\n");
1055 handled |= CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1056 }
1057
1058 if (inta & CX2_INTA_BIT_FW_INITIALIZATION_DONE) {
1059 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1060 handled |= CX2_INTA_BIT_FW_INITIALIZATION_DONE;
1061 }
1062
1063 if (inta & CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1064 IPW_WARNING("PHY_OFF_DONE\n");
1065 handled |= CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1066 }
1067
1068 if (inta & CX2_INTA_BIT_RF_KILL_DONE) {
1069 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1070 priv->status |= STATUS_RF_KILL_HW;
1071 wake_up_interruptible(&priv->wait_command_queue);
1072 netif_carrier_off(priv->net_dev);
1073 netif_stop_queue(priv->net_dev);
1074 cancel_delayed_work(&priv->request_scan);
1075 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1076 handled |= CX2_INTA_BIT_RF_KILL_DONE;
1077 }
1078
1079 if (inta & CX2_INTA_BIT_FATAL_ERROR) {
1080 IPW_ERROR("Firmware error detected. Restarting.\n");
1081 #ifdef CONFIG_IPW_DEBUG
1082 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1083 ipw_dump_nic_error_log(priv);
1084 ipw_dump_nic_event_log(priv);
1085 }
1086 #endif
1087 queue_work(priv->workqueue, &priv->adapter_restart);
1088 handled |= CX2_INTA_BIT_FATAL_ERROR;
1089 }
1090
1091 if (inta & CX2_INTA_BIT_PARITY_ERROR) {
1092 IPW_ERROR("Parity error\n");
1093 handled |= CX2_INTA_BIT_PARITY_ERROR;
1094 }
1095
1096 if (handled != inta) {
1097 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1098 }
1099
1100 /* enable all interrupts */
1101 ipw_enable_interrupts(priv);
1102
1103 spin_unlock_irqrestore(&priv->lock, flags);
1104 }
1105
1106 #ifdef CONFIG_IPW_DEBUG
1107 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1108 static char *get_cmd_string(u8 cmd)
1109 {
1110 switch (cmd) {
1111 IPW_CMD(HOST_COMPLETE);
1112 IPW_CMD(POWER_DOWN);
1113 IPW_CMD(SYSTEM_CONFIG);
1114 IPW_CMD(MULTICAST_ADDRESS);
1115 IPW_CMD(SSID);
1116 IPW_CMD(ADAPTER_ADDRESS);
1117 IPW_CMD(PORT_TYPE);
1118 IPW_CMD(RTS_THRESHOLD);
1119 IPW_CMD(FRAG_THRESHOLD);
1120 IPW_CMD(POWER_MODE);
1121 IPW_CMD(WEP_KEY);
1122 IPW_CMD(TGI_TX_KEY);
1123 IPW_CMD(SCAN_REQUEST);
1124 IPW_CMD(SCAN_REQUEST_EXT);
1125 IPW_CMD(ASSOCIATE);
1126 IPW_CMD(SUPPORTED_RATES);
1127 IPW_CMD(SCAN_ABORT);
1128 IPW_CMD(TX_FLUSH);
1129 IPW_CMD(QOS_PARAMETERS);
1130 IPW_CMD(DINO_CONFIG);
1131 IPW_CMD(RSN_CAPABILITIES);
1132 IPW_CMD(RX_KEY);
1133 IPW_CMD(CARD_DISABLE);
1134 IPW_CMD(SEED_NUMBER);
1135 IPW_CMD(TX_POWER);
1136 IPW_CMD(COUNTRY_INFO);
1137 IPW_CMD(AIRONET_INFO);
1138 IPW_CMD(AP_TX_POWER);
1139 IPW_CMD(CCKM_INFO);
1140 IPW_CMD(CCX_VER_INFO);
1141 IPW_CMD(SET_CALIBRATION);
1142 IPW_CMD(SENSITIVITY_CALIB);
1143 IPW_CMD(RETRY_LIMIT);
1144 IPW_CMD(IPW_PRE_POWER_DOWN);
1145 IPW_CMD(VAP_BEACON_TEMPLATE);
1146 IPW_CMD(VAP_DTIM_PERIOD);
1147 IPW_CMD(EXT_SUPPORTED_RATES);
1148 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1149 IPW_CMD(VAP_QUIET_INTERVALS);
1150 IPW_CMD(VAP_CHANNEL_SWITCH);
1151 IPW_CMD(VAP_MANDATORY_CHANNELS);
1152 IPW_CMD(VAP_CELL_PWR_LIMIT);
1153 IPW_CMD(VAP_CF_PARAM_SET);
1154 IPW_CMD(VAP_SET_BEACONING_STATE);
1155 IPW_CMD(MEASUREMENT);
1156 IPW_CMD(POWER_CAPABILITY);
1157 IPW_CMD(SUPPORTED_CHANNELS);
1158 IPW_CMD(TPC_REPORT);
1159 IPW_CMD(WME_INFO);
1160 IPW_CMD(PRODUCTION_COMMAND);
1161 default:
1162 return "UNKNOWN";
1163 }
1164 }
1165 #endif /* CONFIG_IPW_DEBUG */
1166
1167 #define HOST_COMPLETE_TIMEOUT HZ
1168 static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1169 {
1170 int rc = 0;
1171
1172 if (priv->status & STATUS_HCMD_ACTIVE) {
1173 IPW_ERROR("Already sending a command\n");
1174 return -1;
1175 }
1176
1177 priv->status |= STATUS_HCMD_ACTIVE;
1178
1179 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
1180 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len);
1181 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1182
1183 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0);
1184 if (rc)
1185 return rc;
1186
1187 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1188 !(priv->
1189 status & STATUS_HCMD_ACTIVE),
1190 HOST_COMPLETE_TIMEOUT);
1191 if (rc == 0) {
1192 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
1193 jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
1194 priv->status &= ~STATUS_HCMD_ACTIVE;
1195 return -EIO;
1196 }
1197 if (priv->status & STATUS_RF_KILL_MASK) {
1198 IPW_DEBUG_INFO("Command aborted due to RF Kill Switch\n");
1199 return -EIO;
1200 }
1201
1202 return 0;
1203 }
1204
1205 static int ipw_send_host_complete(struct ipw_priv *priv)
1206 {
1207 struct host_cmd cmd = {
1208 .cmd = IPW_CMD_HOST_COMPLETE,
1209 .len = 0
1210 };
1211
1212 if (!priv) {
1213 IPW_ERROR("Invalid args\n");
1214 return -1;
1215 }
1216
1217 if (ipw_send_cmd(priv, &cmd)) {
1218 IPW_ERROR("failed to send HOST_COMPLETE command\n");
1219 return -1;
1220 }
1221
1222 return 0;
1223 }
1224
1225 static int ipw_send_system_config(struct ipw_priv *priv,
1226 struct ipw_sys_config *config)
1227 {
1228 struct host_cmd cmd = {
1229 .cmd = IPW_CMD_SYSTEM_CONFIG,
1230 .len = sizeof(*config)
1231 };
1232
1233 if (!priv || !config) {
1234 IPW_ERROR("Invalid args\n");
1235 return -1;
1236 }
1237
1238 memcpy(&cmd.param, config, sizeof(*config));
1239 if (ipw_send_cmd(priv, &cmd)) {
1240 IPW_ERROR("failed to send SYSTEM_CONFIG command\n");
1241 return -1;
1242 }
1243
1244 return 0;
1245 }
1246
1247 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
1248 {
1249 struct host_cmd cmd = {
1250 .cmd = IPW_CMD_SSID,
1251 .len = min(len, IW_ESSID_MAX_SIZE)
1252 };
1253
1254 if (!priv || !ssid) {
1255 IPW_ERROR("Invalid args\n");
1256 return -1;
1257 }
1258
1259 memcpy(&cmd.param, ssid, cmd.len);
1260 if (ipw_send_cmd(priv, &cmd)) {
1261 IPW_ERROR("failed to send SSID command\n");
1262 return -1;
1263 }
1264
1265 return 0;
1266 }
1267
1268 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
1269 {
1270 struct host_cmd cmd = {
1271 .cmd = IPW_CMD_ADAPTER_ADDRESS,
1272 .len = ETH_ALEN
1273 };
1274
1275 if (!priv || !mac) {
1276 IPW_ERROR("Invalid args\n");
1277 return -1;
1278 }
1279
1280 IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
1281 priv->net_dev->name, MAC_ARG(mac));
1282
1283 memcpy(&cmd.param, mac, ETH_ALEN);
1284
1285 if (ipw_send_cmd(priv, &cmd)) {
1286 IPW_ERROR("failed to send ADAPTER_ADDRESS command\n");
1287 return -1;
1288 }
1289
1290 return 0;
1291 }
1292
1293 static void ipw_adapter_restart(void *adapter)
1294 {
1295 struct ipw_priv *priv = adapter;
1296
1297 if (priv->status & STATUS_RF_KILL_MASK)
1298 return;
1299
1300 ipw_down(priv);
1301 if (ipw_up(priv)) {
1302 IPW_ERROR("Failed to up device\n");
1303 return;
1304 }
1305 }
1306
1307 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
1308
1309 static void ipw_scan_check(void *data)
1310 {
1311 struct ipw_priv *priv = data;
1312 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
1313 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
1314 "adapter (%dms).\n",
1315 IPW_SCAN_CHECK_WATCHDOG / 100);
1316 ipw_adapter_restart(priv);
1317 }
1318 }
1319
1320 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
1321 struct ipw_scan_request_ext *request)
1322 {
1323 struct host_cmd cmd = {
1324 .cmd = IPW_CMD_SCAN_REQUEST_EXT,
1325 .len = sizeof(*request)
1326 };
1327
1328 if (!priv || !request) {
1329 IPW_ERROR("Invalid args\n");
1330 return -1;
1331 }
1332
1333 memcpy(&cmd.param, request, sizeof(*request));
1334 if (ipw_send_cmd(priv, &cmd)) {
1335 IPW_ERROR("failed to send SCAN_REQUEST_EXT command\n");
1336 return -1;
1337 }
1338
1339 queue_delayed_work(priv->workqueue, &priv->scan_check,
1340 IPW_SCAN_CHECK_WATCHDOG);
1341 return 0;
1342 }
1343
1344 static int ipw_send_scan_abort(struct ipw_priv *priv)
1345 {
1346 struct host_cmd cmd = {
1347 .cmd = IPW_CMD_SCAN_ABORT,
1348 .len = 0
1349 };
1350
1351 if (!priv) {
1352 IPW_ERROR("Invalid args\n");
1353 return -1;
1354 }
1355
1356 if (ipw_send_cmd(priv, &cmd)) {
1357 IPW_ERROR("failed to send SCAN_ABORT command\n");
1358 return -1;
1359 }
1360
1361 return 0;
1362 }
1363
1364 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
1365 {
1366 struct host_cmd cmd = {
1367 .cmd = IPW_CMD_SENSITIVITY_CALIB,
1368 .len = sizeof(struct ipw_sensitivity_calib)
1369 };
1370 struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *)
1371 &cmd.param;
1372 calib->beacon_rssi_raw = sens;
1373 if (ipw_send_cmd(priv, &cmd)) {
1374 IPW_ERROR("failed to send SENSITIVITY CALIB command\n");
1375 return -1;
1376 }
1377
1378 return 0;
1379 }
1380
1381 static int ipw_send_associate(struct ipw_priv *priv,
1382 struct ipw_associate *associate)
1383 {
1384 struct host_cmd cmd = {
1385 .cmd = IPW_CMD_ASSOCIATE,
1386 .len = sizeof(*associate)
1387 };
1388
1389 if (!priv || !associate) {
1390 IPW_ERROR("Invalid args\n");
1391 return -1;
1392 }
1393
1394 memcpy(&cmd.param, associate, sizeof(*associate));
1395 if (ipw_send_cmd(priv, &cmd)) {
1396 IPW_ERROR("failed to send ASSOCIATE command\n");
1397 return -1;
1398 }
1399
1400 return 0;
1401 }
1402
1403 static int ipw_send_supported_rates(struct ipw_priv *priv,
1404 struct ipw_supported_rates *rates)
1405 {
1406 struct host_cmd cmd = {
1407 .cmd = IPW_CMD_SUPPORTED_RATES,
1408 .len = sizeof(*rates)
1409 };
1410
1411 if (!priv || !rates) {
1412 IPW_ERROR("Invalid args\n");
1413 return -1;
1414 }
1415
1416 memcpy(&cmd.param, rates, sizeof(*rates));
1417 if (ipw_send_cmd(priv, &cmd)) {
1418 IPW_ERROR("failed to send SUPPORTED_RATES command\n");
1419 return -1;
1420 }
1421
1422 return 0;
1423 }
1424
1425 static int ipw_set_random_seed(struct ipw_priv *priv)
1426 {
1427 struct host_cmd cmd = {
1428 .cmd = IPW_CMD_SEED_NUMBER,
1429 .len = sizeof(u32)
1430 };
1431
1432 if (!priv) {
1433 IPW_ERROR("Invalid args\n");
1434 return -1;
1435 }
1436
1437 get_random_bytes(&cmd.param, sizeof(u32));
1438
1439 if (ipw_send_cmd(priv, &cmd)) {
1440 IPW_ERROR("failed to send SEED_NUMBER command\n");
1441 return -1;
1442 }
1443
1444 return 0;
1445 }
1446
1447 #if 0
1448 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
1449 {
1450 struct host_cmd cmd = {
1451 .cmd = IPW_CMD_CARD_DISABLE,
1452 .len = sizeof(u32)
1453 };
1454
1455 if (!priv) {
1456 IPW_ERROR("Invalid args\n");
1457 return -1;
1458 }
1459
1460 *((u32 *) & cmd.param) = phy_off;
1461
1462 if (ipw_send_cmd(priv, &cmd)) {
1463 IPW_ERROR("failed to send CARD_DISABLE command\n");
1464 return -1;
1465 }
1466
1467 return 0;
1468 }
1469 #endif
1470
1471 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
1472 {
1473 struct host_cmd cmd = {
1474 .cmd = IPW_CMD_TX_POWER,
1475 .len = sizeof(*power)
1476 };
1477
1478 if (!priv || !power) {
1479 IPW_ERROR("Invalid args\n");
1480 return -1;
1481 }
1482
1483 memcpy(&cmd.param, power, sizeof(*power));
1484 if (ipw_send_cmd(priv, &cmd)) {
1485 IPW_ERROR("failed to send TX_POWER command\n");
1486 return -1;
1487 }
1488
1489 return 0;
1490 }
1491
1492 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
1493 {
1494 struct ipw_rts_threshold rts_threshold = {
1495 .rts_threshold = rts,
1496 };
1497 struct host_cmd cmd = {
1498 .cmd = IPW_CMD_RTS_THRESHOLD,
1499 .len = sizeof(rts_threshold)
1500 };
1501
1502 if (!priv) {
1503 IPW_ERROR("Invalid args\n");
1504 return -1;
1505 }
1506
1507 memcpy(&cmd.param, &rts_threshold, sizeof(rts_threshold));
1508 if (ipw_send_cmd(priv, &cmd)) {
1509 IPW_ERROR("failed to send RTS_THRESHOLD command\n");
1510 return -1;
1511 }
1512
1513 return 0;
1514 }
1515
1516 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
1517 {
1518 struct ipw_frag_threshold frag_threshold = {
1519 .frag_threshold = frag,
1520 };
1521 struct host_cmd cmd = {
1522 .cmd = IPW_CMD_FRAG_THRESHOLD,
1523 .len = sizeof(frag_threshold)
1524 };
1525
1526 if (!priv) {
1527 IPW_ERROR("Invalid args\n");
1528 return -1;
1529 }
1530
1531 memcpy(&cmd.param, &frag_threshold, sizeof(frag_threshold));
1532 if (ipw_send_cmd(priv, &cmd)) {
1533 IPW_ERROR("failed to send FRAG_THRESHOLD command\n");
1534 return -1;
1535 }
1536
1537 return 0;
1538 }
1539
1540 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
1541 {
1542 struct host_cmd cmd = {
1543 .cmd = IPW_CMD_POWER_MODE,
1544 .len = sizeof(u32)
1545 };
1546 u32 *param = (u32 *) (&cmd.param);
1547
1548 if (!priv) {
1549 IPW_ERROR("Invalid args\n");
1550 return -1;
1551 }
1552
1553 /* If on battery, set to 3, if AC set to CAM, else user
1554 * level */
1555 switch (mode) {
1556 case IPW_POWER_BATTERY:
1557 *param = IPW_POWER_INDEX_3;
1558 break;
1559 case IPW_POWER_AC:
1560 *param = IPW_POWER_MODE_CAM;
1561 break;
1562 default:
1563 *param = mode;
1564 break;
1565 }
1566
1567 if (ipw_send_cmd(priv, &cmd)) {
1568 IPW_ERROR("failed to send POWER_MODE command\n");
1569 return -1;
1570 }
1571
1572 return 0;
1573 }
1574
1575 /*
1576 * The IPW device contains a Microwire compatible EEPROM that stores
1577 * various data like the MAC address. Usually the firmware has exclusive
1578 * access to the eeprom, but during device initialization (before the
1579 * device driver has sent the HostComplete command to the firmware) the
1580 * device driver has read access to the EEPROM by way of indirect addressing
1581 * through a couple of memory mapped registers.
1582 *
1583 * The following is a simplified implementation for pulling data out of the
1584 * the eeprom, along with some helper functions to find information in
1585 * the per device private data's copy of the eeprom.
1586 *
1587 * NOTE: To better understand how these functions work (i.e what is a chip
1588 * select and why do have to keep driving the eeprom clock?), read
1589 * just about any data sheet for a Microwire compatible EEPROM.
1590 */
1591
1592 /* write a 32 bit value into the indirect accessor register */
1593 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
1594 {
1595 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
1596
1597 /* the eeprom requires some time to complete the operation */
1598 udelay(p->eeprom_delay);
1599
1600 return;
1601 }
1602
1603 /* perform a chip select operation */
1604 static inline void eeprom_cs(struct ipw_priv *priv)
1605 {
1606 eeprom_write_reg(priv, 0);
1607 eeprom_write_reg(priv, EEPROM_BIT_CS);
1608 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
1609 eeprom_write_reg(priv, EEPROM_BIT_CS);
1610 }
1611
1612 /* perform a chip select operation */
1613 static inline void eeprom_disable_cs(struct ipw_priv *priv)
1614 {
1615 eeprom_write_reg(priv, EEPROM_BIT_CS);
1616 eeprom_write_reg(priv, 0);
1617 eeprom_write_reg(priv, EEPROM_BIT_SK);
1618 }
1619
1620 /* push a single bit down to the eeprom */
1621 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
1622 {
1623 int d = (bit ? EEPROM_BIT_DI : 0);
1624 eeprom_write_reg(p, EEPROM_BIT_CS | d);
1625 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
1626 }
1627
1628 /* push an opcode followed by an address down to the eeprom */
1629 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
1630 {
1631 int i;
1632
1633 eeprom_cs(priv);
1634 eeprom_write_bit(priv, 1);
1635 eeprom_write_bit(priv, op & 2);
1636 eeprom_write_bit(priv, op & 1);
1637 for (i = 7; i >= 0; i--) {
1638 eeprom_write_bit(priv, addr & (1 << i));
1639 }
1640 }
1641
1642 /* pull 16 bits off the eeprom, one bit at a time */
1643 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
1644 {
1645 int i;
1646 u16 r = 0;
1647
1648 /* Send READ Opcode */
1649 eeprom_op(priv, EEPROM_CMD_READ, addr);
1650
1651 /* Send dummy bit */
1652 eeprom_write_reg(priv, EEPROM_BIT_CS);
1653
1654 /* Read the byte off the eeprom one bit at a time */
1655 for (i = 0; i < 16; i++) {
1656 u32 data = 0;
1657 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
1658 eeprom_write_reg(priv, EEPROM_BIT_CS);
1659 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
1660 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
1661 }
1662
1663 /* Send another dummy bit */
1664 eeprom_write_reg(priv, 0);
1665 eeprom_disable_cs(priv);
1666
1667 return r;
1668 }
1669
1670 /* helper function for pulling the mac address out of the private */
1671 /* data's copy of the eeprom data */
1672 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
1673 {
1674 u8 *ee = (u8 *) priv->eeprom;
1675 memcpy(mac, &ee[EEPROM_MAC_ADDRESS], 6);
1676 }
1677
1678 /*
1679 * Either the device driver (i.e. the host) or the firmware can
1680 * load eeprom data into the designated region in SRAM. If neither
1681 * happens then the FW will shutdown with a fatal error.
1682 *
1683 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
1684 * bit needs region of shared SRAM needs to be non-zero.
1685 */
1686 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
1687 {
1688 int i;
1689 u16 *eeprom = (u16 *) priv->eeprom;
1690
1691 IPW_DEBUG_TRACE(">>\n");
1692
1693 /* read entire contents of eeprom into private buffer */
1694 for (i = 0; i < 128; i++)
1695 eeprom[i] = eeprom_read_u16(priv, (u8) i);
1696
1697 /*
1698 If the data looks correct, then copy it to our private
1699 copy. Otherwise let the firmware know to perform the operation
1700 on it's own
1701 */
1702 if ((priv->eeprom + EEPROM_VERSION) != 0) {
1703 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
1704
1705 /* write the eeprom data to sram */
1706 for (i = 0; i < CX2_EEPROM_IMAGE_SIZE; i++)
1707 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
1708
1709 /* Do not load eeprom data on fatal error or suspend */
1710 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
1711 } else {
1712 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
1713
1714 /* Load eeprom data on fatal error or suspend */
1715 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
1716 }
1717
1718 IPW_DEBUG_TRACE("<<\n");
1719 }
1720
1721 static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
1722 {
1723 count >>= 2;
1724 if (!count)
1725 return;
1726 _ipw_write32(priv, CX2_AUTOINC_ADDR, start);
1727 while (count--)
1728 _ipw_write32(priv, CX2_AUTOINC_DATA, 0);
1729 }
1730
1731 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
1732 {
1733 ipw_zero_memory(priv, CX2_SHARED_SRAM_DMA_CONTROL,
1734 CB_NUMBER_OF_ELEMENTS_SMALL *
1735 sizeof(struct command_block));
1736 }
1737
1738 static int ipw_fw_dma_enable(struct ipw_priv *priv)
1739 { /* start dma engine but no transfers yet */
1740
1741 IPW_DEBUG_FW(">> : \n");
1742
1743 /* Start the dma */
1744 ipw_fw_dma_reset_command_blocks(priv);
1745
1746 /* Write CB base address */
1747 ipw_write_reg32(priv, CX2_DMA_I_CB_BASE, CX2_SHARED_SRAM_DMA_CONTROL);
1748
1749 IPW_DEBUG_FW("<< : \n");
1750 return 0;
1751 }
1752
1753 static void ipw_fw_dma_abort(struct ipw_priv *priv)
1754 {
1755 u32 control = 0;
1756
1757 IPW_DEBUG_FW(">> :\n");
1758
1759 //set the Stop and Abort bit
1760 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
1761 ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control);
1762 priv->sram_desc.last_cb_index = 0;
1763
1764 IPW_DEBUG_FW("<< \n");
1765 }
1766
1767 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
1768 struct command_block *cb)
1769 {
1770 u32 address =
1771 CX2_SHARED_SRAM_DMA_CONTROL +
1772 (sizeof(struct command_block) * index);
1773 IPW_DEBUG_FW(">> :\n");
1774
1775 ipw_write_indirect(priv, address, (u8 *) cb,
1776 (int)sizeof(struct command_block));
1777
1778 IPW_DEBUG_FW("<< :\n");
1779 return 0;
1780
1781 }
1782
1783 static int ipw_fw_dma_kick(struct ipw_priv *priv)
1784 {
1785 u32 control = 0;
1786 u32 index = 0;
1787
1788 IPW_DEBUG_FW(">> :\n");
1789
1790 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
1791 ipw_fw_dma_write_command_block(priv, index,
1792 &priv->sram_desc.cb_list[index]);
1793
1794 /* Enable the DMA in the CSR register */
1795 ipw_clear_bit(priv, CX2_RESET_REG,
1796 CX2_RESET_REG_MASTER_DISABLED |
1797 CX2_RESET_REG_STOP_MASTER);
1798
1799 /* Set the Start bit. */
1800 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
1801 ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control);
1802
1803 IPW_DEBUG_FW("<< :\n");
1804 return 0;
1805 }
1806
1807 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
1808 {
1809 u32 address;
1810 u32 register_value = 0;
1811 u32 cb_fields_address = 0;
1812
1813 IPW_DEBUG_FW(">> :\n");
1814 address = ipw_read_reg32(priv, CX2_DMA_I_CURRENT_CB);
1815 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
1816
1817 /* Read the DMA Controlor register */
1818 register_value = ipw_read_reg32(priv, CX2_DMA_I_DMA_CONTROL);
1819 IPW_DEBUG_FW_INFO("CX2_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
1820
1821 /* Print the CB values */
1822 cb_fields_address = address;
1823 register_value = ipw_read_reg32(priv, cb_fields_address);
1824 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
1825
1826 cb_fields_address += sizeof(u32);
1827 register_value = ipw_read_reg32(priv, cb_fields_address);
1828 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
1829
1830 cb_fields_address += sizeof(u32);
1831 register_value = ipw_read_reg32(priv, cb_fields_address);
1832 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
1833 register_value);
1834
1835 cb_fields_address += sizeof(u32);
1836 register_value = ipw_read_reg32(priv, cb_fields_address);
1837 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
1838
1839 IPW_DEBUG_FW(">> :\n");
1840 }
1841
1842 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
1843 {
1844 u32 current_cb_address = 0;
1845 u32 current_cb_index = 0;
1846
1847 IPW_DEBUG_FW("<< :\n");
1848 current_cb_address = ipw_read_reg32(priv, CX2_DMA_I_CURRENT_CB);
1849
1850 current_cb_index = (current_cb_address - CX2_SHARED_SRAM_DMA_CONTROL) /
1851 sizeof(struct command_block);
1852
1853 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
1854 current_cb_index, current_cb_address);
1855
1856 IPW_DEBUG_FW(">> :\n");
1857 return current_cb_index;
1858
1859 }
1860
1861 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
1862 u32 src_address,
1863 u32 dest_address,
1864 u32 length,
1865 int interrupt_enabled, int is_last)
1866 {
1867
1868 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
1869 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
1870 CB_DEST_SIZE_LONG;
1871 struct command_block *cb;
1872 u32 last_cb_element = 0;
1873
1874 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
1875 src_address, dest_address, length);
1876
1877 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
1878 return -1;
1879
1880 last_cb_element = priv->sram_desc.last_cb_index;
1881 cb = &priv->sram_desc.cb_list[last_cb_element];
1882 priv->sram_desc.last_cb_index++;
1883
1884 /* Calculate the new CB control word */
1885 if (interrupt_enabled)
1886 control |= CB_INT_ENABLED;
1887
1888 if (is_last)
1889 control |= CB_LAST_VALID;
1890
1891 control |= length;
1892
1893 /* Calculate the CB Element's checksum value */
1894 cb->status = control ^ src_address ^ dest_address;
1895
1896 /* Copy the Source and Destination addresses */
1897 cb->dest_addr = dest_address;
1898 cb->source_addr = src_address;
1899
1900 /* Copy the Control Word last */
1901 cb->control = control;
1902
1903 return 0;
1904 }
1905
1906 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
1907 u32 src_phys, u32 dest_address, u32 length)
1908 {
1909 u32 bytes_left = length;
1910 u32 src_offset = 0;
1911 u32 dest_offset = 0;
1912 int status = 0;
1913 IPW_DEBUG_FW(">> \n");
1914 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
1915 src_phys, dest_address, length);
1916 while (bytes_left > CB_MAX_LENGTH) {
1917 status = ipw_fw_dma_add_command_block(priv,
1918 src_phys + src_offset,
1919 dest_address +
1920 dest_offset,
1921 CB_MAX_LENGTH, 0, 0);
1922 if (status) {
1923 IPW_DEBUG_FW_INFO(": Failed\n");
1924 return -1;
1925 } else
1926 IPW_DEBUG_FW_INFO(": Added new cb\n");
1927
1928 src_offset += CB_MAX_LENGTH;
1929 dest_offset += CB_MAX_LENGTH;
1930 bytes_left -= CB_MAX_LENGTH;
1931 }
1932
1933 /* add the buffer tail */
1934 if (bytes_left > 0) {
1935 status =
1936 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
1937 dest_address + dest_offset,
1938 bytes_left, 0, 0);
1939 if (status) {
1940 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
1941 return -1;
1942 } else
1943 IPW_DEBUG_FW_INFO
1944 (": Adding new cb - the buffer tail\n");
1945 }
1946
1947 IPW_DEBUG_FW("<< \n");
1948 return 0;
1949 }
1950
1951 static int ipw_fw_dma_wait(struct ipw_priv *priv)
1952 {
1953 u32 current_index = 0;
1954 u32 watchdog = 0;
1955
1956 IPW_DEBUG_FW(">> : \n");
1957
1958 current_index = ipw_fw_dma_command_block_index(priv);
1959 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n",
1960 (int)priv->sram_desc.last_cb_index);
1961
1962 while (current_index < priv->sram_desc.last_cb_index) {
1963 udelay(50);
1964 current_index = ipw_fw_dma_command_block_index(priv);
1965
1966 watchdog++;
1967
1968 if (watchdog > 400) {
1969 IPW_DEBUG_FW_INFO("Timeout\n");
1970 ipw_fw_dma_dump_command_block(priv);
1971 ipw_fw_dma_abort(priv);
1972 return -1;
1973 }
1974 }
1975
1976 ipw_fw_dma_abort(priv);
1977
1978 /*Disable the DMA in the CSR register */
1979 ipw_set_bit(priv, CX2_RESET_REG,
1980 CX2_RESET_REG_MASTER_DISABLED | CX2_RESET_REG_STOP_MASTER);
1981
1982 IPW_DEBUG_FW("<< dmaWaitSync \n");
1983 return 0;
1984 }
1985
1986 static void ipw_remove_current_network(struct ipw_priv *priv)
1987 {
1988 struct list_head *element, *safe;
1989 struct ieee80211_network *network = NULL;
1990 list_for_each_safe(element, safe, &priv->ieee->network_list) {
1991 network = list_entry(element, struct ieee80211_network, list);
1992 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
1993 list_del(element);
1994 list_add_tail(&network->list,
1995 &priv->ieee->network_free_list);
1996 }
1997 }
1998 }
1999
2000 /**
2001 * Check that card is still alive.
2002 * Reads debug register from domain0.
2003 * If card is present, pre-defined value should
2004 * be found there.
2005 *
2006 * @param priv
2007 * @return 1 if card is present, 0 otherwise
2008 */
2009 static inline int ipw_alive(struct ipw_priv *priv)
2010 {
2011 return ipw_read32(priv, 0x90) == 0xd55555d5;
2012 }
2013
2014 static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2015 int timeout)
2016 {
2017 int i = 0;
2018
2019 do {
2020 if ((ipw_read32(priv, addr) & mask) == mask)
2021 return i;
2022 mdelay(10);
2023 i += 10;
2024 } while (i < timeout);
2025
2026 return -ETIME;
2027 }
2028
2029 /* These functions load the firmware and micro code for the operation of
2030 * the ipw hardware. It assumes the buffer has all the bits for the
2031 * image and the caller is handling the memory allocation and clean up.
2032 */
2033
2034 static int ipw_stop_master(struct ipw_priv *priv)
2035 {
2036 int rc;
2037
2038 IPW_DEBUG_TRACE(">> \n");
2039 /* stop master. typical delay - 0 */
2040 ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER);
2041
2042 rc = ipw_poll_bit(priv, CX2_RESET_REG,
2043 CX2_RESET_REG_MASTER_DISABLED, 100);
2044 if (rc < 0) {
2045 IPW_ERROR("stop master failed in 10ms\n");
2046 return -1;
2047 }
2048
2049 IPW_DEBUG_INFO("stop master %dms\n", rc);
2050
2051 return rc;
2052 }
2053
2054 static void ipw_arc_release(struct ipw_priv *priv)
2055 {
2056 IPW_DEBUG_TRACE(">> \n");
2057 mdelay(5);
2058
2059 ipw_clear_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2060
2061 /* no one knows timing, for safety add some delay */
2062 mdelay(5);
2063 }
2064
2065 struct fw_header {
2066 u32 version;
2067 u32 mode;
2068 };
2069
2070 struct fw_chunk {
2071 u32 address;
2072 u32 length;
2073 };
2074
2075 #define IPW_FW_MAJOR_VERSION 2
2076 #define IPW_FW_MINOR_VERSION 2
2077
2078 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2079 #define IPW_FW_MAJOR(x) (x & 0xff)
2080
2081 #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | \
2082 IPW_FW_MAJOR_VERSION)
2083
2084 #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2085 "." __stringify(IPW_FW_MINOR_VERSION) "-"
2086
2087 #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2088 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2089 #else
2090 #define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2091 #endif
2092
2093 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2094 {
2095 int rc = 0, i, addr;
2096 u8 cr = 0;
2097 u16 *image;
2098
2099 image = (u16 *) data;
2100
2101 IPW_DEBUG_TRACE(">> \n");
2102
2103 rc = ipw_stop_master(priv);
2104
2105 if (rc < 0)
2106 return rc;
2107
2108 // spin_lock_irqsave(&priv->lock, flags);
2109
2110 for (addr = CX2_SHARED_LOWER_BOUND;
2111 addr < CX2_REGISTER_DOMAIN1_END; addr += 4) {
2112 ipw_write32(priv, addr, 0);
2113 }
2114
2115 /* no ucode (yet) */
2116 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2117 /* destroy DMA queues */
2118 /* reset sequence */
2119
2120 ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET, CX2_BIT_HALT_RESET_ON);
2121 ipw_arc_release(priv);
2122 ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET, CX2_BIT_HALT_RESET_OFF);
2123 mdelay(1);
2124
2125 /* reset PHY */
2126 ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, CX2_BASEBAND_POWER_DOWN);
2127 mdelay(1);
2128
2129 ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, 0);
2130 mdelay(1);
2131
2132 /* enable ucode store */
2133 ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0);
2134 ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS);
2135 mdelay(1);
2136
2137 /* write ucode */
2138 /**
2139 * @bug
2140 * Do NOT set indirect address register once and then
2141 * store data to indirect data register in the loop.
2142 * It seems very reasonable, but in this case DINO do not
2143 * accept ucode. It is essential to set address each time.
2144 */
2145 /* load new ipw uCode */
2146 for (i = 0; i < len / 2; i++)
2147 ipw_write_reg16(priv, CX2_BASEBAND_CONTROL_STORE, image[i]);
2148
2149 /* enable DINO */
2150 ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0);
2151 ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2152
2153 /* this is where the igx / win driver deveates from the VAP driver. */
2154
2155 /* wait for alive response */
2156 for (i = 0; i < 100; i++) {
2157 /* poll for incoming data */
2158 cr = ipw_read_reg8(priv, CX2_BASEBAND_CONTROL_STATUS);
2159 if (cr & DINO_RXFIFO_DATA)
2160 break;
2161 mdelay(1);
2162 }
2163
2164 if (cr & DINO_RXFIFO_DATA) {
2165 /* alive_command_responce size is NOT multiple of 4 */
2166 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2167
2168 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2169 response_buffer[i] =
2170 ipw_read_reg32(priv, CX2_BASEBAND_RX_FIFO_READ);
2171 memcpy(&priv->dino_alive, response_buffer,
2172 sizeof(priv->dino_alive));
2173 if (priv->dino_alive.alive_command == 1
2174 && priv->dino_alive.ucode_valid == 1) {
2175 rc = 0;
2176 IPW_DEBUG_INFO
2177 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2178 "of %02d/%02d/%02d %02d:%02d\n",
2179 priv->dino_alive.software_revision,
2180 priv->dino_alive.software_revision,
2181 priv->dino_alive.device_identifier,
2182 priv->dino_alive.device_identifier,
2183 priv->dino_alive.time_stamp[0],
2184 priv->dino_alive.time_stamp[1],
2185 priv->dino_alive.time_stamp[2],
2186 priv->dino_alive.time_stamp[3],
2187 priv->dino_alive.time_stamp[4]);
2188 } else {
2189 IPW_DEBUG_INFO("Microcode is not alive\n");
2190 rc = -EINVAL;
2191 }
2192 } else {
2193 IPW_DEBUG_INFO("No alive response from DINO\n");
2194 rc = -ETIME;
2195 }
2196
2197 /* disable DINO, otherwise for some reason
2198 firmware have problem getting alive resp. */
2199 ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0);
2200
2201 // spin_unlock_irqrestore(&priv->lock, flags);
2202
2203 return rc;
2204 }
2205
2206 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
2207 {
2208 int rc = -1;
2209 int offset = 0;
2210 struct fw_chunk *chunk;
2211 dma_addr_t shared_phys;
2212 u8 *shared_virt;
2213
2214 IPW_DEBUG_TRACE("<< : \n");
2215 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2216
2217 if (!shared_virt)
2218 return -ENOMEM;
2219
2220 memmove(shared_virt, data, len);
2221
2222 /* Start the Dma */
2223 rc = ipw_fw_dma_enable(priv);
2224
2225 if (priv->sram_desc.last_cb_index > 0) {
2226 /* the DMA is already ready this would be a bug. */
2227 BUG();
2228 goto out;
2229 }
2230
2231 do {
2232 chunk = (struct fw_chunk *)(data + offset);
2233 offset += sizeof(struct fw_chunk);
2234 /* build DMA packet and queue up for sending */
2235 /* dma to chunk->address, the chunk->length bytes from data +
2236 * offeset*/
2237 /* Dma loading */
2238 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
2239 chunk->address, chunk->length);
2240 if (rc) {
2241 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
2242 goto out;
2243 }
2244
2245 offset += chunk->length;
2246 } while (offset < len);
2247
2248 /* Run the DMA and wait for the answer */
2249 rc = ipw_fw_dma_kick(priv);
2250 if (rc) {
2251 IPW_ERROR("dmaKick Failed\n");
2252 goto out;
2253 }
2254
2255 rc = ipw_fw_dma_wait(priv);
2256 if (rc) {
2257 IPW_ERROR("dmaWaitSync Failed\n");
2258 goto out;
2259 }
2260 out:
2261 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
2262 return rc;
2263 }
2264
2265 /* stop nic */
2266 static int ipw_stop_nic(struct ipw_priv *priv)
2267 {
2268 int rc = 0;
2269
2270 /* stop */
2271 ipw_write32(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER);
2272
2273 rc = ipw_poll_bit(priv, CX2_RESET_REG,
2274 CX2_RESET_REG_MASTER_DISABLED, 500);
2275 if (rc < 0) {
2276 IPW_ERROR("wait for reg master disabled failed\n");
2277 return rc;
2278 }
2279
2280 ipw_set_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2281
2282 return rc;
2283 }
2284
2285 static void ipw_start_nic(struct ipw_priv *priv)
2286 {
2287 IPW_DEBUG_TRACE(">>\n");
2288
2289 /* prvHwStartNic release ARC */
2290 ipw_clear_bit(priv, CX2_RESET_REG,
2291 CX2_RESET_REG_MASTER_DISABLED |
2292 CX2_RESET_REG_STOP_MASTER |
2293 CBD_RESET_REG_PRINCETON_RESET);
2294
2295 /* enable power management */
2296 ipw_set_bit(priv, CX2_GP_CNTRL_RW,
2297 CX2_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
2298
2299 IPW_DEBUG_TRACE("<<\n");
2300 }
2301
2302 static int ipw_init_nic(struct ipw_priv *priv)
2303 {
2304 int rc;
2305
2306 IPW_DEBUG_TRACE(">>\n");
2307 /* reset */
2308 /*prvHwInitNic */
2309 /* set "initialization complete" bit to move adapter to D0 state */
2310 ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE);
2311
2312 /* low-level PLL activation */
2313 ipw_write32(priv, CX2_READ_INT_REGISTER,
2314 CX2_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
2315
2316 /* wait for clock stabilization */
2317 rc = ipw_poll_bit(priv, CX2_GP_CNTRL_RW,
2318 CX2_GP_CNTRL_BIT_CLOCK_READY, 250);
2319 if (rc < 0)
2320 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
2321
2322 /* assert SW reset */
2323 ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_SW_RESET);
2324
2325 udelay(10);
2326
2327 /* set "initialization complete" bit to move adapter to D0 state */
2328 ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE);
2329
2330 IPW_DEBUG_TRACE(">>\n");
2331 return 0;
2332 }
2333
2334 /* Call this function from process context, it will sleep in request_firmware.
2335 * Probe is an ok place to call this from.
2336 */
2337 static int ipw_reset_nic(struct ipw_priv *priv)
2338 {
2339 int rc = 0;
2340
2341 IPW_DEBUG_TRACE(">>\n");
2342
2343 rc = ipw_init_nic(priv);
2344
2345 /* Clear the 'host command active' bit... */
2346 priv->status &= ~STATUS_HCMD_ACTIVE;
2347 wake_up_interruptible(&priv->wait_command_queue);
2348
2349 IPW_DEBUG_TRACE("<<\n");
2350 return rc;
2351 }
2352
2353 static int ipw_get_fw(struct ipw_priv *priv,
2354 const struct firmware **fw, const char *name)
2355 {
2356 struct fw_header *header;
2357 int rc;
2358
2359 /* ask firmware_class module to get the boot firmware off disk */
2360 rc = request_firmware(fw, name, &priv->pci_dev->dev);
2361 if (rc < 0) {
2362 IPW_ERROR("%s load failed: Reason %d\n", name, rc);
2363 return rc;
2364 }
2365
2366 header = (struct fw_header *)(*fw)->data;
2367 if (IPW_FW_MAJOR(header->version) != IPW_FW_MAJOR_VERSION) {
2368 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
2369 name,
2370 IPW_FW_MAJOR(header->version), IPW_FW_MAJOR_VERSION);
2371 return -EINVAL;
2372 }
2373
2374 IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
2375 name,
2376 IPW_FW_MAJOR(header->version),
2377 IPW_FW_MINOR(header->version),
2378 (*fw)->size - sizeof(struct fw_header));
2379 return 0;
2380 }
2381
2382 #define CX2_RX_BUF_SIZE (3000)
2383
2384 static inline void ipw_rx_queue_reset(struct ipw_priv *priv,
2385 struct ipw_rx_queue *rxq)
2386 {
2387 unsigned long flags;
2388 int i;
2389
2390 spin_lock_irqsave(&rxq->lock, flags);
2391
2392 INIT_LIST_HEAD(&rxq->rx_free);
2393 INIT_LIST_HEAD(&rxq->rx_used);
2394
2395 /* Fill the rx_used queue with _all_ of the Rx buffers */
2396 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
2397 /* In the reset function, these buffers may have been allocated
2398 * to an SKB, so we need to unmap and free potential storage */
2399 if (rxq->pool[i].skb != NULL) {
2400 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
2401 CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
2402 dev_kfree_skb(rxq->pool[i].skb);
2403 }
2404 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
2405 }
2406
2407 /* Set us so that we have processed and used all buffers, but have
2408 * not restocked the Rx queue with fresh buffers */
2409 rxq->read = rxq->write = 0;
2410 rxq->processed = RX_QUEUE_SIZE - 1;
2411 rxq->free_count = 0;
2412 spin_unlock_irqrestore(&rxq->lock, flags);
2413 }
2414
2415 #ifdef CONFIG_PM
2416 static int fw_loaded = 0;
2417 static const struct firmware *bootfw = NULL;
2418 static const struct firmware *firmware = NULL;
2419 static const struct firmware *ucode = NULL;
2420 #endif
2421
2422 static int ipw_load(struct ipw_priv *priv)
2423 {
2424 #ifndef CONFIG_PM
2425 const struct firmware *bootfw = NULL;
2426 const struct firmware *firmware = NULL;
2427 const struct firmware *ucode = NULL;
2428 #endif
2429 int rc = 0, retries = 3;
2430
2431 #ifdef CONFIG_PM
2432 if (!fw_loaded) {
2433 #endif
2434 rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
2435 if (rc)
2436 goto error;
2437
2438 switch (priv->ieee->iw_mode) {
2439 case IW_MODE_ADHOC:
2440 rc = ipw_get_fw(priv, &ucode,
2441 IPW_FW_NAME("ibss_ucode"));
2442 if (rc)
2443 goto error;
2444
2445 rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss"));
2446 break;
2447
2448 #ifdef CONFIG_IPW_PROMISC
2449 case IW_MODE_MONITOR:
2450 rc = ipw_get_fw(priv, &ucode,
2451 IPW_FW_NAME("ibss_ucode"));
2452 if (rc)
2453 goto error;
2454
2455 rc = ipw_get_fw(priv, &firmware,
2456 IPW_FW_NAME("sniffer"));
2457 break;
2458 #endif
2459 case IW_MODE_INFRA:
2460 rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("bss_ucode"));
2461 if (rc)
2462 goto error;
2463
2464 rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss"));
2465 break;
2466
2467 default:
2468 rc = -EINVAL;
2469 }
2470
2471 if (rc)
2472 goto error;
2473
2474 #ifdef CONFIG_PM
2475 fw_loaded = 1;
2476 }
2477 #endif
2478
2479 if (!priv->rxq)
2480 priv->rxq = ipw_rx_queue_alloc(priv);
2481 else
2482 ipw_rx_queue_reset(priv, priv->rxq);
2483 if (!priv->rxq) {
2484 IPW_ERROR("Unable to initialize Rx queue\n");
2485 goto error;
2486 }
2487
2488 retry:
2489 /* Ensure interrupts are disabled */
2490 ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
2491 priv->status &= ~STATUS_INT_ENABLED;
2492
2493 /* ack pending interrupts */
2494 ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL);
2495
2496 ipw_stop_nic(priv);
2497
2498 rc = ipw_reset_nic(priv);
2499 if (rc) {
2500 IPW_ERROR("Unable to reset NIC\n");
2501 goto error;
2502 }
2503
2504 ipw_zero_memory(priv, CX2_NIC_SRAM_LOWER_BOUND,
2505 CX2_NIC_SRAM_UPPER_BOUND - CX2_NIC_SRAM_LOWER_BOUND);
2506
2507 /* DMA the initial boot firmware into the device */
2508 rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
2509 bootfw->size - sizeof(struct fw_header));
2510 if (rc < 0) {
2511 IPW_ERROR("Unable to load boot firmware\n");
2512 goto error;
2513 }
2514
2515 /* kick start the device */
2516 ipw_start_nic(priv);
2517
2518 /* wait for the device to finish it's initial startup sequence */
2519 rc = ipw_poll_bit(priv, CX2_INTA_RW,
2520 CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500);
2521 if (rc < 0) {
2522 IPW_ERROR("device failed to boot initial fw image\n");
2523 goto error;
2524 }
2525 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
2526
2527 /* ack fw init done interrupt */
2528 ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE);
2529
2530 /* DMA the ucode into the device */
2531 rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
2532 ucode->size - sizeof(struct fw_header));
2533 if (rc < 0) {
2534 IPW_ERROR("Unable to load ucode\n");
2535 goto error;
2536 }
2537
2538 /* stop nic */
2539 ipw_stop_nic(priv);
2540
2541 /* DMA bss firmware into the device */
2542 rc = ipw_load_firmware(priv, firmware->data +
2543 sizeof(struct fw_header),
2544 firmware->size - sizeof(struct fw_header));
2545 if (rc < 0) {
2546 IPW_ERROR("Unable to load firmware\n");
2547 goto error;
2548 }
2549
2550 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2551
2552 rc = ipw_queue_reset(priv);
2553 if (rc) {
2554 IPW_ERROR("Unable to initialize queues\n");
2555 goto error;
2556 }
2557
2558 /* Ensure interrupts are disabled */
2559 ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
2560
2561 /* kick start the device */
2562 ipw_start_nic(priv);
2563
2564 if (ipw_read32(priv, CX2_INTA_RW) & CX2_INTA_BIT_PARITY_ERROR) {
2565 if (retries > 0) {
2566 IPW_WARNING("Parity error. Retrying init.\n");
2567 retries--;
2568 goto retry;
2569 }
2570
2571 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
2572 rc = -EIO;
2573 goto error;
2574 }
2575
2576 /* wait for the device */
2577 rc = ipw_poll_bit(priv, CX2_INTA_RW,
2578 CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500);
2579 if (rc < 0) {
2580 IPW_ERROR("device failed to start after 500ms\n");
2581 goto error;
2582 }
2583 IPW_DEBUG_INFO("device response after %dms\n", rc);
2584
2585 /* ack fw init done interrupt */
2586 ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE);
2587
2588 /* read eeprom data and initialize the eeprom region of sram */
2589 priv->eeprom_delay = 1;
2590 ipw_eeprom_init_sram(priv);
2591
2592 /* enable interrupts */
2593 ipw_enable_interrupts(priv);
2594
2595 /* Ensure our queue has valid packets */
2596 ipw_rx_queue_replenish(priv);
2597
2598 ipw_write32(priv, CX2_RX_READ_INDEX, priv->rxq->read);
2599
2600 /* ack pending interrupts */
2601 ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL);
2602
2603 #ifndef CONFIG_PM
2604 release_firmware(bootfw);
2605 release_firmware(ucode);
2606 release_firmware(firmware);
2607 #endif
2608 return 0;
2609
2610 error:
2611 if (priv->rxq) {
2612 ipw_rx_queue_free(priv, priv->rxq);
2613 priv->rxq = NULL;
2614 }
2615 ipw_tx_queue_free(priv);
2616 if (bootfw)
2617 release_firmware(bootfw);
2618 if (ucode)
2619 release_firmware(ucode);
2620 if (firmware)
2621 release_firmware(firmware);
2622 #ifdef CONFIG_PM
2623 fw_loaded = 0;
2624 bootfw = ucode = firmware = NULL;
2625 #endif
2626
2627 return rc;
2628 }
2629
2630 /**
2631 * DMA services
2632 *
2633 * Theory of operation
2634 *
2635 * A queue is a circular buffers with 'Read' and 'Write' pointers.
2636 * 2 empty entries always kept in the buffer to protect from overflow.
2637 *
2638 * For Tx queue, there are low mark and high mark limits. If, after queuing
2639 * the packet for Tx, free space become < low mark, Tx queue stopped. When
2640 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
2641 * Tx queue resumed.
2642 *
2643 * The IPW operates with six queues, one receive queue in the device's
2644 * sram, one transmit queue for sending commands to the device firmware,
2645 * and four transmit queues for data.
2646 *
2647 * The four transmit queues allow for performing quality of service (qos)
2648 * transmissions as per the 802.11 protocol. Currently Linux does not
2649 * provide a mechanism to the user for utilizing prioritized queues, so
2650 * we only utilize the first data transmit queue (queue1).
2651 */
2652
2653 /**
2654 * Driver allocates buffers of this size for Rx
2655 */
2656
2657 static inline int ipw_queue_space(const struct clx2_queue *q)
2658 {
2659 int s = q->last_used - q->first_empty;
2660 if (s <= 0)
2661 s += q->n_bd;
2662 s -= 2; /* keep some reserve to not confuse empty and full situations */
2663 if (s < 0)
2664 s = 0;
2665 return s;
2666 }
2667
2668 static inline int ipw_queue_inc_wrap(int index, int n_bd)
2669 {
2670 return (++index == n_bd) ? 0 : index;
2671 }
2672
2673 /**
2674 * Initialize common DMA queue structure
2675 *
2676 * @param q queue to init
2677 * @param count Number of BD's to allocate. Should be power of 2
2678 * @param read_register Address for 'read' register
2679 * (not offset within BAR, full address)
2680 * @param write_register Address for 'write' register
2681 * (not offset within BAR, full address)
2682 * @param base_register Address for 'base' register
2683 * (not offset within BAR, full address)
2684 * @param size Address for 'size' register
2685 * (not offset within BAR, full address)
2686 */
2687 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
2688 int count, u32 read, u32 write, u32 base, u32 size)
2689 {
2690 q->n_bd = count;
2691
2692 q->low_mark = q->n_bd / 4;
2693 if (q->low_mark < 4)
2694 q->low_mark = 4;
2695
2696 q->high_mark = q->n_bd / 8;
2697 if (q->high_mark < 2)
2698 q->high_mark = 2;
2699
2700 q->first_empty = q->last_used = 0;
2701 q->reg_r = read;
2702 q->reg_w = write;
2703
2704 ipw_write32(priv, base, q->dma_addr);
2705 ipw_write32(priv, size, count);
2706 ipw_write32(priv, read, 0);
2707 ipw_write32(priv, write, 0);
2708
2709 _ipw_read32(priv, 0x90);
2710 }
2711
2712 static int ipw_queue_tx_init(struct ipw_priv *priv,
2713 struct clx2_tx_queue *q,
2714 int count, u32 read, u32 write, u32 base, u32 size)
2715 {
2716 struct pci_dev *dev = priv->pci_dev;
2717
2718 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
2719 if (!q->txb) {
2720 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
2721 return -ENOMEM;
2722 }
2723
2724 q->bd =
2725 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
2726 if (!q->bd) {
2727 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
2728 sizeof(q->bd[0]) * count);
2729 kfree(q->txb);
2730 q->txb = NULL;
2731 return -ENOMEM;
2732 }
2733
2734 ipw_queue_init(priv, &q->q, count, read, write, base, size);
2735 return 0;
2736 }
2737
2738 /**
2739 * Free one TFD, those at index [txq->q.last_used].
2740 * Do NOT advance any indexes
2741 *
2742 * @param dev
2743 * @param txq
2744 */
2745 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
2746 struct clx2_tx_queue *txq)
2747 {
2748 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
2749 struct pci_dev *dev = priv->pci_dev;
2750 int i;
2751
2752 /* classify bd */
2753 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
2754 /* nothing to cleanup after for host commands */
2755 return;
2756
2757 /* sanity check */
2758 if (bd->u.data.num_chunks > NUM_TFD_CHUNKS) {
2759 IPW_ERROR("Too many chunks: %i\n", bd->u.data.num_chunks);
2760 /** @todo issue fatal error, it is quite serious situation */
2761 return;
2762 }
2763
2764 /* unmap chunks if any */
2765 for (i = 0; i < bd->u.data.num_chunks; i++) {
2766 pci_unmap_single(dev, bd->u.data.chunk_ptr[i],
2767 bd->u.data.chunk_len[i], PCI_DMA_TODEVICE);
2768 if (txq->txb[txq->q.last_used]) {
2769 ieee80211_txb_free(txq->txb[txq->q.last_used]);
2770 txq->txb[txq->q.last_used] = NULL;
2771 }
2772 }
2773 }
2774
2775 /**
2776 * Deallocate DMA queue.
2777 *
2778 * Empty queue by removing and destroying all BD's.
2779 * Free all buffers.
2780 *
2781 * @param dev
2782 * @param q
2783 */
2784 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
2785 {
2786 struct clx2_queue *q = &txq->q;
2787 struct pci_dev *dev = priv->pci_dev;
2788
2789 if (q->n_bd == 0)
2790 return;
2791
2792 /* first, empty all BD's */
2793 for (; q->first_empty != q->last_used;
2794 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
2795 ipw_queue_tx_free_tfd(priv, txq);
2796 }
2797
2798 /* free buffers belonging to queue itself */
2799 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
2800 q->dma_addr);
2801 kfree(txq->txb);
2802
2803 /* 0 fill whole structure */
2804 memset(txq, 0, sizeof(*txq));
2805 }
2806
2807 /**
2808 * Destroy all DMA queues and structures
2809 *
2810 * @param priv
2811 */
2812 static void ipw_tx_queue_free(struct ipw_priv *priv)
2813 {
2814 /* Tx CMD queue */
2815 ipw_queue_tx_free(priv, &priv->txq_cmd);
2816
2817 /* Tx queues */
2818 ipw_queue_tx_free(priv, &priv->txq[0]);
2819 ipw_queue_tx_free(priv, &priv->txq[1]);
2820 ipw_queue_tx_free(priv, &priv->txq[2]);
2821 ipw_queue_tx_free(priv, &priv->txq[3]);
2822 }
2823
2824 static void inline __maybe_wake_tx(struct ipw_priv *priv)
2825 {
2826 if (netif_running(priv->net_dev)) {
2827 switch (priv->port_type) {
2828 case DCR_TYPE_MU_BSS:
2829 case DCR_TYPE_MU_IBSS:
2830 if (!(priv->status & STATUS_ASSOCIATED)) {
2831 return;
2832 }
2833 }
2834 netif_wake_queue(priv->net_dev);
2835 }
2836
2837 }
2838
2839 static inline void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
2840 {
2841 /* First 3 bytes are manufacturer */
2842 bssid[0] = priv->mac_addr[0];
2843 bssid[1] = priv->mac_addr[1];
2844 bssid[2] = priv->mac_addr[2];
2845
2846 /* Last bytes are random */
2847 get_random_bytes(&bssid[3], ETH_ALEN - 3);
2848
2849 bssid[0] &= 0xfe; /* clear multicast bit */
2850 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
2851 }
2852
2853 static inline u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
2854 {
2855 struct ipw_station_entry entry;
2856 int i;
2857
2858 for (i = 0; i < priv->num_stations; i++) {
2859 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
2860 /* Another node is active in network */
2861 priv->missed_adhoc_beacons = 0;
2862 if (!(priv->config & CFG_STATIC_CHANNEL))
2863 /* when other nodes drop out, we drop out */
2864 priv->config &= ~CFG_ADHOC_PERSIST;
2865
2866 return i;
2867 }
2868 }
2869
2870 if (i == MAX_STATIONS)
2871 return IPW_INVALID_STATION;
2872
2873 IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
2874
2875 entry.reserved = 0;
2876 entry.support_mode = 0;
2877 memcpy(entry.mac_addr, bssid, ETH_ALEN);
2878 memcpy(priv->stations[i], bssid, ETH_ALEN);
2879 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
2880 &entry, sizeof(entry));
2881 priv->num_stations++;
2882
2883 return i;
2884 }
2885
2886 static inline u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
2887 {
2888 int i;
2889
2890 for (i = 0; i < priv->num_stations; i++)
2891 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
2892 return i;
2893
2894 return IPW_INVALID_STATION;
2895 }
2896
2897 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
2898 {
2899 int err;
2900
2901 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))) {
2902 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
2903 return;
2904 }
2905
2906 IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
2907 "on channel %d.\n",
2908 MAC_ARG(priv->assoc_request.bssid),
2909 priv->assoc_request.channel);
2910
2911 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
2912 priv->status |= STATUS_DISASSOCIATING;
2913
2914 if (quiet)
2915 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
2916 else
2917 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
2918 err = ipw_send_associate(priv, &priv->assoc_request);
2919 if (err) {
2920 IPW_DEBUG_HC("Attempt to send [dis]associate command "
2921 "failed.\n");
2922 return;
2923 }
2924
2925 }
2926
2927 static void ipw_disassociate(void *data)
2928 {
2929 ipw_send_disassociate(data, 0);
2930 }
2931
2932 static void notify_wx_assoc_event(struct ipw_priv *priv)
2933 {
2934 union iwreq_data wrqu;
2935 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
2936 if (priv->status & STATUS_ASSOCIATED)
2937 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
2938 else
2939 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
2940 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
2941 }
2942
2943 struct ipw_status_code {
2944 u16 status;
2945 const char *reason;
2946 };
2947
2948 static const struct ipw_status_code ipw_status_codes[] = {
2949 {0x00, "Successful"},
2950 {0x01, "Unspecified failure"},
2951 {0x0A, "Cannot support all requested capabilities in the "
2952 "Capability information field"},
2953 {0x0B, "Reassociation denied due to inability to confirm that "
2954 "association exists"},
2955 {0x0C, "Association denied due to reason outside the scope of this "
2956 "standard"},
2957 {0x0D,
2958 "Responding station does not support the specified authentication "
2959 "algorithm"},
2960 {0x0E,
2961 "Received an Authentication frame with authentication sequence "
2962 "transaction sequence number out of expected sequence"},
2963 {0x0F, "Authentication rejected because of challenge failure"},
2964 {0x10, "Authentication rejected due to timeout waiting for next "
2965 "frame in sequence"},
2966 {0x11, "Association denied because AP is unable to handle additional "
2967 "associated stations"},
2968 {0x12,
2969 "Association denied due to requesting station not supporting all "
2970 "of the datarates in the BSSBasicServiceSet Parameter"},
2971 {0x13,
2972 "Association denied due to requesting station not supporting "
2973 "short preamble operation"},
2974 {0x14,
2975 "Association denied due to requesting station not supporting "
2976 "PBCC encoding"},
2977 {0x15,
2978 "Association denied due to requesting station not supporting "
2979 "channel agility"},
2980 {0x19,
2981 "Association denied due to requesting station not supporting "
2982 "short slot operation"},
2983 {0x1A,
2984 "Association denied due to requesting station not supporting "
2985 "DSSS-OFDM operation"},
2986 {0x28, "Invalid Information Element"},
2987 {0x29, "Group Cipher is not valid"},
2988 {0x2A, "Pairwise Cipher is not valid"},
2989 {0x2B, "AKMP is not valid"},
2990 {0x2C, "Unsupported RSN IE version"},
2991 {0x2D, "Invalid RSN IE Capabilities"},
2992 {0x2E, "Cipher suite is rejected per security policy"},
2993 };
2994
2995 #ifdef CONFIG_IPW_DEBUG
2996 static const char *ipw_get_status_code(u16 status)
2997 {
2998 int i;
2999 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3000 if (ipw_status_codes[i].status == status)
3001 return ipw_status_codes[i].reason;
3002 return "Unknown status value.";
3003 }
3004 #endif
3005
3006 static void inline average_init(struct average *avg)
3007 {
3008 memset(avg, 0, sizeof(*avg));
3009 }
3010
3011 static void inline average_add(struct average *avg, s16 val)
3012 {
3013 avg->sum -= avg->entries[avg->pos];
3014 avg->sum += val;
3015 avg->entries[avg->pos++] = val;
3016 if (unlikely(avg->pos == AVG_ENTRIES)) {
3017 avg->init = 1;
3018 avg->pos = 0;
3019 }
3020 }
3021
3022 static s16 inline average_value(struct average *avg)
3023 {
3024 if (!unlikely(avg->init)) {
3025 if (avg->pos)
3026 return avg->sum / avg->pos;
3027 return 0;
3028 }
3029
3030 return avg->sum / AVG_ENTRIES;
3031 }
3032
3033 static void ipw_reset_stats(struct ipw_priv *priv)
3034 {
3035 u32 len = sizeof(u32);
3036
3037 priv->quality = 0;
3038
3039 average_init(&priv->average_missed_beacons);
3040 average_init(&priv->average_rssi);
3041 average_init(&priv->average_noise);
3042
3043 priv->last_rate = 0;
3044 priv->last_missed_beacons = 0;
3045 priv->last_rx_packets = 0;
3046 priv->last_tx_packets = 0;
3047 priv->last_tx_failures = 0;
3048
3049 /* Firmware managed, reset only when NIC is restarted, so we have to
3050 * normalize on the current value */
3051 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3052 &priv->last_rx_err, &len);
3053 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3054 &priv->last_tx_failures, &len);
3055
3056 /* Driver managed, reset with each association */
3057 priv->missed_adhoc_beacons = 0;
3058 priv->missed_beacons = 0;
3059 priv->tx_packets = 0;
3060 priv->rx_packets = 0;
3061
3062 }
3063
3064 static inline u32 ipw_get_max_rate(struct ipw_priv *priv)
3065 {
3066 u32 i = 0x80000000;
3067 u32 mask = priv->rates_mask;
3068 /* If currently associated in B mode, restrict the maximum
3069 * rate match to B rates */
3070 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3071 mask &= IEEE80211_CCK_RATES_MASK;
3072
3073 /* TODO: Verify that the rate is supported by the current rates
3074 * list. */
3075
3076 while (i && !(mask & i))
3077 i >>= 1;
3078 switch (i) {
3079 case IEEE80211_CCK_RATE_1MB_MASK: return 1000000;
3080 case IEEE80211_CCK_RATE_2MB_MASK: return 2000000;
3081 case IEEE80211_CCK_RATE_5MB_MASK: return 5500000;
3082 case IEEE80211_OFDM_RATE_6MB_MASK: return 6000000;
3083 case IEEE80211_OFDM_RATE_9MB_MASK: return 9000000;
3084 case IEEE80211_CCK_RATE_11MB_MASK: return 11000000;
3085 case IEEE80211_OFDM_RATE_12MB_MASK: return 12000000;
3086 case IEEE80211_OFDM_RATE_18MB_MASK: return 18000000;
3087 case IEEE80211_OFDM_RATE_24MB_MASK: return 24000000;
3088 case IEEE80211_OFDM_RATE_36MB_MASK: return 36000000;
3089 case IEEE80211_OFDM_RATE_48MB_MASK: return 48000000;
3090 case IEEE80211_OFDM_RATE_54MB_MASK: return 54000000;
3091 }
3092
3093 if (priv->ieee->mode == IEEE_B)
3094 return 11000000;
3095 else
3096 return 54000000;
3097 }
3098
3099 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3100 {
3101 u32 rate, len = sizeof(rate);
3102 int err;
3103
3104 if (!(priv->status & STATUS_ASSOCIATED))
3105 return 0;
3106
3107 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3108 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3109 &len);
3110 if (err) {
3111 IPW_DEBUG_INFO("failed querying ordinals.\n");
3112 return 0;
3113 }
3114 } else
3115 return ipw_get_max_rate(priv);
3116
3117 switch (rate) {
3118 case IPW_TX_RATE_1MB: return 1000000;
3119 case IPW_TX_RATE_2MB: return 2000000;
3120 case IPW_TX_RATE_5MB: return 5500000;
3121 case IPW_TX_RATE_6MB: return 6000000;
3122 case IPW_TX_RATE_9MB: return 9000000;
3123 case IPW_TX_RATE_11MB: return 11000000;
3124 case IPW_TX_RATE_12MB: return 12000000;
3125 case IPW_TX_RATE_18MB: return 18000000;
3126 case IPW_TX_RATE_24MB: return 24000000;
3127 case IPW_TX_RATE_36MB: return 36000000;
3128 case IPW_TX_RATE_48MB: return 48000000;
3129 case IPW_TX_RATE_54MB: return 54000000;
3130 }
3131
3132 return 0;
3133 }
3134
3135 #define PERFECT_RSSI (-50)
3136 #define WORST_RSSI (-85)
3137 #define IPW_STATS_INTERVAL (2 * HZ)
3138 static void ipw_gather_stats(struct ipw_priv *priv)
3139 {
3140 u32 rx_err, rx_err_delta, rx_packets_delta;
3141 u32 tx_failures, tx_failures_delta, tx_packets_delta;
3142 u32 missed_beacons_percent, missed_beacons_delta;
3143 u32 quality = 0;
3144 u32 len = sizeof(u32);
3145 s16 rssi;
3146 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3147 rate_quality;
3148
3149 if (!(priv->status & STATUS_ASSOCIATED)) {
3150 priv->quality = 0;
3151 return;
3152 }
3153
3154 /* Update the statistics */
3155 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3156 &priv->missed_beacons, &len);
3157 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
3158 priv->last_missed_beacons = priv->missed_beacons;
3159 if (priv->assoc_request.beacon_interval) {
3160 missed_beacons_percent = missed_beacons_delta *
3161 (HZ * priv->assoc_request.beacon_interval) /
3162 (IPW_STATS_INTERVAL * 10);
3163 } else {
3164 missed_beacons_percent = 0;
3165 }
3166 average_add(&priv->average_missed_beacons, missed_beacons_percent);
3167
3168 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3169 rx_err_delta = rx_err - priv->last_rx_err;
3170 priv->last_rx_err = rx_err;
3171
3172 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3173 tx_failures_delta = tx_failures - priv->last_tx_failures;
3174 priv->last_tx_failures = tx_failures;
3175
3176 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
3177 priv->last_rx_packets = priv->rx_packets;
3178
3179 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
3180 priv->last_tx_packets = priv->tx_packets;
3181
3182 /* Calculate quality based on the following:
3183 *
3184 * Missed beacon: 100% = 0, 0% = 70% missed
3185 * Rate: 60% = 1Mbs, 100% = Max
3186 * Rx and Tx errors represent a straight % of total Rx/Tx
3187 * RSSI: 100% = > -50, 0% = < -80
3188 * Rx errors: 100% = 0, 0% = 50% missed
3189 *
3190 * The lowest computed quality is used.
3191 *
3192 */
3193 #define BEACON_THRESHOLD 5
3194 beacon_quality = 100 - missed_beacons_percent;
3195 if (beacon_quality < BEACON_THRESHOLD)
3196 beacon_quality = 0;
3197 else
3198 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
3199 (100 - BEACON_THRESHOLD);
3200 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
3201 beacon_quality, missed_beacons_percent);
3202
3203 priv->last_rate = ipw_get_current_rate(priv);
3204 rate_quality = priv->last_rate * 40 / priv->last_rate + 60;
3205 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
3206 rate_quality, priv->last_rate / 1000000);
3207
3208 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
3209 rx_quality = 100 - (rx_err_delta * 100) /
3210 (rx_packets_delta + rx_err_delta);
3211 else
3212 rx_quality = 100;
3213 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
3214 rx_quality, rx_err_delta, rx_packets_delta);
3215
3216 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
3217 tx_quality = 100 - (tx_failures_delta * 100) /
3218 (tx_packets_delta + tx_failures_delta);
3219 else
3220 tx_quality = 100;
3221 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
3222 tx_quality, tx_failures_delta, tx_packets_delta);
3223
3224 rssi = average_value(&priv->average_rssi);
3225 if (rssi > PERFECT_RSSI)
3226 signal_quality = 100;
3227 else if (rssi < WORST_RSSI)
3228 signal_quality = 0;
3229 else
3230 signal_quality = (rssi - WORST_RSSI) * 100 /
3231 (PERFECT_RSSI - WORST_RSSI);
3232 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
3233 signal_quality, rssi);
3234
3235 quality = min(beacon_quality,
3236 min(rate_quality,
3237 min(tx_quality, min(rx_quality, signal_quality))));
3238 if (quality == beacon_quality)
3239 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
3240 quality);
3241 if (quality == rate_quality)
3242 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
3243 quality);
3244 if (quality == tx_quality)
3245 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
3246 quality);
3247 if (quality == rx_quality)
3248 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
3249 quality);
3250 if (quality == signal_quality)
3251 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
3252 quality);
3253
3254 priv->quality = quality;
3255
3256 queue_delayed_work(priv->workqueue, &priv->gather_stats,
3257 IPW_STATS_INTERVAL);
3258 }
3259
3260 /**
3261 * Handle host notification packet.
3262 * Called from interrupt routine
3263 */
3264 static inline void ipw_rx_notification(struct ipw_priv *priv,
3265 struct ipw_rx_notification *notif)
3266 {
3267 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
3268
3269 switch (notif->subtype) {
3270 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
3271 struct notif_association *assoc = &notif->u.assoc;
3272
3273 switch (assoc->state) {
3274 case CMAS_ASSOCIATED:{
3275 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3276 IPW_DL_ASSOC,
3277 "associated: '%s' " MAC_FMT
3278 " \n",
3279 escape_essid(priv->essid,
3280 priv->essid_len),
3281 MAC_ARG(priv->bssid));
3282
3283 switch (priv->ieee->iw_mode) {
3284 case IW_MODE_INFRA:
3285 memcpy(priv->ieee->bssid,
3286 priv->bssid, ETH_ALEN);
3287 break;
3288
3289 case IW_MODE_ADHOC:
3290 memcpy(priv->ieee->bssid,
3291 priv->bssid, ETH_ALEN);
3292
3293 /* clear out the station table */
3294 priv->num_stations = 0;
3295
3296 IPW_DEBUG_ASSOC
3297 ("queueing adhoc check\n");
3298 queue_delayed_work(priv->
3299 workqueue,
3300 &priv->
3301 adhoc_check,
3302 priv->
3303 assoc_request.
3304 beacon_interval);
3305 break;
3306 }
3307
3308 priv->status &= ~STATUS_ASSOCIATING;
3309 priv->status |= STATUS_ASSOCIATED;
3310
3311 netif_carrier_on(priv->net_dev);
3312 if (netif_queue_stopped(priv->net_dev)) {
3313 IPW_DEBUG_NOTIF
3314 ("waking queue\n");
3315 netif_wake_queue(priv->net_dev);
3316 } else {
3317 IPW_DEBUG_NOTIF
3318 ("starting queue\n");
3319 netif_start_queue(priv->
3320 net_dev);
3321 }
3322
3323 ipw_reset_stats(priv);
3324 /* Ensure the rate is updated immediately */
3325 priv->last_rate =
3326 ipw_get_current_rate(priv);
3327 schedule_work(&priv->gather_stats);
3328 notify_wx_assoc_event(priv);
3329
3330 /* queue_delayed_work(priv->workqueue,
3331 &priv->request_scan,
3332 SCAN_ASSOCIATED_INTERVAL);
3333 */
3334 break;
3335 }
3336
3337 case CMAS_AUTHENTICATED:{
3338 if (priv->
3339 status & (STATUS_ASSOCIATED |
3340 STATUS_AUTH)) {
3341 #ifdef CONFIG_IPW_DEBUG
3342 struct notif_authenticate *auth
3343 = &notif->u.auth;
3344 IPW_DEBUG(IPW_DL_NOTIF |
3345 IPW_DL_STATE |
3346 IPW_DL_ASSOC,
3347 "deauthenticated: '%s' "
3348 MAC_FMT
3349 ": (0x%04X) - %s \n",
3350 escape_essid(priv->
3351 essid,
3352 priv->
3353 essid_len),
3354 MAC_ARG(priv->bssid),
3355 ntohs(auth->status),
3356 ipw_get_status_code
3357 (ntohs
3358 (auth->status)));
3359 #endif
3360
3361 priv->status &=
3362 ~(STATUS_ASSOCIATING |
3363 STATUS_AUTH |
3364 STATUS_ASSOCIATED);
3365
3366 netif_carrier_off(priv->
3367 net_dev);
3368 netif_stop_queue(priv->net_dev);
3369 queue_work(priv->workqueue,
3370 &priv->request_scan);
3371 notify_wx_assoc_event(priv);
3372 break;
3373 }
3374
3375 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3376 IPW_DL_ASSOC,
3377 "authenticated: '%s' " MAC_FMT
3378 "\n",
3379 escape_essid(priv->essid,
3380 priv->essid_len),
3381 MAC_ARG(priv->bssid));
3382 break;
3383 }
3384
3385 case CMAS_INIT:{
3386 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3387 IPW_DL_ASSOC,
3388 "disassociated: '%s' " MAC_FMT
3389 " \n",
3390 escape_essid(priv->essid,
3391 priv->essid_len),
3392 MAC_ARG(priv->bssid));
3393
3394 priv->status &=
3395 ~(STATUS_DISASSOCIATING |
3396 STATUS_ASSOCIATING |
3397 STATUS_ASSOCIATED | STATUS_AUTH);
3398
3399 netif_stop_queue(priv->net_dev);
3400 if (!(priv->status & STATUS_ROAMING)) {
3401 netif_carrier_off(priv->
3402 net_dev);
3403 notify_wx_assoc_event(priv);
3404
3405 /* Cancel any queued work ... */
3406 cancel_delayed_work(&priv->
3407 request_scan);
3408 cancel_delayed_work(&priv->
3409 adhoc_check);
3410
3411 /* Queue up another scan... */
3412 queue_work(priv->workqueue,
3413 &priv->request_scan);
3414
3415 cancel_delayed_work(&priv->
3416 gather_stats);
3417 } else {
3418 priv->status |= STATUS_ROAMING;
3419 queue_work(priv->workqueue,
3420 &priv->request_scan);
3421 }
3422
3423 ipw_reset_stats(priv);
3424 break;
3425 }
3426
3427 default:
3428 IPW_ERROR("assoc: unknown (%d)\n",
3429 assoc->state);
3430 break;
3431 }
3432
3433 break;
3434 }
3435
3436 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
3437 struct notif_authenticate *auth = &notif->u.auth;
3438 switch (auth->state) {
3439 case CMAS_AUTHENTICATED:
3440 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
3441 "authenticated: '%s' " MAC_FMT " \n",
3442 escape_essid(priv->essid,
3443 priv->essid_len),
3444 MAC_ARG(priv->bssid));
3445 priv->status |= STATUS_AUTH;
3446 break;
3447
3448 case CMAS_INIT:
3449 if (priv->status & STATUS_AUTH) {
3450 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3451 IPW_DL_ASSOC,
3452 "authentication failed (0x%04X): %s\n",
3453 ntohs(auth->status),
3454 ipw_get_status_code(ntohs
3455 (auth->
3456 status)));
3457 }
3458 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3459 IPW_DL_ASSOC,
3460 "deauthenticated: '%s' " MAC_FMT "\n",
3461 escape_essid(priv->essid,
3462 priv->essid_len),
3463 MAC_ARG(priv->bssid));
3464
3465 priv->status &= ~(STATUS_ASSOCIATING |
3466 STATUS_AUTH |
3467 STATUS_ASSOCIATED);
3468
3469 netif_carrier_off(priv->net_dev);
3470 netif_stop_queue(priv->net_dev);
3471 queue_work(priv->workqueue,
3472 &priv->request_scan);
3473 notify_wx_assoc_event(priv);
3474 break;
3475
3476 case CMAS_TX_AUTH_SEQ_1:
3477 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3478 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
3479 break;
3480 case CMAS_RX_AUTH_SEQ_2:
3481 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3482 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
3483 break;
3484 case CMAS_AUTH_SEQ_1_PASS:
3485 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3486 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
3487 break;
3488 case CMAS_AUTH_SEQ_1_FAIL:
3489 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3490 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
3491 break;
3492 case CMAS_TX_AUTH_SEQ_3:
3493 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3494 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
3495 break;
3496 case CMAS_RX_AUTH_SEQ_4:
3497 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3498 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
3499 break;
3500 case CMAS_AUTH_SEQ_2_PASS:
3501 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3502 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
3503 break;
3504 case CMAS_AUTH_SEQ_2_FAIL:
3505 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3506 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
3507 break;
3508 case CMAS_TX_ASSOC:
3509 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3510 IPW_DL_ASSOC, "TX_ASSOC\n");
3511 break;
3512 case CMAS_RX_ASSOC_RESP:
3513 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3514 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
3515 break;
3516 case CMAS_ASSOCIATED:
3517 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3518 IPW_DL_ASSOC, "ASSOCIATED\n");
3519 break;
3520 default:
3521 IPW_DEBUG_NOTIF("auth: failure - %d\n",
3522 auth->state);
3523 break;
3524 }
3525 break;
3526 }
3527
3528 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
3529 struct notif_channel_result *x =
3530 &notif->u.channel_result;
3531
3532 if (notif->size == sizeof(*x)) {
3533 IPW_DEBUG_SCAN("Scan result for channel %d\n",
3534 x->channel_num);
3535 } else {
3536 IPW_DEBUG_SCAN("Scan result of wrong size %d "
3537 "(should be %zd)\n",
3538 notif->size, sizeof(*x));
3539 }
3540 break;
3541 }
3542
3543 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
3544 struct notif_scan_complete *x = &notif->u.scan_complete;
3545 if (notif->size == sizeof(*x)) {
3546 IPW_DEBUG_SCAN
3547 ("Scan completed: type %d, %d channels, "
3548 "%d status\n", x->scan_type,
3549 x->num_channels, x->status);
3550 } else {
3551 IPW_ERROR("Scan completed of wrong size %d "
3552 "(should be %zd)\n",
3553 notif->size, sizeof(*x));
3554 }
3555
3556 priv->status &=
3557 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3558
3559 cancel_delayed_work(&priv->scan_check);
3560
3561 if (!(priv->status & (STATUS_ASSOCIATED |
3562 STATUS_ASSOCIATING |
3563 STATUS_ROAMING |
3564 STATUS_DISASSOCIATING)))
3565 queue_work(priv->workqueue, &priv->associate);
3566 else if (priv->status & STATUS_ROAMING) {
3567 /* If a scan completed and we are in roam mode, then
3568 * the scan that completed was the one requested as a
3569 * result of entering roam... so, schedule the
3570 * roam work */
3571 queue_work(priv->workqueue, &priv->roam);
3572 } else if (priv->status & STATUS_SCAN_PENDING)
3573 queue_work(priv->workqueue,
3574 &priv->request_scan);
3575
3576 priv->ieee->scans++;
3577 break;
3578 }
3579
3580 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
3581 struct notif_frag_length *x = &notif->u.frag_len;
3582
3583 if (notif->size == sizeof(*x)) {
3584 IPW_ERROR("Frag length: %d\n", x->frag_length);
3585 } else {
3586 IPW_ERROR("Frag length of wrong size %d "
3587 "(should be %zd)\n",
3588 notif->size, sizeof(*x));
3589 }
3590 break;
3591 }
3592
3593 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
3594 struct notif_link_deterioration *x =
3595 &notif->u.link_deterioration;
3596 if (notif->size == sizeof(*x)) {
3597 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
3598 "link deterioration: '%s' " MAC_FMT
3599 " \n", escape_essid(priv->essid,
3600 priv->essid_len),
3601 MAC_ARG(priv->bssid));
3602 memcpy(&priv->last_link_deterioration, x,
3603 sizeof(*x));
3604 } else {
3605 IPW_ERROR("Link Deterioration of wrong size %d "
3606 "(should be %zd)\n",
3607 notif->size, sizeof(*x));
3608 }
3609 break;
3610 }
3611
3612 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
3613 IPW_ERROR("Dino config\n");
3614 if (priv->hcmd
3615 && priv->hcmd->cmd == HOST_CMD_DINO_CONFIG) {
3616 /* TODO: Do anything special? */
3617 } else {
3618 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
3619 }
3620 break;
3621 }
3622
3623 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
3624 struct notif_beacon_state *x = &notif->u.beacon_state;
3625 if (notif->size != sizeof(*x)) {
3626 IPW_ERROR
3627 ("Beacon state of wrong size %d (should "
3628 "be %zd)\n", notif->size, sizeof(*x));
3629 break;
3630 }
3631
3632 if (x->state == HOST_NOTIFICATION_STATUS_BEACON_MISSING) {
3633 if (priv->status & STATUS_SCANNING) {
3634 /* Stop scan to keep fw from getting
3635 * stuck... */
3636 queue_work(priv->workqueue,
3637 &priv->abort_scan);
3638 }
3639
3640 if (x->number > priv->missed_beacon_threshold &&
3641 priv->status & STATUS_ASSOCIATED) {
3642 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
3643 IPW_DL_STATE,
3644 "Missed beacon: %d - disassociate\n",
3645 x->number);
3646 queue_work(priv->workqueue,
3647 &priv->disassociate);
3648 } else if (x->number > priv->roaming_threshold) {
3649 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
3650 "Missed beacon: %d - initiate "
3651 "roaming\n", x->number);
3652 queue_work(priv->workqueue,
3653 &priv->roam);
3654 } else {
3655 IPW_DEBUG_NOTIF("Missed beacon: %d\n",
3656 x->number);
3657 }
3658
3659 priv->notif_missed_beacons = x->number;
3660
3661 }
3662
3663 break;
3664 }
3665
3666 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
3667 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
3668 if (notif->size == sizeof(*x)) {
3669 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
3670 "0x%02x station %d\n",
3671 x->key_state, x->security_type,
3672 x->station_index);
3673 break;
3674 }
3675
3676 IPW_ERROR
3677 ("TGi Tx Key of wrong size %d (should be %zd)\n",
3678 notif->size, sizeof(*x));
3679 break;
3680 }
3681
3682 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
3683 struct notif_calibration *x = &notif->u.calibration;
3684
3685 if (notif->size == sizeof(*x)) {
3686 memcpy(&priv->calib, x, sizeof(*x));
3687 IPW_DEBUG_INFO("TODO: Calibration\n");
3688 break;
3689 }
3690
3691 IPW_ERROR
3692 ("Calibration of wrong size %d (should be %zd)\n",
3693 notif->size, sizeof(*x));
3694 break;
3695 }
3696
3697 case HOST_NOTIFICATION_NOISE_STATS:{
3698 if (notif->size == sizeof(u32)) {
3699 priv->last_noise =
3700 (u8) (notif->u.noise.value & 0xff);
3701 average_add(&priv->average_noise,
3702 priv->last_noise);
3703 break;
3704 }
3705
3706 IPW_ERROR
3707 ("Noise stat is wrong size %d (should be %zd)\n",
3708 notif->size, sizeof(u32));
3709 break;
3710 }
3711
3712 default:
3713 IPW_ERROR("Unknown notification: "
3714 "subtype=%d,flags=0x%2x,size=%d\n",
3715 notif->subtype, notif->flags, notif->size);
3716 }
3717 }
3718
3719 /**
3720 * Destroys all DMA structures and initialise them again
3721 *
3722 * @param priv
3723 * @return error code
3724 */
3725 static int ipw_queue_reset(struct ipw_priv *priv)
3726 {
3727 int rc = 0;
3728 /** @todo customize queue sizes */
3729 int nTx = 64, nTxCmd = 8;
3730 ipw_tx_queue_free(priv);
3731 /* Tx CMD queue */
3732 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
3733 CX2_TX_CMD_QUEUE_READ_INDEX,
3734 CX2_TX_CMD_QUEUE_WRITE_INDEX,
3735 CX2_TX_CMD_QUEUE_BD_BASE,
3736 CX2_TX_CMD_QUEUE_BD_SIZE);
3737 if (rc) {
3738 IPW_ERROR("Tx Cmd queue init failed\n");
3739 goto error;
3740 }
3741 /* Tx queue(s) */
3742 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
3743 CX2_TX_QUEUE_0_READ_INDEX,
3744 CX2_TX_QUEUE_0_WRITE_INDEX,
3745 CX2_TX_QUEUE_0_BD_BASE, CX2_TX_QUEUE_0_BD_SIZE);
3746 if (rc) {
3747 IPW_ERROR("Tx 0 queue init failed\n");
3748 goto error;
3749 }
3750 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
3751 CX2_TX_QUEUE_1_READ_INDEX,
3752 CX2_TX_QUEUE_1_WRITE_INDEX,
3753 CX2_TX_QUEUE_1_BD_BASE, CX2_TX_QUEUE_1_BD_SIZE);
3754 if (rc) {
3755 IPW_ERROR("Tx 1 queue init failed\n");
3756 goto error;
3757 }
3758 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
3759 CX2_TX_QUEUE_2_READ_INDEX,
3760 CX2_TX_QUEUE_2_WRITE_INDEX,
3761 CX2_TX_QUEUE_2_BD_BASE, CX2_TX_QUEUE_2_BD_SIZE);
3762 if (rc) {
3763 IPW_ERROR("Tx 2 queue init failed\n");
3764 goto error;
3765 }
3766 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
3767 CX2_TX_QUEUE_3_READ_INDEX,
3768 CX2_TX_QUEUE_3_WRITE_INDEX,
3769 CX2_TX_QUEUE_3_BD_BASE, CX2_TX_QUEUE_3_BD_SIZE);
3770 if (rc) {
3771 IPW_ERROR("Tx 3 queue init failed\n");
3772 goto error;
3773 }
3774 /* statistics */
3775 priv->rx_bufs_min = 0;
3776 priv->rx_pend_max = 0;
3777 return rc;
3778
3779 error:
3780 ipw_tx_queue_free(priv);
3781 return rc;
3782 }
3783
3784 /**
3785 * Reclaim Tx queue entries no more used by NIC.
3786 *
3787 * When FW adwances 'R' index, all entries between old and
3788 * new 'R' index need to be reclaimed. As result, some free space
3789 * forms. If there is enough free space (> low mark), wake Tx queue.
3790 *
3791 * @note Need to protect against garbage in 'R' index
3792 * @param priv
3793 * @param txq
3794 * @param qindex
3795 * @return Number of used entries remains in the queue
3796 */
3797 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
3798 struct clx2_tx_queue *txq, int qindex)
3799 {
3800 u32 hw_tail;
3801 int used;
3802 struct clx2_queue *q = &txq->q;
3803
3804 hw_tail = ipw_read32(priv, q->reg_r);
3805 if (hw_tail >= q->n_bd) {
3806 IPW_ERROR
3807 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
3808 hw_tail, q->n_bd);
3809 goto done;
3810 }
3811 for (; q->last_used != hw_tail;
3812 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3813 ipw_queue_tx_free_tfd(priv, txq);
3814 priv->tx_packets++;
3815 }
3816 done:
3817 if (ipw_queue_space(q) > q->low_mark && qindex >= 0) {
3818 __maybe_wake_tx(priv);
3819 }
3820 used = q->first_empty - q->last_used;
3821 if (used < 0)
3822 used += q->n_bd;
3823
3824 return used;
3825 }
3826
3827 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
3828 int len, int sync)
3829 {
3830 struct clx2_tx_queue *txq = &priv->txq_cmd;
3831 struct clx2_queue *q = &txq->q;
3832 struct tfd_frame *tfd;
3833
3834 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
3835 IPW_ERROR("No space for Tx\n");
3836 return -EBUSY;
3837 }
3838
3839 tfd = &txq->bd[q->first_empty];
3840 txq->txb[q->first_empty] = NULL;
3841
3842 memset(tfd, 0, sizeof(*tfd));
3843 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
3844 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
3845 priv->hcmd_seq++;
3846 tfd->u.cmd.index = hcmd;
3847 tfd->u.cmd.length = len;
3848 memcpy(tfd->u.cmd.payload, buf, len);
3849 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
3850 ipw_write32(priv, q->reg_w, q->first_empty);
3851 _ipw_read32(priv, 0x90);
3852
3853 return 0;
3854 }
3855
3856 /*
3857 * Rx theory of operation
3858 *
3859 * The host allocates 32 DMA target addresses and passes the host address
3860 * to the firmware at register CX2_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
3861 * 0 to 31
3862 *
3863 * Rx Queue Indexes
3864 * The host/firmware share two index registers for managing the Rx buffers.
3865 *
3866 * The READ index maps to the first position that the firmware may be writing
3867 * to -- the driver can read up to (but not including) this position and get
3868 * good data.
3869 * The READ index is managed by the firmware once the card is enabled.
3870 *
3871 * The WRITE index maps to the last position the driver has read from -- the
3872 * position preceding WRITE is the last slot the firmware can place a packet.
3873 *
3874 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
3875 * WRITE = READ.
3876 *
3877 * During initialization the host sets up the READ queue position to the first
3878 * INDEX position, and WRITE to the last (READ - 1 wrapped)
3879 *
3880 * When the firmware places a packet in a buffer it will advance the READ index
3881 * and fire the RX interrupt. The driver can then query the READ index and
3882 * process as many packets as possible, moving the WRITE index forward as it
3883 * resets the Rx queue buffers with new memory.
3884 *
3885 * The management in the driver is as follows:
3886 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
3887 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
3888 * to replensish the ipw->rxq->rx_free.
3889 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
3890 * ipw->rxq is replenished and the READ INDEX is updated (updating the
3891 * 'processed' and 'read' driver indexes as well)
3892 * + A received packet is processed and handed to the kernel network stack,
3893 * detached from the ipw->rxq. The driver 'processed' index is updated.
3894 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
3895 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
3896 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
3897 * were enough free buffers and RX_STALLED is set it is cleared.
3898 *
3899 *
3900 * Driver sequence:
3901 *
3902 * ipw_rx_queue_alloc() Allocates rx_free
3903 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
3904 * ipw_rx_queue_restock
3905 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
3906 * queue, updates firmware pointers, and updates
3907 * the WRITE index. If insufficient rx_free buffers
3908 * are available, schedules ipw_rx_queue_replenish
3909 *
3910 * -- enable interrupts --
3911 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
3912 * READ INDEX, detaching the SKB from the pool.
3913 * Moves the packet buffer from queue to rx_used.
3914 * Calls ipw_rx_queue_restock to refill any empty
3915 * slots.
3916 * ...
3917 *
3918 */
3919
3920 /*
3921 * If there are slots in the RX queue that need to be restocked,
3922 * and we have free pre-allocated buffers, fill the ranks as much
3923 * as we can pulling from rx_free.
3924 *
3925 * This moves the 'write' index forward to catch up with 'processed', and
3926 * also updates the memory address in the firmware to reference the new
3927 * target buffer.
3928 */
3929 static void ipw_rx_queue_restock(struct ipw_priv *priv)
3930 {
3931 struct ipw_rx_queue *rxq = priv->rxq;
3932 struct list_head *element;
3933 struct ipw_rx_mem_buffer *rxb;
3934 unsigned long flags;
3935 int write;
3936
3937 spin_lock_irqsave(&rxq->lock, flags);
3938 write = rxq->write;
3939 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
3940 element = rxq->rx_free.next;
3941 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
3942 list_del(element);
3943
3944 ipw_write32(priv, CX2_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
3945 rxb->dma_addr);
3946 rxq->queue[rxq->write] = rxb;
3947 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
3948 rxq->free_count--;
3949 }
3950 spin_unlock_irqrestore(&rxq->lock, flags);
3951
3952 /* If the pre-allocated buffer pool is dropping low, schedule to
3953 * refill it */
3954 if (rxq->free_count <= RX_LOW_WATERMARK)
3955 queue_work(priv->workqueue, &priv->rx_replenish);
3956
3957 /* If we've added more space for the firmware to place data, tell it */
3958 if (write != rxq->write)
3959 ipw_write32(priv, CX2_RX_WRITE_INDEX, rxq->write);
3960 }
3961
3962 /*
3963 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
3964 * Also restock the Rx queue via ipw_rx_queue_restock.
3965 *
3966 * This is called as a scheduled work item (except for during intialization)
3967 */
3968 static void ipw_rx_queue_replenish(void *data)
3969 {
3970 struct ipw_priv *priv = data;
3971 struct ipw_rx_queue *rxq = priv->rxq;
3972 struct list_head *element;
3973 struct ipw_rx_mem_buffer *rxb;
3974 unsigned long flags;
3975
3976 spin_lock_irqsave(&rxq->lock, flags);
3977 while (!list_empty(&rxq->rx_used)) {
3978 element = rxq->rx_used.next;
3979 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
3980 rxb->skb = alloc_skb(CX2_RX_BUF_SIZE, GFP_ATOMIC);
3981 if (!rxb->skb) {
3982 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
3983 priv->net_dev->name);
3984 /* We don't reschedule replenish work here -- we will
3985 * call the restock method and if it still needs
3986 * more buffers it will schedule replenish */
3987 break;
3988 }
3989 list_del(element);
3990
3991 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
3992 rxb->dma_addr =
3993 pci_map_single(priv->pci_dev, rxb->skb->data,
3994 CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3995
3996 list_add_tail(&rxb->list, &rxq->rx_free);
3997 rxq->free_count++;
3998 }
3999 spin_unlock_irqrestore(&rxq->lock, flags);
4000
4001 ipw_rx_queue_restock(priv);
4002 }
4003
4004 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4005 * If an SKB has been detached, the POOL needs to have it's SKB set to NULL
4006 * This free routine walks the list of POOL entries and if SKB is set to
4007 * non NULL it is unmapped and freed
4008 */
4009 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4010 {
4011 int i;
4012
4013 if (!rxq)
4014 return;
4015
4016 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4017 if (rxq->pool[i].skb != NULL) {
4018 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4019 CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4020 dev_kfree_skb(rxq->pool[i].skb);
4021 }
4022 }
4023
4024 kfree(rxq);
4025 }
4026
4027 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
4028 {
4029 struct ipw_rx_queue *rxq;
4030 int i;
4031
4032 rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL);
4033 if (unlikely(!rxq)) {
4034 IPW_ERROR("memory allocation failed\n");
4035 return NULL;
4036 }
4037 memset(rxq, 0, sizeof(*rxq));
4038 spin_lock_init(&rxq->lock);
4039 INIT_LIST_HEAD(&rxq->rx_free);
4040 INIT_LIST_HEAD(&rxq->rx_used);
4041
4042 /* Fill the rx_used queue with _all_ of the Rx buffers */
4043 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
4044 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
4045
4046 /* Set us so that we have processed and used all buffers, but have
4047 * not restocked the Rx queue with fresh buffers */
4048 rxq->read = rxq->write = 0;
4049 rxq->processed = RX_QUEUE_SIZE - 1;
4050 rxq->free_count = 0;
4051
4052 return rxq;
4053 }
4054
4055 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
4056 {
4057 rate &= ~IEEE80211_BASIC_RATE_MASK;
4058 if (ieee_mode == IEEE_A) {
4059 switch (rate) {
4060 case IEEE80211_OFDM_RATE_6MB:
4061 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
4062 1 : 0;
4063 case IEEE80211_OFDM_RATE_9MB:
4064 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
4065 1 : 0;
4066 case IEEE80211_OFDM_RATE_12MB:
4067 return priv->
4068 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4069 case IEEE80211_OFDM_RATE_18MB:
4070 return priv->
4071 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4072 case IEEE80211_OFDM_RATE_24MB:
4073 return priv->
4074 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4075 case IEEE80211_OFDM_RATE_36MB:
4076 return priv->
4077 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4078 case IEEE80211_OFDM_RATE_48MB:
4079 return priv->
4080 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4081 case IEEE80211_OFDM_RATE_54MB:
4082 return priv->
4083 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
4084 default:
4085 return 0;
4086 }
4087 }
4088
4089 /* B and G mixed */
4090 switch (rate) {
4091 case IEEE80211_CCK_RATE_1MB:
4092 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
4093 case IEEE80211_CCK_RATE_2MB:
4094 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
4095 case IEEE80211_CCK_RATE_5MB:
4096 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
4097 case IEEE80211_CCK_RATE_11MB:
4098 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
4099 }
4100
4101 /* If we are limited to B modulations, bail at this point */
4102 if (ieee_mode == IEEE_B)
4103 return 0;
4104
4105 /* G */
4106 switch (rate) {
4107 case IEEE80211_OFDM_RATE_6MB:
4108 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
4109 case IEEE80211_OFDM_RATE_9MB:
4110 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
4111 case IEEE80211_OFDM_RATE_12MB:
4112 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4113 case IEEE80211_OFDM_RATE_18MB:
4114 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4115 case IEEE80211_OFDM_RATE_24MB:
4116 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4117 case IEEE80211_OFDM_RATE_36MB:
4118 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4119 case IEEE80211_OFDM_RATE_48MB:
4120 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4121 case IEEE80211_OFDM_RATE_54MB:
4122 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
4123 }
4124
4125 return 0;
4126 }
4127
4128 static int ipw_compatible_rates(struct ipw_priv *priv,
4129 const struct ieee80211_network *network,
4130 struct ipw_supported_rates *rates)
4131 {
4132 int num_rates, i;
4133
4134 memset(rates, 0, sizeof(*rates));
4135 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
4136 rates->num_rates = 0;
4137 for (i = 0; i < num_rates; i++) {
4138 if (!ipw_is_rate_in_mask
4139 (priv, network->mode, network->rates[i])) {
4140 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
4141 network->rates[i], priv->rates_mask);
4142 continue;
4143 }
4144
4145 rates->supported_rates[rates->num_rates++] = network->rates[i];
4146 }
4147
4148 num_rates =
4149 min(network->rates_ex_len, (u8) (IPW_MAX_RATES - num_rates));
4150 for (i = 0; i < num_rates; i++) {
4151 if (!ipw_is_rate_in_mask
4152 (priv, network->mode, network->rates_ex[i])) {
4153 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
4154 network->rates_ex[i], priv->rates_mask);
4155 continue;
4156 }
4157
4158 rates->supported_rates[rates->num_rates++] =
4159 network->rates_ex[i];
4160 }
4161
4162 return rates->num_rates;
4163 }
4164
4165 static inline void ipw_copy_rates(struct ipw_supported_rates *dest,
4166 const struct ipw_supported_rates *src)
4167 {
4168 u8 i;
4169 for (i = 0; i < src->num_rates; i++)
4170 dest->supported_rates[i] = src->supported_rates[i];
4171 dest->num_rates = src->num_rates;
4172 }
4173
4174 /* TODO: Look at sniffed packets in the air to determine if the basic rate
4175 * mask should ever be used -- right now all callers to add the scan rates are
4176 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
4177 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
4178 u8 modulation, u32 rate_mask)
4179 {
4180 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
4181 IEEE80211_BASIC_RATE_MASK : 0;
4182
4183 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
4184 rates->supported_rates[rates->num_rates++] =
4185 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
4186
4187 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
4188 rates->supported_rates[rates->num_rates++] =
4189 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
4190
4191 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
4192 rates->supported_rates[rates->num_rates++] = basic_mask |
4193 IEEE80211_CCK_RATE_5MB;
4194
4195 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
4196 rates->supported_rates[rates->num_rates++] = basic_mask |
4197 IEEE80211_CCK_RATE_11MB;
4198 }
4199
4200 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
4201 u8 modulation, u32 rate_mask)
4202 {
4203 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
4204 IEEE80211_BASIC_RATE_MASK : 0;
4205
4206 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
4207 rates->supported_rates[rates->num_rates++] = basic_mask |
4208 IEEE80211_OFDM_RATE_6MB;
4209
4210 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
4211 rates->supported_rates[rates->num_rates++] =
4212 IEEE80211_OFDM_RATE_9MB;
4213
4214 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
4215 rates->supported_rates[rates->num_rates++] = basic_mask |
4216 IEEE80211_OFDM_RATE_12MB;
4217
4218 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
4219 rates->supported_rates[rates->num_rates++] =
4220 IEEE80211_OFDM_RATE_18MB;
4221
4222 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
4223 rates->supported_rates[rates->num_rates++] = basic_mask |
4224 IEEE80211_OFDM_RATE_24MB;
4225
4226 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
4227 rates->supported_rates[rates->num_rates++] =
4228 IEEE80211_OFDM_RATE_36MB;
4229
4230 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
4231 rates->supported_rates[rates->num_rates++] =
4232 IEEE80211_OFDM_RATE_48MB;
4233
4234 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
4235 rates->supported_rates[rates->num_rates++] =
4236 IEEE80211_OFDM_RATE_54MB;
4237 }
4238
4239 struct ipw_network_match {
4240 struct ieee80211_network *network;
4241 struct ipw_supported_rates rates;
4242 };
4243
4244 static int ipw_best_network(struct ipw_priv *priv,
4245 struct ipw_network_match *match,
4246 struct ieee80211_network *network, int roaming)
4247 {
4248 struct ipw_supported_rates rates;
4249
4250 /* Verify that this network's capability is compatible with the
4251 * current mode (AdHoc or Infrastructure) */
4252 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
4253 !(network->capability & WLAN_CAPABILITY_ESS)) ||
4254 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
4255 !(network->capability & WLAN_CAPABILITY_IBSS))) {
4256 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
4257 "capability mismatch.\n",
4258 escape_essid(network->ssid, network->ssid_len),
4259 MAC_ARG(network->bssid));
4260 return 0;
4261 }
4262
4263 /* If we do not have an ESSID for this AP, we can not associate with
4264 * it */
4265 if (network->flags & NETWORK_EMPTY_ESSID) {
4266 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4267 "because of hidden ESSID.\n",
4268 escape_essid(network->ssid, network->ssid_len),
4269 MAC_ARG(network->bssid));
4270 return 0;
4271 }
4272
4273 if (unlikely(roaming)) {
4274 /* If we are roaming, then ensure check if this is a valid
4275 * network to try and roam to */
4276 if ((network->ssid_len != match->network->ssid_len) ||
4277 memcmp(network->ssid, match->network->ssid,
4278 network->ssid_len)) {
4279 IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
4280 "because of non-network ESSID.\n",
4281 escape_essid(network->ssid,
4282 network->ssid_len),
4283 MAC_ARG(network->bssid));
4284 return 0;
4285 }
4286 } else {
4287 /* If an ESSID has been configured then compare the broadcast
4288 * ESSID to ours */
4289 if ((priv->config & CFG_STATIC_ESSID) &&
4290 ((network->ssid_len != priv->essid_len) ||
4291 memcmp(network->ssid, priv->essid,
4292 min(network->ssid_len, priv->essid_len)))) {
4293 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
4294 strncpy(escaped,
4295 escape_essid(network->ssid, network->ssid_len),
4296 sizeof(escaped));
4297 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4298 "because of ESSID mismatch: '%s'.\n",
4299 escaped, MAC_ARG(network->bssid),
4300 escape_essid(priv->essid,
4301 priv->essid_len));
4302 return 0;
4303 }
4304 }
4305
4306 /* If the old network rate is better than this one, don't bother
4307 * testing everything else. */
4308 if (match->network && match->network->stats.rssi > network->stats.rssi) {
4309 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
4310 strncpy(escaped,
4311 escape_essid(network->ssid, network->ssid_len),
4312 sizeof(escaped));
4313 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
4314 "'%s (" MAC_FMT ")' has a stronger signal.\n",
4315 escaped, MAC_ARG(network->bssid),
4316 escape_essid(match->network->ssid,
4317 match->network->ssid_len),
4318 MAC_ARG(match->network->bssid));
4319 return 0;
4320 }
4321
4322 /* If this network has already had an association attempt within the
4323 * last 3 seconds, do not try and associate again... */
4324 if (network->last_associate &&
4325 time_after(network->last_associate + (HZ * 5UL), jiffies)) {
4326 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4327 "because of storming (%lu since last "
4328 "assoc attempt).\n",
4329 escape_essid(network->ssid, network->ssid_len),
4330 MAC_ARG(network->bssid),
4331 (jiffies - network->last_associate) / HZ);
4332 return 0;
4333 }
4334
4335 /* Now go through and see if the requested network is valid... */
4336 if (priv->ieee->scan_age != 0 &&
4337 jiffies - network->last_scanned > priv->ieee->scan_age) {
4338 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4339 "because of age: %lums.\n",
4340 escape_essid(network->ssid, network->ssid_len),
4341 MAC_ARG(network->bssid),
4342 (jiffies - network->last_scanned) / (HZ / 100));
4343 return 0;
4344 }
4345
4346 if ((priv->config & CFG_STATIC_CHANNEL) &&
4347 (network->channel != priv->channel)) {
4348 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4349 "because of channel mismatch: %d != %d.\n",
4350 escape_essid(network->ssid, network->ssid_len),
4351 MAC_ARG(network->bssid),
4352 network->channel, priv->channel);
4353 return 0;
4354 }
4355
4356 /* Verify privacy compatability */
4357 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
4358 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
4359 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4360 "because of privacy mismatch: %s != %s.\n",
4361 escape_essid(network->ssid, network->ssid_len),
4362 MAC_ARG(network->bssid),
4363 priv->capability & CAP_PRIVACY_ON ? "on" :
4364 "off",
4365 network->capability &
4366 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
4367 return 0;
4368 }
4369
4370 if ((priv->config & CFG_STATIC_BSSID) &&
4371 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
4372 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4373 "because of BSSID mismatch: " MAC_FMT ".\n",
4374 escape_essid(network->ssid, network->ssid_len),
4375 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
4376 return 0;
4377 }
4378
4379 /* Filter out any incompatible freq / mode combinations */
4380 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
4381 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4382 "because of invalid frequency/mode "
4383 "combination.\n",
4384 escape_essid(network->ssid, network->ssid_len),
4385 MAC_ARG(network->bssid));
4386 return 0;
4387 }
4388
4389 ipw_compatible_rates(priv, network, &rates);
4390 if (rates.num_rates == 0) {
4391 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4392 "because of no compatible rates.\n",
4393 escape_essid(network->ssid, network->ssid_len),
4394 MAC_ARG(network->bssid));
4395 return 0;
4396 }
4397
4398 /* TODO: Perform any further minimal comparititive tests. We do not
4399 * want to put too much policy logic here; intelligent scan selection
4400 * should occur within a generic IEEE 802.11 user space tool. */
4401
4402 /* Set up 'new' AP to this network */
4403 ipw_copy_rates(&match->rates, &rates);
4404 match->network = network;
4405
4406 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
4407 escape_essid(network->ssid, network->ssid_len),
4408 MAC_ARG(network->bssid));
4409
4410 return 1;
4411 }
4412
4413 static void ipw_adhoc_create(struct ipw_priv *priv,
4414 struct ieee80211_network *network)
4415 {
4416 /*
4417 * For the purposes of scanning, we can set our wireless mode
4418 * to trigger scans across combinations of bands, but when it
4419 * comes to creating a new ad-hoc network, we have tell the FW
4420 * exactly which band to use.
4421 *
4422 * We also have the possibility of an invalid channel for the
4423 * chossen band. Attempting to create a new ad-hoc network
4424 * with an invalid channel for wireless mode will trigger a
4425 * FW fatal error.
4426 */
4427 network->mode = is_valid_channel(priv->ieee->mode, priv->channel);
4428 if (network->mode) {
4429 network->channel = priv->channel;
4430 } else {
4431 IPW_WARNING("Overriding invalid channel\n");
4432 if (priv->ieee->mode & IEEE_A) {
4433 network->mode = IEEE_A;
4434 priv->channel = band_a_active_channel[0];
4435 } else if (priv->ieee->mode & IEEE_G) {
4436 network->mode = IEEE_G;
4437 priv->channel = band_b_active_channel[0];
4438 } else {
4439 network->mode = IEEE_B;
4440 priv->channel = band_b_active_channel[0];
4441 }
4442 }
4443
4444 network->channel = priv->channel;
4445 priv->config |= CFG_ADHOC_PERSIST;
4446 ipw_create_bssid(priv, network->bssid);
4447 network->ssid_len = priv->essid_len;
4448 memcpy(network->ssid, priv->essid, priv->essid_len);
4449 memset(&network->stats, 0, sizeof(network->stats));
4450 network->capability = WLAN_CAPABILITY_IBSS;
4451 if (priv->capability & CAP_PRIVACY_ON)
4452 network->capability |= WLAN_CAPABILITY_PRIVACY;
4453 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
4454 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
4455 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
4456 memcpy(network->rates_ex,
4457 &priv->rates.supported_rates[network->rates_len],
4458 network->rates_ex_len);
4459 network->last_scanned = 0;
4460 network->flags = 0;
4461 network->last_associate = 0;
4462 network->time_stamp[0] = 0;
4463 network->time_stamp[1] = 0;
4464 network->beacon_interval = 100; /* Default */
4465 network->listen_interval = 10; /* Default */
4466 network->atim_window = 0; /* Default */
4467 #ifdef CONFIG_IEEE80211_WPA
4468 network->wpa_ie_len = 0;
4469 network->rsn_ie_len = 0;
4470 #endif /* CONFIG_IEEE80211_WPA */
4471 }
4472
4473 static void ipw_send_wep_keys(struct ipw_priv *priv)
4474 {
4475 struct ipw_wep_key *key;
4476 int i;
4477 struct host_cmd cmd = {
4478 .cmd = IPW_CMD_WEP_KEY,
4479 .len = sizeof(*key)
4480 };
4481
4482 key = (struct ipw_wep_key *)&cmd.param;
4483 key->cmd_id = DINO_CMD_WEP_KEY;
4484 key->seq_num = 0;
4485
4486 for (i = 0; i < 4; i++) {
4487 key->key_index = i;
4488 if (!(priv->sec.flags & (1 << i))) {
4489 key->key_size = 0;
4490 } else {
4491 key->key_size = priv->sec.key_sizes[i];
4492 memcpy(key->key, priv->sec.keys[i], key->key_size);
4493 }
4494
4495 if (ipw_send_cmd(priv, &cmd)) {
4496 IPW_ERROR("failed to send WEP_KEY command\n");
4497 return;
4498 }
4499 }
4500 }
4501
4502 static void ipw_adhoc_check(void *data)
4503 {
4504 struct ipw_priv *priv = data;
4505
4506 if (priv->missed_adhoc_beacons++ > priv->missed_beacon_threshold &&
4507 !(priv->config & CFG_ADHOC_PERSIST)) {
4508 IPW_DEBUG_SCAN("Disassociating due to missed beacons\n");
4509 ipw_remove_current_network(priv);
4510 ipw_disassociate(priv);
4511 return;
4512 }
4513
4514 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
4515 priv->assoc_request.beacon_interval);
4516 }
4517
4518 #ifdef CONFIG_IPW_DEBUG
4519 static void ipw_debug_config(struct ipw_priv *priv)
4520 {
4521 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
4522 "[CFG 0x%08X]\n", priv->config);
4523 if (priv->config & CFG_STATIC_CHANNEL)
4524 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
4525 else
4526 IPW_DEBUG_INFO("Channel unlocked.\n");
4527 if (priv->config & CFG_STATIC_ESSID)
4528 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
4529 escape_essid(priv->essid, priv->essid_len));
4530 else
4531 IPW_DEBUG_INFO("ESSID unlocked.\n");
4532 if (priv->config & CFG_STATIC_BSSID)
4533 IPW_DEBUG_INFO("BSSID locked to %d\n", priv->channel);
4534 else
4535 IPW_DEBUG_INFO("BSSID unlocked.\n");
4536 if (priv->capability & CAP_PRIVACY_ON)
4537 IPW_DEBUG_INFO("PRIVACY on\n");
4538 else
4539 IPW_DEBUG_INFO("PRIVACY off\n");
4540 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
4541 }
4542 #else
4543 #define ipw_debug_config(x) do {} while (0)
4544 #endif
4545
4546 static inline void ipw_set_fixed_rate(struct ipw_priv *priv,
4547 struct ieee80211_network *network)
4548 {
4549 /* TODO: Verify that this works... */
4550 struct ipw_fixed_rate fr = {
4551 .tx_rates = priv->rates_mask
4552 };
4553 u32 reg;
4554 u16 mask = 0;
4555
4556 /* Identify 'current FW band' and match it with the fixed
4557 * Tx rates */
4558
4559 switch (priv->ieee->freq_band) {
4560 case IEEE80211_52GHZ_BAND: /* A only */
4561 /* IEEE_A */
4562 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
4563 /* Invalid fixed rate mask */
4564 fr.tx_rates = 0;
4565 break;
4566 }
4567
4568 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
4569 break;
4570
4571 default: /* 2.4Ghz or Mixed */
4572 /* IEEE_B */
4573 if (network->mode == IEEE_B) {
4574 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
4575 /* Invalid fixed rate mask */
4576 fr.tx_rates = 0;
4577 }
4578 break;
4579 }
4580
4581 /* IEEE_G */
4582 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
4583 IEEE80211_OFDM_RATES_MASK)) {
4584 /* Invalid fixed rate mask */
4585 fr.tx_rates = 0;
4586 break;
4587 }
4588
4589 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
4590 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
4591 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
4592 }
4593
4594 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
4595 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
4596 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
4597 }
4598
4599 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
4600 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
4601 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
4602 }
4603
4604 fr.tx_rates |= mask;
4605 break;
4606 }
4607
4608 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
4609 ipw_write_reg32(priv, reg, *(u32 *) & fr);
4610 }
4611
4612 static int ipw_associate_network(struct ipw_priv *priv,
4613 struct ieee80211_network *network,
4614 struct ipw_supported_rates *rates, int roaming)
4615 {
4616 int err;
4617
4618 if (priv->config & CFG_FIXED_RATE)
4619 ipw_set_fixed_rate(priv, network);
4620
4621 if (!(priv->config & CFG_STATIC_ESSID)) {
4622 priv->essid_len = min(network->ssid_len,
4623 (u8) IW_ESSID_MAX_SIZE);
4624 memcpy(priv->essid, network->ssid, priv->essid_len);
4625 }
4626
4627 network->last_associate = jiffies;
4628
4629 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
4630 priv->assoc_request.channel = network->channel;
4631 if ((priv->capability & CAP_PRIVACY_ON) &&
4632 (priv->capability & CAP_SHARED_KEY)) {
4633 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
4634 priv->assoc_request.auth_key = priv->sec.active_key;
4635 } else {
4636 priv->assoc_request.auth_type = AUTH_OPEN;
4637 priv->assoc_request.auth_key = 0;
4638 }
4639
4640 if (priv->capability & CAP_PRIVACY_ON)
4641 ipw_send_wep_keys(priv);
4642
4643 /*
4644 * It is valid for our ieee device to support multiple modes, but
4645 * when it comes to associating to a given network we have to choose
4646 * just one mode.
4647 */
4648 if (network->mode & priv->ieee->mode & IEEE_A)
4649 priv->assoc_request.ieee_mode = IPW_A_MODE;
4650 else if (network->mode & priv->ieee->mode & IEEE_G)
4651 priv->assoc_request.ieee_mode = IPW_G_MODE;
4652 else if (network->mode & priv->ieee->mode & IEEE_B)
4653 priv->assoc_request.ieee_mode = IPW_B_MODE;
4654
4655 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
4656 "802.11%c [%d], enc=%s%s%s%c%c\n",
4657 roaming ? "Rea" : "A",
4658 escape_essid(priv->essid, priv->essid_len),
4659 network->channel,
4660 ipw_modes[priv->assoc_request.ieee_mode],
4661 rates->num_rates,
4662 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
4663 priv->capability & CAP_PRIVACY_ON ?
4664 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
4665 "(open)") : "",
4666 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
4667 priv->capability & CAP_PRIVACY_ON ?
4668 '1' + priv->sec.active_key : '.',
4669 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
4670
4671 priv->assoc_request.beacon_interval = network->beacon_interval;
4672 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
4673 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
4674 priv->assoc_request.assoc_type = HC_IBSS_START;
4675 priv->assoc_request.assoc_tsf_msw = 0;
4676 priv->assoc_request.assoc_tsf_lsw = 0;
4677 } else {
4678 if (unlikely(roaming))
4679 priv->assoc_request.assoc_type = HC_REASSOCIATE;
4680 else
4681 priv->assoc_request.assoc_type = HC_ASSOCIATE;
4682 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
4683 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
4684 }
4685
4686 memcpy(&priv->assoc_request.bssid, network->bssid, ETH_ALEN);
4687
4688 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
4689 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
4690 priv->assoc_request.atim_window = network->atim_window;
4691 } else {
4692 memcpy(&priv->assoc_request.dest, network->bssid, ETH_ALEN);
4693 priv->assoc_request.atim_window = 0;
4694 }
4695
4696 priv->assoc_request.capability = network->capability;
4697 priv->assoc_request.listen_interval = network->listen_interval;
4698
4699 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
4700 if (err) {
4701 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
4702 return err;
4703 }
4704
4705 rates->ieee_mode = priv->assoc_request.ieee_mode;
4706 rates->purpose = IPW_RATE_CONNECT;
4707 ipw_send_supported_rates(priv, rates);
4708
4709 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
4710 priv->sys_config.dot11g_auto_detection = 1;
4711 else
4712 priv->sys_config.dot11g_auto_detection = 0;
4713 err = ipw_send_system_config(priv, &priv->sys_config);
4714 if (err) {
4715 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
4716 return err;
4717 }
4718
4719 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
4720 err = ipw_set_sensitivity(priv, network->stats.rssi);
4721 if (err) {
4722 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
4723 return err;
4724 }
4725
4726 /*
4727 * If preemption is enabled, it is possible for the association
4728 * to complete before we return from ipw_send_associate. Therefore
4729 * we have to be sure and update our priviate data first.
4730 */
4731 priv->channel = network->channel;
4732 memcpy(priv->bssid, network->bssid, ETH_ALEN);
4733 priv->status |= STATUS_ASSOCIATING;
4734 priv->status &= ~STATUS_SECURITY_UPDATED;
4735
4736 priv->assoc_network = network;
4737
4738 err = ipw_send_associate(priv, &priv->assoc_request);
4739 if (err) {
4740 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
4741 return err;
4742 }
4743
4744 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
4745 escape_essid(priv->essid, priv->essid_len),
4746 MAC_ARG(priv->bssid));
4747
4748 return 0;
4749 }
4750
4751 static void ipw_roam(void *data)
4752 {
4753 struct ipw_priv *priv = data;
4754 struct ieee80211_network *network = NULL;
4755 struct ipw_network_match match = {
4756 .network = priv->assoc_network
4757 };
4758
4759 /* The roaming process is as follows:
4760 *
4761 * 1. Missed beacon threshold triggers the roaming process by
4762 * setting the status ROAM bit and requesting a scan.
4763 * 2. When the scan completes, it schedules the ROAM work
4764 * 3. The ROAM work looks at all of the known networks for one that
4765 * is a better network than the currently associated. If none
4766 * found, the ROAM process is over (ROAM bit cleared)
4767 * 4. If a better network is found, a disassociation request is
4768 * sent.
4769 * 5. When the disassociation completes, the roam work is again
4770 * scheduled. The second time through, the driver is no longer
4771 * associated, and the newly selected network is sent an
4772 * association request.
4773 * 6. At this point ,the roaming process is complete and the ROAM
4774 * status bit is cleared.
4775 */
4776
4777 /* If we are no longer associated, and the roaming bit is no longer
4778 * set, then we are not actively roaming, so just return */
4779 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
4780 return;
4781
4782 if (priv->status & STATUS_ASSOCIATED) {
4783 /* First pass through ROAM process -- look for a better
4784 * network */
4785 u8 rssi = priv->assoc_network->stats.rssi;
4786 priv->assoc_network->stats.rssi = -128;
4787 list_for_each_entry(network, &priv->ieee->network_list, list) {
4788 if (network != priv->assoc_network)
4789 ipw_best_network(priv, &match, network, 1);
4790 }
4791 priv->assoc_network->stats.rssi = rssi;
4792
4793 if (match.network == priv->assoc_network) {
4794 IPW_DEBUG_ASSOC("No better APs in this network to "
4795 "roam to.\n");
4796 priv->status &= ~STATUS_ROAMING;
4797 ipw_debug_config(priv);
4798 return;
4799 }
4800
4801 ipw_send_disassociate(priv, 1);
4802 priv->assoc_network = match.network;
4803
4804 return;
4805 }
4806
4807 /* Second pass through ROAM process -- request association */
4808 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
4809 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
4810 priv->status &= ~STATUS_ROAMING;
4811 }
4812
4813 static void ipw_associate(void *data)
4814 {
4815 struct ipw_priv *priv = data;
4816
4817 struct ieee80211_network *network = NULL;
4818 struct ipw_network_match match = {
4819 .network = NULL
4820 };
4821 struct ipw_supported_rates *rates;
4822 struct list_head *element;
4823
4824 if (!(priv->config & CFG_ASSOCIATE) &&
4825 !(priv->config & (CFG_STATIC_ESSID |
4826 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
4827 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
4828 return;
4829 }
4830
4831 list_for_each_entry(network, &priv->ieee->network_list, list)
4832 ipw_best_network(priv, &match, network, 0);
4833
4834 network = match.network;
4835 rates = &match.rates;
4836
4837 if (network == NULL &&
4838 priv->ieee->iw_mode == IW_MODE_ADHOC &&
4839 priv->config & CFG_ADHOC_CREATE &&
4840 priv->config & CFG_STATIC_ESSID &&
4841 !list_empty(&priv->ieee->network_free_list)) {
4842 element = priv->ieee->network_free_list.next;
4843 network = list_entry(element, struct ieee80211_network, list);
4844 ipw_adhoc_create(priv, network);
4845 rates = &priv->rates;
4846 list_del(element);
4847 list_add_tail(&network->list, &priv->ieee->network_list);
4848 }
4849
4850 /* If we reached the end of the list, then we don't have any valid
4851 * matching APs */
4852 if (!network) {
4853 ipw_debug_config(priv);
4854
4855 queue_delayed_work(priv->workqueue, &priv->request_scan,
4856 SCAN_INTERVAL);
4857
4858 return;
4859 }
4860
4861 ipw_associate_network(priv, network, rates, 0);
4862 }
4863
4864 static inline void ipw_handle_data_packet(struct ipw_priv *priv,
4865 struct ipw_rx_mem_buffer *rxb,
4866 struct ieee80211_rx_stats *stats)
4867 {
4868 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
4869
4870 /* We received data from the HW, so stop the watchdog */
4871 priv->net_dev->trans_start = jiffies;
4872
4873 /* We only process data packets if the
4874 * interface is open */
4875 if (unlikely((pkt->u.frame.length + IPW_RX_FRAME_SIZE) >
4876 skb_tailroom(rxb->skb))) {
4877 priv->ieee->stats.rx_errors++;
4878 priv->wstats.discard.misc++;
4879 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
4880 return;
4881 } else if (unlikely(!netif_running(priv->net_dev))) {
4882 priv->ieee->stats.rx_dropped++;
4883 priv->wstats.discard.misc++;
4884 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
4885 return;
4886 }
4887
4888 /* Advance skb->data to the start of the actual payload */
4889 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
4890
4891 /* Set the size of the skb to the size of the frame */
4892 skb_put(rxb->skb, pkt->u.frame.length);
4893
4894 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
4895
4896 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
4897 priv->ieee->stats.rx_errors++;
4898 else /* ieee80211_rx succeeded, so it now owns the SKB */
4899 rxb->skb = NULL;
4900 }
4901
4902 /*
4903 * Main entry function for recieving a packet with 80211 headers. This
4904 * should be called when ever the FW has notified us that there is a new
4905 * skb in the recieve queue.
4906 */
4907 static void ipw_rx(struct ipw_priv *priv)
4908 {
4909 struct ipw_rx_mem_buffer *rxb;
4910 struct ipw_rx_packet *pkt;
4911 struct ieee80211_hdr_4addr *header;
4912 u32 r, w, i;
4913 u8 network_packet;
4914
4915 r = ipw_read32(priv, CX2_RX_READ_INDEX);
4916 w = ipw_read32(priv, CX2_RX_WRITE_INDEX);
4917 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
4918
4919 while (i != r) {
4920 rxb = priv->rxq->queue[i];
4921 #ifdef CONFIG_IPW_DEBUG
4922 if (unlikely(rxb == NULL)) {
4923 printk(KERN_CRIT "Queue not allocated!\n");
4924 break;
4925 }
4926 #endif
4927 priv->rxq->queue[i] = NULL;
4928
4929 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
4930 CX2_RX_BUF_SIZE,
4931 PCI_DMA_FROMDEVICE);
4932
4933 pkt = (struct ipw_rx_packet *)rxb->skb->data;
4934 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
4935 pkt->header.message_type,
4936 pkt->header.rx_seq_num, pkt->header.control_bits);
4937
4938 switch (pkt->header.message_type) {
4939 case RX_FRAME_TYPE: /* 802.11 frame */ {
4940 struct ieee80211_rx_stats stats = {
4941 .rssi = pkt->u.frame.rssi_dbm -
4942 IPW_RSSI_TO_DBM,
4943 .signal = pkt->u.frame.signal,
4944 .rate = pkt->u.frame.rate,
4945 .mac_time = jiffies,
4946 .received_channel =
4947 pkt->u.frame.received_channel,
4948 .freq =
4949 (pkt->u.frame.
4950 control & (1 << 0)) ?
4951 IEEE80211_24GHZ_BAND :
4952 IEEE80211_52GHZ_BAND,
4953 .len = pkt->u.frame.length,
4954 };
4955
4956 if (stats.rssi != 0)
4957 stats.mask |= IEEE80211_STATMASK_RSSI;
4958 if (stats.signal != 0)
4959 stats.mask |= IEEE80211_STATMASK_SIGNAL;
4960 if (stats.rate != 0)
4961 stats.mask |= IEEE80211_STATMASK_RATE;
4962
4963 priv->rx_packets++;
4964
4965 #ifdef CONFIG_IPW_PROMISC
4966 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4967 ipw_handle_data_packet(priv, rxb,
4968 &stats);
4969 break;
4970 }
4971 #endif
4972
4973 header =
4974 (struct ieee80211_hdr_4addr *)(rxb->skb->
4975 data +
4976 IPW_RX_FRAME_SIZE);
4977 /* TODO: Check Ad-Hoc dest/source and make sure
4978 * that we are actually parsing these packets
4979 * correctly -- we should probably use the
4980 * frame control of the packet and disregard
4981 * the current iw_mode */
4982 switch (priv->ieee->iw_mode) {
4983 case IW_MODE_ADHOC:
4984 network_packet =
4985 !memcmp(header->addr1,
4986 priv->net_dev->dev_addr,
4987 ETH_ALEN) ||
4988 !memcmp(header->addr3,
4989 priv->bssid, ETH_ALEN) ||
4990 is_broadcast_ether_addr(header->
4991 addr1)
4992 || is_multicast_ether_addr(header->
4993 addr1);
4994 break;
4995
4996 case IW_MODE_INFRA:
4997 default:
4998 network_packet =
4999 !memcmp(header->addr3,
5000 priv->bssid, ETH_ALEN) ||
5001 !memcmp(header->addr1,
5002 priv->net_dev->dev_addr,
5003 ETH_ALEN) ||
5004 is_broadcast_ether_addr(header->
5005 addr1)
5006 || is_multicast_ether_addr(header->
5007 addr1);
5008 break;
5009 }
5010
5011 if (network_packet && priv->assoc_network) {
5012 priv->assoc_network->stats.rssi =
5013 stats.rssi;
5014 average_add(&priv->average_rssi,
5015 stats.rssi);
5016 priv->last_rx_rssi = stats.rssi;
5017 }
5018
5019 IPW_DEBUG_RX("Frame: len=%u\n",
5020 pkt->u.frame.length);
5021
5022 if (pkt->u.frame.length < frame_hdr_len(header)) {
5023 IPW_DEBUG_DROP
5024 ("Received packet is too small. "
5025 "Dropping.\n");
5026 priv->ieee->stats.rx_errors++;
5027 priv->wstats.discard.misc++;
5028 break;
5029 }
5030
5031 switch (WLAN_FC_GET_TYPE(header->frame_ctl)) {
5032 case IEEE80211_FTYPE_MGMT:
5033 ieee80211_rx_mgt(priv->ieee, header,
5034 &stats);
5035 if (priv->ieee->iw_mode == IW_MODE_ADHOC
5036 &&
5037 ((WLAN_FC_GET_STYPE
5038 (header->frame_ctl) ==
5039 IEEE80211_STYPE_PROBE_RESP)
5040 ||
5041 (WLAN_FC_GET_STYPE
5042 (header->frame_ctl) ==
5043 IEEE80211_STYPE_BEACON))
5044 && !memcmp(header->addr3,
5045 priv->bssid, ETH_ALEN))
5046 ipw_add_station(priv,
5047 header->addr2);
5048 break;
5049
5050 case IEEE80211_FTYPE_CTL:
5051 break;
5052
5053 case IEEE80211_FTYPE_DATA:
5054 if (network_packet)
5055 ipw_handle_data_packet(priv,
5056 rxb,
5057 &stats);
5058 else
5059 IPW_DEBUG_DROP("Dropping: "
5060 MAC_FMT ", "
5061 MAC_FMT ", "
5062 MAC_FMT "\n",
5063 MAC_ARG(header->
5064 addr1),
5065 MAC_ARG(header->
5066 addr2),
5067 MAC_ARG(header->
5068 addr3));
5069 break;
5070 }
5071 break;
5072 }
5073
5074 case RX_HOST_NOTIFICATION_TYPE:{
5075 IPW_DEBUG_RX
5076 ("Notification: subtype=%02X flags=%02X size=%d\n",
5077 pkt->u.notification.subtype,
5078 pkt->u.notification.flags,
5079 pkt->u.notification.size);
5080 ipw_rx_notification(priv, &pkt->u.notification);
5081 break;
5082 }
5083
5084 default:
5085 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
5086 pkt->header.message_type);
5087 break;
5088 }
5089
5090 /* For now we just don't re-use anything. We can tweak this
5091 * later to try and re-use notification packets and SKBs that
5092 * fail to Rx correctly */
5093 if (rxb->skb != NULL) {
5094 dev_kfree_skb_any(rxb->skb);
5095 rxb->skb = NULL;
5096 }
5097
5098 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
5099 CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5100 list_add_tail(&rxb->list, &priv->rxq->rx_used);
5101
5102 i = (i + 1) % RX_QUEUE_SIZE;
5103 }
5104
5105 /* Backtrack one entry */
5106 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
5107
5108 ipw_rx_queue_restock(priv);
5109 }
5110
5111 static void ipw_abort_scan(struct ipw_priv *priv)
5112 {
5113 int err;
5114
5115 if (priv->status & STATUS_SCAN_ABORTING) {
5116 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5117 return;
5118 }
5119 priv->status |= STATUS_SCAN_ABORTING;
5120
5121 err = ipw_send_scan_abort(priv);
5122 if (err)
5123 IPW_DEBUG_HC("Request to abort scan failed.\n");
5124 }
5125
5126 static int ipw_request_scan(struct ipw_priv *priv)
5127 {
5128 struct ipw_scan_request_ext scan;
5129 int channel_index = 0;
5130 int i, err, scan_type;
5131
5132 if (priv->status & STATUS_EXIT_PENDING) {
5133 IPW_DEBUG_SCAN("Aborting scan due to device shutdown\n");
5134 priv->status |= STATUS_SCAN_PENDING;
5135 return 0;
5136 }
5137
5138 if (priv->status & STATUS_SCANNING) {
5139 IPW_DEBUG_HC("Concurrent scan requested. Aborting first.\n");
5140 priv->status |= STATUS_SCAN_PENDING;
5141 ipw_abort_scan(priv);
5142 return 0;
5143 }
5144
5145 if (priv->status & STATUS_SCAN_ABORTING) {
5146 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
5147 priv->status |= STATUS_SCAN_PENDING;
5148 return 0;
5149 }
5150
5151 if (priv->status & STATUS_RF_KILL_MASK) {
5152 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
5153 priv->status |= STATUS_SCAN_PENDING;
5154 return 0;
5155 }
5156
5157 memset(&scan, 0, sizeof(scan));
5158
5159 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 20;
5160 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = 20;
5161 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 20;
5162
5163 scan.full_scan_index = ieee80211_get_scans(priv->ieee);
5164 /* If we are roaming, then make this a directed scan for the current
5165 * network. Otherwise, ensure that every other scan is a fast
5166 * channel hop scan */
5167 if ((priv->status & STATUS_ROAMING)
5168 || (!(priv->status & STATUS_ASSOCIATED)
5169 && (priv->config & CFG_STATIC_ESSID)
5170 && (scan.full_scan_index % 2))) {
5171 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
5172 if (err) {
5173 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
5174 return err;
5175 }
5176
5177 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
5178 } else {
5179 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
5180 }
5181
5182 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5183 int start = channel_index;
5184 for (i = 0; i < MAX_A_CHANNELS; i++) {
5185 if (band_a_active_channel[i] == 0)
5186 break;
5187 if ((priv->status & STATUS_ASSOCIATED) &&
5188 band_a_active_channel[i] == priv->channel)
5189 continue;
5190 channel_index++;
5191 scan.channels_list[channel_index] =
5192 band_a_active_channel[i];
5193 ipw_set_scan_type(&scan, channel_index, scan_type);
5194 }
5195
5196 if (start != channel_index) {
5197 scan.channels_list[start] = (u8) (IPW_A_MODE << 6) |
5198 (channel_index - start);
5199 channel_index++;
5200 }
5201 }
5202
5203 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5204 int start = channel_index;
5205 for (i = 0; i < MAX_B_CHANNELS; i++) {
5206 if (band_b_active_channel[i] == 0)
5207 break;
5208 if ((priv->status & STATUS_ASSOCIATED) &&
5209 band_b_active_channel[i] == priv->channel)
5210 continue;
5211 channel_index++;
5212 scan.channels_list[channel_index] =
5213 band_b_active_channel[i];
5214 ipw_set_scan_type(&scan, channel_index, scan_type);
5215 }
5216
5217 if (start != channel_index) {
5218 scan.channels_list[start] = (u8) (IPW_B_MODE << 6) |
5219 (channel_index - start);
5220 }
5221 }
5222
5223 err = ipw_send_scan_request_ext(priv, &scan);
5224 if (err) {
5225 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
5226 return -EIO;
5227 }
5228
5229 priv->status |= STATUS_SCANNING;
5230 priv->status &= ~STATUS_SCAN_PENDING;
5231
5232 return 0;
5233 }
5234
5235 /*
5236 * This file defines the Wireless Extension handlers. It does not
5237 * define any methods of hardware manipulation and relies on the
5238 * functions defined in ipw_main to provide the HW interaction.
5239 *
5240 * The exception to this is the use of the ipw_get_ordinal()
5241 * function used to poll the hardware vs. making unecessary calls.
5242 *
5243 */
5244
5245 static int ipw_wx_get_name(struct net_device *dev,
5246 struct iw_request_info *info,
5247 union iwreq_data *wrqu, char *extra)
5248 {
5249 struct ipw_priv *priv = ieee80211_priv(dev);
5250 if (!(priv->status & STATUS_ASSOCIATED))
5251 strcpy(wrqu->name, "unassociated");
5252 else
5253 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
5254 ipw_modes[priv->assoc_request.ieee_mode]);
5255 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
5256 return 0;
5257 }
5258
5259 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
5260 {
5261 if (channel == 0) {
5262 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
5263 priv->config &= ~CFG_STATIC_CHANNEL;
5264 if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
5265 STATUS_ASSOCIATING))) {
5266 IPW_DEBUG_ASSOC("Attempting to associate with new "
5267 "parameters.\n");
5268 ipw_associate(priv);
5269 }
5270
5271 return 0;
5272 }
5273
5274 priv->config |= CFG_STATIC_CHANNEL;
5275
5276 if (priv->channel == channel) {
5277 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
5278 channel);
5279 return 0;
5280 }
5281
5282 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
5283 priv->channel = channel;
5284
5285 /* If we are currently associated, or trying to associate
5286 * then see if this is a new channel (causing us to disassociate) */
5287 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5288 IPW_DEBUG_ASSOC("Disassociating due to channel change.\n");
5289 ipw_disassociate(priv);
5290 } else {
5291 ipw_associate(priv);
5292 }
5293
5294 return 0;
5295 }
5296
5297 static int ipw_wx_set_freq(struct net_device *dev,
5298 struct iw_request_info *info,
5299 union iwreq_data *wrqu, char *extra)
5300 {
5301 struct ipw_priv *priv = ieee80211_priv(dev);
5302 struct iw_freq *fwrq = &wrqu->freq;
5303
5304 /* if setting by freq convert to channel */
5305 if (fwrq->e == 1) {
5306 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
5307 int f = fwrq->m / 100000;
5308 int c = 0;
5309
5310 while ((c < REG_MAX_CHANNEL) &&
5311 (f != ipw_frequencies[c]))
5312 c++;
5313
5314 /* hack to fall through */
5315 fwrq->e = 0;
5316 fwrq->m = c + 1;
5317 }
5318 }
5319
5320 if (fwrq->e > 0 || fwrq->m > 1000)
5321 return -EOPNOTSUPP;
5322
5323 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
5324 return ipw_set_channel(priv, (u8) fwrq->m);
5325 }
5326
5327 static int ipw_wx_get_freq(struct net_device *dev,
5328 struct iw_request_info *info,
5329 union iwreq_data *wrqu, char *extra)
5330 {
5331 struct ipw_priv *priv = ieee80211_priv(dev);
5332
5333 wrqu->freq.e = 0;
5334
5335 /* If we are associated, trying to associate, or have a statically
5336 * configured CHANNEL then return that; otherwise return ANY */
5337 if (priv->config & CFG_STATIC_CHANNEL ||
5338 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
5339 wrqu->freq.m = priv->channel;
5340 else
5341 wrqu->freq.m = 0;
5342
5343 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
5344 return 0;
5345 }
5346
5347 static int ipw_wx_set_mode(struct net_device *dev,
5348 struct iw_request_info *info,
5349 union iwreq_data *wrqu, char *extra)
5350 {
5351 struct ipw_priv *priv = ieee80211_priv(dev);
5352 int err = 0;
5353
5354 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
5355
5356 if (wrqu->mode == priv->ieee->iw_mode)
5357 return 0;
5358
5359 switch (wrqu->mode) {
5360 #ifdef CONFIG_IPW_PROMISC
5361 case IW_MODE_MONITOR:
5362 #endif
5363 case IW_MODE_ADHOC:
5364 case IW_MODE_INFRA:
5365 break;
5366 case IW_MODE_AUTO:
5367 wrqu->mode = IW_MODE_INFRA;
5368 break;
5369 default:
5370 return -EINVAL;
5371 }
5372
5373 #ifdef CONFIG_IPW_PROMISC
5374 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5375 priv->net_dev->type = ARPHRD_ETHER;
5376
5377 if (wrqu->mode == IW_MODE_MONITOR)
5378 priv->net_dev->type = ARPHRD_IEEE80211;
5379 #endif /* CONFIG_IPW_PROMISC */
5380
5381 #ifdef CONFIG_PM
5382 /* Free the existing firmware and reset the fw_loaded
5383 * flag so ipw_load() will bring in the new firmawre */
5384 if (fw_loaded) {
5385 fw_loaded = 0;
5386 }
5387
5388 release_firmware(bootfw);
5389 release_firmware(ucode);
5390 release_firmware(firmware);
5391 bootfw = ucode = firmware = NULL;
5392 #endif
5393
5394 priv->ieee->iw_mode = wrqu->mode;
5395 ipw_adapter_restart(priv);
5396
5397 return err;
5398 }
5399
5400 static int ipw_wx_get_mode(struct net_device *dev,
5401 struct iw_request_info *info,
5402 union iwreq_data *wrqu, char *extra)
5403 {
5404 struct ipw_priv *priv = ieee80211_priv(dev);
5405
5406 wrqu->mode = priv->ieee->iw_mode;
5407 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
5408
5409 return 0;
5410 }
5411
5412 #define DEFAULT_RTS_THRESHOLD 2304U
5413 #define MIN_RTS_THRESHOLD 1U
5414 #define MAX_RTS_THRESHOLD 2304U
5415 #define DEFAULT_BEACON_INTERVAL 100U
5416 #define DEFAULT_SHORT_RETRY_LIMIT 7U
5417 #define DEFAULT_LONG_RETRY_LIMIT 4U
5418
5419 /* Values are in microsecond */
5420 static const s32 timeout_duration[] = {
5421 350000,
5422 250000,
5423 75000,
5424 37000,
5425 25000,
5426 };
5427
5428 static const s32 period_duration[] = {
5429 400000,
5430 700000,
5431 1000000,
5432 1000000,
5433 1000000
5434 };
5435
5436 static int ipw_wx_get_range(struct net_device *dev,
5437 struct iw_request_info *info,
5438 union iwreq_data *wrqu, char *extra)
5439 {
5440 struct ipw_priv *priv = ieee80211_priv(dev);
5441 struct iw_range *range = (struct iw_range *)extra;
5442 u16 val;
5443 int i;
5444
5445 wrqu->data.length = sizeof(*range);
5446 memset(range, 0, sizeof(*range));
5447
5448 /* 54Mbs == ~27 Mb/s real (802.11g) */
5449 range->throughput = 27 * 1000 * 1000;
5450
5451 range->max_qual.qual = 100;
5452 /* TODO: Find real max RSSI and stick here */
5453 range->max_qual.level = 0;
5454 range->max_qual.noise = 0;
5455 range->max_qual.updated = 7; /* Updated all three */
5456
5457 range->avg_qual.qual = 70;
5458 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
5459 range->avg_qual.level = 0; /* FIXME to real average level */
5460 range->avg_qual.noise = 0;
5461 range->avg_qual.updated = 7; /* Updated all three */
5462
5463 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
5464
5465 for (i = 0; i < range->num_bitrates; i++)
5466 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
5467 500000;
5468
5469 range->max_rts = DEFAULT_RTS_THRESHOLD;
5470 range->min_frag = MIN_FRAG_THRESHOLD;
5471 range->max_frag = MAX_FRAG_THRESHOLD;
5472
5473 range->encoding_size[0] = 5;
5474 range->encoding_size[1] = 13;
5475 range->num_encoding_sizes = 2;
5476 range->max_encoding_tokens = WEP_KEYS;
5477
5478 /* Set the Wireless Extension versions */
5479 range->we_version_compiled = WIRELESS_EXT;
5480 range->we_version_source = 16;
5481
5482 range->num_channels = FREQ_COUNT;
5483
5484 val = 0;
5485 for (i = 0; i < FREQ_COUNT; i++) {
5486 range->freq[val].i = i + 1;
5487 range->freq[val].m = ipw_frequencies[i] * 100000;
5488 range->freq[val].e = 1;
5489 val++;
5490
5491 if (val == IW_MAX_FREQUENCIES)
5492 break;
5493 }
5494 range->num_frequency = val;
5495
5496 IPW_DEBUG_WX("GET Range\n");
5497 return 0;
5498 }
5499
5500 static int ipw_wx_set_wap(struct net_device *dev,
5501 struct iw_request_info *info,
5502 union iwreq_data *wrqu, char *extra)
5503 {
5504 struct ipw_priv *priv = ieee80211_priv(dev);
5505
5506 static const unsigned char any[] = {
5507 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
5508 };
5509 static const unsigned char off[] = {
5510 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
5511 };
5512
5513 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
5514 return -EINVAL;
5515
5516 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
5517 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
5518 /* we disable mandatory BSSID association */
5519 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
5520 priv->config &= ~CFG_STATIC_BSSID;
5521 if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
5522 STATUS_ASSOCIATING))) {
5523 IPW_DEBUG_ASSOC("Attempting to associate with new "
5524 "parameters.\n");
5525 ipw_associate(priv);
5526 }
5527
5528 return 0;
5529 }
5530
5531 priv->config |= CFG_STATIC_BSSID;
5532 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
5533 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
5534 return 0;
5535 }
5536
5537 IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
5538 MAC_ARG(wrqu->ap_addr.sa_data));
5539
5540 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
5541
5542 /* If we are currently associated, or trying to associate
5543 * then see if this is a new BSSID (causing us to disassociate) */
5544 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5545 IPW_DEBUG_ASSOC("Disassociating due to BSSID change.\n");
5546 ipw_disassociate(priv);
5547 } else {
5548 ipw_associate(priv);
5549 }
5550
5551 return 0;
5552 }
5553
5554 static int ipw_wx_get_wap(struct net_device *dev,
5555 struct iw_request_info *info,
5556 union iwreq_data *wrqu, char *extra)
5557 {
5558 struct ipw_priv *priv = ieee80211_priv(dev);
5559 /* If we are associated, trying to associate, or have a statically
5560 * configured BSSID then return that; otherwise return ANY */
5561 if (priv->config & CFG_STATIC_BSSID ||
5562 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5563 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
5564 memcpy(wrqu->ap_addr.sa_data, &priv->bssid, ETH_ALEN);
5565 } else
5566 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
5567
5568 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
5569 MAC_ARG(wrqu->ap_addr.sa_data));
5570 return 0;
5571 }
5572
5573 static int ipw_wx_set_essid(struct net_device *dev,
5574 struct iw_request_info *info,
5575 union iwreq_data *wrqu, char *extra)
5576 {
5577 struct ipw_priv *priv = ieee80211_priv(dev);
5578 char *essid = ""; /* ANY */
5579 int length = 0;
5580
5581 if (wrqu->essid.flags && wrqu->essid.length) {
5582 length = wrqu->essid.length - 1;
5583 essid = extra;
5584 }
5585 if (length == 0) {
5586 IPW_DEBUG_WX("Setting ESSID to ANY\n");
5587 priv->config &= ~CFG_STATIC_ESSID;
5588 if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
5589 STATUS_ASSOCIATING))) {
5590 IPW_DEBUG_ASSOC("Attempting to associate with new "
5591 "parameters.\n");
5592 ipw_associate(priv);
5593 }
5594
5595 return 0;
5596 }
5597
5598 length = min(length, IW_ESSID_MAX_SIZE);
5599
5600 priv->config |= CFG_STATIC_ESSID;
5601
5602 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
5603 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
5604 return 0;
5605 }
5606
5607 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
5608 length);
5609
5610 priv->essid_len = length;
5611 memcpy(priv->essid, essid, priv->essid_len);
5612
5613 /* If we are currently associated, or trying to associate
5614 * then see if this is a new ESSID (causing us to disassociate) */
5615 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5616 IPW_DEBUG_ASSOC("Disassociating due to ESSID change.\n");
5617 ipw_disassociate(priv);
5618 } else {
5619 ipw_associate(priv);
5620 }
5621
5622 return 0;
5623 }
5624
5625 static int ipw_wx_get_essid(struct net_device *dev,
5626 struct iw_request_info *info,
5627 union iwreq_data *wrqu, char *extra)
5628 {
5629 struct ipw_priv *priv = ieee80211_priv(dev);
5630
5631 /* If we are associated, trying to associate, or have a statically
5632 * configured ESSID then return that; otherwise return ANY */
5633 if (priv->config & CFG_STATIC_ESSID ||
5634 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5635 IPW_DEBUG_WX("Getting essid: '%s'\n",
5636 escape_essid(priv->essid, priv->essid_len));
5637 memcpy(extra, priv->essid, priv->essid_len);
5638 wrqu->essid.length = priv->essid_len;
5639 wrqu->essid.flags = 1; /* active */
5640 } else {
5641 IPW_DEBUG_WX("Getting essid: ANY\n");
5642 wrqu->essid.length = 0;
5643 wrqu->essid.flags = 0; /* active */
5644 }
5645
5646 return 0;
5647 }
5648
5649 static int ipw_wx_set_nick(struct net_device *dev,
5650 struct iw_request_info *info,
5651 union iwreq_data *wrqu, char *extra)
5652 {
5653 struct ipw_priv *priv = ieee80211_priv(dev);
5654
5655 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
5656 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
5657 return -E2BIG;
5658
5659 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
5660 memset(priv->nick, 0, sizeof(priv->nick));
5661 memcpy(priv->nick, extra, wrqu->data.length);
5662 IPW_DEBUG_TRACE("<<\n");
5663 return 0;
5664
5665 }
5666
5667 static int ipw_wx_get_nick(struct net_device *dev,
5668 struct iw_request_info *info,
5669 union iwreq_data *wrqu, char *extra)
5670 {
5671 struct ipw_priv *priv = ieee80211_priv(dev);
5672 IPW_DEBUG_WX("Getting nick\n");
5673 wrqu->data.length = strlen(priv->nick) + 1;
5674 memcpy(extra, priv->nick, wrqu->data.length);
5675 wrqu->data.flags = 1; /* active */
5676 return 0;
5677 }
5678
5679 static int ipw_wx_set_rate(struct net_device *dev,
5680 struct iw_request_info *info,
5681 union iwreq_data *wrqu, char *extra)
5682 {
5683 IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
5684 return -EOPNOTSUPP;
5685 }
5686
5687 static int ipw_wx_get_rate(struct net_device *dev,
5688 struct iw_request_info *info,
5689 union iwreq_data *wrqu, char *extra)
5690 {
5691 struct ipw_priv *priv = ieee80211_priv(dev);
5692 wrqu->bitrate.value = priv->last_rate;
5693
5694 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
5695 return 0;
5696 }
5697
5698 static int ipw_wx_set_rts(struct net_device *dev,
5699 struct iw_request_info *info,
5700 union iwreq_data *wrqu, char *extra)
5701 {
5702 struct ipw_priv *priv = ieee80211_priv(dev);
5703
5704 if (wrqu->rts.disabled)
5705 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
5706 else {
5707 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
5708 wrqu->rts.value > MAX_RTS_THRESHOLD)
5709 return -EINVAL;
5710
5711 priv->rts_threshold = wrqu->rts.value;
5712 }
5713
5714 ipw_send_rts_threshold(priv, priv->rts_threshold);
5715 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
5716 return 0;
5717 }
5718
5719 static int ipw_wx_get_rts(struct net_device *dev,
5720 struct iw_request_info *info,
5721 union iwreq_data *wrqu, char *extra)
5722 {
5723 struct ipw_priv *priv = ieee80211_priv(dev);
5724 wrqu->rts.value = priv->rts_threshold;
5725 wrqu->rts.fixed = 0; /* no auto select */
5726 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
5727
5728 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
5729 return 0;
5730 }
5731
5732 static int ipw_wx_set_txpow(struct net_device *dev,
5733 struct iw_request_info *info,
5734 union iwreq_data *wrqu, char *extra)
5735 {
5736 struct ipw_priv *priv = ieee80211_priv(dev);
5737 struct ipw_tx_power tx_power;
5738 int i;
5739
5740 if (ipw_radio_kill_sw(priv, wrqu->power.disabled))
5741 return -EINPROGRESS;
5742
5743 if (wrqu->power.flags != IW_TXPOW_DBM)
5744 return -EINVAL;
5745
5746 if ((wrqu->power.value > 20) || (wrqu->power.value < -12))
5747 return -EINVAL;
5748
5749 priv->tx_power = wrqu->power.value;
5750
5751 memset(&tx_power, 0, sizeof(tx_power));
5752
5753 /* configure device for 'G' band */
5754 tx_power.ieee_mode = IPW_G_MODE;
5755 tx_power.num_channels = 11;
5756 for (i = 0; i < 11; i++) {
5757 tx_power.channels_tx_power[i].channel_number = i + 1;
5758 tx_power.channels_tx_power[i].tx_power = priv->tx_power;
5759 }
5760 if (ipw_send_tx_power(priv, &tx_power))
5761 goto error;
5762
5763 /* configure device to also handle 'B' band */
5764 tx_power.ieee_mode = IPW_B_MODE;
5765 if (ipw_send_tx_power(priv, &tx_power))
5766 goto error;
5767
5768 return 0;
5769
5770 error:
5771 return -EIO;
5772 }
5773
5774 static int ipw_wx_get_txpow(struct net_device *dev,
5775 struct iw_request_info *info,
5776 union iwreq_data *wrqu, char *extra)
5777 {
5778 struct ipw_priv *priv = ieee80211_priv(dev);
5779
5780 wrqu->power.value = priv->tx_power;
5781 wrqu->power.fixed = 1;
5782 wrqu->power.flags = IW_TXPOW_DBM;
5783 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
5784
5785 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
5786 wrqu->power.disabled ? "ON" : "OFF", wrqu->power.value);
5787
5788 return 0;
5789 }
5790
5791 static int ipw_wx_set_frag(struct net_device *dev,
5792 struct iw_request_info *info,
5793 union iwreq_data *wrqu, char *extra)
5794 {
5795 struct ipw_priv *priv = ieee80211_priv(dev);
5796
5797 if (wrqu->frag.disabled)
5798 priv->ieee->fts = DEFAULT_FTS;
5799 else {
5800 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
5801 wrqu->frag.value > MAX_FRAG_THRESHOLD)
5802 return -EINVAL;
5803
5804 priv->ieee->fts = wrqu->frag.value & ~0x1;
5805 }
5806
5807 ipw_send_frag_threshold(priv, wrqu->frag.value);
5808 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
5809 return 0;
5810 }
5811
5812 static int ipw_wx_get_frag(struct net_device *dev,
5813 struct iw_request_info *info,
5814 union iwreq_data *wrqu, char *extra)
5815 {
5816 struct ipw_priv *priv = ieee80211_priv(dev);
5817 wrqu->frag.value = priv->ieee->fts;
5818 wrqu->frag.fixed = 0; /* no auto select */
5819 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
5820
5821 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
5822
5823 return 0;
5824 }
5825
5826 static int ipw_wx_set_retry(struct net_device *dev,
5827 struct iw_request_info *info,
5828 union iwreq_data *wrqu, char *extra)
5829 {
5830 IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
5831 return -EOPNOTSUPP;
5832 }
5833
5834 static int ipw_wx_get_retry(struct net_device *dev,
5835 struct iw_request_info *info,
5836 union iwreq_data *wrqu, char *extra)
5837 {
5838 IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
5839 return -EOPNOTSUPP;
5840 }
5841
5842 static int ipw_wx_set_scan(struct net_device *dev,
5843 struct iw_request_info *info,
5844 union iwreq_data *wrqu, char *extra)
5845 {
5846 struct ipw_priv *priv = ieee80211_priv(dev);
5847 IPW_DEBUG_WX("Start scan\n");
5848 if (ipw_request_scan(priv))
5849 return -EIO;
5850 return 0;
5851 }
5852
5853 static int ipw_wx_get_scan(struct net_device *dev,
5854 struct iw_request_info *info,
5855 union iwreq_data *wrqu, char *extra)
5856 {
5857 struct ipw_priv *priv = ieee80211_priv(dev);
5858 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
5859 }
5860
5861 static int ipw_wx_set_encode(struct net_device *dev,
5862 struct iw_request_info *info,
5863 union iwreq_data *wrqu, char *key)
5864 {
5865 struct ipw_priv *priv = ieee80211_priv(dev);
5866 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
5867 }
5868
5869 static int ipw_wx_get_encode(struct net_device *dev,
5870 struct iw_request_info *info,
5871 union iwreq_data *wrqu, char *key)
5872 {
5873 struct ipw_priv *priv = ieee80211_priv(dev);
5874 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
5875 }
5876
5877 static int ipw_wx_set_power(struct net_device *dev,
5878 struct iw_request_info *info,
5879 union iwreq_data *wrqu, char *extra)
5880 {
5881 struct ipw_priv *priv = ieee80211_priv(dev);
5882 int err;
5883
5884 if (wrqu->power.disabled) {
5885 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5886 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
5887 if (err) {
5888 IPW_DEBUG_WX("failed setting power mode.\n");
5889 return err;
5890 }
5891
5892 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
5893
5894 return 0;
5895 }
5896
5897 switch (wrqu->power.flags & IW_POWER_MODE) {
5898 case IW_POWER_ON: /* If not specified */
5899 case IW_POWER_MODE: /* If set all mask */
5900 case IW_POWER_ALL_R: /* If explicitely state all */
5901 break;
5902 default: /* Otherwise we don't support it */
5903 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
5904 wrqu->power.flags);
5905 return -EOPNOTSUPP;
5906 }
5907
5908 /* If the user hasn't specified a power management mode yet, default
5909 * to BATTERY */
5910 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
5911 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
5912 else
5913 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
5914 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
5915 if (err) {
5916 IPW_DEBUG_WX("failed setting power mode.\n");
5917 return err;
5918 }
5919
5920 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
5921
5922 return 0;
5923 }
5924
5925 static int ipw_wx_get_power(struct net_device *dev,
5926 struct iw_request_info *info,
5927 union iwreq_data *wrqu, char *extra)
5928 {
5929 struct ipw_priv *priv = ieee80211_priv(dev);
5930
5931 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
5932 wrqu->power.disabled = 1;
5933 } else {
5934 wrqu->power.disabled = 0;
5935 }
5936
5937 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
5938
5939 return 0;
5940 }
5941
5942 static int ipw_wx_set_powermode(struct net_device *dev,
5943 struct iw_request_info *info,
5944 union iwreq_data *wrqu, char *extra)
5945 {
5946 struct ipw_priv *priv = ieee80211_priv(dev);
5947 int mode = *(int *)extra;
5948 int err;
5949
5950 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
5951 mode = IPW_POWER_AC;
5952 priv->power_mode = mode;
5953 } else {
5954 priv->power_mode = IPW_POWER_ENABLED | mode;
5955 }
5956
5957 if (priv->power_mode != mode) {
5958 err = ipw_send_power_mode(priv, mode);
5959
5960 if (err) {
5961 IPW_DEBUG_WX("failed setting power mode.\n");
5962 return err;
5963 }
5964 }
5965
5966 return 0;
5967 }
5968
5969 #define MAX_WX_STRING 80
5970 static int ipw_wx_get_powermode(struct net_device *dev,
5971 struct iw_request_info *info,
5972 union iwreq_data *wrqu, char *extra)
5973 {
5974 struct ipw_priv *priv = ieee80211_priv(dev);
5975 int level = IPW_POWER_LEVEL(priv->power_mode);
5976 char *p = extra;
5977
5978 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
5979
5980 switch (level) {
5981 case IPW_POWER_AC:
5982 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
5983 break;
5984 case IPW_POWER_BATTERY:
5985 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
5986 break;
5987 default:
5988 p += snprintf(p, MAX_WX_STRING - (p - extra),
5989 "(Timeout %dms, Period %dms)",
5990 timeout_duration[level - 1] / 1000,
5991 period_duration[level - 1] / 1000);
5992 }
5993
5994 if (!(priv->power_mode & IPW_POWER_ENABLED))
5995 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
5996
5997 wrqu->data.length = p - extra + 1;
5998
5999 return 0;
6000 }
6001
6002 static int ipw_wx_set_wireless_mode(struct net_device *dev,
6003 struct iw_request_info *info,
6004 union iwreq_data *wrqu, char *extra)
6005 {
6006 struct ipw_priv *priv = ieee80211_priv(dev);
6007 int mode = *(int *)extra;
6008 u8 band = 0, modulation = 0;
6009
6010 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
6011 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
6012 return -EINVAL;
6013 }
6014
6015 if (priv->adapter == IPW_2915ABG) {
6016 priv->ieee->abg_true = 1;
6017 if (mode & IEEE_A) {
6018 band |= IEEE80211_52GHZ_BAND;
6019 modulation |= IEEE80211_OFDM_MODULATION;
6020 } else
6021 priv->ieee->abg_true = 0;
6022 } else {
6023 if (mode & IEEE_A) {
6024 IPW_WARNING("Attempt to set 2200BG into "
6025 "802.11a mode\n");
6026 return -EINVAL;
6027 }
6028
6029 priv->ieee->abg_true = 0;
6030 }
6031
6032 if (mode & IEEE_B) {
6033 band |= IEEE80211_24GHZ_BAND;
6034 modulation |= IEEE80211_CCK_MODULATION;
6035 } else
6036 priv->ieee->abg_true = 0;
6037
6038 if (mode & IEEE_G) {
6039 band |= IEEE80211_24GHZ_BAND;
6040 modulation |= IEEE80211_OFDM_MODULATION;
6041 } else
6042 priv->ieee->abg_true = 0;
6043
6044 priv->ieee->mode = mode;
6045 priv->ieee->freq_band = band;
6046 priv->ieee->modulation = modulation;
6047 init_supported_rates(priv, &priv->rates);
6048
6049 /* If we are currently associated, or trying to associate
6050 * then see if this is a new configuration (causing us to
6051 * disassociate) */
6052 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
6053 /* The resulting association will trigger
6054 * the new rates to be sent to the device */
6055 IPW_DEBUG_ASSOC("Disassociating due to mode change.\n");
6056 ipw_disassociate(priv);
6057 } else
6058 ipw_send_supported_rates(priv, &priv->rates);
6059
6060 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
6061 mode & IEEE_A ? 'a' : '.',
6062 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
6063 return 0;
6064 }
6065
6066 static int ipw_wx_get_wireless_mode(struct net_device *dev,
6067 struct iw_request_info *info,
6068 union iwreq_data *wrqu, char *extra)
6069 {
6070 struct ipw_priv *priv = ieee80211_priv(dev);
6071
6072 switch (priv->ieee->freq_band) {
6073 case IEEE80211_24GHZ_BAND:
6074 switch (priv->ieee->modulation) {
6075 case IEEE80211_CCK_MODULATION:
6076 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
6077 break;
6078 case IEEE80211_OFDM_MODULATION:
6079 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
6080 break;
6081 default:
6082 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
6083 break;
6084 }
6085 break;
6086
6087 case IEEE80211_52GHZ_BAND:
6088 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
6089 break;
6090
6091 default: /* Mixed Band */
6092 switch (priv->ieee->modulation) {
6093 case IEEE80211_CCK_MODULATION:
6094 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
6095 break;
6096 case IEEE80211_OFDM_MODULATION:
6097 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
6098 break;
6099 default:
6100 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
6101 break;
6102 }
6103 break;
6104 }
6105
6106 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
6107
6108 wrqu->data.length = strlen(extra) + 1;
6109
6110 return 0;
6111 }
6112
6113 #ifdef CONFIG_IPW_PROMISC
6114 static int ipw_wx_set_promisc(struct net_device *dev,
6115 struct iw_request_info *info,
6116 union iwreq_data *wrqu, char *extra)
6117 {
6118 struct ipw_priv *priv = ieee80211_priv(dev);
6119 int *parms = (int *)extra;
6120 int enable = (parms[0] > 0);
6121
6122 IPW_DEBUG_WX("SET PROMISC: %d %d\n", enable, parms[1]);
6123 if (enable) {
6124 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
6125 priv->net_dev->type = ARPHRD_IEEE80211;
6126 ipw_adapter_restart(priv);
6127 }
6128
6129 ipw_set_channel(priv, parms[1]);
6130 } else {
6131 if (priv->ieee->iw_mode != IW_MODE_MONITOR)
6132 return 0;
6133 priv->net_dev->type = ARPHRD_ETHER;
6134 ipw_adapter_restart(priv);
6135 }
6136 return 0;
6137 }
6138
6139 static int ipw_wx_reset(struct net_device *dev,
6140 struct iw_request_info *info,
6141 union iwreq_data *wrqu, char *extra)
6142 {
6143 struct ipw_priv *priv = ieee80211_priv(dev);
6144 IPW_DEBUG_WX("RESET\n");
6145 ipw_adapter_restart(priv);
6146 return 0;
6147 }
6148 #endif // CONFIG_IPW_PROMISC
6149
6150 /* Rebase the WE IOCTLs to zero for the handler array */
6151 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
6152 static iw_handler ipw_wx_handlers[] = {
6153 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
6154 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
6155 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
6156 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
6157 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
6158 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
6159 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
6160 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
6161 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
6162 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
6163 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
6164 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
6165 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
6166 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
6167 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
6168 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
6169 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
6170 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
6171 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
6172 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
6173 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
6174 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
6175 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
6176 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
6177 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
6178 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
6179 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
6180 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
6181 };
6182
6183 #define IPW_PRIV_SET_POWER SIOCIWFIRSTPRIV
6184 #define IPW_PRIV_GET_POWER SIOCIWFIRSTPRIV+1
6185 #define IPW_PRIV_SET_MODE SIOCIWFIRSTPRIV+2
6186 #define IPW_PRIV_GET_MODE SIOCIWFIRSTPRIV+3
6187 #define IPW_PRIV_SET_PROMISC SIOCIWFIRSTPRIV+4
6188 #define IPW_PRIV_RESET SIOCIWFIRSTPRIV+5
6189
6190 static struct iw_priv_args ipw_priv_args[] = {
6191 {
6192 .cmd = IPW_PRIV_SET_POWER,
6193 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
6194 .name = "set_power"},
6195 {
6196 .cmd = IPW_PRIV_GET_POWER,
6197 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
6198 .name = "get_power"},
6199 {
6200 .cmd = IPW_PRIV_SET_MODE,
6201 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
6202 .name = "set_mode"},
6203 {
6204 .cmd = IPW_PRIV_GET_MODE,
6205 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
6206 .name = "get_mode"},
6207 #ifdef CONFIG_IPW_PROMISC
6208 {
6209 IPW_PRIV_SET_PROMISC,
6210 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
6211 {
6212 IPW_PRIV_RESET,
6213 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
6214 #endif /* CONFIG_IPW_PROMISC */
6215 };
6216
6217 static iw_handler ipw_priv_handler[] = {
6218 ipw_wx_set_powermode,
6219 ipw_wx_get_powermode,
6220 ipw_wx_set_wireless_mode,
6221 ipw_wx_get_wireless_mode,
6222 #ifdef CONFIG_IPW_PROMISC
6223 ipw_wx_set_promisc,
6224 ipw_wx_reset,
6225 #endif
6226 };
6227
6228 static struct iw_handler_def ipw_wx_handler_def = {
6229 .standard = ipw_wx_handlers,
6230 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
6231 .num_private = ARRAY_SIZE(ipw_priv_handler),
6232 .num_private_args = ARRAY_SIZE(ipw_priv_args),
6233 .private = ipw_priv_handler,
6234 .private_args = ipw_priv_args,
6235 };
6236
6237 /*
6238 * Get wireless statistics.
6239 * Called by /proc/net/wireless
6240 * Also called by SIOCGIWSTATS
6241 */
6242 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
6243 {
6244 struct ipw_priv *priv = ieee80211_priv(dev);
6245 struct iw_statistics *wstats;
6246
6247 wstats = &priv->wstats;
6248
6249 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
6250 * ipw2100_wx_wireless_stats seems to be called before fw is
6251 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
6252 * and associated; if not associcated, the values are all meaningless
6253 * anyway, so set them all to NULL and INVALID */
6254 if (!(priv->status & STATUS_ASSOCIATED)) {
6255 wstats->miss.beacon = 0;
6256 wstats->discard.retries = 0;
6257 wstats->qual.qual = 0;
6258 wstats->qual.level = 0;
6259 wstats->qual.noise = 0;
6260 wstats->qual.updated = 7;
6261 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
6262 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
6263 return wstats;
6264 }
6265
6266 wstats->qual.qual = priv->quality;
6267 wstats->qual.level = average_value(&priv->average_rssi);
6268 wstats->qual.noise = average_value(&priv->average_noise);
6269 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
6270 IW_QUAL_NOISE_UPDATED;
6271
6272 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
6273 wstats->discard.retries = priv->last_tx_failures;
6274 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
6275
6276 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
6277 goto fail_get_ordinal;
6278 wstats->discard.retries += tx_retry; */
6279
6280 return wstats;
6281 }
6282
6283 /* net device stuff */
6284
6285 static inline void init_sys_config(struct ipw_sys_config *sys_config)
6286 {
6287 memset(sys_config, 0, sizeof(struct ipw_sys_config));
6288 sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */
6289 sys_config->answer_broadcast_ssid_probe = 0;
6290 sys_config->accept_all_data_frames = 0;
6291 sys_config->accept_non_directed_frames = 1;
6292 sys_config->exclude_unicast_unencrypted = 0;
6293 sys_config->disable_unicast_decryption = 1;
6294 sys_config->exclude_multicast_unencrypted = 0;
6295 sys_config->disable_multicast_decryption = 1;
6296 sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
6297 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
6298 sys_config->dot11g_auto_detection = 0;
6299 sys_config->enable_cts_to_self = 0;
6300 sys_config->bt_coexist_collision_thr = 0;
6301 sys_config->pass_noise_stats_to_host = 1;
6302 }
6303
6304 static int ipw_net_open(struct net_device *dev)
6305 {
6306 struct ipw_priv *priv = ieee80211_priv(dev);
6307 IPW_DEBUG_INFO("dev->open\n");
6308 /* we should be verifying the device is ready to be opened */
6309 if (!(priv->status & STATUS_RF_KILL_MASK) &&
6310 (priv->status & STATUS_ASSOCIATED))
6311 netif_start_queue(dev);
6312 return 0;
6313 }
6314
6315 static int ipw_net_stop(struct net_device *dev)
6316 {
6317 IPW_DEBUG_INFO("dev->close\n");
6318 netif_stop_queue(dev);
6319 return 0;
6320 }
6321
6322 /*
6323 todo:
6324
6325 modify to send one tfd per fragment instead of using chunking. otherwise
6326 we need to heavily modify the ieee80211_skb_to_txb.
6327 */
6328
6329 static inline void ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb)
6330 {
6331 struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
6332 txb->fragments[0]->data;
6333 int i = 0;
6334 struct tfd_frame *tfd;
6335 struct clx2_tx_queue *txq = &priv->txq[0];
6336 struct clx2_queue *q = &txq->q;
6337 u8 id, hdr_len, unicast;
6338 u16 remaining_bytes;
6339
6340 switch (priv->ieee->iw_mode) {
6341 case IW_MODE_ADHOC:
6342 hdr_len = IEEE80211_3ADDR_LEN;
6343 unicast = !is_broadcast_ether_addr(hdr->addr1) &&
6344 !is_multicast_ether_addr(hdr->addr1);
6345 id = ipw_find_station(priv, hdr->addr1);
6346 if (id == IPW_INVALID_STATION) {
6347 id = ipw_add_station(priv, hdr->addr1);
6348 if (id == IPW_INVALID_STATION) {
6349 IPW_WARNING("Attempt to send data to "
6350 "invalid cell: " MAC_FMT "\n",
6351 MAC_ARG(hdr->addr1));
6352 goto drop;
6353 }
6354 }
6355 break;
6356
6357 case IW_MODE_INFRA:
6358 default:
6359 unicast = !is_broadcast_ether_addr(hdr->addr3) &&
6360 !is_multicast_ether_addr(hdr->addr3);
6361 hdr_len = IEEE80211_3ADDR_LEN;
6362 id = 0;
6363 break;
6364 }
6365
6366 tfd = &txq->bd[q->first_empty];
6367 txq->txb[q->first_empty] = txb;
6368 memset(tfd, 0, sizeof(*tfd));
6369 tfd->u.data.station_number = id;
6370
6371 tfd->control_flags.message_type = TX_FRAME_TYPE;
6372 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
6373
6374 tfd->u.data.cmd_id = DINO_CMD_TX;
6375 tfd->u.data.len = txb->payload_size;
6376 remaining_bytes = txb->payload_size;
6377 if (unlikely(!unicast))
6378 tfd->u.data.tx_flags = DCT_FLAG_NO_WEP;
6379 else
6380 tfd->u.data.tx_flags = DCT_FLAG_NO_WEP | DCT_FLAG_ACK_REQD;
6381
6382 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
6383 tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_CCK;
6384 else
6385 tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_OFDM;
6386
6387 if (priv->config & CFG_PREAMBLE)
6388 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREMBL;
6389
6390 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
6391
6392 /* payload */
6393 tfd->u.data.num_chunks = min((u8) (NUM_TFD_CHUNKS - 2), txb->nr_frags);
6394 for (i = 0; i < tfd->u.data.num_chunks; i++) {
6395 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
6396 i, tfd->u.data.num_chunks,
6397 txb->fragments[i]->len - hdr_len);
6398 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
6399 txb->fragments[i]->len - hdr_len);
6400
6401 tfd->u.data.chunk_ptr[i] =
6402 pci_map_single(priv->pci_dev,
6403 txb->fragments[i]->data + hdr_len,
6404 txb->fragments[i]->len - hdr_len,
6405 PCI_DMA_TODEVICE);
6406 tfd->u.data.chunk_len[i] = txb->fragments[i]->len - hdr_len;
6407 }
6408
6409 if (i != txb->nr_frags) {
6410 struct sk_buff *skb;
6411 u16 remaining_bytes = 0;
6412 int j;
6413
6414 for (j = i; j < txb->nr_frags; j++)
6415 remaining_bytes += txb->fragments[j]->len - hdr_len;
6416
6417 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
6418 remaining_bytes);
6419 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
6420 if (skb != NULL) {
6421 tfd->u.data.chunk_len[i] = remaining_bytes;
6422 for (j = i; j < txb->nr_frags; j++) {
6423 int size = txb->fragments[j]->len - hdr_len;
6424 printk(KERN_INFO "Adding frag %d %d...\n",
6425 j, size);
6426 memcpy(skb_put(skb, size),
6427 txb->fragments[j]->data + hdr_len, size);
6428 }
6429 dev_kfree_skb_any(txb->fragments[i]);
6430 txb->fragments[i] = skb;
6431 tfd->u.data.chunk_ptr[i] =
6432 pci_map_single(priv->pci_dev, skb->data,
6433 tfd->u.data.chunk_len[i],
6434 PCI_DMA_TODEVICE);
6435 tfd->u.data.num_chunks++;
6436 }
6437 }
6438
6439 /* kick DMA */
6440 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
6441 ipw_write32(priv, q->reg_w, q->first_empty);
6442
6443 if (ipw_queue_space(q) < q->high_mark)
6444 netif_stop_queue(priv->net_dev);
6445
6446 return;
6447
6448 drop:
6449 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
6450 ieee80211_txb_free(txb);
6451 }
6452
6453 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
6454 struct net_device *dev, int pri)
6455 {
6456 struct ipw_priv *priv = ieee80211_priv(dev);
6457 unsigned long flags;
6458
6459 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
6460
6461 spin_lock_irqsave(&priv->lock, flags);
6462
6463 if (!(priv->status & STATUS_ASSOCIATED)) {
6464 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
6465 priv->ieee->stats.tx_carrier_errors++;
6466 netif_stop_queue(dev);
6467 goto fail_unlock;
6468 }
6469
6470 ipw_tx_skb(priv, txb);
6471
6472 spin_unlock_irqrestore(&priv->lock, flags);
6473 return 0;
6474
6475 fail_unlock:
6476 spin_unlock_irqrestore(&priv->lock, flags);
6477 return 1;
6478 }
6479
6480 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
6481 {
6482 struct ipw_priv *priv = ieee80211_priv(dev);
6483
6484 priv->ieee->stats.tx_packets = priv->tx_packets;
6485 priv->ieee->stats.rx_packets = priv->rx_packets;
6486 return &priv->ieee->stats;
6487 }
6488
6489 static void ipw_net_set_multicast_list(struct net_device *dev)
6490 {
6491
6492 }
6493
6494 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
6495 {
6496 struct ipw_priv *priv = ieee80211_priv(dev);
6497 struct sockaddr *addr = p;
6498 if (!is_valid_ether_addr(addr->sa_data))
6499 return -EADDRNOTAVAIL;
6500 priv->config |= CFG_CUSTOM_MAC;
6501 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
6502 printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
6503 priv->net_dev->name, MAC_ARG(priv->mac_addr));
6504 ipw_adapter_restart(priv);
6505 return 0;
6506 }
6507
6508 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
6509 struct ethtool_drvinfo *info)
6510 {
6511 struct ipw_priv *p = ieee80211_priv(dev);
6512 char vers[64];
6513 char date[32];
6514 u32 len;
6515
6516 strcpy(info->driver, DRV_NAME);
6517 strcpy(info->version, DRV_VERSION);
6518
6519 len = sizeof(vers);
6520 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
6521 len = sizeof(date);
6522 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
6523
6524 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
6525 vers, date);
6526 strcpy(info->bus_info, pci_name(p->pci_dev));
6527 info->eedump_len = CX2_EEPROM_IMAGE_SIZE;
6528 }
6529
6530 static u32 ipw_ethtool_get_link(struct net_device *dev)
6531 {
6532 struct ipw_priv *priv = ieee80211_priv(dev);
6533 return (priv->status & STATUS_ASSOCIATED) != 0;
6534 }
6535
6536 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
6537 {
6538 return CX2_EEPROM_IMAGE_SIZE;
6539 }
6540
6541 static int ipw_ethtool_get_eeprom(struct net_device *dev,
6542 struct ethtool_eeprom *eeprom, u8 * bytes)
6543 {
6544 struct ipw_priv *p = ieee80211_priv(dev);
6545
6546 if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE)
6547 return -EINVAL;
6548
6549 memcpy(bytes, &((u8 *) p->eeprom)[eeprom->offset], eeprom->len);
6550 return 0;
6551 }
6552
6553 static int ipw_ethtool_set_eeprom(struct net_device *dev,
6554 struct ethtool_eeprom *eeprom, u8 * bytes)
6555 {
6556 struct ipw_priv *p = ieee80211_priv(dev);
6557 int i;
6558
6559 if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE)
6560 return -EINVAL;
6561
6562 memcpy(&((u8 *) p->eeprom)[eeprom->offset], bytes, eeprom->len);
6563 for (i = IPW_EEPROM_DATA;
6564 i < IPW_EEPROM_DATA + CX2_EEPROM_IMAGE_SIZE; i++)
6565 ipw_write8(p, i, p->eeprom[i]);
6566
6567 return 0;
6568 }
6569
6570 static struct ethtool_ops ipw_ethtool_ops = {
6571 .get_link = ipw_ethtool_get_link,
6572 .get_drvinfo = ipw_ethtool_get_drvinfo,
6573 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
6574 .get_eeprom = ipw_ethtool_get_eeprom,
6575 .set_eeprom = ipw_ethtool_set_eeprom,
6576 };
6577
6578 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
6579 {
6580 struct ipw_priv *priv = data;
6581 u32 inta, inta_mask;
6582
6583 if (!priv)
6584 return IRQ_NONE;
6585
6586 spin_lock(&priv->lock);
6587
6588 if (!(priv->status & STATUS_INT_ENABLED)) {
6589 /* Shared IRQ */
6590 goto none;
6591 }
6592
6593 inta = ipw_read32(priv, CX2_INTA_RW);
6594 inta_mask = ipw_read32(priv, CX2_INTA_MASK_R);
6595
6596 if (inta == 0xFFFFFFFF) {
6597 /* Hardware disappeared */
6598 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
6599 goto none;
6600 }
6601
6602 if (!(inta & (CX2_INTA_MASK_ALL & inta_mask))) {
6603 /* Shared interrupt */
6604 goto none;
6605 }
6606
6607 /* tell the device to stop sending interrupts */
6608 ipw_disable_interrupts(priv);
6609
6610 /* ack current interrupts */
6611 inta &= (CX2_INTA_MASK_ALL & inta_mask);
6612 ipw_write32(priv, CX2_INTA_RW, inta);
6613
6614 /* Cache INTA value for our tasklet */
6615 priv->isr_inta = inta;
6616
6617 tasklet_schedule(&priv->irq_tasklet);
6618
6619 spin_unlock(&priv->lock);
6620
6621 return IRQ_HANDLED;
6622 none:
6623 spin_unlock(&priv->lock);
6624 return IRQ_NONE;
6625 }
6626
6627 static void ipw_rf_kill(void *adapter)
6628 {
6629 struct ipw_priv *priv = adapter;
6630 unsigned long flags;
6631
6632 spin_lock_irqsave(&priv->lock, flags);
6633
6634 if (rf_kill_active(priv)) {
6635 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6636 if (priv->workqueue)
6637 queue_delayed_work(priv->workqueue,
6638 &priv->rf_kill, 2 * HZ);
6639 goto exit_unlock;
6640 }
6641
6642 /* RF Kill is now disabled, so bring the device back up */
6643
6644 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6645 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6646 "device\n");
6647
6648 /* we can not do an adapter restart while inside an irq lock */
6649 queue_work(priv->workqueue, &priv->adapter_restart);
6650 } else
6651 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6652 "enabled\n");
6653
6654 exit_unlock:
6655 spin_unlock_irqrestore(&priv->lock, flags);
6656 }
6657
6658 static int ipw_setup_deferred_work(struct ipw_priv *priv)
6659 {
6660 int ret = 0;
6661
6662 priv->workqueue = create_workqueue(DRV_NAME);
6663 init_waitqueue_head(&priv->wait_command_queue);
6664
6665 INIT_WORK(&priv->adhoc_check, ipw_adhoc_check, priv);
6666 INIT_WORK(&priv->associate, ipw_associate, priv);
6667 INIT_WORK(&priv->disassociate, ipw_disassociate, priv);
6668 INIT_WORK(&priv->rx_replenish, ipw_rx_queue_replenish, priv);
6669 INIT_WORK(&priv->adapter_restart, ipw_adapter_restart, priv);
6670 INIT_WORK(&priv->rf_kill, ipw_rf_kill, priv);
6671 INIT_WORK(&priv->up, (void (*)(void *))ipw_up, priv);
6672 INIT_WORK(&priv->down, (void (*)(void *))ipw_down, priv);
6673 INIT_WORK(&priv->request_scan,
6674 (void (*)(void *))ipw_request_scan, priv);
6675 INIT_WORK(&priv->gather_stats,
6676 (void (*)(void *))ipw_gather_stats, priv);
6677 INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_abort_scan, priv);
6678 INIT_WORK(&priv->roam, ipw_roam, priv);
6679 INIT_WORK(&priv->scan_check, ipw_scan_check, priv);
6680
6681 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6682 ipw_irq_tasklet, (unsigned long)priv);
6683
6684 return ret;
6685 }
6686
6687 static void shim__set_security(struct net_device *dev,
6688 struct ieee80211_security *sec)
6689 {
6690 struct ipw_priv *priv = ieee80211_priv(dev);
6691 int i;
6692
6693 for (i = 0; i < 4; i++) {
6694 if (sec->flags & (1 << i)) {
6695 priv->sec.key_sizes[i] = sec->key_sizes[i];
6696 if (sec->key_sizes[i] == 0)
6697 priv->sec.flags &= ~(1 << i);
6698 else
6699 memcpy(priv->sec.keys[i], sec->keys[i],
6700 sec->key_sizes[i]);
6701 priv->sec.flags |= (1 << i);
6702 priv->status |= STATUS_SECURITY_UPDATED;
6703 }
6704 }
6705
6706 if ((sec->flags & SEC_ACTIVE_KEY) &&
6707 priv->sec.active_key != sec->active_key) {
6708 if (sec->active_key <= 3) {
6709 priv->sec.active_key = sec->active_key;
6710 priv->sec.flags |= SEC_ACTIVE_KEY;
6711 } else
6712 priv->sec.flags &= ~SEC_ACTIVE_KEY;
6713 priv->status |= STATUS_SECURITY_UPDATED;
6714 }
6715
6716 if ((sec->flags & SEC_AUTH_MODE) &&
6717 (priv->sec.auth_mode != sec->auth_mode)) {
6718 priv->sec.auth_mode = sec->auth_mode;
6719 priv->sec.flags |= SEC_AUTH_MODE;
6720 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
6721 priv->capability |= CAP_SHARED_KEY;
6722 else
6723 priv->capability &= ~CAP_SHARED_KEY;
6724 priv->status |= STATUS_SECURITY_UPDATED;
6725 }
6726
6727 if (sec->flags & SEC_ENABLED && priv->sec.enabled != sec->enabled) {
6728 priv->sec.flags |= SEC_ENABLED;
6729 priv->sec.enabled = sec->enabled;
6730 priv->status |= STATUS_SECURITY_UPDATED;
6731 if (sec->enabled)
6732 priv->capability |= CAP_PRIVACY_ON;
6733 else
6734 priv->capability &= ~CAP_PRIVACY_ON;
6735 }
6736
6737 if (sec->flags & SEC_LEVEL && priv->sec.level != sec->level) {
6738 priv->sec.level = sec->level;
6739 priv->sec.flags |= SEC_LEVEL;
6740 priv->status |= STATUS_SECURITY_UPDATED;
6741 }
6742
6743 /* To match current functionality of ipw2100 (which works well w/
6744 * various supplicants, we don't force a disassociate if the
6745 * privacy capability changes ... */
6746 #if 0
6747 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
6748 (((priv->assoc_request.capability &
6749 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
6750 (!(priv->assoc_request.capability &
6751 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
6752 IPW_DEBUG_ASSOC("Disassociating due to capability "
6753 "change.\n");
6754 ipw_disassociate(priv);
6755 }
6756 #endif
6757 }
6758
6759 static int init_supported_rates(struct ipw_priv *priv,
6760 struct ipw_supported_rates *rates)
6761 {
6762 /* TODO: Mask out rates based on priv->rates_mask */
6763
6764 memset(rates, 0, sizeof(*rates));
6765 /* configure supported rates */
6766 switch (priv->ieee->freq_band) {
6767 case IEEE80211_52GHZ_BAND:
6768 rates->ieee_mode = IPW_A_MODE;
6769 rates->purpose = IPW_RATE_CAPABILITIES;
6770 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
6771 IEEE80211_OFDM_DEFAULT_RATES_MASK);
6772 break;
6773
6774 default: /* Mixed or 2.4Ghz */
6775 rates->ieee_mode = IPW_G_MODE;
6776 rates->purpose = IPW_RATE_CAPABILITIES;
6777 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
6778 IEEE80211_CCK_DEFAULT_RATES_MASK);
6779 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
6780 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
6781 IEEE80211_OFDM_DEFAULT_RATES_MASK);
6782 }
6783 break;
6784 }
6785
6786 return 0;
6787 }
6788
6789 static int ipw_config(struct ipw_priv *priv)
6790 {
6791 int i;
6792 struct ipw_tx_power tx_power;
6793
6794 memset(&priv->sys_config, 0, sizeof(priv->sys_config));
6795 memset(&tx_power, 0, sizeof(tx_power));
6796
6797 /* This is only called from ipw_up, which resets/reloads the firmware
6798 so, we don't need to first disable the card before we configure
6799 it */
6800
6801 /* configure device for 'G' band */
6802 tx_power.ieee_mode = IPW_G_MODE;
6803 tx_power.num_channels = 11;
6804 for (i = 0; i < 11; i++) {
6805 tx_power.channels_tx_power[i].channel_number = i + 1;
6806 tx_power.channels_tx_power[i].tx_power = priv->tx_power;
6807 }
6808 if (ipw_send_tx_power(priv, &tx_power))
6809 goto error;
6810
6811 /* configure device to also handle 'B' band */
6812 tx_power.ieee_mode = IPW_B_MODE;
6813 if (ipw_send_tx_power(priv, &tx_power))
6814 goto error;
6815
6816 /* initialize adapter address */
6817 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
6818 goto error;
6819
6820 /* set basic system config settings */
6821 init_sys_config(&priv->sys_config);
6822 if (ipw_send_system_config(priv, &priv->sys_config))
6823 goto error;
6824
6825 init_supported_rates(priv, &priv->rates);
6826 if (ipw_send_supported_rates(priv, &priv->rates))
6827 goto error;
6828
6829 /* Set request-to-send threshold */
6830 if (priv->rts_threshold) {
6831 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
6832 goto error;
6833 }
6834
6835 if (ipw_set_random_seed(priv))
6836 goto error;
6837
6838 /* final state transition to the RUN state */
6839 if (ipw_send_host_complete(priv))
6840 goto error;
6841
6842 /* If configured to try and auto-associate, kick off a scan */
6843 if ((priv->config & CFG_ASSOCIATE) && ipw_request_scan(priv))
6844 goto error;
6845
6846 return 0;
6847
6848 error:
6849 return -EIO;
6850 }
6851
6852 #define MAX_HW_RESTARTS 5
6853 static int ipw_up(struct ipw_priv *priv)
6854 {
6855 int rc, i;
6856
6857 if (priv->status & STATUS_EXIT_PENDING)
6858 return -EIO;
6859
6860 for (i = 0; i < MAX_HW_RESTARTS; i++) {
6861 /* Load the microcode, firmware, and eeprom.
6862 * Also start the clocks. */
6863 rc = ipw_load(priv);
6864 if (rc) {
6865 IPW_ERROR("Unable to load firmware: 0x%08X\n", rc);
6866 return rc;
6867 }
6868
6869 ipw_init_ordinals(priv);
6870 if (!(priv->config & CFG_CUSTOM_MAC))
6871 eeprom_parse_mac(priv, priv->mac_addr);
6872 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
6873
6874 if (priv->status & STATUS_RF_KILL_MASK)
6875 return 0;
6876
6877 rc = ipw_config(priv);
6878 if (!rc) {
6879 IPW_DEBUG_INFO("Configured device on count %i\n", i);
6880 priv->notif_missed_beacons = 0;
6881 netif_start_queue(priv->net_dev);
6882 return 0;
6883 } else {
6884 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n",
6885 rc);
6886 }
6887
6888 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
6889 i, MAX_HW_RESTARTS);
6890
6891 /* We had an error bringing up the hardware, so take it
6892 * all the way back down so we can try again */
6893 ipw_down(priv);
6894 }
6895
6896 /* tried to restart and config the device for as long as our
6897 * patience could withstand */
6898 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
6899 return -EIO;
6900 }
6901
6902 static void ipw_down(struct ipw_priv *priv)
6903 {
6904 /* Attempt to disable the card */
6905 #if 0
6906 ipw_send_card_disable(priv, 0);
6907 #endif
6908
6909 /* tell the device to stop sending interrupts */
6910 ipw_disable_interrupts(priv);
6911
6912 /* Clear all bits but the RF Kill */
6913 priv->status &= STATUS_RF_KILL_MASK;
6914
6915 netif_carrier_off(priv->net_dev);
6916 netif_stop_queue(priv->net_dev);
6917
6918 ipw_stop_nic(priv);
6919 }
6920
6921 /* Called by register_netdev() */
6922 static int ipw_net_init(struct net_device *dev)
6923 {
6924 struct ipw_priv *priv = ieee80211_priv(dev);
6925
6926 if (priv->status & STATUS_RF_KILL_SW) {
6927 IPW_WARNING("Radio disabled by module parameter.\n");
6928 return 0;
6929 } else if (rf_kill_active(priv)) {
6930 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
6931 "Kill switch must be turned off for "
6932 "wireless networking to work.\n");
6933 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
6934 return 0;
6935 }
6936
6937 if (ipw_up(priv))
6938 return -EIO;
6939
6940 return 0;
6941 }
6942
6943 /* PCI driver stuff */
6944 static struct pci_device_id card_ids[] = {
6945 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
6946 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
6947 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
6948 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
6949 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
6950 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
6951 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
6952 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
6953 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
6954 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
6955 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
6956 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
6957 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
6958 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
6959 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
6960 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
6961 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
6962 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
6963 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
6964 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* 2225BG */
6965 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
6966 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
6967
6968 /* required last entry */
6969 {0,}
6970 };
6971
6972 MODULE_DEVICE_TABLE(pci, card_ids);
6973
6974 static struct attribute *ipw_sysfs_entries[] = {
6975 &dev_attr_rf_kill.attr,
6976 &dev_attr_direct_dword.attr,
6977 &dev_attr_indirect_byte.attr,
6978 &dev_attr_indirect_dword.attr,
6979 &dev_attr_mem_gpio_reg.attr,
6980 &dev_attr_command_event_reg.attr,
6981 &dev_attr_nic_type.attr,
6982 &dev_attr_status.attr,
6983 &dev_attr_cfg.attr,
6984 &dev_attr_dump_errors.attr,
6985 &dev_attr_dump_events.attr,
6986 &dev_attr_eeprom_delay.attr,
6987 &dev_attr_ucode_version.attr,
6988 &dev_attr_rtc.attr,
6989 NULL
6990 };
6991
6992 static struct attribute_group ipw_attribute_group = {
6993 .name = NULL, /* put in device directory */
6994 .attrs = ipw_sysfs_entries,
6995 };
6996
6997 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6998 {
6999 int err = 0;
7000 struct net_device *net_dev;
7001 void __iomem *base;
7002 u32 length, val;
7003 struct ipw_priv *priv;
7004 int band, modulation;
7005
7006 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
7007 if (net_dev == NULL) {
7008 err = -ENOMEM;
7009 goto out;
7010 }
7011
7012 priv = ieee80211_priv(net_dev);
7013 priv->ieee = netdev_priv(net_dev);
7014 priv->net_dev = net_dev;
7015 priv->pci_dev = pdev;
7016 #ifdef CONFIG_IPW_DEBUG
7017 ipw_debug_level = debug;
7018 #endif
7019 spin_lock_init(&priv->lock);
7020
7021 if (pci_enable_device(pdev)) {
7022 err = -ENODEV;
7023 goto out_free_ieee80211;
7024 }
7025
7026 pci_set_master(pdev);
7027
7028 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
7029 if (!err)
7030 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
7031 if (err) {
7032 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
7033 goto out_pci_disable_device;
7034 }
7035
7036 pci_set_drvdata(pdev, priv);
7037
7038 err = pci_request_regions(pdev, DRV_NAME);
7039 if (err)
7040 goto out_pci_disable_device;
7041
7042 /* We disable the RETRY_TIMEOUT register (0x41) to keep
7043 * PCI Tx retries from interfering with C3 CPU state */
7044 pci_read_config_dword(pdev, 0x40, &val);
7045 if ((val & 0x0000ff00) != 0)
7046 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
7047
7048 length = pci_resource_len(pdev, 0);
7049 priv->hw_len = length;
7050
7051 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
7052 if (!base) {
7053 err = -ENODEV;
7054 goto out_pci_release_regions;
7055 }
7056
7057 priv->hw_base = base;
7058 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
7059 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
7060
7061 err = ipw_setup_deferred_work(priv);
7062 if (err) {
7063 IPW_ERROR("Unable to setup deferred work\n");
7064 goto out_iounmap;
7065 }
7066
7067 /* Initialize module parameter values here */
7068 if (ifname)
7069 strncpy(net_dev->name, ifname, IFNAMSIZ);
7070
7071 if (associate)
7072 priv->config |= CFG_ASSOCIATE;
7073 else
7074 IPW_DEBUG_INFO("Auto associate disabled.\n");
7075
7076 if (auto_create)
7077 priv->config |= CFG_ADHOC_CREATE;
7078 else
7079 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
7080
7081 if (disable) {
7082 priv->status |= STATUS_RF_KILL_SW;
7083 IPW_DEBUG_INFO("Radio disabled.\n");
7084 }
7085
7086 if (channel != 0) {
7087 priv->config |= CFG_STATIC_CHANNEL;
7088 priv->channel = channel;
7089 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
7090 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
7091 /* TODO: Validate that provided channel is in range */
7092 }
7093
7094 switch (mode) {
7095 case 1:
7096 priv->ieee->iw_mode = IW_MODE_ADHOC;
7097 break;
7098 #ifdef CONFIG_IPW_PROMISC
7099 case 2:
7100 priv->ieee->iw_mode = IW_MODE_MONITOR;
7101 break;
7102 #endif
7103 default:
7104 case 0:
7105 priv->ieee->iw_mode = IW_MODE_INFRA;
7106 break;
7107 }
7108
7109 if ((priv->pci_dev->device == 0x4223) ||
7110 (priv->pci_dev->device == 0x4224)) {
7111 printk(KERN_INFO DRV_NAME
7112 ": Detected Intel PRO/Wireless 2915ABG Network "
7113 "Connection\n");
7114 priv->ieee->abg_true = 1;
7115 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
7116 modulation = IEEE80211_OFDM_MODULATION |
7117 IEEE80211_CCK_MODULATION;
7118 priv->adapter = IPW_2915ABG;
7119 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
7120 } else {
7121 if (priv->pci_dev->device == 0x4221)
7122 printk(KERN_INFO DRV_NAME
7123 ": Detected Intel PRO/Wireless 2225BG Network "
7124 "Connection\n");
7125 else
7126 printk(KERN_INFO DRV_NAME
7127 ": Detected Intel PRO/Wireless 2200BG Network "
7128 "Connection\n");
7129
7130 priv->ieee->abg_true = 0;
7131 band = IEEE80211_24GHZ_BAND;
7132 modulation = IEEE80211_OFDM_MODULATION |
7133 IEEE80211_CCK_MODULATION;
7134 priv->adapter = IPW_2200BG;
7135 priv->ieee->mode = IEEE_G | IEEE_B;
7136 }
7137
7138 priv->ieee->freq_band = band;
7139 priv->ieee->modulation = modulation;
7140
7141 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
7142
7143 priv->missed_beacon_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
7144 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
7145
7146 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
7147
7148 /* If power management is turned on, default to AC mode */
7149 priv->power_mode = IPW_POWER_AC;
7150 priv->tx_power = IPW_DEFAULT_TX_POWER;
7151
7152 err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
7153 if (err) {
7154 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
7155 goto out_destroy_workqueue;
7156 }
7157
7158 SET_MODULE_OWNER(net_dev);
7159 SET_NETDEV_DEV(net_dev, &pdev->dev);
7160
7161 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
7162 priv->ieee->set_security = shim__set_security;
7163
7164 net_dev->open = ipw_net_open;
7165 net_dev->stop = ipw_net_stop;
7166 net_dev->init = ipw_net_init;
7167 net_dev->get_stats = ipw_net_get_stats;
7168 net_dev->set_multicast_list = ipw_net_set_multicast_list;
7169 net_dev->set_mac_address = ipw_net_set_mac_address;
7170 net_dev->get_wireless_stats = ipw_get_wireless_stats;
7171 net_dev->wireless_handlers = &ipw_wx_handler_def;
7172 net_dev->ethtool_ops = &ipw_ethtool_ops;
7173 net_dev->irq = pdev->irq;
7174 net_dev->base_addr = (unsigned long)priv->hw_base;
7175 net_dev->mem_start = pci_resource_start(pdev, 0);
7176 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
7177
7178 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
7179 if (err) {
7180 IPW_ERROR("failed to create sysfs device attributes\n");
7181 goto out_release_irq;
7182 }
7183
7184 err = register_netdev(net_dev);
7185 if (err) {
7186 IPW_ERROR("failed to register network device\n");
7187 goto out_remove_group;
7188 }
7189
7190 return 0;
7191
7192 out_remove_group:
7193 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
7194 out_release_irq:
7195 free_irq(pdev->irq, priv);
7196 out_destroy_workqueue:
7197 destroy_workqueue(priv->workqueue);
7198 priv->workqueue = NULL;
7199 out_iounmap:
7200 iounmap(priv->hw_base);
7201 out_pci_release_regions:
7202 pci_release_regions(pdev);
7203 out_pci_disable_device:
7204 pci_disable_device(pdev);
7205 pci_set_drvdata(pdev, NULL);
7206 out_free_ieee80211:
7207 free_ieee80211(priv->net_dev);
7208 out:
7209 return err;
7210 }
7211
7212 static void ipw_pci_remove(struct pci_dev *pdev)
7213 {
7214 struct ipw_priv *priv = pci_get_drvdata(pdev);
7215 if (!priv)
7216 return;
7217
7218 priv->status |= STATUS_EXIT_PENDING;
7219
7220 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
7221
7222 ipw_down(priv);
7223
7224 unregister_netdev(priv->net_dev);
7225
7226 if (priv->rxq) {
7227 ipw_rx_queue_free(priv, priv->rxq);
7228 priv->rxq = NULL;
7229 }
7230 ipw_tx_queue_free(priv);
7231
7232 /* ipw_down will ensure that there is no more pending work
7233 * in the workqueue's, so we can safely remove them now. */
7234 if (priv->workqueue) {
7235 cancel_delayed_work(&priv->adhoc_check);
7236 cancel_delayed_work(&priv->gather_stats);
7237 cancel_delayed_work(&priv->request_scan);
7238 cancel_delayed_work(&priv->rf_kill);
7239 cancel_delayed_work(&priv->scan_check);
7240 destroy_workqueue(priv->workqueue);
7241 priv->workqueue = NULL;
7242 }
7243
7244 free_irq(pdev->irq, priv);
7245 iounmap(priv->hw_base);
7246 pci_release_regions(pdev);
7247 pci_disable_device(pdev);
7248 pci_set_drvdata(pdev, NULL);
7249 free_ieee80211(priv->net_dev);
7250
7251 #ifdef CONFIG_PM
7252 if (fw_loaded) {
7253 release_firmware(bootfw);
7254 release_firmware(ucode);
7255 release_firmware(firmware);
7256 fw_loaded = 0;
7257 }
7258 #endif
7259 }
7260
7261 #ifdef CONFIG_PM
7262 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
7263 {
7264 struct ipw_priv *priv = pci_get_drvdata(pdev);
7265 struct net_device *dev = priv->net_dev;
7266
7267 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
7268
7269 /* Take down the device; powers it off, etc. */
7270 ipw_down(priv);
7271
7272 /* Remove the PRESENT state of the device */
7273 netif_device_detach(dev);
7274
7275 pci_save_state(pdev);
7276 pci_disable_device(pdev);
7277 pci_set_power_state(pdev, pci_choose_state(pdev, state));
7278
7279 return 0;
7280 }
7281
7282 static int ipw_pci_resume(struct pci_dev *pdev)
7283 {
7284 struct ipw_priv *priv = pci_get_drvdata(pdev);
7285 struct net_device *dev = priv->net_dev;
7286 u32 val;
7287
7288 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
7289
7290 pci_set_power_state(pdev, 0);
7291 pci_enable_device(pdev);
7292 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
7293 pci_restore_state(pdev, priv->pm_state);
7294 #else
7295 pci_restore_state(pdev);
7296 #endif
7297 /*
7298 * Suspend/Resume resets the PCI configuration space, so we have to
7299 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
7300 * from interfering with C3 CPU state. pci_restore_state won't help
7301 * here since it only restores the first 64 bytes pci config header.
7302 */
7303 pci_read_config_dword(pdev, 0x40, &val);
7304 if ((val & 0x0000ff00) != 0)
7305 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
7306
7307 /* Set the device back into the PRESENT state; this will also wake
7308 * the queue of needed */
7309 netif_device_attach(dev);
7310
7311 /* Bring the device back up */
7312 queue_work(priv->workqueue, &priv->up);
7313
7314 return 0;
7315 }
7316 #endif
7317
7318 /* driver initialization stuff */
7319 static struct pci_driver ipw_driver = {
7320 .name = DRV_NAME,
7321 .id_table = card_ids,
7322 .probe = ipw_pci_probe,
7323 .remove = __devexit_p(ipw_pci_remove),
7324 #ifdef CONFIG_PM
7325 .suspend = ipw_pci_suspend,
7326 .resume = ipw_pci_resume,
7327 #endif
7328 };
7329
7330 static int __init ipw_init(void)
7331 {
7332 int ret;
7333
7334 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
7335 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
7336
7337 ret = pci_module_init(&ipw_driver);
7338 if (ret) {
7339 IPW_ERROR("Unable to initialize PCI module\n");
7340 return ret;
7341 }
7342
7343 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
7344 if (ret) {
7345 IPW_ERROR("Unable to create driver sysfs file\n");
7346 pci_unregister_driver(&ipw_driver);
7347 return ret;
7348 }
7349
7350 return ret;
7351 }
7352
7353 static void __exit ipw_exit(void)
7354 {
7355 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
7356 pci_unregister_driver(&ipw_driver);
7357 }
7358
7359 module_param(disable, int, 0444);
7360 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
7361
7362 module_param(associate, int, 0444);
7363 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
7364
7365 module_param(auto_create, int, 0444);
7366 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
7367
7368 module_param(debug, int, 0444);
7369 MODULE_PARM_DESC(debug, "debug output mask");
7370
7371 module_param(channel, int, 0444);
7372 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
7373
7374 module_param(ifname, charp, 0444);
7375 MODULE_PARM_DESC(ifname, "network device name (default eth%d)");
7376
7377 #ifdef CONFIG_IPW_PROMISC
7378 module_param(mode, int, 0444);
7379 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
7380 #else
7381 module_param(mode, int, 0444);
7382 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
7383 #endif
7384
7385 module_exit(ipw_exit);
7386 module_init(ipw_init);
This page took 0.193397 seconds and 5 git commands to generate.