Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad...
[deliverable/linux.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME "ipw2100"
173 #define DRV_VERSION IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176
177 struct pm_qos_request_list ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216 if (ipw2100_debug_level & (level)) { \
217 printk(KERN_DEBUG "ipw2100: %c %s ", \
218 in_interrupt() ? 'I' : 'U', __func__); \
219 printk(message); \
220 } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228 "undefined",
229 "unused", /* HOST_ATTENTION */
230 "HOST_COMPLETE",
231 "unused", /* SLEEP */
232 "unused", /* HOST_POWER_DOWN */
233 "unused",
234 "SYSTEM_CONFIG",
235 "unused", /* SET_IMR */
236 "SSID",
237 "MANDATORY_BSSID",
238 "AUTHENTICATION_TYPE",
239 "ADAPTER_ADDRESS",
240 "PORT_TYPE",
241 "INTERNATIONAL_MODE",
242 "CHANNEL",
243 "RTS_THRESHOLD",
244 "FRAG_THRESHOLD",
245 "POWER_MODE",
246 "TX_RATES",
247 "BASIC_TX_RATES",
248 "WEP_KEY_INFO",
249 "unused",
250 "unused",
251 "unused",
252 "unused",
253 "WEP_KEY_INDEX",
254 "WEP_FLAGS",
255 "ADD_MULTICAST",
256 "CLEAR_ALL_MULTICAST",
257 "BEACON_INTERVAL",
258 "ATIM_WINDOW",
259 "CLEAR_STATISTICS",
260 "undefined",
261 "undefined",
262 "undefined",
263 "undefined",
264 "TX_POWER_INDEX",
265 "undefined",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "BROADCAST_SCAN",
272 "CARD_DISABLE",
273 "PREFERRED_BSSID",
274 "SET_SCAN_OPTIONS",
275 "SCAN_DWELL_TIME",
276 "SWEEP_TABLE",
277 "AP_OR_STATION_TABLE",
278 "GROUP_ORDINALS",
279 "SHORT_RETRY_LIMIT",
280 "LONG_RETRY_LIMIT",
281 "unused", /* SAVE_CALIBRATION */
282 "unused", /* RESTORE_CALIBRATION */
283 "undefined",
284 "undefined",
285 "undefined",
286 "HOST_PRE_POWER_DOWN",
287 "unused", /* HOST_INTERRUPT_COALESCING */
288 "undefined",
289 "CARD_DISABLE_PHY_OFF",
290 "MSDU_TX_RATES" "undefined",
291 "undefined",
292 "SET_STATION_STAT_BITS",
293 "CLEAR_STATIONS_STAT_BITS",
294 "LEAP_ROGUE_MODE",
295 "SET_SECURITY_INFORMATION",
296 "DISASSOCIATION_BSSID",
297 "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 #define WEXT_USECHANNELS 1
302
303 static const long ipw2100_frequencies[] = {
304 2412, 2417, 2422, 2427,
305 2432, 2437, 2442, 2447,
306 2452, 2457, 2462, 2467,
307 2472, 2484
308 };
309
310 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
311
312 static const long ipw2100_rates_11b[] = {
313 1000000,
314 2000000,
315 5500000,
316 11000000
317 };
318
319 static struct ieee80211_rate ipw2100_bg_rates[] = {
320 { .bitrate = 10 },
321 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
322 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
323 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
324 };
325
326 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
327
328 /* Pre-decl until we get the code solid and then we can clean it up */
329 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
330 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
331 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
332
333 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
334 static void ipw2100_queues_free(struct ipw2100_priv *priv);
335 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
336
337 static int ipw2100_fw_download(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
342 size_t max);
343 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
344 size_t max);
345 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
346 struct ipw2100_fw *fw);
347 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
348 struct ipw2100_fw *fw);
349 static void ipw2100_wx_event_work(struct work_struct *work);
350 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
351 static struct iw_handler_def ipw2100_wx_handler_def;
352
353 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
354 {
355 *val = readl((void __iomem *)(dev->base_addr + reg));
356 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
357 }
358
359 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
360 {
361 writel(val, (void __iomem *)(dev->base_addr + reg));
362 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
363 }
364
365 static inline void read_register_word(struct net_device *dev, u32 reg,
366 u16 * val)
367 {
368 *val = readw((void __iomem *)(dev->base_addr + reg));
369 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
370 }
371
372 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
373 {
374 *val = readb((void __iomem *)(dev->base_addr + reg));
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 writew(val, (void __iomem *)(dev->base_addr + reg));
381 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
382 }
383
384 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
385 {
386 writeb(val, (void __iomem *)(dev->base_addr + reg));
387 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
388 }
389
390 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
391 {
392 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
393 addr & IPW_REG_INDIRECT_ADDR_MASK);
394 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 }
396
397 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
398 {
399 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
400 addr & IPW_REG_INDIRECT_ADDR_MASK);
401 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 }
403
404 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
405 {
406 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
407 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
409 }
410
411 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
412 {
413 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
414 addr & IPW_REG_INDIRECT_ADDR_MASK);
415 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
416 }
417
418 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
419 {
420 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
421 addr & IPW_REG_INDIRECT_ADDR_MASK);
422 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
423 }
424
425 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
426 {
427 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 addr & IPW_REG_INDIRECT_ADDR_MASK);
429 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
430 }
431
432 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
433 {
434 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
435 addr & IPW_REG_INDIRECT_ADDR_MASK);
436 }
437
438 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
439 {
440 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
441 }
442
443 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
444 const u8 * buf)
445 {
446 u32 aligned_addr;
447 u32 aligned_len;
448 u32 dif_len;
449 u32 i;
450
451 /* read first nibble byte by byte */
452 aligned_addr = addr & (~0x3);
453 dif_len = addr - aligned_addr;
454 if (dif_len) {
455 /* Start reading at aligned_addr + dif_len */
456 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
457 aligned_addr);
458 for (i = dif_len; i < 4; i++, buf++)
459 write_register_byte(dev,
460 IPW_REG_INDIRECT_ACCESS_DATA + i,
461 *buf);
462
463 len -= dif_len;
464 aligned_addr += 4;
465 }
466
467 /* read DWs through autoincrement registers */
468 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
469 aligned_len = len & (~0x3);
470 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
471 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
472
473 /* copy the last nibble */
474 dif_len = len - aligned_len;
475 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
476 for (i = 0; i < dif_len; i++, buf++)
477 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
478 *buf);
479 }
480
481 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
482 u8 * buf)
483 {
484 u32 aligned_addr;
485 u32 aligned_len;
486 u32 dif_len;
487 u32 i;
488
489 /* read first nibble byte by byte */
490 aligned_addr = addr & (~0x3);
491 dif_len = addr - aligned_addr;
492 if (dif_len) {
493 /* Start reading at aligned_addr + dif_len */
494 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
495 aligned_addr);
496 for (i = dif_len; i < 4; i++, buf++)
497 read_register_byte(dev,
498 IPW_REG_INDIRECT_ACCESS_DATA + i,
499 buf);
500
501 len -= dif_len;
502 aligned_addr += 4;
503 }
504
505 /* read DWs through autoincrement registers */
506 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
507 aligned_len = len & (~0x3);
508 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
509 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
510
511 /* copy the last nibble */
512 dif_len = len - aligned_len;
513 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
514 for (i = 0; i < dif_len; i++, buf++)
515 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
516 }
517
518 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
519 {
520 return (dev->base_addr &&
521 (readl
522 ((void __iomem *)(dev->base_addr +
523 IPW_REG_DOA_DEBUG_AREA_START))
524 == IPW_DATA_DOA_DEBUG_VALUE));
525 }
526
527 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
528 void *val, u32 * len)
529 {
530 struct ipw2100_ordinals *ordinals = &priv->ordinals;
531 u32 addr;
532 u32 field_info;
533 u16 field_len;
534 u16 field_count;
535 u32 total_length;
536
537 if (ordinals->table1_addr == 0) {
538 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
539 "before they have been loaded.\n");
540 return -EINVAL;
541 }
542
543 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
544 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
545 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
546
547 printk(KERN_WARNING DRV_NAME
548 ": ordinal buffer length too small, need %zd\n",
549 IPW_ORD_TAB_1_ENTRY_SIZE);
550
551 return -EINVAL;
552 }
553
554 read_nic_dword(priv->net_dev,
555 ordinals->table1_addr + (ord << 2), &addr);
556 read_nic_dword(priv->net_dev, addr, val);
557
558 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
559
560 return 0;
561 }
562
563 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
564
565 ord -= IPW_START_ORD_TAB_2;
566
567 /* get the address of statistic */
568 read_nic_dword(priv->net_dev,
569 ordinals->table2_addr + (ord << 3), &addr);
570
571 /* get the second DW of statistics ;
572 * two 16-bit words - first is length, second is count */
573 read_nic_dword(priv->net_dev,
574 ordinals->table2_addr + (ord << 3) + sizeof(u32),
575 &field_info);
576
577 /* get each entry length */
578 field_len = *((u16 *) & field_info);
579
580 /* get number of entries */
581 field_count = *(((u16 *) & field_info) + 1);
582
583 /* abort if no enough memory */
584 total_length = field_len * field_count;
585 if (total_length > *len) {
586 *len = total_length;
587 return -EINVAL;
588 }
589
590 *len = total_length;
591 if (!total_length)
592 return 0;
593
594 /* read the ordinal data from the SRAM */
595 read_nic_memory(priv->net_dev, addr, total_length, val);
596
597 return 0;
598 }
599
600 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
601 "in table 2\n", ord);
602
603 return -EINVAL;
604 }
605
606 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
607 u32 * len)
608 {
609 struct ipw2100_ordinals *ordinals = &priv->ordinals;
610 u32 addr;
611
612 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
613 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
614 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
615 IPW_DEBUG_INFO("wrong size\n");
616 return -EINVAL;
617 }
618
619 read_nic_dword(priv->net_dev,
620 ordinals->table1_addr + (ord << 2), &addr);
621
622 write_nic_dword(priv->net_dev, addr, *val);
623
624 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
625
626 return 0;
627 }
628
629 IPW_DEBUG_INFO("wrong table\n");
630 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
631 return -EINVAL;
632
633 return -EINVAL;
634 }
635
636 static char *snprint_line(char *buf, size_t count,
637 const u8 * data, u32 len, u32 ofs)
638 {
639 int out, i, j, l;
640 char c;
641
642 out = snprintf(buf, count, "%08X", ofs);
643
644 for (l = 0, i = 0; i < 2; i++) {
645 out += snprintf(buf + out, count - out, " ");
646 for (j = 0; j < 8 && l < len; j++, l++)
647 out += snprintf(buf + out, count - out, "%02X ",
648 data[(i * 8 + j)]);
649 for (; j < 8; j++)
650 out += snprintf(buf + out, count - out, " ");
651 }
652
653 out += snprintf(buf + out, count - out, " ");
654 for (l = 0, i = 0; i < 2; i++) {
655 out += snprintf(buf + out, count - out, " ");
656 for (j = 0; j < 8 && l < len; j++, l++) {
657 c = data[(i * 8 + j)];
658 if (!isascii(c) || !isprint(c))
659 c = '.';
660
661 out += snprintf(buf + out, count - out, "%c", c);
662 }
663
664 for (; j < 8; j++)
665 out += snprintf(buf + out, count - out, " ");
666 }
667
668 return buf;
669 }
670
671 static void printk_buf(int level, const u8 * data, u32 len)
672 {
673 char line[81];
674 u32 ofs = 0;
675 if (!(ipw2100_debug_level & level))
676 return;
677
678 while (len) {
679 printk(KERN_DEBUG "%s\n",
680 snprint_line(line, sizeof(line), &data[ofs],
681 min(len, 16U), ofs));
682 ofs += 16;
683 len -= min(len, 16U);
684 }
685 }
686
687 #define MAX_RESET_BACKOFF 10
688
689 static void schedule_reset(struct ipw2100_priv *priv)
690 {
691 unsigned long now = get_seconds();
692
693 /* If we haven't received a reset request within the backoff period,
694 * then we can reset the backoff interval so this reset occurs
695 * immediately */
696 if (priv->reset_backoff &&
697 (now - priv->last_reset > priv->reset_backoff))
698 priv->reset_backoff = 0;
699
700 priv->last_reset = get_seconds();
701
702 if (!(priv->status & STATUS_RESET_PENDING)) {
703 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
704 priv->net_dev->name, priv->reset_backoff);
705 netif_carrier_off(priv->net_dev);
706 netif_stop_queue(priv->net_dev);
707 priv->status |= STATUS_RESET_PENDING;
708 if (priv->reset_backoff)
709 queue_delayed_work(priv->workqueue, &priv->reset_work,
710 priv->reset_backoff * HZ);
711 else
712 queue_delayed_work(priv->workqueue, &priv->reset_work,
713 0);
714
715 if (priv->reset_backoff < MAX_RESET_BACKOFF)
716 priv->reset_backoff++;
717
718 wake_up_interruptible(&priv->wait_command_queue);
719 } else
720 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
721 priv->net_dev->name);
722
723 }
724
725 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
726 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
727 struct host_command *cmd)
728 {
729 struct list_head *element;
730 struct ipw2100_tx_packet *packet;
731 unsigned long flags;
732 int err = 0;
733
734 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
735 command_types[cmd->host_command], cmd->host_command,
736 cmd->host_command_length);
737 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
738 cmd->host_command_length);
739
740 spin_lock_irqsave(&priv->low_lock, flags);
741
742 if (priv->fatal_error) {
743 IPW_DEBUG_INFO
744 ("Attempt to send command while hardware in fatal error condition.\n");
745 err = -EIO;
746 goto fail_unlock;
747 }
748
749 if (!(priv->status & STATUS_RUNNING)) {
750 IPW_DEBUG_INFO
751 ("Attempt to send command while hardware is not running.\n");
752 err = -EIO;
753 goto fail_unlock;
754 }
755
756 if (priv->status & STATUS_CMD_ACTIVE) {
757 IPW_DEBUG_INFO
758 ("Attempt to send command while another command is pending.\n");
759 err = -EBUSY;
760 goto fail_unlock;
761 }
762
763 if (list_empty(&priv->msg_free_list)) {
764 IPW_DEBUG_INFO("no available msg buffers\n");
765 goto fail_unlock;
766 }
767
768 priv->status |= STATUS_CMD_ACTIVE;
769 priv->messages_sent++;
770
771 element = priv->msg_free_list.next;
772
773 packet = list_entry(element, struct ipw2100_tx_packet, list);
774 packet->jiffy_start = jiffies;
775
776 /* initialize the firmware command packet */
777 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
778 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
779 packet->info.c_struct.cmd->host_command_len_reg =
780 cmd->host_command_length;
781 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
782
783 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
784 cmd->host_command_parameters,
785 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
786
787 list_del(element);
788 DEC_STAT(&priv->msg_free_stat);
789
790 list_add_tail(element, &priv->msg_pend_list);
791 INC_STAT(&priv->msg_pend_stat);
792
793 ipw2100_tx_send_commands(priv);
794 ipw2100_tx_send_data(priv);
795
796 spin_unlock_irqrestore(&priv->low_lock, flags);
797
798 /*
799 * We must wait for this command to complete before another
800 * command can be sent... but if we wait more than 3 seconds
801 * then there is a problem.
802 */
803
804 err =
805 wait_event_interruptible_timeout(priv->wait_command_queue,
806 !(priv->
807 status & STATUS_CMD_ACTIVE),
808 HOST_COMPLETE_TIMEOUT);
809
810 if (err == 0) {
811 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
812 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
813 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
814 priv->status &= ~STATUS_CMD_ACTIVE;
815 schedule_reset(priv);
816 return -EIO;
817 }
818
819 if (priv->fatal_error) {
820 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
821 priv->net_dev->name);
822 return -EIO;
823 }
824
825 /* !!!!! HACK TEST !!!!!
826 * When lots of debug trace statements are enabled, the driver
827 * doesn't seem to have as many firmware restart cycles...
828 *
829 * As a test, we're sticking in a 1/100s delay here */
830 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
831
832 return 0;
833
834 fail_unlock:
835 spin_unlock_irqrestore(&priv->low_lock, flags);
836
837 return err;
838 }
839
840 /*
841 * Verify the values and data access of the hardware
842 * No locks needed or used. No functions called.
843 */
844 static int ipw2100_verify(struct ipw2100_priv *priv)
845 {
846 u32 data1, data2;
847 u32 address;
848
849 u32 val1 = 0x76543210;
850 u32 val2 = 0xFEDCBA98;
851
852 /* Domain 0 check - all values should be DOA_DEBUG */
853 for (address = IPW_REG_DOA_DEBUG_AREA_START;
854 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
855 read_register(priv->net_dev, address, &data1);
856 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
857 return -EIO;
858 }
859
860 /* Domain 1 check - use arbitrary read/write compare */
861 for (address = 0; address < 5; address++) {
862 /* The memory area is not used now */
863 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
864 val1);
865 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
866 val2);
867 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
868 &data1);
869 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
870 &data2);
871 if (val1 == data1 && val2 == data2)
872 return 0;
873 }
874
875 return -EIO;
876 }
877
878 /*
879 *
880 * Loop until the CARD_DISABLED bit is the same value as the
881 * supplied parameter
882 *
883 * TODO: See if it would be more efficient to do a wait/wake
884 * cycle and have the completion event trigger the wakeup
885 *
886 */
887 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
888 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
889 {
890 int i;
891 u32 card_state;
892 u32 len = sizeof(card_state);
893 int err;
894
895 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
896 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
897 &card_state, &len);
898 if (err) {
899 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
900 "failed.\n");
901 return 0;
902 }
903
904 /* We'll break out if either the HW state says it is
905 * in the state we want, or if HOST_COMPLETE command
906 * finishes */
907 if ((card_state == state) ||
908 ((priv->status & STATUS_ENABLED) ?
909 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
910 if (state == IPW_HW_STATE_ENABLED)
911 priv->status |= STATUS_ENABLED;
912 else
913 priv->status &= ~STATUS_ENABLED;
914
915 return 0;
916 }
917
918 udelay(50);
919 }
920
921 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
922 state ? "DISABLED" : "ENABLED");
923 return -EIO;
924 }
925
926 /*********************************************************************
927 Procedure : sw_reset_and_clock
928 Purpose : Asserts s/w reset, asserts clock initialization
929 and waits for clock stabilization
930 ********************************************************************/
931 static int sw_reset_and_clock(struct ipw2100_priv *priv)
932 {
933 int i;
934 u32 r;
935
936 // assert s/w reset
937 write_register(priv->net_dev, IPW_REG_RESET_REG,
938 IPW_AUX_HOST_RESET_REG_SW_RESET);
939
940 // wait for clock stabilization
941 for (i = 0; i < 1000; i++) {
942 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
943
944 // check clock ready bit
945 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
946 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
947 break;
948 }
949
950 if (i == 1000)
951 return -EIO; // TODO: better error value
952
953 /* set "initialization complete" bit to move adapter to
954 * D0 state */
955 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
956 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
957
958 /* wait for clock stabilization */
959 for (i = 0; i < 10000; i++) {
960 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
961
962 /* check clock ready bit */
963 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
964 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
965 break;
966 }
967
968 if (i == 10000)
969 return -EIO; /* TODO: better error value */
970
971 /* set D0 standby bit */
972 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
973 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
974 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
975
976 return 0;
977 }
978
979 /*********************************************************************
980 Procedure : ipw2100_download_firmware
981 Purpose : Initiaze adapter after power on.
982 The sequence is:
983 1. assert s/w reset first!
984 2. awake clocks & wait for clock stabilization
985 3. hold ARC (don't ask me why...)
986 4. load Dino ucode and reset/clock init again
987 5. zero-out shared mem
988 6. download f/w
989 *******************************************************************/
990 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
991 {
992 u32 address;
993 int err;
994
995 #ifndef CONFIG_PM
996 /* Fetch the firmware and microcode */
997 struct ipw2100_fw ipw2100_firmware;
998 #endif
999
1000 if (priv->fatal_error) {
1001 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1002 "fatal error %d. Interface must be brought down.\n",
1003 priv->net_dev->name, priv->fatal_error);
1004 return -EINVAL;
1005 }
1006 #ifdef CONFIG_PM
1007 if (!ipw2100_firmware.version) {
1008 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1009 if (err) {
1010 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1011 priv->net_dev->name, err);
1012 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1013 goto fail;
1014 }
1015 }
1016 #else
1017 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1018 if (err) {
1019 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1020 priv->net_dev->name, err);
1021 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1022 goto fail;
1023 }
1024 #endif
1025 priv->firmware_version = ipw2100_firmware.version;
1026
1027 /* s/w reset and clock stabilization */
1028 err = sw_reset_and_clock(priv);
1029 if (err) {
1030 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1031 priv->net_dev->name, err);
1032 goto fail;
1033 }
1034
1035 err = ipw2100_verify(priv);
1036 if (err) {
1037 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1038 priv->net_dev->name, err);
1039 goto fail;
1040 }
1041
1042 /* Hold ARC */
1043 write_nic_dword(priv->net_dev,
1044 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1045
1046 /* allow ARC to run */
1047 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1048
1049 /* load microcode */
1050 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1051 if (err) {
1052 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1053 priv->net_dev->name, err);
1054 goto fail;
1055 }
1056
1057 /* release ARC */
1058 write_nic_dword(priv->net_dev,
1059 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1060
1061 /* s/w reset and clock stabilization (again!!!) */
1062 err = sw_reset_and_clock(priv);
1063 if (err) {
1064 printk(KERN_ERR DRV_NAME
1065 ": %s: sw_reset_and_clock failed: %d\n",
1066 priv->net_dev->name, err);
1067 goto fail;
1068 }
1069
1070 /* load f/w */
1071 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1072 if (err) {
1073 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1074 priv->net_dev->name, err);
1075 goto fail;
1076 }
1077 #ifndef CONFIG_PM
1078 /*
1079 * When the .resume method of the driver is called, the other
1080 * part of the system, i.e. the ide driver could still stay in
1081 * the suspend stage. This prevents us from loading the firmware
1082 * from the disk. --YZ
1083 */
1084
1085 /* free any storage allocated for firmware image */
1086 ipw2100_release_firmware(priv, &ipw2100_firmware);
1087 #endif
1088
1089 /* zero out Domain 1 area indirectly (Si requirement) */
1090 for (address = IPW_HOST_FW_SHARED_AREA0;
1091 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1092 write_nic_dword(priv->net_dev, address, 0);
1093 for (address = IPW_HOST_FW_SHARED_AREA1;
1094 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA2;
1097 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA3;
1100 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1103 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105
1106 return 0;
1107
1108 fail:
1109 ipw2100_release_firmware(priv, &ipw2100_firmware);
1110 return err;
1111 }
1112
1113 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1114 {
1115 if (priv->status & STATUS_INT_ENABLED)
1116 return;
1117 priv->status |= STATUS_INT_ENABLED;
1118 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1119 }
1120
1121 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1122 {
1123 if (!(priv->status & STATUS_INT_ENABLED))
1124 return;
1125 priv->status &= ~STATUS_INT_ENABLED;
1126 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1127 }
1128
1129 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1130 {
1131 struct ipw2100_ordinals *ord = &priv->ordinals;
1132
1133 IPW_DEBUG_INFO("enter\n");
1134
1135 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1136 &ord->table1_addr);
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1139 &ord->table2_addr);
1140
1141 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1142 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1143
1144 ord->table2_size &= 0x0000FFFF;
1145
1146 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1147 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1148 IPW_DEBUG_INFO("exit\n");
1149 }
1150
1151 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1152 {
1153 u32 reg = 0;
1154 /*
1155 * Set GPIO 3 writable by FW; GPIO 1 writable
1156 * by driver and enable clock
1157 */
1158 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1159 IPW_BIT_GPIO_LED_OFF);
1160 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1161 }
1162
1163 static int rf_kill_active(struct ipw2100_priv *priv)
1164 {
1165 #define MAX_RF_KILL_CHECKS 5
1166 #define RF_KILL_CHECK_DELAY 40
1167
1168 unsigned short value = 0;
1169 u32 reg = 0;
1170 int i;
1171
1172 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1173 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1174 priv->status &= ~STATUS_RF_KILL_HW;
1175 return 0;
1176 }
1177
1178 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1179 udelay(RF_KILL_CHECK_DELAY);
1180 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1181 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1182 }
1183
1184 if (value == 0) {
1185 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1186 priv->status |= STATUS_RF_KILL_HW;
1187 } else {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1189 priv->status &= ~STATUS_RF_KILL_HW;
1190 }
1191
1192 return (value == 0);
1193 }
1194
1195 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1196 {
1197 u32 addr, len;
1198 u32 val;
1199
1200 /*
1201 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1202 */
1203 len = sizeof(addr);
1204 if (ipw2100_get_ordinal
1205 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1206 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1207 __LINE__);
1208 return -EIO;
1209 }
1210
1211 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1212
1213 /*
1214 * EEPROM version is the byte at offset 0xfd in firmware
1215 * We read 4 bytes, then shift out the byte we actually want */
1216 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1217 priv->eeprom_version = (val >> 24) & 0xFF;
1218 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1219
1220 /*
1221 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1222 *
1223 * notice that the EEPROM bit is reverse polarity, i.e.
1224 * bit = 0 signifies HW RF kill switch is supported
1225 * bit = 1 signifies HW RF kill switch is NOT supported
1226 */
1227 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1228 if (!((val >> 24) & 0x01))
1229 priv->hw_features |= HW_FEATURE_RFKILL;
1230
1231 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1232 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1233
1234 return 0;
1235 }
1236
1237 /*
1238 * Start firmware execution after power on and intialization
1239 * The sequence is:
1240 * 1. Release ARC
1241 * 2. Wait for f/w initialization completes;
1242 */
1243 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1244 {
1245 int i;
1246 u32 inta, inta_mask, gpio;
1247
1248 IPW_DEBUG_INFO("enter\n");
1249
1250 if (priv->status & STATUS_RUNNING)
1251 return 0;
1252
1253 /*
1254 * Initialize the hw - drive adapter to DO state by setting
1255 * init_done bit. Wait for clk_ready bit and Download
1256 * fw & dino ucode
1257 */
1258 if (ipw2100_download_firmware(priv)) {
1259 printk(KERN_ERR DRV_NAME
1260 ": %s: Failed to power on the adapter.\n",
1261 priv->net_dev->name);
1262 return -EIO;
1263 }
1264
1265 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1266 * in the firmware RBD and TBD ring queue */
1267 ipw2100_queues_initialize(priv);
1268
1269 ipw2100_hw_set_gpio(priv);
1270
1271 /* TODO -- Look at disabling interrupts here to make sure none
1272 * get fired during FW initialization */
1273
1274 /* Release ARC - clear reset bit */
1275 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1276
1277 /* wait for f/w intialization complete */
1278 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1279 i = 5000;
1280 do {
1281 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1282 /* Todo... wait for sync command ... */
1283
1284 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1285
1286 /* check "init done" bit */
1287 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1288 /* reset "init done" bit */
1289 write_register(priv->net_dev, IPW_REG_INTA,
1290 IPW2100_INTA_FW_INIT_DONE);
1291 break;
1292 }
1293
1294 /* check error conditions : we check these after the firmware
1295 * check so that if there is an error, the interrupt handler
1296 * will see it and the adapter will be reset */
1297 if (inta &
1298 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1299 /* clear error conditions */
1300 write_register(priv->net_dev, IPW_REG_INTA,
1301 IPW2100_INTA_FATAL_ERROR |
1302 IPW2100_INTA_PARITY_ERROR);
1303 }
1304 } while (--i);
1305
1306 /* Clear out any pending INTAs since we aren't supposed to have
1307 * interrupts enabled at this point... */
1308 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1309 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1310 inta &= IPW_INTERRUPT_MASK;
1311 /* Clear out any pending interrupts */
1312 if (inta & inta_mask)
1313 write_register(priv->net_dev, IPW_REG_INTA, inta);
1314
1315 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1316 i ? "SUCCESS" : "FAILED");
1317
1318 if (!i) {
1319 printk(KERN_WARNING DRV_NAME
1320 ": %s: Firmware did not initialize.\n",
1321 priv->net_dev->name);
1322 return -EIO;
1323 }
1324
1325 /* allow firmware to write to GPIO1 & GPIO3 */
1326 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1327
1328 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1329
1330 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1331
1332 /* Ready to receive commands */
1333 priv->status |= STATUS_RUNNING;
1334
1335 /* The adapter has been reset; we are not associated */
1336 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1337
1338 IPW_DEBUG_INFO("exit\n");
1339
1340 return 0;
1341 }
1342
1343 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1344 {
1345 if (!priv->fatal_error)
1346 return;
1347
1348 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1349 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1350 priv->fatal_error = 0;
1351 }
1352
1353 /* NOTE: Our interrupt is disabled when this method is called */
1354 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1355 {
1356 u32 reg;
1357 int i;
1358
1359 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1360
1361 ipw2100_hw_set_gpio(priv);
1362
1363 /* Step 1. Stop Master Assert */
1364 write_register(priv->net_dev, IPW_REG_RESET_REG,
1365 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1366
1367 /* Step 2. Wait for stop Master Assert
1368 * (not more than 50us, otherwise ret error */
1369 i = 5;
1370 do {
1371 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1372 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1373
1374 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1375 break;
1376 } while (--i);
1377
1378 priv->status &= ~STATUS_RESET_PENDING;
1379
1380 if (!i) {
1381 IPW_DEBUG_INFO
1382 ("exit - waited too long for master assert stop\n");
1383 return -EIO;
1384 }
1385
1386 write_register(priv->net_dev, IPW_REG_RESET_REG,
1387 IPW_AUX_HOST_RESET_REG_SW_RESET);
1388
1389 /* Reset any fatal_error conditions */
1390 ipw2100_reset_fatalerror(priv);
1391
1392 /* At this point, the adapter is now stopped and disabled */
1393 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1394 STATUS_ASSOCIATED | STATUS_ENABLED);
1395
1396 return 0;
1397 }
1398
1399 /*
1400 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1401 *
1402 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1403 *
1404 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1405 * if STATUS_ASSN_LOST is sent.
1406 */
1407 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1408 {
1409
1410 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1411
1412 struct host_command cmd = {
1413 .host_command = CARD_DISABLE_PHY_OFF,
1414 .host_command_sequence = 0,
1415 .host_command_length = 0,
1416 };
1417 int err, i;
1418 u32 val1, val2;
1419
1420 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1421
1422 /* Turn off the radio */
1423 err = ipw2100_hw_send_command(priv, &cmd);
1424 if (err)
1425 return err;
1426
1427 for (i = 0; i < 2500; i++) {
1428 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1429 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1430
1431 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1432 (val2 & IPW2100_COMMAND_PHY_OFF))
1433 return 0;
1434
1435 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1436 }
1437
1438 return -EIO;
1439 }
1440
1441 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1442 {
1443 struct host_command cmd = {
1444 .host_command = HOST_COMPLETE,
1445 .host_command_sequence = 0,
1446 .host_command_length = 0
1447 };
1448 int err = 0;
1449
1450 IPW_DEBUG_HC("HOST_COMPLETE\n");
1451
1452 if (priv->status & STATUS_ENABLED)
1453 return 0;
1454
1455 mutex_lock(&priv->adapter_mutex);
1456
1457 if (rf_kill_active(priv)) {
1458 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1459 goto fail_up;
1460 }
1461
1462 err = ipw2100_hw_send_command(priv, &cmd);
1463 if (err) {
1464 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1465 goto fail_up;
1466 }
1467
1468 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1469 if (err) {
1470 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1471 priv->net_dev->name);
1472 goto fail_up;
1473 }
1474
1475 if (priv->stop_hang_check) {
1476 priv->stop_hang_check = 0;
1477 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1478 }
1479
1480 fail_up:
1481 mutex_unlock(&priv->adapter_mutex);
1482 return err;
1483 }
1484
1485 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1486 {
1487 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1488
1489 struct host_command cmd = {
1490 .host_command = HOST_PRE_POWER_DOWN,
1491 .host_command_sequence = 0,
1492 .host_command_length = 0,
1493 };
1494 int err, i;
1495 u32 reg;
1496
1497 if (!(priv->status & STATUS_RUNNING))
1498 return 0;
1499
1500 priv->status |= STATUS_STOPPING;
1501
1502 /* We can only shut down the card if the firmware is operational. So,
1503 * if we haven't reset since a fatal_error, then we can not send the
1504 * shutdown commands. */
1505 if (!priv->fatal_error) {
1506 /* First, make sure the adapter is enabled so that the PHY_OFF
1507 * command can shut it down */
1508 ipw2100_enable_adapter(priv);
1509
1510 err = ipw2100_hw_phy_off(priv);
1511 if (err)
1512 printk(KERN_WARNING DRV_NAME
1513 ": Error disabling radio %d\n", err);
1514
1515 /*
1516 * If in D0-standby mode going directly to D3 may cause a
1517 * PCI bus violation. Therefore we must change out of the D0
1518 * state.
1519 *
1520 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1521 * hardware from going into standby mode and will transition
1522 * out of D0-standby if it is already in that state.
1523 *
1524 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1525 * driver upon completion. Once received, the driver can
1526 * proceed to the D3 state.
1527 *
1528 * Prepare for power down command to fw. This command would
1529 * take HW out of D0-standby and prepare it for D3 state.
1530 *
1531 * Currently FW does not support event notification for this
1532 * event. Therefore, skip waiting for it. Just wait a fixed
1533 * 100ms
1534 */
1535 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1536
1537 err = ipw2100_hw_send_command(priv, &cmd);
1538 if (err)
1539 printk(KERN_WARNING DRV_NAME ": "
1540 "%s: Power down command failed: Error %d\n",
1541 priv->net_dev->name, err);
1542 else
1543 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1544 }
1545
1546 priv->status &= ~STATUS_ENABLED;
1547
1548 /*
1549 * Set GPIO 3 writable by FW; GPIO 1 writable
1550 * by driver and enable clock
1551 */
1552 ipw2100_hw_set_gpio(priv);
1553
1554 /*
1555 * Power down adapter. Sequence:
1556 * 1. Stop master assert (RESET_REG[9]=1)
1557 * 2. Wait for stop master (RESET_REG[8]==1)
1558 * 3. S/w reset assert (RESET_REG[7] = 1)
1559 */
1560
1561 /* Stop master assert */
1562 write_register(priv->net_dev, IPW_REG_RESET_REG,
1563 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1564
1565 /* wait stop master not more than 50 usec.
1566 * Otherwise return error. */
1567 for (i = 5; i > 0; i--) {
1568 udelay(10);
1569
1570 /* Check master stop bit */
1571 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1572
1573 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1574 break;
1575 }
1576
1577 if (i == 0)
1578 printk(KERN_WARNING DRV_NAME
1579 ": %s: Could now power down adapter.\n",
1580 priv->net_dev->name);
1581
1582 /* assert s/w reset */
1583 write_register(priv->net_dev, IPW_REG_RESET_REG,
1584 IPW_AUX_HOST_RESET_REG_SW_RESET);
1585
1586 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1587
1588 return 0;
1589 }
1590
1591 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1592 {
1593 struct host_command cmd = {
1594 .host_command = CARD_DISABLE,
1595 .host_command_sequence = 0,
1596 .host_command_length = 0
1597 };
1598 int err = 0;
1599
1600 IPW_DEBUG_HC("CARD_DISABLE\n");
1601
1602 if (!(priv->status & STATUS_ENABLED))
1603 return 0;
1604
1605 /* Make sure we clear the associated state */
1606 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1607
1608 if (!priv->stop_hang_check) {
1609 priv->stop_hang_check = 1;
1610 cancel_delayed_work(&priv->hang_check);
1611 }
1612
1613 mutex_lock(&priv->adapter_mutex);
1614
1615 err = ipw2100_hw_send_command(priv, &cmd);
1616 if (err) {
1617 printk(KERN_WARNING DRV_NAME
1618 ": exit - failed to send CARD_DISABLE command\n");
1619 goto fail_up;
1620 }
1621
1622 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1623 if (err) {
1624 printk(KERN_WARNING DRV_NAME
1625 ": exit - card failed to change to DISABLED\n");
1626 goto fail_up;
1627 }
1628
1629 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1630
1631 fail_up:
1632 mutex_unlock(&priv->adapter_mutex);
1633 return err;
1634 }
1635
1636 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1637 {
1638 struct host_command cmd = {
1639 .host_command = SET_SCAN_OPTIONS,
1640 .host_command_sequence = 0,
1641 .host_command_length = 8
1642 };
1643 int err;
1644
1645 IPW_DEBUG_INFO("enter\n");
1646
1647 IPW_DEBUG_SCAN("setting scan options\n");
1648
1649 cmd.host_command_parameters[0] = 0;
1650
1651 if (!(priv->config & CFG_ASSOCIATE))
1652 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1653 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1654 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1655 if (priv->config & CFG_PASSIVE_SCAN)
1656 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1657
1658 cmd.host_command_parameters[1] = priv->channel_mask;
1659
1660 err = ipw2100_hw_send_command(priv, &cmd);
1661
1662 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1663 cmd.host_command_parameters[0]);
1664
1665 return err;
1666 }
1667
1668 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1669 {
1670 struct host_command cmd = {
1671 .host_command = BROADCAST_SCAN,
1672 .host_command_sequence = 0,
1673 .host_command_length = 4
1674 };
1675 int err;
1676
1677 IPW_DEBUG_HC("START_SCAN\n");
1678
1679 cmd.host_command_parameters[0] = 0;
1680
1681 /* No scanning if in monitor mode */
1682 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1683 return 1;
1684
1685 if (priv->status & STATUS_SCANNING) {
1686 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1687 return 0;
1688 }
1689
1690 IPW_DEBUG_INFO("enter\n");
1691
1692 /* Not clearing here; doing so makes iwlist always return nothing...
1693 *
1694 * We should modify the table logic to use aging tables vs. clearing
1695 * the table on each scan start.
1696 */
1697 IPW_DEBUG_SCAN("starting scan\n");
1698
1699 priv->status |= STATUS_SCANNING;
1700 err = ipw2100_hw_send_command(priv, &cmd);
1701 if (err)
1702 priv->status &= ~STATUS_SCANNING;
1703
1704 IPW_DEBUG_INFO("exit\n");
1705
1706 return err;
1707 }
1708
1709 static const struct libipw_geo ipw_geos[] = {
1710 { /* Restricted */
1711 "---",
1712 .bg_channels = 14,
1713 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1714 {2427, 4}, {2432, 5}, {2437, 6},
1715 {2442, 7}, {2447, 8}, {2452, 9},
1716 {2457, 10}, {2462, 11}, {2467, 12},
1717 {2472, 13}, {2484, 14}},
1718 },
1719 };
1720
1721 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1722 {
1723 unsigned long flags;
1724 int rc = 0;
1725 u32 lock;
1726 u32 ord_len = sizeof(lock);
1727
1728 /* Age scan list entries found before suspend */
1729 if (priv->suspend_time) {
1730 libipw_networks_age(priv->ieee, priv->suspend_time);
1731 priv->suspend_time = 0;
1732 }
1733
1734 /* Quiet if manually disabled. */
1735 if (priv->status & STATUS_RF_KILL_SW) {
1736 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1737 "switch\n", priv->net_dev->name);
1738 return 0;
1739 }
1740
1741 /* the ipw2100 hardware really doesn't want power management delays
1742 * longer than 175usec
1743 */
1744 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1745
1746 /* If the interrupt is enabled, turn it off... */
1747 spin_lock_irqsave(&priv->low_lock, flags);
1748 ipw2100_disable_interrupts(priv);
1749
1750 /* Reset any fatal_error conditions */
1751 ipw2100_reset_fatalerror(priv);
1752 spin_unlock_irqrestore(&priv->low_lock, flags);
1753
1754 if (priv->status & STATUS_POWERED ||
1755 (priv->status & STATUS_RESET_PENDING)) {
1756 /* Power cycle the card ... */
1757 if (ipw2100_power_cycle_adapter(priv)) {
1758 printk(KERN_WARNING DRV_NAME
1759 ": %s: Could not cycle adapter.\n",
1760 priv->net_dev->name);
1761 rc = 1;
1762 goto exit;
1763 }
1764 } else
1765 priv->status |= STATUS_POWERED;
1766
1767 /* Load the firmware, start the clocks, etc. */
1768 if (ipw2100_start_adapter(priv)) {
1769 printk(KERN_ERR DRV_NAME
1770 ": %s: Failed to start the firmware.\n",
1771 priv->net_dev->name);
1772 rc = 1;
1773 goto exit;
1774 }
1775
1776 ipw2100_initialize_ordinals(priv);
1777
1778 /* Determine capabilities of this particular HW configuration */
1779 if (ipw2100_get_hw_features(priv)) {
1780 printk(KERN_ERR DRV_NAME
1781 ": %s: Failed to determine HW features.\n",
1782 priv->net_dev->name);
1783 rc = 1;
1784 goto exit;
1785 }
1786
1787 /* Initialize the geo */
1788 if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1789 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1790 return 0;
1791 }
1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794 lock = LOCK_NONE;
1795 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796 printk(KERN_ERR DRV_NAME
1797 ": %s: Failed to clear ordinal lock.\n",
1798 priv->net_dev->name);
1799 rc = 1;
1800 goto exit;
1801 }
1802
1803 priv->status &= ~STATUS_SCANNING;
1804
1805 if (rf_kill_active(priv)) {
1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 priv->net_dev->name);
1808
1809 if (priv->stop_rf_kill) {
1810 priv->stop_rf_kill = 0;
1811 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1812 round_jiffies_relative(HZ));
1813 }
1814
1815 deferred = 1;
1816 }
1817
1818 /* Turn on the interrupt so that commands can be processed */
1819 ipw2100_enable_interrupts(priv);
1820
1821 /* Send all of the commands that must be sent prior to
1822 * HOST_COMPLETE */
1823 if (ipw2100_adapter_setup(priv)) {
1824 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825 priv->net_dev->name);
1826 rc = 1;
1827 goto exit;
1828 }
1829
1830 if (!deferred) {
1831 /* Enable the adapter - sends HOST_COMPLETE */
1832 if (ipw2100_enable_adapter(priv)) {
1833 printk(KERN_ERR DRV_NAME ": "
1834 "%s: failed in call to enable adapter.\n",
1835 priv->net_dev->name);
1836 ipw2100_hw_stop_adapter(priv);
1837 rc = 1;
1838 goto exit;
1839 }
1840
1841 /* Start a scan . . . */
1842 ipw2100_set_scan_options(priv);
1843 ipw2100_start_scan(priv);
1844 }
1845
1846 exit:
1847 return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 unsigned long flags;
1853 union iwreq_data wrqu = {
1854 .ap_addr = {
1855 .sa_family = ARPHRD_ETHER}
1856 };
1857 int associated = priv->status & STATUS_ASSOCIATED;
1858
1859 /* Kill the RF switch timer */
1860 if (!priv->stop_rf_kill) {
1861 priv->stop_rf_kill = 1;
1862 cancel_delayed_work(&priv->rf_kill);
1863 }
1864
1865 /* Kill the firmware hang check timer */
1866 if (!priv->stop_hang_check) {
1867 priv->stop_hang_check = 1;
1868 cancel_delayed_work(&priv->hang_check);
1869 }
1870
1871 /* Kill any pending resets */
1872 if (priv->status & STATUS_RESET_PENDING)
1873 cancel_delayed_work(&priv->reset_work);
1874
1875 /* Make sure the interrupt is on so that FW commands will be
1876 * processed correctly */
1877 spin_lock_irqsave(&priv->low_lock, flags);
1878 ipw2100_enable_interrupts(priv);
1879 spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881 if (ipw2100_hw_stop_adapter(priv))
1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 priv->net_dev->name);
1884
1885 /* Do not disable the interrupt until _after_ we disable
1886 * the adaptor. Otherwise the CARD_DISABLE command will never
1887 * be ack'd by the firmware */
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 ipw2100_disable_interrupts(priv);
1890 spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894 /* We have to signal any supplicant if we are disassociating */
1895 if (associated)
1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 netif_carrier_off(priv->net_dev);
1900 netif_stop_queue(priv->net_dev);
1901 }
1902
1903 /* Called by register_netdev() */
1904 static int ipw2100_net_init(struct net_device *dev)
1905 {
1906 struct ipw2100_priv *priv = libipw_priv(dev);
1907 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1908 struct wireless_dev *wdev = &priv->ieee->wdev;
1909 int ret;
1910 int i;
1911
1912 ret = ipw2100_up(priv, 1);
1913 if (ret)
1914 return ret;
1915
1916 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1917
1918 /* fill-out priv->ieee->bg_band */
1919 if (geo->bg_channels) {
1920 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1921
1922 bg_band->band = IEEE80211_BAND_2GHZ;
1923 bg_band->n_channels = geo->bg_channels;
1924 bg_band->channels =
1925 kzalloc(geo->bg_channels *
1926 sizeof(struct ieee80211_channel), GFP_KERNEL);
1927 /* translate geo->bg to bg_band.channels */
1928 for (i = 0; i < geo->bg_channels; i++) {
1929 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1930 bg_band->channels[i].center_freq = geo->bg[i].freq;
1931 bg_band->channels[i].hw_value = geo->bg[i].channel;
1932 bg_band->channels[i].max_power = geo->bg[i].max_power;
1933 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1934 bg_band->channels[i].flags |=
1935 IEEE80211_CHAN_PASSIVE_SCAN;
1936 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1937 bg_band->channels[i].flags |=
1938 IEEE80211_CHAN_NO_IBSS;
1939 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1940 bg_band->channels[i].flags |=
1941 IEEE80211_CHAN_RADAR;
1942 /* No equivalent for LIBIPW_CH_80211H_RULES,
1943 LIBIPW_CH_UNIFORM_SPREADING, or
1944 LIBIPW_CH_B_ONLY... */
1945 }
1946 /* point at bitrate info */
1947 bg_band->bitrates = ipw2100_bg_rates;
1948 bg_band->n_bitrates = RATE_COUNT;
1949
1950 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1951 }
1952
1953 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1954 if (wiphy_register(wdev->wiphy)) {
1955 ipw2100_down(priv);
1956 return -EIO;
1957 }
1958 return 0;
1959 }
1960
1961 static void ipw2100_reset_adapter(struct work_struct *work)
1962 {
1963 struct ipw2100_priv *priv =
1964 container_of(work, struct ipw2100_priv, reset_work.work);
1965 unsigned long flags;
1966 union iwreq_data wrqu = {
1967 .ap_addr = {
1968 .sa_family = ARPHRD_ETHER}
1969 };
1970 int associated = priv->status & STATUS_ASSOCIATED;
1971
1972 spin_lock_irqsave(&priv->low_lock, flags);
1973 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1974 priv->resets++;
1975 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1976 priv->status |= STATUS_SECURITY_UPDATED;
1977
1978 /* Force a power cycle even if interface hasn't been opened
1979 * yet */
1980 cancel_delayed_work(&priv->reset_work);
1981 priv->status |= STATUS_RESET_PENDING;
1982 spin_unlock_irqrestore(&priv->low_lock, flags);
1983
1984 mutex_lock(&priv->action_mutex);
1985 /* stop timed checks so that they don't interfere with reset */
1986 priv->stop_hang_check = 1;
1987 cancel_delayed_work(&priv->hang_check);
1988
1989 /* We have to signal any supplicant if we are disassociating */
1990 if (associated)
1991 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1992
1993 ipw2100_up(priv, 0);
1994 mutex_unlock(&priv->action_mutex);
1995
1996 }
1997
1998 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1999 {
2000
2001 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2002 int ret;
2003 unsigned int len, essid_len;
2004 char essid[IW_ESSID_MAX_SIZE];
2005 u32 txrate;
2006 u32 chan;
2007 char *txratename;
2008 u8 bssid[ETH_ALEN];
2009 DECLARE_SSID_BUF(ssid);
2010
2011 /*
2012 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2013 * an actual MAC of the AP. Seems like FW sets this
2014 * address too late. Read it later and expose through
2015 * /proc or schedule a later task to query and update
2016 */
2017
2018 essid_len = IW_ESSID_MAX_SIZE;
2019 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2020 essid, &essid_len);
2021 if (ret) {
2022 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2023 __LINE__);
2024 return;
2025 }
2026
2027 len = sizeof(u32);
2028 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2029 if (ret) {
2030 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2031 __LINE__);
2032 return;
2033 }
2034
2035 len = sizeof(u32);
2036 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2037 if (ret) {
2038 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2039 __LINE__);
2040 return;
2041 }
2042 len = ETH_ALEN;
2043 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2044 if (ret) {
2045 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046 __LINE__);
2047 return;
2048 }
2049 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050
2051 switch (txrate) {
2052 case TX_RATE_1_MBIT:
2053 txratename = "1Mbps";
2054 break;
2055 case TX_RATE_2_MBIT:
2056 txratename = "2Mbsp";
2057 break;
2058 case TX_RATE_5_5_MBIT:
2059 txratename = "5.5Mbps";
2060 break;
2061 case TX_RATE_11_MBIT:
2062 txratename = "11Mbps";
2063 break;
2064 default:
2065 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066 txratename = "unknown rate";
2067 break;
2068 }
2069
2070 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072 txratename, chan, bssid);
2073
2074 /* now we copy read ssid into dev */
2075 if (!(priv->config & CFG_STATIC_ESSID)) {
2076 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077 memcpy(priv->essid, essid, priv->essid_len);
2078 }
2079 priv->channel = chan;
2080 memcpy(priv->bssid, bssid, ETH_ALEN);
2081
2082 priv->status |= STATUS_ASSOCIATING;
2083 priv->connect_start = get_seconds();
2084
2085 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2086 }
2087
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089 int length, int batch_mode)
2090 {
2091 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092 struct host_command cmd = {
2093 .host_command = SSID,
2094 .host_command_sequence = 0,
2095 .host_command_length = ssid_len
2096 };
2097 int err;
2098 DECLARE_SSID_BUF(ssid);
2099
2100 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2101
2102 if (ssid_len)
2103 memcpy(cmd.host_command_parameters, essid, ssid_len);
2104
2105 if (!batch_mode) {
2106 err = ipw2100_disable_adapter(priv);
2107 if (err)
2108 return err;
2109 }
2110
2111 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112 * disable auto association -- so we cheat by setting a bogus SSID */
2113 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114 int i;
2115 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117 bogus[i] = 0x18 + i;
2118 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119 }
2120
2121 /* NOTE: We always send the SSID command even if the provided ESSID is
2122 * the same as what we currently think is set. */
2123
2124 err = ipw2100_hw_send_command(priv, &cmd);
2125 if (!err) {
2126 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127 memcpy(priv->essid, essid, ssid_len);
2128 priv->essid_len = ssid_len;
2129 }
2130
2131 if (!batch_mode) {
2132 if (ipw2100_enable_adapter(priv))
2133 err = -EIO;
2134 }
2135
2136 return err;
2137 }
2138
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2140 {
2141 DECLARE_SSID_BUF(ssid);
2142
2143 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144 "disassociated: '%s' %pM\n",
2145 print_ssid(ssid, priv->essid, priv->essid_len),
2146 priv->bssid);
2147
2148 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2149
2150 if (priv->status & STATUS_STOPPING) {
2151 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152 return;
2153 }
2154
2155 memset(priv->bssid, 0, ETH_ALEN);
2156 memset(priv->ieee->bssid, 0, ETH_ALEN);
2157
2158 netif_carrier_off(priv->net_dev);
2159 netif_stop_queue(priv->net_dev);
2160
2161 if (!(priv->status & STATUS_RUNNING))
2162 return;
2163
2164 if (priv->status & STATUS_SECURITY_UPDATED)
2165 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2166
2167 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2168 }
2169
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2171 {
2172 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173 priv->net_dev->name);
2174
2175 /* RF_KILL is now enabled (else we wouldn't be here) */
2176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177 priv->status |= STATUS_RF_KILL_HW;
2178
2179 /* Make sure the RF Kill check timer is running */
2180 priv->stop_rf_kill = 0;
2181 cancel_delayed_work(&priv->rf_kill);
2182 queue_delayed_work(priv->workqueue, &priv->rf_kill,
2183 round_jiffies_relative(HZ));
2184 }
2185
2186 static void send_scan_event(void *data)
2187 {
2188 struct ipw2100_priv *priv = data;
2189 union iwreq_data wrqu;
2190
2191 wrqu.data.length = 0;
2192 wrqu.data.flags = 0;
2193 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2194 }
2195
2196 static void ipw2100_scan_event_later(struct work_struct *work)
2197 {
2198 send_scan_event(container_of(work, struct ipw2100_priv,
2199 scan_event_later.work));
2200 }
2201
2202 static void ipw2100_scan_event_now(struct work_struct *work)
2203 {
2204 send_scan_event(container_of(work, struct ipw2100_priv,
2205 scan_event_now));
2206 }
2207
2208 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2209 {
2210 IPW_DEBUG_SCAN("scan complete\n");
2211 /* Age the scan results... */
2212 priv->ieee->scans++;
2213 priv->status &= ~STATUS_SCANNING;
2214
2215 /* Only userspace-requested scan completion events go out immediately */
2216 if (!priv->user_requested_scan) {
2217 if (!delayed_work_pending(&priv->scan_event_later))
2218 queue_delayed_work(priv->workqueue,
2219 &priv->scan_event_later,
2220 round_jiffies_relative(msecs_to_jiffies(4000)));
2221 } else {
2222 priv->user_requested_scan = 0;
2223 cancel_delayed_work(&priv->scan_event_later);
2224 queue_work(priv->workqueue, &priv->scan_event_now);
2225 }
2226 }
2227
2228 #ifdef CONFIG_IPW2100_DEBUG
2229 #define IPW2100_HANDLER(v, f) { v, f, # v }
2230 struct ipw2100_status_indicator {
2231 int status;
2232 void (*cb) (struct ipw2100_priv * priv, u32 status);
2233 char *name;
2234 };
2235 #else
2236 #define IPW2100_HANDLER(v, f) { v, f }
2237 struct ipw2100_status_indicator {
2238 int status;
2239 void (*cb) (struct ipw2100_priv * priv, u32 status);
2240 };
2241 #endif /* CONFIG_IPW2100_DEBUG */
2242
2243 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2244 {
2245 IPW_DEBUG_SCAN("Scanning...\n");
2246 priv->status |= STATUS_SCANNING;
2247 }
2248
2249 static const struct ipw2100_status_indicator status_handlers[] = {
2250 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2251 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2252 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2253 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2254 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2255 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2256 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2257 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2258 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2259 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2260 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2261 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2262 IPW2100_HANDLER(-1, NULL)
2263 };
2264
2265 static void isr_status_change(struct ipw2100_priv *priv, int status)
2266 {
2267 int i;
2268
2269 if (status == IPW_STATE_SCANNING &&
2270 priv->status & STATUS_ASSOCIATED &&
2271 !(priv->status & STATUS_SCANNING)) {
2272 IPW_DEBUG_INFO("Scan detected while associated, with "
2273 "no scan request. Restarting firmware.\n");
2274
2275 /* Wake up any sleeping jobs */
2276 schedule_reset(priv);
2277 }
2278
2279 for (i = 0; status_handlers[i].status != -1; i++) {
2280 if (status == status_handlers[i].status) {
2281 IPW_DEBUG_NOTIF("Status change: %s\n",
2282 status_handlers[i].name);
2283 if (status_handlers[i].cb)
2284 status_handlers[i].cb(priv, status);
2285 priv->wstats.status = status;
2286 return;
2287 }
2288 }
2289
2290 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2291 }
2292
2293 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2294 struct ipw2100_cmd_header *cmd)
2295 {
2296 #ifdef CONFIG_IPW2100_DEBUG
2297 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2298 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2299 command_types[cmd->host_command_reg],
2300 cmd->host_command_reg);
2301 }
2302 #endif
2303 if (cmd->host_command_reg == HOST_COMPLETE)
2304 priv->status |= STATUS_ENABLED;
2305
2306 if (cmd->host_command_reg == CARD_DISABLE)
2307 priv->status &= ~STATUS_ENABLED;
2308
2309 priv->status &= ~STATUS_CMD_ACTIVE;
2310
2311 wake_up_interruptible(&priv->wait_command_queue);
2312 }
2313
2314 #ifdef CONFIG_IPW2100_DEBUG
2315 static const char *frame_types[] = {
2316 "COMMAND_STATUS_VAL",
2317 "STATUS_CHANGE_VAL",
2318 "P80211_DATA_VAL",
2319 "P8023_DATA_VAL",
2320 "HOST_NOTIFICATION_VAL"
2321 };
2322 #endif
2323
2324 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2325 struct ipw2100_rx_packet *packet)
2326 {
2327 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2328 if (!packet->skb)
2329 return -ENOMEM;
2330
2331 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2332 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2333 sizeof(struct ipw2100_rx),
2334 PCI_DMA_FROMDEVICE);
2335 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2336 * dma_addr */
2337
2338 return 0;
2339 }
2340
2341 #define SEARCH_ERROR 0xffffffff
2342 #define SEARCH_FAIL 0xfffffffe
2343 #define SEARCH_SUCCESS 0xfffffff0
2344 #define SEARCH_DISCARD 0
2345 #define SEARCH_SNAPSHOT 1
2346
2347 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2348 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2349 {
2350 int i;
2351 if (!priv->snapshot[0])
2352 return;
2353 for (i = 0; i < 0x30; i++)
2354 kfree(priv->snapshot[i]);
2355 priv->snapshot[0] = NULL;
2356 }
2357
2358 #ifdef IPW2100_DEBUG_C3
2359 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2360 {
2361 int i;
2362 if (priv->snapshot[0])
2363 return 1;
2364 for (i = 0; i < 0x30; i++) {
2365 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2366 if (!priv->snapshot[i]) {
2367 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2368 "buffer %d\n", priv->net_dev->name, i);
2369 while (i > 0)
2370 kfree(priv->snapshot[--i]);
2371 priv->snapshot[0] = NULL;
2372 return 0;
2373 }
2374 }
2375
2376 return 1;
2377 }
2378
2379 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2380 size_t len, int mode)
2381 {
2382 u32 i, j;
2383 u32 tmp;
2384 u8 *s, *d;
2385 u32 ret;
2386
2387 s = in_buf;
2388 if (mode == SEARCH_SNAPSHOT) {
2389 if (!ipw2100_snapshot_alloc(priv))
2390 mode = SEARCH_DISCARD;
2391 }
2392
2393 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2394 read_nic_dword(priv->net_dev, i, &tmp);
2395 if (mode == SEARCH_SNAPSHOT)
2396 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2397 if (ret == SEARCH_FAIL) {
2398 d = (u8 *) & tmp;
2399 for (j = 0; j < 4; j++) {
2400 if (*s != *d) {
2401 s = in_buf;
2402 continue;
2403 }
2404
2405 s++;
2406 d++;
2407
2408 if ((s - in_buf) == len)
2409 ret = (i + j) - len + 1;
2410 }
2411 } else if (mode == SEARCH_DISCARD)
2412 return ret;
2413 }
2414
2415 return ret;
2416 }
2417 #endif
2418
2419 /*
2420 *
2421 * 0) Disconnect the SKB from the firmware (just unmap)
2422 * 1) Pack the ETH header into the SKB
2423 * 2) Pass the SKB to the network stack
2424 *
2425 * When packet is provided by the firmware, it contains the following:
2426 *
2427 * . libipw_hdr
2428 * . libipw_snap_hdr
2429 *
2430 * The size of the constructed ethernet
2431 *
2432 */
2433 #ifdef IPW2100_RX_DEBUG
2434 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2435 #endif
2436
2437 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2438 {
2439 #ifdef IPW2100_DEBUG_C3
2440 struct ipw2100_status *status = &priv->status_queue.drv[i];
2441 u32 match, reg;
2442 int j;
2443 #endif
2444
2445 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2446 i * sizeof(struct ipw2100_status));
2447
2448 #ifdef IPW2100_DEBUG_C3
2449 /* Halt the firmware so we can get a good image */
2450 write_register(priv->net_dev, IPW_REG_RESET_REG,
2451 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2452 j = 5;
2453 do {
2454 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2455 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2456
2457 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2458 break;
2459 } while (j--);
2460
2461 match = ipw2100_match_buf(priv, (u8 *) status,
2462 sizeof(struct ipw2100_status),
2463 SEARCH_SNAPSHOT);
2464 if (match < SEARCH_SUCCESS)
2465 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2466 "offset 0x%06X, length %d:\n",
2467 priv->net_dev->name, match,
2468 sizeof(struct ipw2100_status));
2469 else
2470 IPW_DEBUG_INFO("%s: No DMA status match in "
2471 "Firmware.\n", priv->net_dev->name);
2472
2473 printk_buf((u8 *) priv->status_queue.drv,
2474 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2475 #endif
2476
2477 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2478 priv->net_dev->stats.rx_errors++;
2479 schedule_reset(priv);
2480 }
2481
2482 static void isr_rx(struct ipw2100_priv *priv, int i,
2483 struct libipw_rx_stats *stats)
2484 {
2485 struct net_device *dev = priv->net_dev;
2486 struct ipw2100_status *status = &priv->status_queue.drv[i];
2487 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2488
2489 IPW_DEBUG_RX("Handler...\n");
2490
2491 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2492 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2493 " Dropping.\n",
2494 dev->name,
2495 status->frame_size, skb_tailroom(packet->skb));
2496 dev->stats.rx_errors++;
2497 return;
2498 }
2499
2500 if (unlikely(!netif_running(dev))) {
2501 dev->stats.rx_errors++;
2502 priv->wstats.discard.misc++;
2503 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2504 return;
2505 }
2506
2507 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2508 !(priv->status & STATUS_ASSOCIATED))) {
2509 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2510 priv->wstats.discard.misc++;
2511 return;
2512 }
2513
2514 pci_unmap_single(priv->pci_dev,
2515 packet->dma_addr,
2516 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2517
2518 skb_put(packet->skb, status->frame_size);
2519
2520 #ifdef IPW2100_RX_DEBUG
2521 /* Make a copy of the frame so we can dump it to the logs if
2522 * libipw_rx fails */
2523 skb_copy_from_linear_data(packet->skb, packet_data,
2524 min_t(u32, status->frame_size,
2525 IPW_RX_NIC_BUFFER_LENGTH));
2526 #endif
2527
2528 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2529 #ifdef IPW2100_RX_DEBUG
2530 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2531 dev->name);
2532 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2533 #endif
2534 dev->stats.rx_errors++;
2535
2536 /* libipw_rx failed, so it didn't free the SKB */
2537 dev_kfree_skb_any(packet->skb);
2538 packet->skb = NULL;
2539 }
2540
2541 /* We need to allocate a new SKB and attach it to the RDB. */
2542 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2543 printk(KERN_WARNING DRV_NAME ": "
2544 "%s: Unable to allocate SKB onto RBD ring - disabling "
2545 "adapter.\n", dev->name);
2546 /* TODO: schedule adapter shutdown */
2547 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2548 }
2549
2550 /* Update the RDB entry */
2551 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2552 }
2553
2554 #ifdef CONFIG_IPW2100_MONITOR
2555
2556 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2557 struct libipw_rx_stats *stats)
2558 {
2559 struct net_device *dev = priv->net_dev;
2560 struct ipw2100_status *status = &priv->status_queue.drv[i];
2561 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2562
2563 /* Magic struct that slots into the radiotap header -- no reason
2564 * to build this manually element by element, we can write it much
2565 * more efficiently than we can parse it. ORDER MATTERS HERE */
2566 struct ipw_rt_hdr {
2567 struct ieee80211_radiotap_header rt_hdr;
2568 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2569 } *ipw_rt;
2570
2571 IPW_DEBUG_RX("Handler...\n");
2572
2573 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2574 sizeof(struct ipw_rt_hdr))) {
2575 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2576 " Dropping.\n",
2577 dev->name,
2578 status->frame_size,
2579 skb_tailroom(packet->skb));
2580 dev->stats.rx_errors++;
2581 return;
2582 }
2583
2584 if (unlikely(!netif_running(dev))) {
2585 dev->stats.rx_errors++;
2586 priv->wstats.discard.misc++;
2587 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2588 return;
2589 }
2590
2591 if (unlikely(priv->config & CFG_CRC_CHECK &&
2592 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2593 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2594 dev->stats.rx_errors++;
2595 return;
2596 }
2597
2598 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2599 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2600 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2601 packet->skb->data, status->frame_size);
2602
2603 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2604
2605 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2606 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2607 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2608
2609 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2610
2611 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2612
2613 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2614
2615 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2616 dev->stats.rx_errors++;
2617
2618 /* libipw_rx failed, so it didn't free the SKB */
2619 dev_kfree_skb_any(packet->skb);
2620 packet->skb = NULL;
2621 }
2622
2623 /* We need to allocate a new SKB and attach it to the RDB. */
2624 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2625 IPW_DEBUG_WARNING(
2626 "%s: Unable to allocate SKB onto RBD ring - disabling "
2627 "adapter.\n", dev->name);
2628 /* TODO: schedule adapter shutdown */
2629 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2630 }
2631
2632 /* Update the RDB entry */
2633 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2634 }
2635
2636 #endif
2637
2638 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2639 {
2640 struct ipw2100_status *status = &priv->status_queue.drv[i];
2641 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2642 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2643
2644 switch (frame_type) {
2645 case COMMAND_STATUS_VAL:
2646 return (status->frame_size != sizeof(u->rx_data.command));
2647 case STATUS_CHANGE_VAL:
2648 return (status->frame_size != sizeof(u->rx_data.status));
2649 case HOST_NOTIFICATION_VAL:
2650 return (status->frame_size < sizeof(u->rx_data.notification));
2651 case P80211_DATA_VAL:
2652 case P8023_DATA_VAL:
2653 #ifdef CONFIG_IPW2100_MONITOR
2654 return 0;
2655 #else
2656 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2657 case IEEE80211_FTYPE_MGMT:
2658 case IEEE80211_FTYPE_CTL:
2659 return 0;
2660 case IEEE80211_FTYPE_DATA:
2661 return (status->frame_size >
2662 IPW_MAX_802_11_PAYLOAD_LENGTH);
2663 }
2664 #endif
2665 }
2666
2667 return 1;
2668 }
2669
2670 /*
2671 * ipw2100 interrupts are disabled at this point, and the ISR
2672 * is the only code that calls this method. So, we do not need
2673 * to play with any locks.
2674 *
2675 * RX Queue works as follows:
2676 *
2677 * Read index - firmware places packet in entry identified by the
2678 * Read index and advances Read index. In this manner,
2679 * Read index will always point to the next packet to
2680 * be filled--but not yet valid.
2681 *
2682 * Write index - driver fills this entry with an unused RBD entry.
2683 * This entry has not filled by the firmware yet.
2684 *
2685 * In between the W and R indexes are the RBDs that have been received
2686 * but not yet processed.
2687 *
2688 * The process of handling packets will start at WRITE + 1 and advance
2689 * until it reaches the READ index.
2690 *
2691 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2692 *
2693 */
2694 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2695 {
2696 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2697 struct ipw2100_status_queue *sq = &priv->status_queue;
2698 struct ipw2100_rx_packet *packet;
2699 u16 frame_type;
2700 u32 r, w, i, s;
2701 struct ipw2100_rx *u;
2702 struct libipw_rx_stats stats = {
2703 .mac_time = jiffies,
2704 };
2705
2706 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2707 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2708
2709 if (r >= rxq->entries) {
2710 IPW_DEBUG_RX("exit - bad read index\n");
2711 return;
2712 }
2713
2714 i = (rxq->next + 1) % rxq->entries;
2715 s = i;
2716 while (i != r) {
2717 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2718 r, rxq->next, i); */
2719
2720 packet = &priv->rx_buffers[i];
2721
2722 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2723 * the correct values */
2724 pci_dma_sync_single_for_cpu(priv->pci_dev,
2725 sq->nic +
2726 sizeof(struct ipw2100_status) * i,
2727 sizeof(struct ipw2100_status),
2728 PCI_DMA_FROMDEVICE);
2729
2730 /* Sync the DMA for the RX buffer so CPU is sure to get
2731 * the correct values */
2732 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2733 sizeof(struct ipw2100_rx),
2734 PCI_DMA_FROMDEVICE);
2735
2736 if (unlikely(ipw2100_corruption_check(priv, i))) {
2737 ipw2100_corruption_detected(priv, i);
2738 goto increment;
2739 }
2740
2741 u = packet->rxp;
2742 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2743 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2744 stats.len = sq->drv[i].frame_size;
2745
2746 stats.mask = 0;
2747 if (stats.rssi != 0)
2748 stats.mask |= LIBIPW_STATMASK_RSSI;
2749 stats.freq = LIBIPW_24GHZ_BAND;
2750
2751 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2752 priv->net_dev->name, frame_types[frame_type],
2753 stats.len);
2754
2755 switch (frame_type) {
2756 case COMMAND_STATUS_VAL:
2757 /* Reset Rx watchdog */
2758 isr_rx_complete_command(priv, &u->rx_data.command);
2759 break;
2760
2761 case STATUS_CHANGE_VAL:
2762 isr_status_change(priv, u->rx_data.status);
2763 break;
2764
2765 case P80211_DATA_VAL:
2766 case P8023_DATA_VAL:
2767 #ifdef CONFIG_IPW2100_MONITOR
2768 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2769 isr_rx_monitor(priv, i, &stats);
2770 break;
2771 }
2772 #endif
2773 if (stats.len < sizeof(struct libipw_hdr_3addr))
2774 break;
2775 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2776 case IEEE80211_FTYPE_MGMT:
2777 libipw_rx_mgt(priv->ieee,
2778 &u->rx_data.header, &stats);
2779 break;
2780
2781 case IEEE80211_FTYPE_CTL:
2782 break;
2783
2784 case IEEE80211_FTYPE_DATA:
2785 isr_rx(priv, i, &stats);
2786 break;
2787
2788 }
2789 break;
2790 }
2791
2792 increment:
2793 /* clear status field associated with this RBD */
2794 rxq->drv[i].status.info.field = 0;
2795
2796 i = (i + 1) % rxq->entries;
2797 }
2798
2799 if (i != s) {
2800 /* backtrack one entry, wrapping to end if at 0 */
2801 rxq->next = (i ? i : rxq->entries) - 1;
2802
2803 write_register(priv->net_dev,
2804 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2805 }
2806 }
2807
2808 /*
2809 * __ipw2100_tx_process
2810 *
2811 * This routine will determine whether the next packet on
2812 * the fw_pend_list has been processed by the firmware yet.
2813 *
2814 * If not, then it does nothing and returns.
2815 *
2816 * If so, then it removes the item from the fw_pend_list, frees
2817 * any associated storage, and places the item back on the
2818 * free list of its source (either msg_free_list or tx_free_list)
2819 *
2820 * TX Queue works as follows:
2821 *
2822 * Read index - points to the next TBD that the firmware will
2823 * process. The firmware will read the data, and once
2824 * done processing, it will advance the Read index.
2825 *
2826 * Write index - driver fills this entry with an constructed TBD
2827 * entry. The Write index is not advanced until the
2828 * packet has been configured.
2829 *
2830 * In between the W and R indexes are the TBDs that have NOT been
2831 * processed. Lagging behind the R index are packets that have
2832 * been processed but have not been freed by the driver.
2833 *
2834 * In order to free old storage, an internal index will be maintained
2835 * that points to the next packet to be freed. When all used
2836 * packets have been freed, the oldest index will be the same as the
2837 * firmware's read index.
2838 *
2839 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2840 *
2841 * Because the TBD structure can not contain arbitrary data, the
2842 * driver must keep an internal queue of cached allocations such that
2843 * it can put that data back into the tx_free_list and msg_free_list
2844 * for use by future command and data packets.
2845 *
2846 */
2847 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2848 {
2849 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2850 struct ipw2100_bd *tbd;
2851 struct list_head *element;
2852 struct ipw2100_tx_packet *packet;
2853 int descriptors_used;
2854 int e, i;
2855 u32 r, w, frag_num = 0;
2856
2857 if (list_empty(&priv->fw_pend_list))
2858 return 0;
2859
2860 element = priv->fw_pend_list.next;
2861
2862 packet = list_entry(element, struct ipw2100_tx_packet, list);
2863 tbd = &txq->drv[packet->index];
2864
2865 /* Determine how many TBD entries must be finished... */
2866 switch (packet->type) {
2867 case COMMAND:
2868 /* COMMAND uses only one slot; don't advance */
2869 descriptors_used = 1;
2870 e = txq->oldest;
2871 break;
2872
2873 case DATA:
2874 /* DATA uses two slots; advance and loop position. */
2875 descriptors_used = tbd->num_fragments;
2876 frag_num = tbd->num_fragments - 1;
2877 e = txq->oldest + frag_num;
2878 e %= txq->entries;
2879 break;
2880
2881 default:
2882 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2883 priv->net_dev->name);
2884 return 0;
2885 }
2886
2887 /* if the last TBD is not done by NIC yet, then packet is
2888 * not ready to be released.
2889 *
2890 */
2891 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2892 &r);
2893 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2894 &w);
2895 if (w != txq->next)
2896 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2897 priv->net_dev->name);
2898
2899 /*
2900 * txq->next is the index of the last packet written txq->oldest is
2901 * the index of the r is the index of the next packet to be read by
2902 * firmware
2903 */
2904
2905 /*
2906 * Quick graphic to help you visualize the following
2907 * if / else statement
2908 *
2909 * ===>| s---->|===============
2910 * e>|
2911 * | a | b | c | d | e | f | g | h | i | j | k | l
2912 * r---->|
2913 * w
2914 *
2915 * w - updated by driver
2916 * r - updated by firmware
2917 * s - start of oldest BD entry (txq->oldest)
2918 * e - end of oldest BD entry
2919 *
2920 */
2921 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2922 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2923 return 0;
2924 }
2925
2926 list_del(element);
2927 DEC_STAT(&priv->fw_pend_stat);
2928
2929 #ifdef CONFIG_IPW2100_DEBUG
2930 {
2931 i = txq->oldest;
2932 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2933 &txq->drv[i],
2934 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2935 txq->drv[i].host_addr, txq->drv[i].buf_length);
2936
2937 if (packet->type == DATA) {
2938 i = (i + 1) % txq->entries;
2939
2940 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2941 &txq->drv[i],
2942 (u32) (txq->nic + i *
2943 sizeof(struct ipw2100_bd)),
2944 (u32) txq->drv[i].host_addr,
2945 txq->drv[i].buf_length);
2946 }
2947 }
2948 #endif
2949
2950 switch (packet->type) {
2951 case DATA:
2952 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2953 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2954 "Expecting DATA TBD but pulled "
2955 "something else: ids %d=%d.\n",
2956 priv->net_dev->name, txq->oldest, packet->index);
2957
2958 /* DATA packet; we have to unmap and free the SKB */
2959 for (i = 0; i < frag_num; i++) {
2960 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2961
2962 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2963 (packet->index + 1 + i) % txq->entries,
2964 tbd->host_addr, tbd->buf_length);
2965
2966 pci_unmap_single(priv->pci_dev,
2967 tbd->host_addr,
2968 tbd->buf_length, PCI_DMA_TODEVICE);
2969 }
2970
2971 libipw_txb_free(packet->info.d_struct.txb);
2972 packet->info.d_struct.txb = NULL;
2973
2974 list_add_tail(element, &priv->tx_free_list);
2975 INC_STAT(&priv->tx_free_stat);
2976
2977 /* We have a free slot in the Tx queue, so wake up the
2978 * transmit layer if it is stopped. */
2979 if (priv->status & STATUS_ASSOCIATED)
2980 netif_wake_queue(priv->net_dev);
2981
2982 /* A packet was processed by the hardware, so update the
2983 * watchdog */
2984 priv->net_dev->trans_start = jiffies;
2985
2986 break;
2987
2988 case COMMAND:
2989 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2990 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2991 "Expecting COMMAND TBD but pulled "
2992 "something else: ids %d=%d.\n",
2993 priv->net_dev->name, txq->oldest, packet->index);
2994
2995 #ifdef CONFIG_IPW2100_DEBUG
2996 if (packet->info.c_struct.cmd->host_command_reg <
2997 ARRAY_SIZE(command_types))
2998 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2999 command_types[packet->info.c_struct.cmd->
3000 host_command_reg],
3001 packet->info.c_struct.cmd->
3002 host_command_reg,
3003 packet->info.c_struct.cmd->cmd_status_reg);
3004 #endif
3005
3006 list_add_tail(element, &priv->msg_free_list);
3007 INC_STAT(&priv->msg_free_stat);
3008 break;
3009 }
3010
3011 /* advance oldest used TBD pointer to start of next entry */
3012 txq->oldest = (e + 1) % txq->entries;
3013 /* increase available TBDs number */
3014 txq->available += descriptors_used;
3015 SET_STAT(&priv->txq_stat, txq->available);
3016
3017 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
3018 jiffies - packet->jiffy_start);
3019
3020 return (!list_empty(&priv->fw_pend_list));
3021 }
3022
3023 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3024 {
3025 int i = 0;
3026
3027 while (__ipw2100_tx_process(priv) && i < 200)
3028 i++;
3029
3030 if (i == 200) {
3031 printk(KERN_WARNING DRV_NAME ": "
3032 "%s: Driver is running slow (%d iters).\n",
3033 priv->net_dev->name, i);
3034 }
3035 }
3036
3037 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3038 {
3039 struct list_head *element;
3040 struct ipw2100_tx_packet *packet;
3041 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3042 struct ipw2100_bd *tbd;
3043 int next = txq->next;
3044
3045 while (!list_empty(&priv->msg_pend_list)) {
3046 /* if there isn't enough space in TBD queue, then
3047 * don't stuff a new one in.
3048 * NOTE: 3 are needed as a command will take one,
3049 * and there is a minimum of 2 that must be
3050 * maintained between the r and w indexes
3051 */
3052 if (txq->available <= 3) {
3053 IPW_DEBUG_TX("no room in tx_queue\n");
3054 break;
3055 }
3056
3057 element = priv->msg_pend_list.next;
3058 list_del(element);
3059 DEC_STAT(&priv->msg_pend_stat);
3060
3061 packet = list_entry(element, struct ipw2100_tx_packet, list);
3062
3063 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
3064 &txq->drv[txq->next],
3065 (void *)(txq->nic + txq->next *
3066 sizeof(struct ipw2100_bd)));
3067
3068 packet->index = txq->next;
3069
3070 tbd = &txq->drv[txq->next];
3071
3072 /* initialize TBD */
3073 tbd->host_addr = packet->info.c_struct.cmd_phys;
3074 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3075 /* not marking number of fragments causes problems
3076 * with f/w debug version */
3077 tbd->num_fragments = 1;
3078 tbd->status.info.field =
3079 IPW_BD_STATUS_TX_FRAME_COMMAND |
3080 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3081
3082 /* update TBD queue counters */
3083 txq->next++;
3084 txq->next %= txq->entries;
3085 txq->available--;
3086 DEC_STAT(&priv->txq_stat);
3087
3088 list_add_tail(element, &priv->fw_pend_list);
3089 INC_STAT(&priv->fw_pend_stat);
3090 }
3091
3092 if (txq->next != next) {
3093 /* kick off the DMA by notifying firmware the
3094 * write index has moved; make sure TBD stores are sync'd */
3095 wmb();
3096 write_register(priv->net_dev,
3097 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3098 txq->next);
3099 }
3100 }
3101
3102 /*
3103 * ipw2100_tx_send_data
3104 *
3105 */
3106 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3107 {
3108 struct list_head *element;
3109 struct ipw2100_tx_packet *packet;
3110 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3111 struct ipw2100_bd *tbd;
3112 int next = txq->next;
3113 int i = 0;
3114 struct ipw2100_data_header *ipw_hdr;
3115 struct libipw_hdr_3addr *hdr;
3116
3117 while (!list_empty(&priv->tx_pend_list)) {
3118 /* if there isn't enough space in TBD queue, then
3119 * don't stuff a new one in.
3120 * NOTE: 4 are needed as a data will take two,
3121 * and there is a minimum of 2 that must be
3122 * maintained between the r and w indexes
3123 */
3124 element = priv->tx_pend_list.next;
3125 packet = list_entry(element, struct ipw2100_tx_packet, list);
3126
3127 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3128 IPW_MAX_BDS)) {
3129 /* TODO: Support merging buffers if more than
3130 * IPW_MAX_BDS are used */
3131 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3132 "Increase fragmentation level.\n",
3133 priv->net_dev->name);
3134 }
3135
3136 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3137 IPW_DEBUG_TX("no room in tx_queue\n");
3138 break;
3139 }
3140
3141 list_del(element);
3142 DEC_STAT(&priv->tx_pend_stat);
3143
3144 tbd = &txq->drv[txq->next];
3145
3146 packet->index = txq->next;
3147
3148 ipw_hdr = packet->info.d_struct.data;
3149 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3150 fragments[0]->data;
3151
3152 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3153 /* To DS: Addr1 = BSSID, Addr2 = SA,
3154 Addr3 = DA */
3155 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3156 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3157 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3158 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3159 Addr3 = BSSID */
3160 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3161 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3162 }
3163
3164 ipw_hdr->host_command_reg = SEND;
3165 ipw_hdr->host_command_reg1 = 0;
3166
3167 /* For now we only support host based encryption */
3168 ipw_hdr->needs_encryption = 0;
3169 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3170 if (packet->info.d_struct.txb->nr_frags > 1)
3171 ipw_hdr->fragment_size =
3172 packet->info.d_struct.txb->frag_size -
3173 LIBIPW_3ADDR_LEN;
3174 else
3175 ipw_hdr->fragment_size = 0;
3176
3177 tbd->host_addr = packet->info.d_struct.data_phys;
3178 tbd->buf_length = sizeof(struct ipw2100_data_header);
3179 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3180 tbd->status.info.field =
3181 IPW_BD_STATUS_TX_FRAME_802_3 |
3182 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3183 txq->next++;
3184 txq->next %= txq->entries;
3185
3186 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3187 packet->index, tbd->host_addr, tbd->buf_length);
3188 #ifdef CONFIG_IPW2100_DEBUG
3189 if (packet->info.d_struct.txb->nr_frags > 1)
3190 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3191 packet->info.d_struct.txb->nr_frags);
3192 #endif
3193
3194 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3195 tbd = &txq->drv[txq->next];
3196 if (i == packet->info.d_struct.txb->nr_frags - 1)
3197 tbd->status.info.field =
3198 IPW_BD_STATUS_TX_FRAME_802_3 |
3199 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3200 else
3201 tbd->status.info.field =
3202 IPW_BD_STATUS_TX_FRAME_802_3 |
3203 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3204
3205 tbd->buf_length = packet->info.d_struct.txb->
3206 fragments[i]->len - LIBIPW_3ADDR_LEN;
3207
3208 tbd->host_addr = pci_map_single(priv->pci_dev,
3209 packet->info.d_struct.
3210 txb->fragments[i]->
3211 data +
3212 LIBIPW_3ADDR_LEN,
3213 tbd->buf_length,
3214 PCI_DMA_TODEVICE);
3215
3216 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3217 txq->next, tbd->host_addr,
3218 tbd->buf_length);
3219
3220 pci_dma_sync_single_for_device(priv->pci_dev,
3221 tbd->host_addr,
3222 tbd->buf_length,
3223 PCI_DMA_TODEVICE);
3224
3225 txq->next++;
3226 txq->next %= txq->entries;
3227 }
3228
3229 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3230 SET_STAT(&priv->txq_stat, txq->available);
3231
3232 list_add_tail(element, &priv->fw_pend_list);
3233 INC_STAT(&priv->fw_pend_stat);
3234 }
3235
3236 if (txq->next != next) {
3237 /* kick off the DMA by notifying firmware the
3238 * write index has moved; make sure TBD stores are sync'd */
3239 write_register(priv->net_dev,
3240 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3241 txq->next);
3242 }
3243 }
3244
3245 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3246 {
3247 struct net_device *dev = priv->net_dev;
3248 unsigned long flags;
3249 u32 inta, tmp;
3250
3251 spin_lock_irqsave(&priv->low_lock, flags);
3252 ipw2100_disable_interrupts(priv);
3253
3254 read_register(dev, IPW_REG_INTA, &inta);
3255
3256 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3257 (unsigned long)inta & IPW_INTERRUPT_MASK);
3258
3259 priv->in_isr++;
3260 priv->interrupts++;
3261
3262 /* We do not loop and keep polling for more interrupts as this
3263 * is frowned upon and doesn't play nicely with other potentially
3264 * chained IRQs */
3265 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3266 (unsigned long)inta & IPW_INTERRUPT_MASK);
3267
3268 if (inta & IPW2100_INTA_FATAL_ERROR) {
3269 printk(KERN_WARNING DRV_NAME
3270 ": Fatal interrupt. Scheduling firmware restart.\n");
3271 priv->inta_other++;
3272 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3273
3274 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3275 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3276 priv->net_dev->name, priv->fatal_error);
3277
3278 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3279 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3280 priv->net_dev->name, tmp);
3281
3282 /* Wake up any sleeping jobs */
3283 schedule_reset(priv);
3284 }
3285
3286 if (inta & IPW2100_INTA_PARITY_ERROR) {
3287 printk(KERN_ERR DRV_NAME
3288 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3289 priv->inta_other++;
3290 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3291 }
3292
3293 if (inta & IPW2100_INTA_RX_TRANSFER) {
3294 IPW_DEBUG_ISR("RX interrupt\n");
3295
3296 priv->rx_interrupts++;
3297
3298 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3299
3300 __ipw2100_rx_process(priv);
3301 __ipw2100_tx_complete(priv);
3302 }
3303
3304 if (inta & IPW2100_INTA_TX_TRANSFER) {
3305 IPW_DEBUG_ISR("TX interrupt\n");
3306
3307 priv->tx_interrupts++;
3308
3309 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3310
3311 __ipw2100_tx_complete(priv);
3312 ipw2100_tx_send_commands(priv);
3313 ipw2100_tx_send_data(priv);
3314 }
3315
3316 if (inta & IPW2100_INTA_TX_COMPLETE) {
3317 IPW_DEBUG_ISR("TX complete\n");
3318 priv->inta_other++;
3319 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3320
3321 __ipw2100_tx_complete(priv);
3322 }
3323
3324 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3325 /* ipw2100_handle_event(dev); */
3326 priv->inta_other++;
3327 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3328 }
3329
3330 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3331 IPW_DEBUG_ISR("FW init done interrupt\n");
3332 priv->inta_other++;
3333
3334 read_register(dev, IPW_REG_INTA, &tmp);
3335 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3336 IPW2100_INTA_PARITY_ERROR)) {
3337 write_register(dev, IPW_REG_INTA,
3338 IPW2100_INTA_FATAL_ERROR |
3339 IPW2100_INTA_PARITY_ERROR);
3340 }
3341
3342 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3343 }
3344
3345 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3346 IPW_DEBUG_ISR("Status change interrupt\n");
3347 priv->inta_other++;
3348 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3349 }
3350
3351 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3352 IPW_DEBUG_ISR("slave host mode interrupt\n");
3353 priv->inta_other++;
3354 write_register(dev, IPW_REG_INTA,
3355 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3356 }
3357
3358 priv->in_isr--;
3359 ipw2100_enable_interrupts(priv);
3360
3361 spin_unlock_irqrestore(&priv->low_lock, flags);
3362
3363 IPW_DEBUG_ISR("exit\n");
3364 }
3365
3366 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3367 {
3368 struct ipw2100_priv *priv = data;
3369 u32 inta, inta_mask;
3370
3371 if (!data)
3372 return IRQ_NONE;
3373
3374 spin_lock(&priv->low_lock);
3375
3376 /* We check to see if we should be ignoring interrupts before
3377 * we touch the hardware. During ucode load if we try and handle
3378 * an interrupt we can cause keyboard problems as well as cause
3379 * the ucode to fail to initialize */
3380 if (!(priv->status & STATUS_INT_ENABLED)) {
3381 /* Shared IRQ */
3382 goto none;
3383 }
3384
3385 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3386 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3387
3388 if (inta == 0xFFFFFFFF) {
3389 /* Hardware disappeared */
3390 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3391 goto none;
3392 }
3393
3394 inta &= IPW_INTERRUPT_MASK;
3395
3396 if (!(inta & inta_mask)) {
3397 /* Shared interrupt */
3398 goto none;
3399 }
3400
3401 /* We disable the hardware interrupt here just to prevent unneeded
3402 * calls to be made. We disable this again within the actual
3403 * work tasklet, so if another part of the code re-enables the
3404 * interrupt, that is fine */
3405 ipw2100_disable_interrupts(priv);
3406
3407 tasklet_schedule(&priv->irq_tasklet);
3408 spin_unlock(&priv->low_lock);
3409
3410 return IRQ_HANDLED;
3411 none:
3412 spin_unlock(&priv->low_lock);
3413 return IRQ_NONE;
3414 }
3415
3416 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3417 struct net_device *dev, int pri)
3418 {
3419 struct ipw2100_priv *priv = libipw_priv(dev);
3420 struct list_head *element;
3421 struct ipw2100_tx_packet *packet;
3422 unsigned long flags;
3423
3424 spin_lock_irqsave(&priv->low_lock, flags);
3425
3426 if (!(priv->status & STATUS_ASSOCIATED)) {
3427 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3428 priv->net_dev->stats.tx_carrier_errors++;
3429 netif_stop_queue(dev);
3430 goto fail_unlock;
3431 }
3432
3433 if (list_empty(&priv->tx_free_list))
3434 goto fail_unlock;
3435
3436 element = priv->tx_free_list.next;
3437 packet = list_entry(element, struct ipw2100_tx_packet, list);
3438
3439 packet->info.d_struct.txb = txb;
3440
3441 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3442 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3443
3444 packet->jiffy_start = jiffies;
3445
3446 list_del(element);
3447 DEC_STAT(&priv->tx_free_stat);
3448
3449 list_add_tail(element, &priv->tx_pend_list);
3450 INC_STAT(&priv->tx_pend_stat);
3451
3452 ipw2100_tx_send_data(priv);
3453
3454 spin_unlock_irqrestore(&priv->low_lock, flags);
3455 return NETDEV_TX_OK;
3456
3457 fail_unlock:
3458 netif_stop_queue(dev);
3459 spin_unlock_irqrestore(&priv->low_lock, flags);
3460 return NETDEV_TX_BUSY;
3461 }
3462
3463 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3464 {
3465 int i, j, err = -EINVAL;
3466 void *v;
3467 dma_addr_t p;
3468
3469 priv->msg_buffers =
3470 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3471 sizeof(struct
3472 ipw2100_tx_packet),
3473 GFP_KERNEL);
3474 if (!priv->msg_buffers) {
3475 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3476 "buffers.\n", priv->net_dev->name);
3477 return -ENOMEM;
3478 }
3479
3480 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3481 v = pci_alloc_consistent(priv->pci_dev,
3482 sizeof(struct ipw2100_cmd_header), &p);
3483 if (!v) {
3484 printk(KERN_ERR DRV_NAME ": "
3485 "%s: PCI alloc failed for msg "
3486 "buffers.\n", priv->net_dev->name);
3487 err = -ENOMEM;
3488 break;
3489 }
3490
3491 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3492
3493 priv->msg_buffers[i].type = COMMAND;
3494 priv->msg_buffers[i].info.c_struct.cmd =
3495 (struct ipw2100_cmd_header *)v;
3496 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3497 }
3498
3499 if (i == IPW_COMMAND_POOL_SIZE)
3500 return 0;
3501
3502 for (j = 0; j < i; j++) {
3503 pci_free_consistent(priv->pci_dev,
3504 sizeof(struct ipw2100_cmd_header),
3505 priv->msg_buffers[j].info.c_struct.cmd,
3506 priv->msg_buffers[j].info.c_struct.
3507 cmd_phys);
3508 }
3509
3510 kfree(priv->msg_buffers);
3511 priv->msg_buffers = NULL;
3512
3513 return err;
3514 }
3515
3516 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3517 {
3518 int i;
3519
3520 INIT_LIST_HEAD(&priv->msg_free_list);
3521 INIT_LIST_HEAD(&priv->msg_pend_list);
3522
3523 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3524 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3525 SET_STAT(&priv->msg_free_stat, i);
3526
3527 return 0;
3528 }
3529
3530 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3531 {
3532 int i;
3533
3534 if (!priv->msg_buffers)
3535 return;
3536
3537 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3538 pci_free_consistent(priv->pci_dev,
3539 sizeof(struct ipw2100_cmd_header),
3540 priv->msg_buffers[i].info.c_struct.cmd,
3541 priv->msg_buffers[i].info.c_struct.
3542 cmd_phys);
3543 }
3544
3545 kfree(priv->msg_buffers);
3546 priv->msg_buffers = NULL;
3547 }
3548
3549 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3550 char *buf)
3551 {
3552 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3553 char *out = buf;
3554 int i, j;
3555 u32 val;
3556
3557 for (i = 0; i < 16; i++) {
3558 out += sprintf(out, "[%08X] ", i * 16);
3559 for (j = 0; j < 16; j += 4) {
3560 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3561 out += sprintf(out, "%08X ", val);
3562 }
3563 out += sprintf(out, "\n");
3564 }
3565
3566 return out - buf;
3567 }
3568
3569 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3570
3571 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3572 char *buf)
3573 {
3574 struct ipw2100_priv *p = dev_get_drvdata(d);
3575 return sprintf(buf, "0x%08x\n", (int)p->config);
3576 }
3577
3578 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3579
3580 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3581 char *buf)
3582 {
3583 struct ipw2100_priv *p = dev_get_drvdata(d);
3584 return sprintf(buf, "0x%08x\n", (int)p->status);
3585 }
3586
3587 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3588
3589 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3590 char *buf)
3591 {
3592 struct ipw2100_priv *p = dev_get_drvdata(d);
3593 return sprintf(buf, "0x%08x\n", (int)p->capability);
3594 }
3595
3596 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3597
3598 #define IPW2100_REG(x) { IPW_ ##x, #x }
3599 static const struct {
3600 u32 addr;
3601 const char *name;
3602 } hw_data[] = {
3603 IPW2100_REG(REG_GP_CNTRL),
3604 IPW2100_REG(REG_GPIO),
3605 IPW2100_REG(REG_INTA),
3606 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3607 #define IPW2100_NIC(x, s) { x, #x, s }
3608 static const struct {
3609 u32 addr;
3610 const char *name;
3611 size_t size;
3612 } nic_data[] = {
3613 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3614 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3615 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3616 static const struct {
3617 u8 index;
3618 const char *name;
3619 const char *desc;
3620 } ord_data[] = {
3621 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3622 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3623 "successful Host Tx's (MSDU)"),
3624 IPW2100_ORD(STAT_TX_DIR_DATA,
3625 "successful Directed Tx's (MSDU)"),
3626 IPW2100_ORD(STAT_TX_DIR_DATA1,
3627 "successful Directed Tx's (MSDU) @ 1MB"),
3628 IPW2100_ORD(STAT_TX_DIR_DATA2,
3629 "successful Directed Tx's (MSDU) @ 2MB"),
3630 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3631 "successful Directed Tx's (MSDU) @ 5_5MB"),
3632 IPW2100_ORD(STAT_TX_DIR_DATA11,
3633 "successful Directed Tx's (MSDU) @ 11MB"),
3634 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3635 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3636 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3637 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3638 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3639 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3640 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3641 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3642 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3643 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3644 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3645 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3646 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3647 IPW2100_ORD(STAT_TX_ASSN_RESP,
3648 "successful Association response Tx's"),
3649 IPW2100_ORD(STAT_TX_REASSN,
3650 "successful Reassociation Tx's"),
3651 IPW2100_ORD(STAT_TX_REASSN_RESP,
3652 "successful Reassociation response Tx's"),
3653 IPW2100_ORD(STAT_TX_PROBE,
3654 "probes successfully transmitted"),
3655 IPW2100_ORD(STAT_TX_PROBE_RESP,
3656 "probe responses successfully transmitted"),
3657 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3658 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3659 IPW2100_ORD(STAT_TX_DISASSN,
3660 "successful Disassociation TX"),
3661 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3662 IPW2100_ORD(STAT_TX_DEAUTH,
3663 "successful Deauthentication TX"),
3664 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3665 "Total successful Tx data bytes"),
3666 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3667 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3668 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3669 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3670 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3671 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3672 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3673 "times max tries in a hop failed"),
3674 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3675 "times disassociation failed"),
3676 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3677 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3678 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3679 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3680 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3681 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3682 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3683 "directed packets at 5.5MB"),
3684 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3685 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3686 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3687 "nondirected packets at 1MB"),
3688 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3689 "nondirected packets at 2MB"),
3690 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3691 "nondirected packets at 5.5MB"),
3692 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3693 "nondirected packets at 11MB"),
3694 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3695 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3696 "Rx CTS"),
3697 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3698 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3699 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3700 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3701 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3702 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3703 IPW2100_ORD(STAT_RX_REASSN_RESP,
3704 "Reassociation response Rx's"),
3705 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3706 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3707 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3708 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3709 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3710 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3711 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3712 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3713 "Total rx data bytes received"),
3714 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3715 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3716 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3717 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3718 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3719 IPW2100_ORD(STAT_RX_DUPLICATE1,
3720 "duplicate rx packets at 1MB"),
3721 IPW2100_ORD(STAT_RX_DUPLICATE2,
3722 "duplicate rx packets at 2MB"),
3723 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3724 "duplicate rx packets at 5.5MB"),
3725 IPW2100_ORD(STAT_RX_DUPLICATE11,
3726 "duplicate rx packets at 11MB"),
3727 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3728 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3729 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3730 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3731 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3732 "rx frames with invalid protocol"),
3733 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3734 IPW2100_ORD(STAT_RX_NO_BUFFER,
3735 "rx frames rejected due to no buffer"),
3736 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3737 "rx frames dropped due to missing fragment"),
3738 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3739 "rx frames dropped due to non-sequential fragment"),
3740 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3741 "rx frames dropped due to unmatched 1st frame"),
3742 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3743 "rx frames dropped due to uncompleted frame"),
3744 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3745 "ICV errors during decryption"),
3746 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3747 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3748 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3749 "poll response timeouts"),
3750 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3751 "timeouts waiting for last {broad,multi}cast pkt"),
3752 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3753 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3754 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3755 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3756 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3757 "current calculation of % missed beacons"),
3758 IPW2100_ORD(STAT_PERCENT_RETRIES,
3759 "current calculation of % missed tx retries"),
3760 IPW2100_ORD(ASSOCIATED_AP_PTR,
3761 "0 if not associated, else pointer to AP table entry"),
3762 IPW2100_ORD(AVAILABLE_AP_CNT,
3763 "AP's decsribed in the AP table"),
3764 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3765 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3766 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3767 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3768 "failures due to response fail"),
3769 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3770 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3771 IPW2100_ORD(STAT_ROAM_INHIBIT,
3772 "times roaming was inhibited due to activity"),
3773 IPW2100_ORD(RSSI_AT_ASSN,
3774 "RSSI of associated AP at time of association"),
3775 IPW2100_ORD(STAT_ASSN_CAUSE1,
3776 "reassociation: no probe response or TX on hop"),
3777 IPW2100_ORD(STAT_ASSN_CAUSE2,
3778 "reassociation: poor tx/rx quality"),
3779 IPW2100_ORD(STAT_ASSN_CAUSE3,
3780 "reassociation: tx/rx quality (excessive AP load"),
3781 IPW2100_ORD(STAT_ASSN_CAUSE4,
3782 "reassociation: AP RSSI level"),
3783 IPW2100_ORD(STAT_ASSN_CAUSE5,
3784 "reassociations due to load leveling"),
3785 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3786 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3787 "times authentication response failed"),
3788 IPW2100_ORD(STATION_TABLE_CNT,
3789 "entries in association table"),
3790 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3791 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3792 IPW2100_ORD(COUNTRY_CODE,
3793 "IEEE country code as recv'd from beacon"),
3794 IPW2100_ORD(COUNTRY_CHANNELS,
3795 "channels suported by country"),
3796 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3797 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3798 IPW2100_ORD(ANTENNA_DIVERSITY,
3799 "TRUE if antenna diversity is disabled"),
3800 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3801 IPW2100_ORD(OUR_FREQ,
3802 "current radio freq lower digits - channel ID"),
3803 IPW2100_ORD(RTC_TIME, "current RTC time"),
3804 IPW2100_ORD(PORT_TYPE, "operating mode"),
3805 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3806 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3807 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3808 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3809 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3810 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3811 IPW2100_ORD(CAPABILITIES,
3812 "Management frame capability field"),
3813 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3814 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3815 IPW2100_ORD(RTS_THRESHOLD,
3816 "Min packet length for RTS handshaking"),
3817 IPW2100_ORD(INT_MODE, "International mode"),
3818 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3819 "protocol frag threshold"),
3820 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3821 "EEPROM offset in SRAM"),
3822 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3823 "EEPROM size in SRAM"),
3824 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3825 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3826 "EEPROM IBSS 11b channel set"),
3827 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3828 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3829 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3830 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3831 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3832
3833 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3834 char *buf)
3835 {
3836 int i;
3837 struct ipw2100_priv *priv = dev_get_drvdata(d);
3838 struct net_device *dev = priv->net_dev;
3839 char *out = buf;
3840 u32 val = 0;
3841
3842 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3843
3844 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3845 read_register(dev, hw_data[i].addr, &val);
3846 out += sprintf(out, "%30s [%08X] : %08X\n",
3847 hw_data[i].name, hw_data[i].addr, val);
3848 }
3849
3850 return out - buf;
3851 }
3852
3853 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3854
3855 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3856 char *buf)
3857 {
3858 struct ipw2100_priv *priv = dev_get_drvdata(d);
3859 struct net_device *dev = priv->net_dev;
3860 char *out = buf;
3861 int i;
3862
3863 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3864
3865 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3866 u8 tmp8;
3867 u16 tmp16;
3868 u32 tmp32;
3869
3870 switch (nic_data[i].size) {
3871 case 1:
3872 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3873 out += sprintf(out, "%30s [%08X] : %02X\n",
3874 nic_data[i].name, nic_data[i].addr,
3875 tmp8);
3876 break;
3877 case 2:
3878 read_nic_word(dev, nic_data[i].addr, &tmp16);
3879 out += sprintf(out, "%30s [%08X] : %04X\n",
3880 nic_data[i].name, nic_data[i].addr,
3881 tmp16);
3882 break;
3883 case 4:
3884 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3885 out += sprintf(out, "%30s [%08X] : %08X\n",
3886 nic_data[i].name, nic_data[i].addr,
3887 tmp32);
3888 break;
3889 }
3890 }
3891 return out - buf;
3892 }
3893
3894 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3895
3896 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3897 char *buf)
3898 {
3899 struct ipw2100_priv *priv = dev_get_drvdata(d);
3900 struct net_device *dev = priv->net_dev;
3901 static unsigned long loop = 0;
3902 int len = 0;
3903 u32 buffer[4];
3904 int i;
3905 char line[81];
3906
3907 if (loop >= 0x30000)
3908 loop = 0;
3909
3910 /* sysfs provides us PAGE_SIZE buffer */
3911 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3912
3913 if (priv->snapshot[0])
3914 for (i = 0; i < 4; i++)
3915 buffer[i] =
3916 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3917 else
3918 for (i = 0; i < 4; i++)
3919 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3920
3921 if (priv->dump_raw)
3922 len += sprintf(buf + len,
3923 "%c%c%c%c"
3924 "%c%c%c%c"
3925 "%c%c%c%c"
3926 "%c%c%c%c",
3927 ((u8 *) buffer)[0x0],
3928 ((u8 *) buffer)[0x1],
3929 ((u8 *) buffer)[0x2],
3930 ((u8 *) buffer)[0x3],
3931 ((u8 *) buffer)[0x4],
3932 ((u8 *) buffer)[0x5],
3933 ((u8 *) buffer)[0x6],
3934 ((u8 *) buffer)[0x7],
3935 ((u8 *) buffer)[0x8],
3936 ((u8 *) buffer)[0x9],
3937 ((u8 *) buffer)[0xa],
3938 ((u8 *) buffer)[0xb],
3939 ((u8 *) buffer)[0xc],
3940 ((u8 *) buffer)[0xd],
3941 ((u8 *) buffer)[0xe],
3942 ((u8 *) buffer)[0xf]);
3943 else
3944 len += sprintf(buf + len, "%s\n",
3945 snprint_line(line, sizeof(line),
3946 (u8 *) buffer, 16, loop));
3947 loop += 16;
3948 }
3949
3950 return len;
3951 }
3952
3953 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3954 const char *buf, size_t count)
3955 {
3956 struct ipw2100_priv *priv = dev_get_drvdata(d);
3957 struct net_device *dev = priv->net_dev;
3958 const char *p = buf;
3959
3960 (void)dev; /* kill unused-var warning for debug-only code */
3961
3962 if (count < 1)
3963 return count;
3964
3965 if (p[0] == '1' ||
3966 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3967 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3968 dev->name);
3969 priv->dump_raw = 1;
3970
3971 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3972 tolower(p[1]) == 'f')) {
3973 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3974 dev->name);
3975 priv->dump_raw = 0;
3976
3977 } else if (tolower(p[0]) == 'r') {
3978 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3979 ipw2100_snapshot_free(priv);
3980
3981 } else
3982 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3983 "reset = clear memory snapshot\n", dev->name);
3984
3985 return count;
3986 }
3987
3988 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3989
3990 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3991 char *buf)
3992 {
3993 struct ipw2100_priv *priv = dev_get_drvdata(d);
3994 u32 val = 0;
3995 int len = 0;
3996 u32 val_len;
3997 static int loop = 0;
3998
3999 if (priv->status & STATUS_RF_KILL_MASK)
4000 return 0;
4001
4002 if (loop >= ARRAY_SIZE(ord_data))
4003 loop = 0;
4004
4005 /* sysfs provides us PAGE_SIZE buffer */
4006 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4007 val_len = sizeof(u32);
4008
4009 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4010 &val_len))
4011 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
4012 ord_data[loop].index,
4013 ord_data[loop].desc);
4014 else
4015 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4016 ord_data[loop].index, val,
4017 ord_data[loop].desc);
4018 loop++;
4019 }
4020
4021 return len;
4022 }
4023
4024 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4025
4026 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4027 char *buf)
4028 {
4029 struct ipw2100_priv *priv = dev_get_drvdata(d);
4030 char *out = buf;
4031
4032 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4033 priv->interrupts, priv->tx_interrupts,
4034 priv->rx_interrupts, priv->inta_other);
4035 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4036 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4037 #ifdef CONFIG_IPW2100_DEBUG
4038 out += sprintf(out, "packet mismatch image: %s\n",
4039 priv->snapshot[0] ? "YES" : "NO");
4040 #endif
4041
4042 return out - buf;
4043 }
4044
4045 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4046
4047 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4048 {
4049 int err;
4050
4051 if (mode == priv->ieee->iw_mode)
4052 return 0;
4053
4054 err = ipw2100_disable_adapter(priv);
4055 if (err) {
4056 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4057 priv->net_dev->name, err);
4058 return err;
4059 }
4060
4061 switch (mode) {
4062 case IW_MODE_INFRA:
4063 priv->net_dev->type = ARPHRD_ETHER;
4064 break;
4065 case IW_MODE_ADHOC:
4066 priv->net_dev->type = ARPHRD_ETHER;
4067 break;
4068 #ifdef CONFIG_IPW2100_MONITOR
4069 case IW_MODE_MONITOR:
4070 priv->last_mode = priv->ieee->iw_mode;
4071 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4072 break;
4073 #endif /* CONFIG_IPW2100_MONITOR */
4074 }
4075
4076 priv->ieee->iw_mode = mode;
4077
4078 #ifdef CONFIG_PM
4079 /* Indicate ipw2100_download_firmware download firmware
4080 * from disk instead of memory. */
4081 ipw2100_firmware.version = 0;
4082 #endif
4083
4084 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4085 priv->reset_backoff = 0;
4086 schedule_reset(priv);
4087
4088 return 0;
4089 }
4090
4091 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4092 char *buf)
4093 {
4094 struct ipw2100_priv *priv = dev_get_drvdata(d);
4095 int len = 0;
4096
4097 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4098
4099 if (priv->status & STATUS_ASSOCIATED)
4100 len += sprintf(buf + len, "connected: %lu\n",
4101 get_seconds() - priv->connect_start);
4102 else
4103 len += sprintf(buf + len, "not connected\n");
4104
4105 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4106 DUMP_VAR(status, "08lx");
4107 DUMP_VAR(config, "08lx");
4108 DUMP_VAR(capability, "08lx");
4109
4110 len +=
4111 sprintf(buf + len, "last_rtc: %lu\n",
4112 (unsigned long)priv->last_rtc);
4113
4114 DUMP_VAR(fatal_error, "d");
4115 DUMP_VAR(stop_hang_check, "d");
4116 DUMP_VAR(stop_rf_kill, "d");
4117 DUMP_VAR(messages_sent, "d");
4118
4119 DUMP_VAR(tx_pend_stat.value, "d");
4120 DUMP_VAR(tx_pend_stat.hi, "d");
4121
4122 DUMP_VAR(tx_free_stat.value, "d");
4123 DUMP_VAR(tx_free_stat.lo, "d");
4124
4125 DUMP_VAR(msg_free_stat.value, "d");
4126 DUMP_VAR(msg_free_stat.lo, "d");
4127
4128 DUMP_VAR(msg_pend_stat.value, "d");
4129 DUMP_VAR(msg_pend_stat.hi, "d");
4130
4131 DUMP_VAR(fw_pend_stat.value, "d");
4132 DUMP_VAR(fw_pend_stat.hi, "d");
4133
4134 DUMP_VAR(txq_stat.value, "d");
4135 DUMP_VAR(txq_stat.lo, "d");
4136
4137 DUMP_VAR(ieee->scans, "d");
4138 DUMP_VAR(reset_backoff, "d");
4139
4140 return len;
4141 }
4142
4143 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4144
4145 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4146 char *buf)
4147 {
4148 struct ipw2100_priv *priv = dev_get_drvdata(d);
4149 char essid[IW_ESSID_MAX_SIZE + 1];
4150 u8 bssid[ETH_ALEN];
4151 u32 chan = 0;
4152 char *out = buf;
4153 unsigned int length;
4154 int ret;
4155
4156 if (priv->status & STATUS_RF_KILL_MASK)
4157 return 0;
4158
4159 memset(essid, 0, sizeof(essid));
4160 memset(bssid, 0, sizeof(bssid));
4161
4162 length = IW_ESSID_MAX_SIZE;
4163 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4164 if (ret)
4165 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4166 __LINE__);
4167
4168 length = sizeof(bssid);
4169 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4170 bssid, &length);
4171 if (ret)
4172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4173 __LINE__);
4174
4175 length = sizeof(u32);
4176 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4177 if (ret)
4178 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4179 __LINE__);
4180
4181 out += sprintf(out, "ESSID: %s\n", essid);
4182 out += sprintf(out, "BSSID: %pM\n", bssid);
4183 out += sprintf(out, "Channel: %d\n", chan);
4184
4185 return out - buf;
4186 }
4187
4188 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4189
4190 #ifdef CONFIG_IPW2100_DEBUG
4191 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4192 {
4193 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4194 }
4195
4196 static ssize_t store_debug_level(struct device_driver *d,
4197 const char *buf, size_t count)
4198 {
4199 char *p = (char *)buf;
4200 u32 val;
4201
4202 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4203 p++;
4204 if (p[0] == 'x' || p[0] == 'X')
4205 p++;
4206 val = simple_strtoul(p, &p, 16);
4207 } else
4208 val = simple_strtoul(p, &p, 10);
4209 if (p == buf)
4210 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4211 else
4212 ipw2100_debug_level = val;
4213
4214 return strnlen(buf, count);
4215 }
4216
4217 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4218 store_debug_level);
4219 #endif /* CONFIG_IPW2100_DEBUG */
4220
4221 static ssize_t show_fatal_error(struct device *d,
4222 struct device_attribute *attr, char *buf)
4223 {
4224 struct ipw2100_priv *priv = dev_get_drvdata(d);
4225 char *out = buf;
4226 int i;
4227
4228 if (priv->fatal_error)
4229 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4230 else
4231 out += sprintf(out, "0\n");
4232
4233 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4234 if (!priv->fatal_errors[(priv->fatal_index - i) %
4235 IPW2100_ERROR_QUEUE])
4236 continue;
4237
4238 out += sprintf(out, "%d. 0x%08X\n", i,
4239 priv->fatal_errors[(priv->fatal_index - i) %
4240 IPW2100_ERROR_QUEUE]);
4241 }
4242
4243 return out - buf;
4244 }
4245
4246 static ssize_t store_fatal_error(struct device *d,
4247 struct device_attribute *attr, const char *buf,
4248 size_t count)
4249 {
4250 struct ipw2100_priv *priv = dev_get_drvdata(d);
4251 schedule_reset(priv);
4252 return count;
4253 }
4254
4255 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4256 store_fatal_error);
4257
4258 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4259 char *buf)
4260 {
4261 struct ipw2100_priv *priv = dev_get_drvdata(d);
4262 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4263 }
4264
4265 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4266 const char *buf, size_t count)
4267 {
4268 struct ipw2100_priv *priv = dev_get_drvdata(d);
4269 struct net_device *dev = priv->net_dev;
4270 char buffer[] = "00000000";
4271 unsigned long len =
4272 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4273 unsigned long val;
4274 char *p = buffer;
4275
4276 (void)dev; /* kill unused-var warning for debug-only code */
4277
4278 IPW_DEBUG_INFO("enter\n");
4279
4280 strncpy(buffer, buf, len);
4281 buffer[len] = 0;
4282
4283 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4284 p++;
4285 if (p[0] == 'x' || p[0] == 'X')
4286 p++;
4287 val = simple_strtoul(p, &p, 16);
4288 } else
4289 val = simple_strtoul(p, &p, 10);
4290 if (p == buffer) {
4291 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4292 } else {
4293 priv->ieee->scan_age = val;
4294 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4295 }
4296
4297 IPW_DEBUG_INFO("exit\n");
4298 return len;
4299 }
4300
4301 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4302
4303 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4304 char *buf)
4305 {
4306 /* 0 - RF kill not enabled
4307 1 - SW based RF kill active (sysfs)
4308 2 - HW based RF kill active
4309 3 - Both HW and SW baed RF kill active */
4310 struct ipw2100_priv *priv = dev_get_drvdata(d);
4311 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4312 (rf_kill_active(priv) ? 0x2 : 0x0);
4313 return sprintf(buf, "%i\n", val);
4314 }
4315
4316 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4317 {
4318 if ((disable_radio ? 1 : 0) ==
4319 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4320 return 0;
4321
4322 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4323 disable_radio ? "OFF" : "ON");
4324
4325 mutex_lock(&priv->action_mutex);
4326
4327 if (disable_radio) {
4328 priv->status |= STATUS_RF_KILL_SW;
4329 ipw2100_down(priv);
4330 } else {
4331 priv->status &= ~STATUS_RF_KILL_SW;
4332 if (rf_kill_active(priv)) {
4333 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4334 "disabled by HW switch\n");
4335 /* Make sure the RF_KILL check timer is running */
4336 priv->stop_rf_kill = 0;
4337 cancel_delayed_work(&priv->rf_kill);
4338 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4339 round_jiffies_relative(HZ));
4340 } else
4341 schedule_reset(priv);
4342 }
4343
4344 mutex_unlock(&priv->action_mutex);
4345 return 1;
4346 }
4347
4348 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4349 const char *buf, size_t count)
4350 {
4351 struct ipw2100_priv *priv = dev_get_drvdata(d);
4352 ipw_radio_kill_sw(priv, buf[0] == '1');
4353 return count;
4354 }
4355
4356 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4357
4358 static struct attribute *ipw2100_sysfs_entries[] = {
4359 &dev_attr_hardware.attr,
4360 &dev_attr_registers.attr,
4361 &dev_attr_ordinals.attr,
4362 &dev_attr_pci.attr,
4363 &dev_attr_stats.attr,
4364 &dev_attr_internals.attr,
4365 &dev_attr_bssinfo.attr,
4366 &dev_attr_memory.attr,
4367 &dev_attr_scan_age.attr,
4368 &dev_attr_fatal_error.attr,
4369 &dev_attr_rf_kill.attr,
4370 &dev_attr_cfg.attr,
4371 &dev_attr_status.attr,
4372 &dev_attr_capability.attr,
4373 NULL,
4374 };
4375
4376 static struct attribute_group ipw2100_attribute_group = {
4377 .attrs = ipw2100_sysfs_entries,
4378 };
4379
4380 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4381 {
4382 struct ipw2100_status_queue *q = &priv->status_queue;
4383
4384 IPW_DEBUG_INFO("enter\n");
4385
4386 q->size = entries * sizeof(struct ipw2100_status);
4387 q->drv =
4388 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4389 q->size, &q->nic);
4390 if (!q->drv) {
4391 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4392 return -ENOMEM;
4393 }
4394
4395 memset(q->drv, 0, q->size);
4396
4397 IPW_DEBUG_INFO("exit\n");
4398
4399 return 0;
4400 }
4401
4402 static void status_queue_free(struct ipw2100_priv *priv)
4403 {
4404 IPW_DEBUG_INFO("enter\n");
4405
4406 if (priv->status_queue.drv) {
4407 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4408 priv->status_queue.drv,
4409 priv->status_queue.nic);
4410 priv->status_queue.drv = NULL;
4411 }
4412
4413 IPW_DEBUG_INFO("exit\n");
4414 }
4415
4416 static int bd_queue_allocate(struct ipw2100_priv *priv,
4417 struct ipw2100_bd_queue *q, int entries)
4418 {
4419 IPW_DEBUG_INFO("enter\n");
4420
4421 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4422
4423 q->entries = entries;
4424 q->size = entries * sizeof(struct ipw2100_bd);
4425 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4426 if (!q->drv) {
4427 IPW_DEBUG_INFO
4428 ("can't allocate shared memory for buffer descriptors\n");
4429 return -ENOMEM;
4430 }
4431 memset(q->drv, 0, q->size);
4432
4433 IPW_DEBUG_INFO("exit\n");
4434
4435 return 0;
4436 }
4437
4438 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4439 {
4440 IPW_DEBUG_INFO("enter\n");
4441
4442 if (!q)
4443 return;
4444
4445 if (q->drv) {
4446 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4447 q->drv = NULL;
4448 }
4449
4450 IPW_DEBUG_INFO("exit\n");
4451 }
4452
4453 static void bd_queue_initialize(struct ipw2100_priv *priv,
4454 struct ipw2100_bd_queue *q, u32 base, u32 size,
4455 u32 r, u32 w)
4456 {
4457 IPW_DEBUG_INFO("enter\n");
4458
4459 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4460 (u32) q->nic);
4461
4462 write_register(priv->net_dev, base, q->nic);
4463 write_register(priv->net_dev, size, q->entries);
4464 write_register(priv->net_dev, r, q->oldest);
4465 write_register(priv->net_dev, w, q->next);
4466
4467 IPW_DEBUG_INFO("exit\n");
4468 }
4469
4470 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4471 {
4472 if (priv->workqueue) {
4473 priv->stop_rf_kill = 1;
4474 priv->stop_hang_check = 1;
4475 cancel_delayed_work(&priv->reset_work);
4476 cancel_delayed_work(&priv->security_work);
4477 cancel_delayed_work(&priv->wx_event_work);
4478 cancel_delayed_work(&priv->hang_check);
4479 cancel_delayed_work(&priv->rf_kill);
4480 cancel_delayed_work(&priv->scan_event_later);
4481 destroy_workqueue(priv->workqueue);
4482 priv->workqueue = NULL;
4483 }
4484 }
4485
4486 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4487 {
4488 int i, j, err = -EINVAL;
4489 void *v;
4490 dma_addr_t p;
4491
4492 IPW_DEBUG_INFO("enter\n");
4493
4494 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4495 if (err) {
4496 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4497 priv->net_dev->name);
4498 return err;
4499 }
4500
4501 priv->tx_buffers =
4502 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4503 sizeof(struct
4504 ipw2100_tx_packet),
4505 GFP_ATOMIC);
4506 if (!priv->tx_buffers) {
4507 printk(KERN_ERR DRV_NAME
4508 ": %s: alloc failed form tx buffers.\n",
4509 priv->net_dev->name);
4510 bd_queue_free(priv, &priv->tx_queue);
4511 return -ENOMEM;
4512 }
4513
4514 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4515 v = pci_alloc_consistent(priv->pci_dev,
4516 sizeof(struct ipw2100_data_header),
4517 &p);
4518 if (!v) {
4519 printk(KERN_ERR DRV_NAME
4520 ": %s: PCI alloc failed for tx " "buffers.\n",
4521 priv->net_dev->name);
4522 err = -ENOMEM;
4523 break;
4524 }
4525
4526 priv->tx_buffers[i].type = DATA;
4527 priv->tx_buffers[i].info.d_struct.data =
4528 (struct ipw2100_data_header *)v;
4529 priv->tx_buffers[i].info.d_struct.data_phys = p;
4530 priv->tx_buffers[i].info.d_struct.txb = NULL;
4531 }
4532
4533 if (i == TX_PENDED_QUEUE_LENGTH)
4534 return 0;
4535
4536 for (j = 0; j < i; j++) {
4537 pci_free_consistent(priv->pci_dev,
4538 sizeof(struct ipw2100_data_header),
4539 priv->tx_buffers[j].info.d_struct.data,
4540 priv->tx_buffers[j].info.d_struct.
4541 data_phys);
4542 }
4543
4544 kfree(priv->tx_buffers);
4545 priv->tx_buffers = NULL;
4546
4547 return err;
4548 }
4549
4550 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4551 {
4552 int i;
4553
4554 IPW_DEBUG_INFO("enter\n");
4555
4556 /*
4557 * reinitialize packet info lists
4558 */
4559 INIT_LIST_HEAD(&priv->fw_pend_list);
4560 INIT_STAT(&priv->fw_pend_stat);
4561
4562 /*
4563 * reinitialize lists
4564 */
4565 INIT_LIST_HEAD(&priv->tx_pend_list);
4566 INIT_LIST_HEAD(&priv->tx_free_list);
4567 INIT_STAT(&priv->tx_pend_stat);
4568 INIT_STAT(&priv->tx_free_stat);
4569
4570 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4571 /* We simply drop any SKBs that have been queued for
4572 * transmit */
4573 if (priv->tx_buffers[i].info.d_struct.txb) {
4574 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4575 txb);
4576 priv->tx_buffers[i].info.d_struct.txb = NULL;
4577 }
4578
4579 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4580 }
4581
4582 SET_STAT(&priv->tx_free_stat, i);
4583
4584 priv->tx_queue.oldest = 0;
4585 priv->tx_queue.available = priv->tx_queue.entries;
4586 priv->tx_queue.next = 0;
4587 INIT_STAT(&priv->txq_stat);
4588 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4589
4590 bd_queue_initialize(priv, &priv->tx_queue,
4591 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4592 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4593 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4594 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4595
4596 IPW_DEBUG_INFO("exit\n");
4597
4598 }
4599
4600 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4601 {
4602 int i;
4603
4604 IPW_DEBUG_INFO("enter\n");
4605
4606 bd_queue_free(priv, &priv->tx_queue);
4607
4608 if (!priv->tx_buffers)
4609 return;
4610
4611 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4612 if (priv->tx_buffers[i].info.d_struct.txb) {
4613 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4614 txb);
4615 priv->tx_buffers[i].info.d_struct.txb = NULL;
4616 }
4617 if (priv->tx_buffers[i].info.d_struct.data)
4618 pci_free_consistent(priv->pci_dev,
4619 sizeof(struct ipw2100_data_header),
4620 priv->tx_buffers[i].info.d_struct.
4621 data,
4622 priv->tx_buffers[i].info.d_struct.
4623 data_phys);
4624 }
4625
4626 kfree(priv->tx_buffers);
4627 priv->tx_buffers = NULL;
4628
4629 IPW_DEBUG_INFO("exit\n");
4630 }
4631
4632 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4633 {
4634 int i, j, err = -EINVAL;
4635
4636 IPW_DEBUG_INFO("enter\n");
4637
4638 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4639 if (err) {
4640 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4641 return err;
4642 }
4643
4644 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4645 if (err) {
4646 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4647 bd_queue_free(priv, &priv->rx_queue);
4648 return err;
4649 }
4650
4651 /*
4652 * allocate packets
4653 */
4654 priv->rx_buffers = (struct ipw2100_rx_packet *)
4655 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4656 GFP_KERNEL);
4657 if (!priv->rx_buffers) {
4658 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4659
4660 bd_queue_free(priv, &priv->rx_queue);
4661
4662 status_queue_free(priv);
4663
4664 return -ENOMEM;
4665 }
4666
4667 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4668 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4669
4670 err = ipw2100_alloc_skb(priv, packet);
4671 if (unlikely(err)) {
4672 err = -ENOMEM;
4673 break;
4674 }
4675
4676 /* The BD holds the cache aligned address */
4677 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4678 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4679 priv->status_queue.drv[i].status_fields = 0;
4680 }
4681
4682 if (i == RX_QUEUE_LENGTH)
4683 return 0;
4684
4685 for (j = 0; j < i; j++) {
4686 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4687 sizeof(struct ipw2100_rx_packet),
4688 PCI_DMA_FROMDEVICE);
4689 dev_kfree_skb(priv->rx_buffers[j].skb);
4690 }
4691
4692 kfree(priv->rx_buffers);
4693 priv->rx_buffers = NULL;
4694
4695 bd_queue_free(priv, &priv->rx_queue);
4696
4697 status_queue_free(priv);
4698
4699 return err;
4700 }
4701
4702 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4703 {
4704 IPW_DEBUG_INFO("enter\n");
4705
4706 priv->rx_queue.oldest = 0;
4707 priv->rx_queue.available = priv->rx_queue.entries - 1;
4708 priv->rx_queue.next = priv->rx_queue.entries - 1;
4709
4710 INIT_STAT(&priv->rxq_stat);
4711 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4712
4713 bd_queue_initialize(priv, &priv->rx_queue,
4714 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4715 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4716 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4717 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4718
4719 /* set up the status queue */
4720 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4721 priv->status_queue.nic);
4722
4723 IPW_DEBUG_INFO("exit\n");
4724 }
4725
4726 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4727 {
4728 int i;
4729
4730 IPW_DEBUG_INFO("enter\n");
4731
4732 bd_queue_free(priv, &priv->rx_queue);
4733 status_queue_free(priv);
4734
4735 if (!priv->rx_buffers)
4736 return;
4737
4738 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4739 if (priv->rx_buffers[i].rxp) {
4740 pci_unmap_single(priv->pci_dev,
4741 priv->rx_buffers[i].dma_addr,
4742 sizeof(struct ipw2100_rx),
4743 PCI_DMA_FROMDEVICE);
4744 dev_kfree_skb(priv->rx_buffers[i].skb);
4745 }
4746 }
4747
4748 kfree(priv->rx_buffers);
4749 priv->rx_buffers = NULL;
4750
4751 IPW_DEBUG_INFO("exit\n");
4752 }
4753
4754 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4755 {
4756 u32 length = ETH_ALEN;
4757 u8 addr[ETH_ALEN];
4758
4759 int err;
4760
4761 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4762 if (err) {
4763 IPW_DEBUG_INFO("MAC address read failed\n");
4764 return -EIO;
4765 }
4766
4767 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4768 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4769
4770 return 0;
4771 }
4772
4773 /********************************************************************
4774 *
4775 * Firmware Commands
4776 *
4777 ********************************************************************/
4778
4779 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4780 {
4781 struct host_command cmd = {
4782 .host_command = ADAPTER_ADDRESS,
4783 .host_command_sequence = 0,
4784 .host_command_length = ETH_ALEN
4785 };
4786 int err;
4787
4788 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4789
4790 IPW_DEBUG_INFO("enter\n");
4791
4792 if (priv->config & CFG_CUSTOM_MAC) {
4793 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4794 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4795 } else
4796 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4797 ETH_ALEN);
4798
4799 err = ipw2100_hw_send_command(priv, &cmd);
4800
4801 IPW_DEBUG_INFO("exit\n");
4802 return err;
4803 }
4804
4805 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4806 int batch_mode)
4807 {
4808 struct host_command cmd = {
4809 .host_command = PORT_TYPE,
4810 .host_command_sequence = 0,
4811 .host_command_length = sizeof(u32)
4812 };
4813 int err;
4814
4815 switch (port_type) {
4816 case IW_MODE_INFRA:
4817 cmd.host_command_parameters[0] = IPW_BSS;
4818 break;
4819 case IW_MODE_ADHOC:
4820 cmd.host_command_parameters[0] = IPW_IBSS;
4821 break;
4822 }
4823
4824 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4825 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4826
4827 if (!batch_mode) {
4828 err = ipw2100_disable_adapter(priv);
4829 if (err) {
4830 printk(KERN_ERR DRV_NAME
4831 ": %s: Could not disable adapter %d\n",
4832 priv->net_dev->name, err);
4833 return err;
4834 }
4835 }
4836
4837 /* send cmd to firmware */
4838 err = ipw2100_hw_send_command(priv, &cmd);
4839
4840 if (!batch_mode)
4841 ipw2100_enable_adapter(priv);
4842
4843 return err;
4844 }
4845
4846 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4847 int batch_mode)
4848 {
4849 struct host_command cmd = {
4850 .host_command = CHANNEL,
4851 .host_command_sequence = 0,
4852 .host_command_length = sizeof(u32)
4853 };
4854 int err;
4855
4856 cmd.host_command_parameters[0] = channel;
4857
4858 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4859
4860 /* If BSS then we don't support channel selection */
4861 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4862 return 0;
4863
4864 if ((channel != 0) &&
4865 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4866 return -EINVAL;
4867
4868 if (!batch_mode) {
4869 err = ipw2100_disable_adapter(priv);
4870 if (err)
4871 return err;
4872 }
4873
4874 err = ipw2100_hw_send_command(priv, &cmd);
4875 if (err) {
4876 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4877 return err;
4878 }
4879
4880 if (channel)
4881 priv->config |= CFG_STATIC_CHANNEL;
4882 else
4883 priv->config &= ~CFG_STATIC_CHANNEL;
4884
4885 priv->channel = channel;
4886
4887 if (!batch_mode) {
4888 err = ipw2100_enable_adapter(priv);
4889 if (err)
4890 return err;
4891 }
4892
4893 return 0;
4894 }
4895
4896 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4897 {
4898 struct host_command cmd = {
4899 .host_command = SYSTEM_CONFIG,
4900 .host_command_sequence = 0,
4901 .host_command_length = 12,
4902 };
4903 u32 ibss_mask, len = sizeof(u32);
4904 int err;
4905
4906 /* Set system configuration */
4907
4908 if (!batch_mode) {
4909 err = ipw2100_disable_adapter(priv);
4910 if (err)
4911 return err;
4912 }
4913
4914 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4915 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4916
4917 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4918 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4919
4920 if (!(priv->config & CFG_LONG_PREAMBLE))
4921 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4922
4923 err = ipw2100_get_ordinal(priv,
4924 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4925 &ibss_mask, &len);
4926 if (err)
4927 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4928
4929 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4930 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4931
4932 /* 11b only */
4933 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4934
4935 err = ipw2100_hw_send_command(priv, &cmd);
4936 if (err)
4937 return err;
4938
4939 /* If IPv6 is configured in the kernel then we don't want to filter out all
4940 * of the multicast packets as IPv6 needs some. */
4941 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4942 cmd.host_command = ADD_MULTICAST;
4943 cmd.host_command_sequence = 0;
4944 cmd.host_command_length = 0;
4945
4946 ipw2100_hw_send_command(priv, &cmd);
4947 #endif
4948 if (!batch_mode) {
4949 err = ipw2100_enable_adapter(priv);
4950 if (err)
4951 return err;
4952 }
4953
4954 return 0;
4955 }
4956
4957 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4958 int batch_mode)
4959 {
4960 struct host_command cmd = {
4961 .host_command = BASIC_TX_RATES,
4962 .host_command_sequence = 0,
4963 .host_command_length = 4
4964 };
4965 int err;
4966
4967 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4968
4969 if (!batch_mode) {
4970 err = ipw2100_disable_adapter(priv);
4971 if (err)
4972 return err;
4973 }
4974
4975 /* Set BASIC TX Rate first */
4976 ipw2100_hw_send_command(priv, &cmd);
4977
4978 /* Set TX Rate */
4979 cmd.host_command = TX_RATES;
4980 ipw2100_hw_send_command(priv, &cmd);
4981
4982 /* Set MSDU TX Rate */
4983 cmd.host_command = MSDU_TX_RATES;
4984 ipw2100_hw_send_command(priv, &cmd);
4985
4986 if (!batch_mode) {
4987 err = ipw2100_enable_adapter(priv);
4988 if (err)
4989 return err;
4990 }
4991
4992 priv->tx_rates = rate;
4993
4994 return 0;
4995 }
4996
4997 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4998 {
4999 struct host_command cmd = {
5000 .host_command = POWER_MODE,
5001 .host_command_sequence = 0,
5002 .host_command_length = 4
5003 };
5004 int err;
5005
5006 cmd.host_command_parameters[0] = power_level;
5007
5008 err = ipw2100_hw_send_command(priv, &cmd);
5009 if (err)
5010 return err;
5011
5012 if (power_level == IPW_POWER_MODE_CAM)
5013 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5014 else
5015 priv->power_mode = IPW_POWER_ENABLED | power_level;
5016
5017 #ifdef IPW2100_TX_POWER
5018 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5019 /* Set beacon interval */
5020 cmd.host_command = TX_POWER_INDEX;
5021 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5022
5023 err = ipw2100_hw_send_command(priv, &cmd);
5024 if (err)
5025 return err;
5026 }
5027 #endif
5028
5029 return 0;
5030 }
5031
5032 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5033 {
5034 struct host_command cmd = {
5035 .host_command = RTS_THRESHOLD,
5036 .host_command_sequence = 0,
5037 .host_command_length = 4
5038 };
5039 int err;
5040
5041 if (threshold & RTS_DISABLED)
5042 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5043 else
5044 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5045
5046 err = ipw2100_hw_send_command(priv, &cmd);
5047 if (err)
5048 return err;
5049
5050 priv->rts_threshold = threshold;
5051
5052 return 0;
5053 }
5054
5055 #if 0
5056 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5057 u32 threshold, int batch_mode)
5058 {
5059 struct host_command cmd = {
5060 .host_command = FRAG_THRESHOLD,
5061 .host_command_sequence = 0,
5062 .host_command_length = 4,
5063 .host_command_parameters[0] = 0,
5064 };
5065 int err;
5066
5067 if (!batch_mode) {
5068 err = ipw2100_disable_adapter(priv);
5069 if (err)
5070 return err;
5071 }
5072
5073 if (threshold == 0)
5074 threshold = DEFAULT_FRAG_THRESHOLD;
5075 else {
5076 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5077 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5078 }
5079
5080 cmd.host_command_parameters[0] = threshold;
5081
5082 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5083
5084 err = ipw2100_hw_send_command(priv, &cmd);
5085
5086 if (!batch_mode)
5087 ipw2100_enable_adapter(priv);
5088
5089 if (!err)
5090 priv->frag_threshold = threshold;
5091
5092 return err;
5093 }
5094 #endif
5095
5096 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5097 {
5098 struct host_command cmd = {
5099 .host_command = SHORT_RETRY_LIMIT,
5100 .host_command_sequence = 0,
5101 .host_command_length = 4
5102 };
5103 int err;
5104
5105 cmd.host_command_parameters[0] = retry;
5106
5107 err = ipw2100_hw_send_command(priv, &cmd);
5108 if (err)
5109 return err;
5110
5111 priv->short_retry_limit = retry;
5112
5113 return 0;
5114 }
5115
5116 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5117 {
5118 struct host_command cmd = {
5119 .host_command = LONG_RETRY_LIMIT,
5120 .host_command_sequence = 0,
5121 .host_command_length = 4
5122 };
5123 int err;
5124
5125 cmd.host_command_parameters[0] = retry;
5126
5127 err = ipw2100_hw_send_command(priv, &cmd);
5128 if (err)
5129 return err;
5130
5131 priv->long_retry_limit = retry;
5132
5133 return 0;
5134 }
5135
5136 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5137 int batch_mode)
5138 {
5139 struct host_command cmd = {
5140 .host_command = MANDATORY_BSSID,
5141 .host_command_sequence = 0,
5142 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5143 };
5144 int err;
5145
5146 #ifdef CONFIG_IPW2100_DEBUG
5147 if (bssid != NULL)
5148 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5149 else
5150 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5151 #endif
5152 /* if BSSID is empty then we disable mandatory bssid mode */
5153 if (bssid != NULL)
5154 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5155
5156 if (!batch_mode) {
5157 err = ipw2100_disable_adapter(priv);
5158 if (err)
5159 return err;
5160 }
5161
5162 err = ipw2100_hw_send_command(priv, &cmd);
5163
5164 if (!batch_mode)
5165 ipw2100_enable_adapter(priv);
5166
5167 return err;
5168 }
5169
5170 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5171 {
5172 struct host_command cmd = {
5173 .host_command = DISASSOCIATION_BSSID,
5174 .host_command_sequence = 0,
5175 .host_command_length = ETH_ALEN
5176 };
5177 int err;
5178 int len;
5179
5180 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5181
5182 len = ETH_ALEN;
5183 /* The Firmware currently ignores the BSSID and just disassociates from
5184 * the currently associated AP -- but in the off chance that a future
5185 * firmware does use the BSSID provided here, we go ahead and try and
5186 * set it to the currently associated AP's BSSID */
5187 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5188
5189 err = ipw2100_hw_send_command(priv, &cmd);
5190
5191 return err;
5192 }
5193
5194 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5195 struct ipw2100_wpa_assoc_frame *, int)
5196 __attribute__ ((unused));
5197
5198 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5199 struct ipw2100_wpa_assoc_frame *wpa_frame,
5200 int batch_mode)
5201 {
5202 struct host_command cmd = {
5203 .host_command = SET_WPA_IE,
5204 .host_command_sequence = 0,
5205 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5206 };
5207 int err;
5208
5209 IPW_DEBUG_HC("SET_WPA_IE\n");
5210
5211 if (!batch_mode) {
5212 err = ipw2100_disable_adapter(priv);
5213 if (err)
5214 return err;
5215 }
5216
5217 memcpy(cmd.host_command_parameters, wpa_frame,
5218 sizeof(struct ipw2100_wpa_assoc_frame));
5219
5220 err = ipw2100_hw_send_command(priv, &cmd);
5221
5222 if (!batch_mode) {
5223 if (ipw2100_enable_adapter(priv))
5224 err = -EIO;
5225 }
5226
5227 return err;
5228 }
5229
5230 struct security_info_params {
5231 u32 allowed_ciphers;
5232 u16 version;
5233 u8 auth_mode;
5234 u8 replay_counters_number;
5235 u8 unicast_using_group;
5236 } __attribute__ ((packed));
5237
5238 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5239 int auth_mode,
5240 int security_level,
5241 int unicast_using_group,
5242 int batch_mode)
5243 {
5244 struct host_command cmd = {
5245 .host_command = SET_SECURITY_INFORMATION,
5246 .host_command_sequence = 0,
5247 .host_command_length = sizeof(struct security_info_params)
5248 };
5249 struct security_info_params *security =
5250 (struct security_info_params *)&cmd.host_command_parameters;
5251 int err;
5252 memset(security, 0, sizeof(*security));
5253
5254 /* If shared key AP authentication is turned on, then we need to
5255 * configure the firmware to try and use it.
5256 *
5257 * Actual data encryption/decryption is handled by the host. */
5258 security->auth_mode = auth_mode;
5259 security->unicast_using_group = unicast_using_group;
5260
5261 switch (security_level) {
5262 default:
5263 case SEC_LEVEL_0:
5264 security->allowed_ciphers = IPW_NONE_CIPHER;
5265 break;
5266 case SEC_LEVEL_1:
5267 security->allowed_ciphers = IPW_WEP40_CIPHER |
5268 IPW_WEP104_CIPHER;
5269 break;
5270 case SEC_LEVEL_2:
5271 security->allowed_ciphers = IPW_WEP40_CIPHER |
5272 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5273 break;
5274 case SEC_LEVEL_2_CKIP:
5275 security->allowed_ciphers = IPW_WEP40_CIPHER |
5276 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5277 break;
5278 case SEC_LEVEL_3:
5279 security->allowed_ciphers = IPW_WEP40_CIPHER |
5280 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5281 break;
5282 }
5283
5284 IPW_DEBUG_HC
5285 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5286 security->auth_mode, security->allowed_ciphers, security_level);
5287
5288 security->replay_counters_number = 0;
5289
5290 if (!batch_mode) {
5291 err = ipw2100_disable_adapter(priv);
5292 if (err)
5293 return err;
5294 }
5295
5296 err = ipw2100_hw_send_command(priv, &cmd);
5297
5298 if (!batch_mode)
5299 ipw2100_enable_adapter(priv);
5300
5301 return err;
5302 }
5303
5304 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5305 {
5306 struct host_command cmd = {
5307 .host_command = TX_POWER_INDEX,
5308 .host_command_sequence = 0,
5309 .host_command_length = 4
5310 };
5311 int err = 0;
5312 u32 tmp = tx_power;
5313
5314 if (tx_power != IPW_TX_POWER_DEFAULT)
5315 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5316 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5317
5318 cmd.host_command_parameters[0] = tmp;
5319
5320 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5321 err = ipw2100_hw_send_command(priv, &cmd);
5322 if (!err)
5323 priv->tx_power = tx_power;
5324
5325 return 0;
5326 }
5327
5328 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5329 u32 interval, int batch_mode)
5330 {
5331 struct host_command cmd = {
5332 .host_command = BEACON_INTERVAL,
5333 .host_command_sequence = 0,
5334 .host_command_length = 4
5335 };
5336 int err;
5337
5338 cmd.host_command_parameters[0] = interval;
5339
5340 IPW_DEBUG_INFO("enter\n");
5341
5342 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5343 if (!batch_mode) {
5344 err = ipw2100_disable_adapter(priv);
5345 if (err)
5346 return err;
5347 }
5348
5349 ipw2100_hw_send_command(priv, &cmd);
5350
5351 if (!batch_mode) {
5352 err = ipw2100_enable_adapter(priv);
5353 if (err)
5354 return err;
5355 }
5356 }
5357
5358 IPW_DEBUG_INFO("exit\n");
5359
5360 return 0;
5361 }
5362
5363 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5364 {
5365 ipw2100_tx_initialize(priv);
5366 ipw2100_rx_initialize(priv);
5367 ipw2100_msg_initialize(priv);
5368 }
5369
5370 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5371 {
5372 ipw2100_tx_free(priv);
5373 ipw2100_rx_free(priv);
5374 ipw2100_msg_free(priv);
5375 }
5376
5377 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5378 {
5379 if (ipw2100_tx_allocate(priv) ||
5380 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5381 goto fail;
5382
5383 return 0;
5384
5385 fail:
5386 ipw2100_tx_free(priv);
5387 ipw2100_rx_free(priv);
5388 ipw2100_msg_free(priv);
5389 return -ENOMEM;
5390 }
5391
5392 #define IPW_PRIVACY_CAPABLE 0x0008
5393
5394 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5395 int batch_mode)
5396 {
5397 struct host_command cmd = {
5398 .host_command = WEP_FLAGS,
5399 .host_command_sequence = 0,
5400 .host_command_length = 4
5401 };
5402 int err;
5403
5404 cmd.host_command_parameters[0] = flags;
5405
5406 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5407
5408 if (!batch_mode) {
5409 err = ipw2100_disable_adapter(priv);
5410 if (err) {
5411 printk(KERN_ERR DRV_NAME
5412 ": %s: Could not disable adapter %d\n",
5413 priv->net_dev->name, err);
5414 return err;
5415 }
5416 }
5417
5418 /* send cmd to firmware */
5419 err = ipw2100_hw_send_command(priv, &cmd);
5420
5421 if (!batch_mode)
5422 ipw2100_enable_adapter(priv);
5423
5424 return err;
5425 }
5426
5427 struct ipw2100_wep_key {
5428 u8 idx;
5429 u8 len;
5430 u8 key[13];
5431 };
5432
5433 /* Macros to ease up priting WEP keys */
5434 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5435 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5436 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5437 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5438
5439 /**
5440 * Set a the wep key
5441 *
5442 * @priv: struct to work on
5443 * @idx: index of the key we want to set
5444 * @key: ptr to the key data to set
5445 * @len: length of the buffer at @key
5446 * @batch_mode: FIXME perform the operation in batch mode, not
5447 * disabling the device.
5448 *
5449 * @returns 0 if OK, < 0 errno code on error.
5450 *
5451 * Fill out a command structure with the new wep key, length an
5452 * index and send it down the wire.
5453 */
5454 static int ipw2100_set_key(struct ipw2100_priv *priv,
5455 int idx, char *key, int len, int batch_mode)
5456 {
5457 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5458 struct host_command cmd = {
5459 .host_command = WEP_KEY_INFO,
5460 .host_command_sequence = 0,
5461 .host_command_length = sizeof(struct ipw2100_wep_key),
5462 };
5463 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5464 int err;
5465
5466 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5467 idx, keylen, len);
5468
5469 /* NOTE: We don't check cached values in case the firmware was reset
5470 * or some other problem is occurring. If the user is setting the key,
5471 * then we push the change */
5472
5473 wep_key->idx = idx;
5474 wep_key->len = keylen;
5475
5476 if (keylen) {
5477 memcpy(wep_key->key, key, len);
5478 memset(wep_key->key + len, 0, keylen - len);
5479 }
5480
5481 /* Will be optimized out on debug not being configured in */
5482 if (keylen == 0)
5483 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5484 priv->net_dev->name, wep_key->idx);
5485 else if (keylen == 5)
5486 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5487 priv->net_dev->name, wep_key->idx, wep_key->len,
5488 WEP_STR_64(wep_key->key));
5489 else
5490 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5491 "\n",
5492 priv->net_dev->name, wep_key->idx, wep_key->len,
5493 WEP_STR_128(wep_key->key));
5494
5495 if (!batch_mode) {
5496 err = ipw2100_disable_adapter(priv);
5497 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5498 if (err) {
5499 printk(KERN_ERR DRV_NAME
5500 ": %s: Could not disable adapter %d\n",
5501 priv->net_dev->name, err);
5502 return err;
5503 }
5504 }
5505
5506 /* send cmd to firmware */
5507 err = ipw2100_hw_send_command(priv, &cmd);
5508
5509 if (!batch_mode) {
5510 int err2 = ipw2100_enable_adapter(priv);
5511 if (err == 0)
5512 err = err2;
5513 }
5514 return err;
5515 }
5516
5517 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5518 int idx, int batch_mode)
5519 {
5520 struct host_command cmd = {
5521 .host_command = WEP_KEY_INDEX,
5522 .host_command_sequence = 0,
5523 .host_command_length = 4,
5524 .host_command_parameters = {idx},
5525 };
5526 int err;
5527
5528 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5529
5530 if (idx < 0 || idx > 3)
5531 return -EINVAL;
5532
5533 if (!batch_mode) {
5534 err = ipw2100_disable_adapter(priv);
5535 if (err) {
5536 printk(KERN_ERR DRV_NAME
5537 ": %s: Could not disable adapter %d\n",
5538 priv->net_dev->name, err);
5539 return err;
5540 }
5541 }
5542
5543 /* send cmd to firmware */
5544 err = ipw2100_hw_send_command(priv, &cmd);
5545
5546 if (!batch_mode)
5547 ipw2100_enable_adapter(priv);
5548
5549 return err;
5550 }
5551
5552 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5553 {
5554 int i, err, auth_mode, sec_level, use_group;
5555
5556 if (!(priv->status & STATUS_RUNNING))
5557 return 0;
5558
5559 if (!batch_mode) {
5560 err = ipw2100_disable_adapter(priv);
5561 if (err)
5562 return err;
5563 }
5564
5565 if (!priv->ieee->sec.enabled) {
5566 err =
5567 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5568 SEC_LEVEL_0, 0, 1);
5569 } else {
5570 auth_mode = IPW_AUTH_OPEN;
5571 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5572 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5573 auth_mode = IPW_AUTH_SHARED;
5574 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5575 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5576 }
5577
5578 sec_level = SEC_LEVEL_0;
5579 if (priv->ieee->sec.flags & SEC_LEVEL)
5580 sec_level = priv->ieee->sec.level;
5581
5582 use_group = 0;
5583 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5584 use_group = priv->ieee->sec.unicast_uses_group;
5585
5586 err =
5587 ipw2100_set_security_information(priv, auth_mode, sec_level,
5588 use_group, 1);
5589 }
5590
5591 if (err)
5592 goto exit;
5593
5594 if (priv->ieee->sec.enabled) {
5595 for (i = 0; i < 4; i++) {
5596 if (!(priv->ieee->sec.flags & (1 << i))) {
5597 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5598 priv->ieee->sec.key_sizes[i] = 0;
5599 } else {
5600 err = ipw2100_set_key(priv, i,
5601 priv->ieee->sec.keys[i],
5602 priv->ieee->sec.
5603 key_sizes[i], 1);
5604 if (err)
5605 goto exit;
5606 }
5607 }
5608
5609 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5610 }
5611
5612 /* Always enable privacy so the Host can filter WEP packets if
5613 * encrypted data is sent up */
5614 err =
5615 ipw2100_set_wep_flags(priv,
5616 priv->ieee->sec.
5617 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5618 if (err)
5619 goto exit;
5620
5621 priv->status &= ~STATUS_SECURITY_UPDATED;
5622
5623 exit:
5624 if (!batch_mode)
5625 ipw2100_enable_adapter(priv);
5626
5627 return err;
5628 }
5629
5630 static void ipw2100_security_work(struct work_struct *work)
5631 {
5632 struct ipw2100_priv *priv =
5633 container_of(work, struct ipw2100_priv, security_work.work);
5634
5635 /* If we happen to have reconnected before we get a chance to
5636 * process this, then update the security settings--which causes
5637 * a disassociation to occur */
5638 if (!(priv->status & STATUS_ASSOCIATED) &&
5639 priv->status & STATUS_SECURITY_UPDATED)
5640 ipw2100_configure_security(priv, 0);
5641 }
5642
5643 static void shim__set_security(struct net_device *dev,
5644 struct libipw_security *sec)
5645 {
5646 struct ipw2100_priv *priv = libipw_priv(dev);
5647 int i, force_update = 0;
5648
5649 mutex_lock(&priv->action_mutex);
5650 if (!(priv->status & STATUS_INITIALIZED))
5651 goto done;
5652
5653 for (i = 0; i < 4; i++) {
5654 if (sec->flags & (1 << i)) {
5655 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5656 if (sec->key_sizes[i] == 0)
5657 priv->ieee->sec.flags &= ~(1 << i);
5658 else
5659 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5660 sec->key_sizes[i]);
5661 if (sec->level == SEC_LEVEL_1) {
5662 priv->ieee->sec.flags |= (1 << i);
5663 priv->status |= STATUS_SECURITY_UPDATED;
5664 } else
5665 priv->ieee->sec.flags &= ~(1 << i);
5666 }
5667 }
5668
5669 if ((sec->flags & SEC_ACTIVE_KEY) &&
5670 priv->ieee->sec.active_key != sec->active_key) {
5671 if (sec->active_key <= 3) {
5672 priv->ieee->sec.active_key = sec->active_key;
5673 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5674 } else
5675 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5676
5677 priv->status |= STATUS_SECURITY_UPDATED;
5678 }
5679
5680 if ((sec->flags & SEC_AUTH_MODE) &&
5681 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5682 priv->ieee->sec.auth_mode = sec->auth_mode;
5683 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5684 priv->status |= STATUS_SECURITY_UPDATED;
5685 }
5686
5687 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5688 priv->ieee->sec.flags |= SEC_ENABLED;
5689 priv->ieee->sec.enabled = sec->enabled;
5690 priv->status |= STATUS_SECURITY_UPDATED;
5691 force_update = 1;
5692 }
5693
5694 if (sec->flags & SEC_ENCRYPT)
5695 priv->ieee->sec.encrypt = sec->encrypt;
5696
5697 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5698 priv->ieee->sec.level = sec->level;
5699 priv->ieee->sec.flags |= SEC_LEVEL;
5700 priv->status |= STATUS_SECURITY_UPDATED;
5701 }
5702
5703 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5704 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5705 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5706 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5707 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5708 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5709 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5710 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5711 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5712 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5713
5714 /* As a temporary work around to enable WPA until we figure out why
5715 * wpa_supplicant toggles the security capability of the driver, which
5716 * forces a disassocation with force_update...
5717 *
5718 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5719 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5720 ipw2100_configure_security(priv, 0);
5721 done:
5722 mutex_unlock(&priv->action_mutex);
5723 }
5724
5725 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5726 {
5727 int err;
5728 int batch_mode = 1;
5729 u8 *bssid;
5730
5731 IPW_DEBUG_INFO("enter\n");
5732
5733 err = ipw2100_disable_adapter(priv);
5734 if (err)
5735 return err;
5736 #ifdef CONFIG_IPW2100_MONITOR
5737 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5738 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5739 if (err)
5740 return err;
5741
5742 IPW_DEBUG_INFO("exit\n");
5743
5744 return 0;
5745 }
5746 #endif /* CONFIG_IPW2100_MONITOR */
5747
5748 err = ipw2100_read_mac_address(priv);
5749 if (err)
5750 return -EIO;
5751
5752 err = ipw2100_set_mac_address(priv, batch_mode);
5753 if (err)
5754 return err;
5755
5756 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5757 if (err)
5758 return err;
5759
5760 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5761 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5762 if (err)
5763 return err;
5764 }
5765
5766 err = ipw2100_system_config(priv, batch_mode);
5767 if (err)
5768 return err;
5769
5770 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5771 if (err)
5772 return err;
5773
5774 /* Default to power mode OFF */
5775 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5776 if (err)
5777 return err;
5778
5779 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5780 if (err)
5781 return err;
5782
5783 if (priv->config & CFG_STATIC_BSSID)
5784 bssid = priv->bssid;
5785 else
5786 bssid = NULL;
5787 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5788 if (err)
5789 return err;
5790
5791 if (priv->config & CFG_STATIC_ESSID)
5792 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5793 batch_mode);
5794 else
5795 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5796 if (err)
5797 return err;
5798
5799 err = ipw2100_configure_security(priv, batch_mode);
5800 if (err)
5801 return err;
5802
5803 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5804 err =
5805 ipw2100_set_ibss_beacon_interval(priv,
5806 priv->beacon_interval,
5807 batch_mode);
5808 if (err)
5809 return err;
5810
5811 err = ipw2100_set_tx_power(priv, priv->tx_power);
5812 if (err)
5813 return err;
5814 }
5815
5816 /*
5817 err = ipw2100_set_fragmentation_threshold(
5818 priv, priv->frag_threshold, batch_mode);
5819 if (err)
5820 return err;
5821 */
5822
5823 IPW_DEBUG_INFO("exit\n");
5824
5825 return 0;
5826 }
5827
5828 /*************************************************************************
5829 *
5830 * EXTERNALLY CALLED METHODS
5831 *
5832 *************************************************************************/
5833
5834 /* This method is called by the network layer -- not to be confused with
5835 * ipw2100_set_mac_address() declared above called by this driver (and this
5836 * method as well) to talk to the firmware */
5837 static int ipw2100_set_address(struct net_device *dev, void *p)
5838 {
5839 struct ipw2100_priv *priv = libipw_priv(dev);
5840 struct sockaddr *addr = p;
5841 int err = 0;
5842
5843 if (!is_valid_ether_addr(addr->sa_data))
5844 return -EADDRNOTAVAIL;
5845
5846 mutex_lock(&priv->action_mutex);
5847
5848 priv->config |= CFG_CUSTOM_MAC;
5849 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5850
5851 err = ipw2100_set_mac_address(priv, 0);
5852 if (err)
5853 goto done;
5854
5855 priv->reset_backoff = 0;
5856 mutex_unlock(&priv->action_mutex);
5857 ipw2100_reset_adapter(&priv->reset_work.work);
5858 return 0;
5859
5860 done:
5861 mutex_unlock(&priv->action_mutex);
5862 return err;
5863 }
5864
5865 static int ipw2100_open(struct net_device *dev)
5866 {
5867 struct ipw2100_priv *priv = libipw_priv(dev);
5868 unsigned long flags;
5869 IPW_DEBUG_INFO("dev->open\n");
5870
5871 spin_lock_irqsave(&priv->low_lock, flags);
5872 if (priv->status & STATUS_ASSOCIATED) {
5873 netif_carrier_on(dev);
5874 netif_start_queue(dev);
5875 }
5876 spin_unlock_irqrestore(&priv->low_lock, flags);
5877
5878 return 0;
5879 }
5880
5881 static int ipw2100_close(struct net_device *dev)
5882 {
5883 struct ipw2100_priv *priv = libipw_priv(dev);
5884 unsigned long flags;
5885 struct list_head *element;
5886 struct ipw2100_tx_packet *packet;
5887
5888 IPW_DEBUG_INFO("enter\n");
5889
5890 spin_lock_irqsave(&priv->low_lock, flags);
5891
5892 if (priv->status & STATUS_ASSOCIATED)
5893 netif_carrier_off(dev);
5894 netif_stop_queue(dev);
5895
5896 /* Flush the TX queue ... */
5897 while (!list_empty(&priv->tx_pend_list)) {
5898 element = priv->tx_pend_list.next;
5899 packet = list_entry(element, struct ipw2100_tx_packet, list);
5900
5901 list_del(element);
5902 DEC_STAT(&priv->tx_pend_stat);
5903
5904 libipw_txb_free(packet->info.d_struct.txb);
5905 packet->info.d_struct.txb = NULL;
5906
5907 list_add_tail(element, &priv->tx_free_list);
5908 INC_STAT(&priv->tx_free_stat);
5909 }
5910 spin_unlock_irqrestore(&priv->low_lock, flags);
5911
5912 IPW_DEBUG_INFO("exit\n");
5913
5914 return 0;
5915 }
5916
5917 /*
5918 * TODO: Fix this function... its just wrong
5919 */
5920 static void ipw2100_tx_timeout(struct net_device *dev)
5921 {
5922 struct ipw2100_priv *priv = libipw_priv(dev);
5923
5924 dev->stats.tx_errors++;
5925
5926 #ifdef CONFIG_IPW2100_MONITOR
5927 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5928 return;
5929 #endif
5930
5931 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5932 dev->name);
5933 schedule_reset(priv);
5934 }
5935
5936 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5937 {
5938 /* This is called when wpa_supplicant loads and closes the driver
5939 * interface. */
5940 priv->ieee->wpa_enabled = value;
5941 return 0;
5942 }
5943
5944 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5945 {
5946
5947 struct libipw_device *ieee = priv->ieee;
5948 struct libipw_security sec = {
5949 .flags = SEC_AUTH_MODE,
5950 };
5951 int ret = 0;
5952
5953 if (value & IW_AUTH_ALG_SHARED_KEY) {
5954 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5955 ieee->open_wep = 0;
5956 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5957 sec.auth_mode = WLAN_AUTH_OPEN;
5958 ieee->open_wep = 1;
5959 } else if (value & IW_AUTH_ALG_LEAP) {
5960 sec.auth_mode = WLAN_AUTH_LEAP;
5961 ieee->open_wep = 1;
5962 } else
5963 return -EINVAL;
5964
5965 if (ieee->set_security)
5966 ieee->set_security(ieee->dev, &sec);
5967 else
5968 ret = -EOPNOTSUPP;
5969
5970 return ret;
5971 }
5972
5973 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5974 char *wpa_ie, int wpa_ie_len)
5975 {
5976
5977 struct ipw2100_wpa_assoc_frame frame;
5978
5979 frame.fixed_ie_mask = 0;
5980
5981 /* copy WPA IE */
5982 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5983 frame.var_ie_len = wpa_ie_len;
5984
5985 /* make sure WPA is enabled */
5986 ipw2100_wpa_enable(priv, 1);
5987 ipw2100_set_wpa_ie(priv, &frame, 0);
5988 }
5989
5990 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5991 struct ethtool_drvinfo *info)
5992 {
5993 struct ipw2100_priv *priv = libipw_priv(dev);
5994 char fw_ver[64], ucode_ver[64];
5995
5996 strcpy(info->driver, DRV_NAME);
5997 strcpy(info->version, DRV_VERSION);
5998
5999 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
6000 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
6001
6002 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
6003 fw_ver, priv->eeprom_version, ucode_ver);
6004
6005 strcpy(info->bus_info, pci_name(priv->pci_dev));
6006 }
6007
6008 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6009 {
6010 struct ipw2100_priv *priv = libipw_priv(dev);
6011 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6012 }
6013
6014 static const struct ethtool_ops ipw2100_ethtool_ops = {
6015 .get_link = ipw2100_ethtool_get_link,
6016 .get_drvinfo = ipw_ethtool_get_drvinfo,
6017 };
6018
6019 static void ipw2100_hang_check(struct work_struct *work)
6020 {
6021 struct ipw2100_priv *priv =
6022 container_of(work, struct ipw2100_priv, hang_check.work);
6023 unsigned long flags;
6024 u32 rtc = 0xa5a5a5a5;
6025 u32 len = sizeof(rtc);
6026 int restart = 0;
6027
6028 spin_lock_irqsave(&priv->low_lock, flags);
6029
6030 if (priv->fatal_error != 0) {
6031 /* If fatal_error is set then we need to restart */
6032 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6033 priv->net_dev->name);
6034
6035 restart = 1;
6036 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6037 (rtc == priv->last_rtc)) {
6038 /* Check if firmware is hung */
6039 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6040 priv->net_dev->name);
6041
6042 restart = 1;
6043 }
6044
6045 if (restart) {
6046 /* Kill timer */
6047 priv->stop_hang_check = 1;
6048 priv->hangs++;
6049
6050 /* Restart the NIC */
6051 schedule_reset(priv);
6052 }
6053
6054 priv->last_rtc = rtc;
6055
6056 if (!priv->stop_hang_check)
6057 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
6058
6059 spin_unlock_irqrestore(&priv->low_lock, flags);
6060 }
6061
6062 static void ipw2100_rf_kill(struct work_struct *work)
6063 {
6064 struct ipw2100_priv *priv =
6065 container_of(work, struct ipw2100_priv, rf_kill.work);
6066 unsigned long flags;
6067
6068 spin_lock_irqsave(&priv->low_lock, flags);
6069
6070 if (rf_kill_active(priv)) {
6071 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6072 if (!priv->stop_rf_kill)
6073 queue_delayed_work(priv->workqueue, &priv->rf_kill,
6074 round_jiffies_relative(HZ));
6075 goto exit_unlock;
6076 }
6077
6078 /* RF Kill is now disabled, so bring the device back up */
6079
6080 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6081 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6082 "device\n");
6083 schedule_reset(priv);
6084 } else
6085 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6086 "enabled\n");
6087
6088 exit_unlock:
6089 spin_unlock_irqrestore(&priv->low_lock, flags);
6090 }
6091
6092 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6093
6094 static const struct net_device_ops ipw2100_netdev_ops = {
6095 .ndo_open = ipw2100_open,
6096 .ndo_stop = ipw2100_close,
6097 .ndo_start_xmit = libipw_xmit,
6098 .ndo_change_mtu = libipw_change_mtu,
6099 .ndo_init = ipw2100_net_init,
6100 .ndo_tx_timeout = ipw2100_tx_timeout,
6101 .ndo_set_mac_address = ipw2100_set_address,
6102 .ndo_validate_addr = eth_validate_addr,
6103 };
6104
6105 /* Look into using netdev destructor to shutdown libipw? */
6106
6107 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6108 void __iomem * base_addr,
6109 unsigned long mem_start,
6110 unsigned long mem_len)
6111 {
6112 struct ipw2100_priv *priv;
6113 struct net_device *dev;
6114
6115 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6116 if (!dev)
6117 return NULL;
6118 priv = libipw_priv(dev);
6119 priv->ieee = netdev_priv(dev);
6120 priv->pci_dev = pci_dev;
6121 priv->net_dev = dev;
6122
6123 priv->ieee->hard_start_xmit = ipw2100_tx;
6124 priv->ieee->set_security = shim__set_security;
6125
6126 priv->ieee->perfect_rssi = -20;
6127 priv->ieee->worst_rssi = -85;
6128
6129 dev->netdev_ops = &ipw2100_netdev_ops;
6130 dev->ethtool_ops = &ipw2100_ethtool_ops;
6131 dev->wireless_handlers = &ipw2100_wx_handler_def;
6132 priv->wireless_data.libipw = priv->ieee;
6133 dev->wireless_data = &priv->wireless_data;
6134 dev->watchdog_timeo = 3 * HZ;
6135 dev->irq = 0;
6136
6137 dev->base_addr = (unsigned long)base_addr;
6138 dev->mem_start = mem_start;
6139 dev->mem_end = dev->mem_start + mem_len - 1;
6140
6141 /* NOTE: We don't use the wireless_handlers hook
6142 * in dev as the system will start throwing WX requests
6143 * to us before we're actually initialized and it just
6144 * ends up causing problems. So, we just handle
6145 * the WX extensions through the ipw2100_ioctl interface */
6146
6147 /* memset() puts everything to 0, so we only have explicitly set
6148 * those values that need to be something else */
6149
6150 /* If power management is turned on, default to AUTO mode */
6151 priv->power_mode = IPW_POWER_AUTO;
6152
6153 #ifdef CONFIG_IPW2100_MONITOR
6154 priv->config |= CFG_CRC_CHECK;
6155 #endif
6156 priv->ieee->wpa_enabled = 0;
6157 priv->ieee->drop_unencrypted = 0;
6158 priv->ieee->privacy_invoked = 0;
6159 priv->ieee->ieee802_1x = 1;
6160
6161 /* Set module parameters */
6162 switch (network_mode) {
6163 case 1:
6164 priv->ieee->iw_mode = IW_MODE_ADHOC;
6165 break;
6166 #ifdef CONFIG_IPW2100_MONITOR
6167 case 2:
6168 priv->ieee->iw_mode = IW_MODE_MONITOR;
6169 break;
6170 #endif
6171 default:
6172 case 0:
6173 priv->ieee->iw_mode = IW_MODE_INFRA;
6174 break;
6175 }
6176
6177 if (disable == 1)
6178 priv->status |= STATUS_RF_KILL_SW;
6179
6180 if (channel != 0 &&
6181 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6182 priv->config |= CFG_STATIC_CHANNEL;
6183 priv->channel = channel;
6184 }
6185
6186 if (associate)
6187 priv->config |= CFG_ASSOCIATE;
6188
6189 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6190 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6191 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6192 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6193 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6194 priv->tx_power = IPW_TX_POWER_DEFAULT;
6195 priv->tx_rates = DEFAULT_TX_RATES;
6196
6197 strcpy(priv->nick, "ipw2100");
6198
6199 spin_lock_init(&priv->low_lock);
6200 mutex_init(&priv->action_mutex);
6201 mutex_init(&priv->adapter_mutex);
6202
6203 init_waitqueue_head(&priv->wait_command_queue);
6204
6205 netif_carrier_off(dev);
6206
6207 INIT_LIST_HEAD(&priv->msg_free_list);
6208 INIT_LIST_HEAD(&priv->msg_pend_list);
6209 INIT_STAT(&priv->msg_free_stat);
6210 INIT_STAT(&priv->msg_pend_stat);
6211
6212 INIT_LIST_HEAD(&priv->tx_free_list);
6213 INIT_LIST_HEAD(&priv->tx_pend_list);
6214 INIT_STAT(&priv->tx_free_stat);
6215 INIT_STAT(&priv->tx_pend_stat);
6216
6217 INIT_LIST_HEAD(&priv->fw_pend_list);
6218 INIT_STAT(&priv->fw_pend_stat);
6219
6220 priv->workqueue = create_workqueue(DRV_NAME);
6221
6222 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6223 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6224 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6225 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6226 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6227 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6228 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6229
6230 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6231 ipw2100_irq_tasklet, (unsigned long)priv);
6232
6233 /* NOTE: We do not start the deferred work for status checks yet */
6234 priv->stop_rf_kill = 1;
6235 priv->stop_hang_check = 1;
6236
6237 return dev;
6238 }
6239
6240 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6241 const struct pci_device_id *ent)
6242 {
6243 unsigned long mem_start, mem_len, mem_flags;
6244 void __iomem *base_addr = NULL;
6245 struct net_device *dev = NULL;
6246 struct ipw2100_priv *priv = NULL;
6247 int err = 0;
6248 int registered = 0;
6249 u32 val;
6250
6251 IPW_DEBUG_INFO("enter\n");
6252
6253 mem_start = pci_resource_start(pci_dev, 0);
6254 mem_len = pci_resource_len(pci_dev, 0);
6255 mem_flags = pci_resource_flags(pci_dev, 0);
6256
6257 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6258 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6259 err = -ENODEV;
6260 goto fail;
6261 }
6262
6263 base_addr = ioremap_nocache(mem_start, mem_len);
6264 if (!base_addr) {
6265 printk(KERN_WARNING DRV_NAME
6266 "Error calling ioremap_nocache.\n");
6267 err = -EIO;
6268 goto fail;
6269 }
6270
6271 /* allocate and initialize our net_device */
6272 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6273 if (!dev) {
6274 printk(KERN_WARNING DRV_NAME
6275 "Error calling ipw2100_alloc_device.\n");
6276 err = -ENOMEM;
6277 goto fail;
6278 }
6279
6280 /* set up PCI mappings for device */
6281 err = pci_enable_device(pci_dev);
6282 if (err) {
6283 printk(KERN_WARNING DRV_NAME
6284 "Error calling pci_enable_device.\n");
6285 return err;
6286 }
6287
6288 priv = libipw_priv(dev);
6289
6290 pci_set_master(pci_dev);
6291 pci_set_drvdata(pci_dev, priv);
6292
6293 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6294 if (err) {
6295 printk(KERN_WARNING DRV_NAME
6296 "Error calling pci_set_dma_mask.\n");
6297 pci_disable_device(pci_dev);
6298 return err;
6299 }
6300
6301 err = pci_request_regions(pci_dev, DRV_NAME);
6302 if (err) {
6303 printk(KERN_WARNING DRV_NAME
6304 "Error calling pci_request_regions.\n");
6305 pci_disable_device(pci_dev);
6306 return err;
6307 }
6308
6309 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6310 * PCI Tx retries from interfering with C3 CPU state */
6311 pci_read_config_dword(pci_dev, 0x40, &val);
6312 if ((val & 0x0000ff00) != 0)
6313 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6314
6315 pci_set_power_state(pci_dev, PCI_D0);
6316
6317 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6318 printk(KERN_WARNING DRV_NAME
6319 "Device not found via register read.\n");
6320 err = -ENODEV;
6321 goto fail;
6322 }
6323
6324 SET_NETDEV_DEV(dev, &pci_dev->dev);
6325
6326 /* Force interrupts to be shut off on the device */
6327 priv->status |= STATUS_INT_ENABLED;
6328 ipw2100_disable_interrupts(priv);
6329
6330 /* Allocate and initialize the Tx/Rx queues and lists */
6331 if (ipw2100_queues_allocate(priv)) {
6332 printk(KERN_WARNING DRV_NAME
6333 "Error calling ipw2100_queues_allocate.\n");
6334 err = -ENOMEM;
6335 goto fail;
6336 }
6337 ipw2100_queues_initialize(priv);
6338
6339 err = request_irq(pci_dev->irq,
6340 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6341 if (err) {
6342 printk(KERN_WARNING DRV_NAME
6343 "Error calling request_irq: %d.\n", pci_dev->irq);
6344 goto fail;
6345 }
6346 dev->irq = pci_dev->irq;
6347
6348 IPW_DEBUG_INFO("Attempting to register device...\n");
6349
6350 printk(KERN_INFO DRV_NAME
6351 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6352
6353 /* Bring up the interface. Pre 0.46, after we registered the
6354 * network device we would call ipw2100_up. This introduced a race
6355 * condition with newer hotplug configurations (network was coming
6356 * up and making calls before the device was initialized).
6357 *
6358 * If we called ipw2100_up before we registered the device, then the
6359 * device name wasn't registered. So, we instead use the net_dev->init
6360 * member to call a function that then just turns and calls ipw2100_up.
6361 * net_dev->init is called after name allocation but before the
6362 * notifier chain is called */
6363 err = register_netdev(dev);
6364 if (err) {
6365 printk(KERN_WARNING DRV_NAME
6366 "Error calling register_netdev.\n");
6367 goto fail;
6368 }
6369
6370 mutex_lock(&priv->action_mutex);
6371 registered = 1;
6372
6373 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6374
6375 /* perform this after register_netdev so that dev->name is set */
6376 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6377 if (err)
6378 goto fail_unlock;
6379
6380 /* If the RF Kill switch is disabled, go ahead and complete the
6381 * startup sequence */
6382 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6383 /* Enable the adapter - sends HOST_COMPLETE */
6384 if (ipw2100_enable_adapter(priv)) {
6385 printk(KERN_WARNING DRV_NAME
6386 ": %s: failed in call to enable adapter.\n",
6387 priv->net_dev->name);
6388 ipw2100_hw_stop_adapter(priv);
6389 err = -EIO;
6390 goto fail_unlock;
6391 }
6392
6393 /* Start a scan . . . */
6394 ipw2100_set_scan_options(priv);
6395 ipw2100_start_scan(priv);
6396 }
6397
6398 IPW_DEBUG_INFO("exit\n");
6399
6400 priv->status |= STATUS_INITIALIZED;
6401
6402 mutex_unlock(&priv->action_mutex);
6403
6404 return 0;
6405
6406 fail_unlock:
6407 mutex_unlock(&priv->action_mutex);
6408
6409 fail:
6410 if (dev) {
6411 if (registered)
6412 unregister_netdev(dev);
6413
6414 ipw2100_hw_stop_adapter(priv);
6415
6416 ipw2100_disable_interrupts(priv);
6417
6418 if (dev->irq)
6419 free_irq(dev->irq, priv);
6420
6421 ipw2100_kill_workqueue(priv);
6422
6423 /* These are safe to call even if they weren't allocated */
6424 ipw2100_queues_free(priv);
6425 sysfs_remove_group(&pci_dev->dev.kobj,
6426 &ipw2100_attribute_group);
6427
6428 free_libipw(dev, 0);
6429 pci_set_drvdata(pci_dev, NULL);
6430 }
6431
6432 if (base_addr)
6433 iounmap(base_addr);
6434
6435 pci_release_regions(pci_dev);
6436 pci_disable_device(pci_dev);
6437
6438 return err;
6439 }
6440
6441 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6442 {
6443 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6444 struct net_device *dev;
6445
6446 if (priv) {
6447 mutex_lock(&priv->action_mutex);
6448
6449 priv->status &= ~STATUS_INITIALIZED;
6450
6451 dev = priv->net_dev;
6452 sysfs_remove_group(&pci_dev->dev.kobj,
6453 &ipw2100_attribute_group);
6454
6455 #ifdef CONFIG_PM
6456 if (ipw2100_firmware.version)
6457 ipw2100_release_firmware(priv, &ipw2100_firmware);
6458 #endif
6459 /* Take down the hardware */
6460 ipw2100_down(priv);
6461
6462 /* Release the mutex so that the network subsystem can
6463 * complete any needed calls into the driver... */
6464 mutex_unlock(&priv->action_mutex);
6465
6466 /* Unregister the device first - this results in close()
6467 * being called if the device is open. If we free storage
6468 * first, then close() will crash. */
6469 unregister_netdev(dev);
6470
6471 /* ipw2100_down will ensure that there is no more pending work
6472 * in the workqueue's, so we can safely remove them now. */
6473 ipw2100_kill_workqueue(priv);
6474
6475 ipw2100_queues_free(priv);
6476
6477 /* Free potential debugging firmware snapshot */
6478 ipw2100_snapshot_free(priv);
6479
6480 if (dev->irq)
6481 free_irq(dev->irq, priv);
6482
6483 if (dev->base_addr)
6484 iounmap((void __iomem *)dev->base_addr);
6485
6486 /* wiphy_unregister needs to be here, before free_libipw */
6487 wiphy_unregister(priv->ieee->wdev.wiphy);
6488 kfree(priv->ieee->bg_band.channels);
6489 free_libipw(dev, 0);
6490 }
6491
6492 pci_release_regions(pci_dev);
6493 pci_disable_device(pci_dev);
6494
6495 IPW_DEBUG_INFO("exit\n");
6496 }
6497
6498 #ifdef CONFIG_PM
6499 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6500 {
6501 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6502 struct net_device *dev = priv->net_dev;
6503
6504 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6505
6506 mutex_lock(&priv->action_mutex);
6507 if (priv->status & STATUS_INITIALIZED) {
6508 /* Take down the device; powers it off, etc. */
6509 ipw2100_down(priv);
6510 }
6511
6512 /* Remove the PRESENT state of the device */
6513 netif_device_detach(dev);
6514
6515 pci_save_state(pci_dev);
6516 pci_disable_device(pci_dev);
6517 pci_set_power_state(pci_dev, PCI_D3hot);
6518
6519 priv->suspend_at = get_seconds();
6520
6521 mutex_unlock(&priv->action_mutex);
6522
6523 return 0;
6524 }
6525
6526 static int ipw2100_resume(struct pci_dev *pci_dev)
6527 {
6528 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6529 struct net_device *dev = priv->net_dev;
6530 int err;
6531 u32 val;
6532
6533 if (IPW2100_PM_DISABLED)
6534 return 0;
6535
6536 mutex_lock(&priv->action_mutex);
6537
6538 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6539
6540 pci_set_power_state(pci_dev, PCI_D0);
6541 err = pci_enable_device(pci_dev);
6542 if (err) {
6543 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6544 dev->name);
6545 mutex_unlock(&priv->action_mutex);
6546 return err;
6547 }
6548 pci_restore_state(pci_dev);
6549
6550 /*
6551 * Suspend/Resume resets the PCI configuration space, so we have to
6552 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6553 * from interfering with C3 CPU state. pci_restore_state won't help
6554 * here since it only restores the first 64 bytes pci config header.
6555 */
6556 pci_read_config_dword(pci_dev, 0x40, &val);
6557 if ((val & 0x0000ff00) != 0)
6558 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6559
6560 /* Set the device back into the PRESENT state; this will also wake
6561 * the queue of needed */
6562 netif_device_attach(dev);
6563
6564 priv->suspend_time = get_seconds() - priv->suspend_at;
6565
6566 /* Bring the device back up */
6567 if (!(priv->status & STATUS_RF_KILL_SW))
6568 ipw2100_up(priv, 0);
6569
6570 mutex_unlock(&priv->action_mutex);
6571
6572 return 0;
6573 }
6574 #endif
6575
6576 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6577 {
6578 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6579
6580 /* Take down the device; powers it off, etc. */
6581 ipw2100_down(priv);
6582
6583 pci_disable_device(pci_dev);
6584 }
6585
6586 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6587
6588 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6589 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6590 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6591 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6592 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6593 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6594 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6595 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6596 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6597 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6598 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6599 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6600 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6601 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6602
6603 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6604 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6605 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6606 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6607 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6608
6609 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6610 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6611 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6612 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6613 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6614 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6615 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6616
6617 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6618
6619 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6620 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6621 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6622 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6623 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6624 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6625 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6626
6627 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6628 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6629 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6630 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6631 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6632 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6633
6634 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6635 {0,},
6636 };
6637
6638 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6639
6640 static struct pci_driver ipw2100_pci_driver = {
6641 .name = DRV_NAME,
6642 .id_table = ipw2100_pci_id_table,
6643 .probe = ipw2100_pci_init_one,
6644 .remove = __devexit_p(ipw2100_pci_remove_one),
6645 #ifdef CONFIG_PM
6646 .suspend = ipw2100_suspend,
6647 .resume = ipw2100_resume,
6648 #endif
6649 .shutdown = ipw2100_shutdown,
6650 };
6651
6652 /**
6653 * Initialize the ipw2100 driver/module
6654 *
6655 * @returns 0 if ok, < 0 errno node con error.
6656 *
6657 * Note: we cannot init the /proc stuff until the PCI driver is there,
6658 * or we risk an unlikely race condition on someone accessing
6659 * uninitialized data in the PCI dev struct through /proc.
6660 */
6661 static int __init ipw2100_init(void)
6662 {
6663 int ret;
6664
6665 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6666 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6667
6668 ret = pci_register_driver(&ipw2100_pci_driver);
6669 if (ret)
6670 goto out;
6671
6672 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6673 PM_QOS_DEFAULT_VALUE);
6674 #ifdef CONFIG_IPW2100_DEBUG
6675 ipw2100_debug_level = debug;
6676 ret = driver_create_file(&ipw2100_pci_driver.driver,
6677 &driver_attr_debug_level);
6678 #endif
6679
6680 out:
6681 return ret;
6682 }
6683
6684 /**
6685 * Cleanup ipw2100 driver registration
6686 */
6687 static void __exit ipw2100_exit(void)
6688 {
6689 /* FIXME: IPG: check that we have no instances of the devices open */
6690 #ifdef CONFIG_IPW2100_DEBUG
6691 driver_remove_file(&ipw2100_pci_driver.driver,
6692 &driver_attr_debug_level);
6693 #endif
6694 pci_unregister_driver(&ipw2100_pci_driver);
6695 pm_qos_remove_request(&ipw2100_pm_qos_req);
6696 }
6697
6698 module_init(ipw2100_init);
6699 module_exit(ipw2100_exit);
6700
6701 static int ipw2100_wx_get_name(struct net_device *dev,
6702 struct iw_request_info *info,
6703 union iwreq_data *wrqu, char *extra)
6704 {
6705 /*
6706 * This can be called at any time. No action lock required
6707 */
6708
6709 struct ipw2100_priv *priv = libipw_priv(dev);
6710 if (!(priv->status & STATUS_ASSOCIATED))
6711 strcpy(wrqu->name, "unassociated");
6712 else
6713 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6714
6715 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6716 return 0;
6717 }
6718
6719 static int ipw2100_wx_set_freq(struct net_device *dev,
6720 struct iw_request_info *info,
6721 union iwreq_data *wrqu, char *extra)
6722 {
6723 struct ipw2100_priv *priv = libipw_priv(dev);
6724 struct iw_freq *fwrq = &wrqu->freq;
6725 int err = 0;
6726
6727 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6728 return -EOPNOTSUPP;
6729
6730 mutex_lock(&priv->action_mutex);
6731 if (!(priv->status & STATUS_INITIALIZED)) {
6732 err = -EIO;
6733 goto done;
6734 }
6735
6736 /* if setting by freq convert to channel */
6737 if (fwrq->e == 1) {
6738 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6739 int f = fwrq->m / 100000;
6740 int c = 0;
6741
6742 while ((c < REG_MAX_CHANNEL) &&
6743 (f != ipw2100_frequencies[c]))
6744 c++;
6745
6746 /* hack to fall through */
6747 fwrq->e = 0;
6748 fwrq->m = c + 1;
6749 }
6750 }
6751
6752 if (fwrq->e > 0 || fwrq->m > 1000) {
6753 err = -EOPNOTSUPP;
6754 goto done;
6755 } else { /* Set the channel */
6756 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6757 err = ipw2100_set_channel(priv, fwrq->m, 0);
6758 }
6759
6760 done:
6761 mutex_unlock(&priv->action_mutex);
6762 return err;
6763 }
6764
6765 static int ipw2100_wx_get_freq(struct net_device *dev,
6766 struct iw_request_info *info,
6767 union iwreq_data *wrqu, char *extra)
6768 {
6769 /*
6770 * This can be called at any time. No action lock required
6771 */
6772
6773 struct ipw2100_priv *priv = libipw_priv(dev);
6774
6775 wrqu->freq.e = 0;
6776
6777 /* If we are associated, trying to associate, or have a statically
6778 * configured CHANNEL then return that; otherwise return ANY */
6779 if (priv->config & CFG_STATIC_CHANNEL ||
6780 priv->status & STATUS_ASSOCIATED)
6781 wrqu->freq.m = priv->channel;
6782 else
6783 wrqu->freq.m = 0;
6784
6785 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6786 return 0;
6787
6788 }
6789
6790 static int ipw2100_wx_set_mode(struct net_device *dev,
6791 struct iw_request_info *info,
6792 union iwreq_data *wrqu, char *extra)
6793 {
6794 struct ipw2100_priv *priv = libipw_priv(dev);
6795 int err = 0;
6796
6797 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6798
6799 if (wrqu->mode == priv->ieee->iw_mode)
6800 return 0;
6801
6802 mutex_lock(&priv->action_mutex);
6803 if (!(priv->status & STATUS_INITIALIZED)) {
6804 err = -EIO;
6805 goto done;
6806 }
6807
6808 switch (wrqu->mode) {
6809 #ifdef CONFIG_IPW2100_MONITOR
6810 case IW_MODE_MONITOR:
6811 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6812 break;
6813 #endif /* CONFIG_IPW2100_MONITOR */
6814 case IW_MODE_ADHOC:
6815 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6816 break;
6817 case IW_MODE_INFRA:
6818 case IW_MODE_AUTO:
6819 default:
6820 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6821 break;
6822 }
6823
6824 done:
6825 mutex_unlock(&priv->action_mutex);
6826 return err;
6827 }
6828
6829 static int ipw2100_wx_get_mode(struct net_device *dev,
6830 struct iw_request_info *info,
6831 union iwreq_data *wrqu, char *extra)
6832 {
6833 /*
6834 * This can be called at any time. No action lock required
6835 */
6836
6837 struct ipw2100_priv *priv = libipw_priv(dev);
6838
6839 wrqu->mode = priv->ieee->iw_mode;
6840 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6841
6842 return 0;
6843 }
6844
6845 #define POWER_MODES 5
6846
6847 /* Values are in microsecond */
6848 static const s32 timeout_duration[POWER_MODES] = {
6849 350000,
6850 250000,
6851 75000,
6852 37000,
6853 25000,
6854 };
6855
6856 static const s32 period_duration[POWER_MODES] = {
6857 400000,
6858 700000,
6859 1000000,
6860 1000000,
6861 1000000
6862 };
6863
6864 static int ipw2100_wx_get_range(struct net_device *dev,
6865 struct iw_request_info *info,
6866 union iwreq_data *wrqu, char *extra)
6867 {
6868 /*
6869 * This can be called at any time. No action lock required
6870 */
6871
6872 struct ipw2100_priv *priv = libipw_priv(dev);
6873 struct iw_range *range = (struct iw_range *)extra;
6874 u16 val;
6875 int i, level;
6876
6877 wrqu->data.length = sizeof(*range);
6878 memset(range, 0, sizeof(*range));
6879
6880 /* Let's try to keep this struct in the same order as in
6881 * linux/include/wireless.h
6882 */
6883
6884 /* TODO: See what values we can set, and remove the ones we can't
6885 * set, or fill them with some default data.
6886 */
6887
6888 /* ~5 Mb/s real (802.11b) */
6889 range->throughput = 5 * 1000 * 1000;
6890
6891 // range->sensitivity; /* signal level threshold range */
6892
6893 range->max_qual.qual = 100;
6894 /* TODO: Find real max RSSI and stick here */
6895 range->max_qual.level = 0;
6896 range->max_qual.noise = 0;
6897 range->max_qual.updated = 7; /* Updated all three */
6898
6899 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6900 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6901 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6902 range->avg_qual.noise = 0;
6903 range->avg_qual.updated = 7; /* Updated all three */
6904
6905 range->num_bitrates = RATE_COUNT;
6906
6907 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6908 range->bitrate[i] = ipw2100_rates_11b[i];
6909 }
6910
6911 range->min_rts = MIN_RTS_THRESHOLD;
6912 range->max_rts = MAX_RTS_THRESHOLD;
6913 range->min_frag = MIN_FRAG_THRESHOLD;
6914 range->max_frag = MAX_FRAG_THRESHOLD;
6915
6916 range->min_pmp = period_duration[0]; /* Minimal PM period */
6917 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6918 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6919 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6920
6921 /* How to decode max/min PM period */
6922 range->pmp_flags = IW_POWER_PERIOD;
6923 /* How to decode max/min PM period */
6924 range->pmt_flags = IW_POWER_TIMEOUT;
6925 /* What PM options are supported */
6926 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6927
6928 range->encoding_size[0] = 5;
6929 range->encoding_size[1] = 13; /* Different token sizes */
6930 range->num_encoding_sizes = 2; /* Number of entry in the list */
6931 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6932 // range->encoding_login_index; /* token index for login token */
6933
6934 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6935 range->txpower_capa = IW_TXPOW_DBM;
6936 range->num_txpower = IW_MAX_TXPOWER;
6937 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6938 i < IW_MAX_TXPOWER;
6939 i++, level -=
6940 ((IPW_TX_POWER_MAX_DBM -
6941 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6942 range->txpower[i] = level / 16;
6943 } else {
6944 range->txpower_capa = 0;
6945 range->num_txpower = 0;
6946 }
6947
6948 /* Set the Wireless Extension versions */
6949 range->we_version_compiled = WIRELESS_EXT;
6950 range->we_version_source = 18;
6951
6952 // range->retry_capa; /* What retry options are supported */
6953 // range->retry_flags; /* How to decode max/min retry limit */
6954 // range->r_time_flags; /* How to decode max/min retry life */
6955 // range->min_retry; /* Minimal number of retries */
6956 // range->max_retry; /* Maximal number of retries */
6957 // range->min_r_time; /* Minimal retry lifetime */
6958 // range->max_r_time; /* Maximal retry lifetime */
6959
6960 range->num_channels = FREQ_COUNT;
6961
6962 val = 0;
6963 for (i = 0; i < FREQ_COUNT; i++) {
6964 // TODO: Include only legal frequencies for some countries
6965 // if (local->channel_mask & (1 << i)) {
6966 range->freq[val].i = i + 1;
6967 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6968 range->freq[val].e = 1;
6969 val++;
6970 // }
6971 if (val == IW_MAX_FREQUENCIES)
6972 break;
6973 }
6974 range->num_frequency = val;
6975
6976 /* Event capability (kernel + driver) */
6977 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6978 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6979 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6980
6981 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6982 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6983
6984 IPW_DEBUG_WX("GET Range\n");
6985
6986 return 0;
6987 }
6988
6989 static int ipw2100_wx_set_wap(struct net_device *dev,
6990 struct iw_request_info *info,
6991 union iwreq_data *wrqu, char *extra)
6992 {
6993 struct ipw2100_priv *priv = libipw_priv(dev);
6994 int err = 0;
6995
6996 static const unsigned char any[] = {
6997 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6998 };
6999 static const unsigned char off[] = {
7000 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
7001 };
7002
7003 // sanity checks
7004 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
7005 return -EINVAL;
7006
7007 mutex_lock(&priv->action_mutex);
7008 if (!(priv->status & STATUS_INITIALIZED)) {
7009 err = -EIO;
7010 goto done;
7011 }
7012
7013 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
7014 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
7015 /* we disable mandatory BSSID association */
7016 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
7017 priv->config &= ~CFG_STATIC_BSSID;
7018 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
7019 goto done;
7020 }
7021
7022 priv->config |= CFG_STATIC_BSSID;
7023 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7024
7025 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7026
7027 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
7028
7029 done:
7030 mutex_unlock(&priv->action_mutex);
7031 return err;
7032 }
7033
7034 static int ipw2100_wx_get_wap(struct net_device *dev,
7035 struct iw_request_info *info,
7036 union iwreq_data *wrqu, char *extra)
7037 {
7038 /*
7039 * This can be called at any time. No action lock required
7040 */
7041
7042 struct ipw2100_priv *priv = libipw_priv(dev);
7043
7044 /* If we are associated, trying to associate, or have a statically
7045 * configured BSSID then return that; otherwise return ANY */
7046 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7047 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7048 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7049 } else
7050 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7051
7052 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7053 return 0;
7054 }
7055
7056 static int ipw2100_wx_set_essid(struct net_device *dev,
7057 struct iw_request_info *info,
7058 union iwreq_data *wrqu, char *extra)
7059 {
7060 struct ipw2100_priv *priv = libipw_priv(dev);
7061 char *essid = ""; /* ANY */
7062 int length = 0;
7063 int err = 0;
7064 DECLARE_SSID_BUF(ssid);
7065
7066 mutex_lock(&priv->action_mutex);
7067 if (!(priv->status & STATUS_INITIALIZED)) {
7068 err = -EIO;
7069 goto done;
7070 }
7071
7072 if (wrqu->essid.flags && wrqu->essid.length) {
7073 length = wrqu->essid.length;
7074 essid = extra;
7075 }
7076
7077 if (length == 0) {
7078 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7079 priv->config &= ~CFG_STATIC_ESSID;
7080 err = ipw2100_set_essid(priv, NULL, 0, 0);
7081 goto done;
7082 }
7083
7084 length = min(length, IW_ESSID_MAX_SIZE);
7085
7086 priv->config |= CFG_STATIC_ESSID;
7087
7088 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7089 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7090 err = 0;
7091 goto done;
7092 }
7093
7094 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7095 print_ssid(ssid, essid, length), length);
7096
7097 priv->essid_len = length;
7098 memcpy(priv->essid, essid, priv->essid_len);
7099
7100 err = ipw2100_set_essid(priv, essid, length, 0);
7101
7102 done:
7103 mutex_unlock(&priv->action_mutex);
7104 return err;
7105 }
7106
7107 static int ipw2100_wx_get_essid(struct net_device *dev,
7108 struct iw_request_info *info,
7109 union iwreq_data *wrqu, char *extra)
7110 {
7111 /*
7112 * This can be called at any time. No action lock required
7113 */
7114
7115 struct ipw2100_priv *priv = libipw_priv(dev);
7116 DECLARE_SSID_BUF(ssid);
7117
7118 /* If we are associated, trying to associate, or have a statically
7119 * configured ESSID then return that; otherwise return ANY */
7120 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7121 IPW_DEBUG_WX("Getting essid: '%s'\n",
7122 print_ssid(ssid, priv->essid, priv->essid_len));
7123 memcpy(extra, priv->essid, priv->essid_len);
7124 wrqu->essid.length = priv->essid_len;
7125 wrqu->essid.flags = 1; /* active */
7126 } else {
7127 IPW_DEBUG_WX("Getting essid: ANY\n");
7128 wrqu->essid.length = 0;
7129 wrqu->essid.flags = 0; /* active */
7130 }
7131
7132 return 0;
7133 }
7134
7135 static int ipw2100_wx_set_nick(struct net_device *dev,
7136 struct iw_request_info *info,
7137 union iwreq_data *wrqu, char *extra)
7138 {
7139 /*
7140 * This can be called at any time. No action lock required
7141 */
7142
7143 struct ipw2100_priv *priv = libipw_priv(dev);
7144
7145 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7146 return -E2BIG;
7147
7148 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7149 memset(priv->nick, 0, sizeof(priv->nick));
7150 memcpy(priv->nick, extra, wrqu->data.length);
7151
7152 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7153
7154 return 0;
7155 }
7156
7157 static int ipw2100_wx_get_nick(struct net_device *dev,
7158 struct iw_request_info *info,
7159 union iwreq_data *wrqu, char *extra)
7160 {
7161 /*
7162 * This can be called at any time. No action lock required
7163 */
7164
7165 struct ipw2100_priv *priv = libipw_priv(dev);
7166
7167 wrqu->data.length = strlen(priv->nick);
7168 memcpy(extra, priv->nick, wrqu->data.length);
7169 wrqu->data.flags = 1; /* active */
7170
7171 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7172
7173 return 0;
7174 }
7175
7176 static int ipw2100_wx_set_rate(struct net_device *dev,
7177 struct iw_request_info *info,
7178 union iwreq_data *wrqu, char *extra)
7179 {
7180 struct ipw2100_priv *priv = libipw_priv(dev);
7181 u32 target_rate = wrqu->bitrate.value;
7182 u32 rate;
7183 int err = 0;
7184
7185 mutex_lock(&priv->action_mutex);
7186 if (!(priv->status & STATUS_INITIALIZED)) {
7187 err = -EIO;
7188 goto done;
7189 }
7190
7191 rate = 0;
7192
7193 if (target_rate == 1000000 ||
7194 (!wrqu->bitrate.fixed && target_rate > 1000000))
7195 rate |= TX_RATE_1_MBIT;
7196 if (target_rate == 2000000 ||
7197 (!wrqu->bitrate.fixed && target_rate > 2000000))
7198 rate |= TX_RATE_2_MBIT;
7199 if (target_rate == 5500000 ||
7200 (!wrqu->bitrate.fixed && target_rate > 5500000))
7201 rate |= TX_RATE_5_5_MBIT;
7202 if (target_rate == 11000000 ||
7203 (!wrqu->bitrate.fixed && target_rate > 11000000))
7204 rate |= TX_RATE_11_MBIT;
7205 if (rate == 0)
7206 rate = DEFAULT_TX_RATES;
7207
7208 err = ipw2100_set_tx_rates(priv, rate, 0);
7209
7210 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7211 done:
7212 mutex_unlock(&priv->action_mutex);
7213 return err;
7214 }
7215
7216 static int ipw2100_wx_get_rate(struct net_device *dev,
7217 struct iw_request_info *info,
7218 union iwreq_data *wrqu, char *extra)
7219 {
7220 struct ipw2100_priv *priv = libipw_priv(dev);
7221 int val;
7222 unsigned int len = sizeof(val);
7223 int err = 0;
7224
7225 if (!(priv->status & STATUS_ENABLED) ||
7226 priv->status & STATUS_RF_KILL_MASK ||
7227 !(priv->status & STATUS_ASSOCIATED)) {
7228 wrqu->bitrate.value = 0;
7229 return 0;
7230 }
7231
7232 mutex_lock(&priv->action_mutex);
7233 if (!(priv->status & STATUS_INITIALIZED)) {
7234 err = -EIO;
7235 goto done;
7236 }
7237
7238 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7239 if (err) {
7240 IPW_DEBUG_WX("failed querying ordinals.\n");
7241 goto done;
7242 }
7243
7244 switch (val & TX_RATE_MASK) {
7245 case TX_RATE_1_MBIT:
7246 wrqu->bitrate.value = 1000000;
7247 break;
7248 case TX_RATE_2_MBIT:
7249 wrqu->bitrate.value = 2000000;
7250 break;
7251 case TX_RATE_5_5_MBIT:
7252 wrqu->bitrate.value = 5500000;
7253 break;
7254 case TX_RATE_11_MBIT:
7255 wrqu->bitrate.value = 11000000;
7256 break;
7257 default:
7258 wrqu->bitrate.value = 0;
7259 }
7260
7261 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7262
7263 done:
7264 mutex_unlock(&priv->action_mutex);
7265 return err;
7266 }
7267
7268 static int ipw2100_wx_set_rts(struct net_device *dev,
7269 struct iw_request_info *info,
7270 union iwreq_data *wrqu, char *extra)
7271 {
7272 struct ipw2100_priv *priv = libipw_priv(dev);
7273 int value, err;
7274
7275 /* Auto RTS not yet supported */
7276 if (wrqu->rts.fixed == 0)
7277 return -EINVAL;
7278
7279 mutex_lock(&priv->action_mutex);
7280 if (!(priv->status & STATUS_INITIALIZED)) {
7281 err = -EIO;
7282 goto done;
7283 }
7284
7285 if (wrqu->rts.disabled)
7286 value = priv->rts_threshold | RTS_DISABLED;
7287 else {
7288 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7289 err = -EINVAL;
7290 goto done;
7291 }
7292 value = wrqu->rts.value;
7293 }
7294
7295 err = ipw2100_set_rts_threshold(priv, value);
7296
7297 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7298 done:
7299 mutex_unlock(&priv->action_mutex);
7300 return err;
7301 }
7302
7303 static int ipw2100_wx_get_rts(struct net_device *dev,
7304 struct iw_request_info *info,
7305 union iwreq_data *wrqu, char *extra)
7306 {
7307 /*
7308 * This can be called at any time. No action lock required
7309 */
7310
7311 struct ipw2100_priv *priv = libipw_priv(dev);
7312
7313 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7314 wrqu->rts.fixed = 1; /* no auto select */
7315
7316 /* If RTS is set to the default value, then it is disabled */
7317 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7318
7319 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7320
7321 return 0;
7322 }
7323
7324 static int ipw2100_wx_set_txpow(struct net_device *dev,
7325 struct iw_request_info *info,
7326 union iwreq_data *wrqu, char *extra)
7327 {
7328 struct ipw2100_priv *priv = libipw_priv(dev);
7329 int err = 0, value;
7330
7331 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7332 return -EINPROGRESS;
7333
7334 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7335 return 0;
7336
7337 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7338 return -EINVAL;
7339
7340 if (wrqu->txpower.fixed == 0)
7341 value = IPW_TX_POWER_DEFAULT;
7342 else {
7343 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7344 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7345 return -EINVAL;
7346
7347 value = wrqu->txpower.value;
7348 }
7349
7350 mutex_lock(&priv->action_mutex);
7351 if (!(priv->status & STATUS_INITIALIZED)) {
7352 err = -EIO;
7353 goto done;
7354 }
7355
7356 err = ipw2100_set_tx_power(priv, value);
7357
7358 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7359
7360 done:
7361 mutex_unlock(&priv->action_mutex);
7362 return err;
7363 }
7364
7365 static int ipw2100_wx_get_txpow(struct net_device *dev,
7366 struct iw_request_info *info,
7367 union iwreq_data *wrqu, char *extra)
7368 {
7369 /*
7370 * This can be called at any time. No action lock required
7371 */
7372
7373 struct ipw2100_priv *priv = libipw_priv(dev);
7374
7375 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7376
7377 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7378 wrqu->txpower.fixed = 0;
7379 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7380 } else {
7381 wrqu->txpower.fixed = 1;
7382 wrqu->txpower.value = priv->tx_power;
7383 }
7384
7385 wrqu->txpower.flags = IW_TXPOW_DBM;
7386
7387 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7388
7389 return 0;
7390 }
7391
7392 static int ipw2100_wx_set_frag(struct net_device *dev,
7393 struct iw_request_info *info,
7394 union iwreq_data *wrqu, char *extra)
7395 {
7396 /*
7397 * This can be called at any time. No action lock required
7398 */
7399
7400 struct ipw2100_priv *priv = libipw_priv(dev);
7401
7402 if (!wrqu->frag.fixed)
7403 return -EINVAL;
7404
7405 if (wrqu->frag.disabled) {
7406 priv->frag_threshold |= FRAG_DISABLED;
7407 priv->ieee->fts = DEFAULT_FTS;
7408 } else {
7409 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7410 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7411 return -EINVAL;
7412
7413 priv->ieee->fts = wrqu->frag.value & ~0x1;
7414 priv->frag_threshold = priv->ieee->fts;
7415 }
7416
7417 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7418
7419 return 0;
7420 }
7421
7422 static int ipw2100_wx_get_frag(struct net_device *dev,
7423 struct iw_request_info *info,
7424 union iwreq_data *wrqu, char *extra)
7425 {
7426 /*
7427 * This can be called at any time. No action lock required
7428 */
7429
7430 struct ipw2100_priv *priv = libipw_priv(dev);
7431 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7432 wrqu->frag.fixed = 0; /* no auto select */
7433 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7434
7435 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7436
7437 return 0;
7438 }
7439
7440 static int ipw2100_wx_set_retry(struct net_device *dev,
7441 struct iw_request_info *info,
7442 union iwreq_data *wrqu, char *extra)
7443 {
7444 struct ipw2100_priv *priv = libipw_priv(dev);
7445 int err = 0;
7446
7447 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7448 return -EINVAL;
7449
7450 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7451 return 0;
7452
7453 mutex_lock(&priv->action_mutex);
7454 if (!(priv->status & STATUS_INITIALIZED)) {
7455 err = -EIO;
7456 goto done;
7457 }
7458
7459 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7460 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7461 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7462 wrqu->retry.value);
7463 goto done;
7464 }
7465
7466 if (wrqu->retry.flags & IW_RETRY_LONG) {
7467 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7468 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7469 wrqu->retry.value);
7470 goto done;
7471 }
7472
7473 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7474 if (!err)
7475 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7476
7477 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7478
7479 done:
7480 mutex_unlock(&priv->action_mutex);
7481 return err;
7482 }
7483
7484 static int ipw2100_wx_get_retry(struct net_device *dev,
7485 struct iw_request_info *info,
7486 union iwreq_data *wrqu, char *extra)
7487 {
7488 /*
7489 * This can be called at any time. No action lock required
7490 */
7491
7492 struct ipw2100_priv *priv = libipw_priv(dev);
7493
7494 wrqu->retry.disabled = 0; /* can't be disabled */
7495
7496 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7497 return -EINVAL;
7498
7499 if (wrqu->retry.flags & IW_RETRY_LONG) {
7500 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7501 wrqu->retry.value = priv->long_retry_limit;
7502 } else {
7503 wrqu->retry.flags =
7504 (priv->short_retry_limit !=
7505 priv->long_retry_limit) ?
7506 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7507
7508 wrqu->retry.value = priv->short_retry_limit;
7509 }
7510
7511 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7512
7513 return 0;
7514 }
7515
7516 static int ipw2100_wx_set_scan(struct net_device *dev,
7517 struct iw_request_info *info,
7518 union iwreq_data *wrqu, char *extra)
7519 {
7520 struct ipw2100_priv *priv = libipw_priv(dev);
7521 int err = 0;
7522
7523 mutex_lock(&priv->action_mutex);
7524 if (!(priv->status & STATUS_INITIALIZED)) {
7525 err = -EIO;
7526 goto done;
7527 }
7528
7529 IPW_DEBUG_WX("Initiating scan...\n");
7530
7531 priv->user_requested_scan = 1;
7532 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7533 IPW_DEBUG_WX("Start scan failed.\n");
7534
7535 /* TODO: Mark a scan as pending so when hardware initialized
7536 * a scan starts */
7537 }
7538
7539 done:
7540 mutex_unlock(&priv->action_mutex);
7541 return err;
7542 }
7543
7544 static int ipw2100_wx_get_scan(struct net_device *dev,
7545 struct iw_request_info *info,
7546 union iwreq_data *wrqu, char *extra)
7547 {
7548 /*
7549 * This can be called at any time. No action lock required
7550 */
7551
7552 struct ipw2100_priv *priv = libipw_priv(dev);
7553 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7554 }
7555
7556 /*
7557 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7558 */
7559 static int ipw2100_wx_set_encode(struct net_device *dev,
7560 struct iw_request_info *info,
7561 union iwreq_data *wrqu, char *key)
7562 {
7563 /*
7564 * No check of STATUS_INITIALIZED required
7565 */
7566
7567 struct ipw2100_priv *priv = libipw_priv(dev);
7568 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7569 }
7570
7571 static int ipw2100_wx_get_encode(struct net_device *dev,
7572 struct iw_request_info *info,
7573 union iwreq_data *wrqu, char *key)
7574 {
7575 /*
7576 * This can be called at any time. No action lock required
7577 */
7578
7579 struct ipw2100_priv *priv = libipw_priv(dev);
7580 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7581 }
7582
7583 static int ipw2100_wx_set_power(struct net_device *dev,
7584 struct iw_request_info *info,
7585 union iwreq_data *wrqu, char *extra)
7586 {
7587 struct ipw2100_priv *priv = libipw_priv(dev);
7588 int err = 0;
7589
7590 mutex_lock(&priv->action_mutex);
7591 if (!(priv->status & STATUS_INITIALIZED)) {
7592 err = -EIO;
7593 goto done;
7594 }
7595
7596 if (wrqu->power.disabled) {
7597 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7598 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7599 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7600 goto done;
7601 }
7602
7603 switch (wrqu->power.flags & IW_POWER_MODE) {
7604 case IW_POWER_ON: /* If not specified */
7605 case IW_POWER_MODE: /* If set all mask */
7606 case IW_POWER_ALL_R: /* If explicitly state all */
7607 break;
7608 default: /* Otherwise we don't support it */
7609 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7610 wrqu->power.flags);
7611 err = -EOPNOTSUPP;
7612 goto done;
7613 }
7614
7615 /* If the user hasn't specified a power management mode yet, default
7616 * to BATTERY */
7617 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7618 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7619
7620 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7621
7622 done:
7623 mutex_unlock(&priv->action_mutex);
7624 return err;
7625
7626 }
7627
7628 static int ipw2100_wx_get_power(struct net_device *dev,
7629 struct iw_request_info *info,
7630 union iwreq_data *wrqu, char *extra)
7631 {
7632 /*
7633 * This can be called at any time. No action lock required
7634 */
7635
7636 struct ipw2100_priv *priv = libipw_priv(dev);
7637
7638 if (!(priv->power_mode & IPW_POWER_ENABLED))
7639 wrqu->power.disabled = 1;
7640 else {
7641 wrqu->power.disabled = 0;
7642 wrqu->power.flags = 0;
7643 }
7644
7645 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7646
7647 return 0;
7648 }
7649
7650 /*
7651 * WE-18 WPA support
7652 */
7653
7654 /* SIOCSIWGENIE */
7655 static int ipw2100_wx_set_genie(struct net_device *dev,
7656 struct iw_request_info *info,
7657 union iwreq_data *wrqu, char *extra)
7658 {
7659
7660 struct ipw2100_priv *priv = libipw_priv(dev);
7661 struct libipw_device *ieee = priv->ieee;
7662 u8 *buf;
7663
7664 if (!ieee->wpa_enabled)
7665 return -EOPNOTSUPP;
7666
7667 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7668 (wrqu->data.length && extra == NULL))
7669 return -EINVAL;
7670
7671 if (wrqu->data.length) {
7672 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7673 if (buf == NULL)
7674 return -ENOMEM;
7675
7676 kfree(ieee->wpa_ie);
7677 ieee->wpa_ie = buf;
7678 ieee->wpa_ie_len = wrqu->data.length;
7679 } else {
7680 kfree(ieee->wpa_ie);
7681 ieee->wpa_ie = NULL;
7682 ieee->wpa_ie_len = 0;
7683 }
7684
7685 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7686
7687 return 0;
7688 }
7689
7690 /* SIOCGIWGENIE */
7691 static int ipw2100_wx_get_genie(struct net_device *dev,
7692 struct iw_request_info *info,
7693 union iwreq_data *wrqu, char *extra)
7694 {
7695 struct ipw2100_priv *priv = libipw_priv(dev);
7696 struct libipw_device *ieee = priv->ieee;
7697
7698 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7699 wrqu->data.length = 0;
7700 return 0;
7701 }
7702
7703 if (wrqu->data.length < ieee->wpa_ie_len)
7704 return -E2BIG;
7705
7706 wrqu->data.length = ieee->wpa_ie_len;
7707 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7708
7709 return 0;
7710 }
7711
7712 /* SIOCSIWAUTH */
7713 static int ipw2100_wx_set_auth(struct net_device *dev,
7714 struct iw_request_info *info,
7715 union iwreq_data *wrqu, char *extra)
7716 {
7717 struct ipw2100_priv *priv = libipw_priv(dev);
7718 struct libipw_device *ieee = priv->ieee;
7719 struct iw_param *param = &wrqu->param;
7720 struct lib80211_crypt_data *crypt;
7721 unsigned long flags;
7722 int ret = 0;
7723
7724 switch (param->flags & IW_AUTH_INDEX) {
7725 case IW_AUTH_WPA_VERSION:
7726 case IW_AUTH_CIPHER_PAIRWISE:
7727 case IW_AUTH_CIPHER_GROUP:
7728 case IW_AUTH_KEY_MGMT:
7729 /*
7730 * ipw2200 does not use these parameters
7731 */
7732 break;
7733
7734 case IW_AUTH_TKIP_COUNTERMEASURES:
7735 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7736 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7737 break;
7738
7739 flags = crypt->ops->get_flags(crypt->priv);
7740
7741 if (param->value)
7742 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7743 else
7744 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7745
7746 crypt->ops->set_flags(flags, crypt->priv);
7747
7748 break;
7749
7750 case IW_AUTH_DROP_UNENCRYPTED:{
7751 /* HACK:
7752 *
7753 * wpa_supplicant calls set_wpa_enabled when the driver
7754 * is loaded and unloaded, regardless of if WPA is being
7755 * used. No other calls are made which can be used to
7756 * determine if encryption will be used or not prior to
7757 * association being expected. If encryption is not being
7758 * used, drop_unencrypted is set to false, else true -- we
7759 * can use this to determine if the CAP_PRIVACY_ON bit should
7760 * be set.
7761 */
7762 struct libipw_security sec = {
7763 .flags = SEC_ENABLED,
7764 .enabled = param->value,
7765 };
7766 priv->ieee->drop_unencrypted = param->value;
7767 /* We only change SEC_LEVEL for open mode. Others
7768 * are set by ipw_wpa_set_encryption.
7769 */
7770 if (!param->value) {
7771 sec.flags |= SEC_LEVEL;
7772 sec.level = SEC_LEVEL_0;
7773 } else {
7774 sec.flags |= SEC_LEVEL;
7775 sec.level = SEC_LEVEL_1;
7776 }
7777 if (priv->ieee->set_security)
7778 priv->ieee->set_security(priv->ieee->dev, &sec);
7779 break;
7780 }
7781
7782 case IW_AUTH_80211_AUTH_ALG:
7783 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7784 break;
7785
7786 case IW_AUTH_WPA_ENABLED:
7787 ret = ipw2100_wpa_enable(priv, param->value);
7788 break;
7789
7790 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7791 ieee->ieee802_1x = param->value;
7792 break;
7793
7794 //case IW_AUTH_ROAMING_CONTROL:
7795 case IW_AUTH_PRIVACY_INVOKED:
7796 ieee->privacy_invoked = param->value;
7797 break;
7798
7799 default:
7800 return -EOPNOTSUPP;
7801 }
7802 return ret;
7803 }
7804
7805 /* SIOCGIWAUTH */
7806 static int ipw2100_wx_get_auth(struct net_device *dev,
7807 struct iw_request_info *info,
7808 union iwreq_data *wrqu, char *extra)
7809 {
7810 struct ipw2100_priv *priv = libipw_priv(dev);
7811 struct libipw_device *ieee = priv->ieee;
7812 struct lib80211_crypt_data *crypt;
7813 struct iw_param *param = &wrqu->param;
7814 int ret = 0;
7815
7816 switch (param->flags & IW_AUTH_INDEX) {
7817 case IW_AUTH_WPA_VERSION:
7818 case IW_AUTH_CIPHER_PAIRWISE:
7819 case IW_AUTH_CIPHER_GROUP:
7820 case IW_AUTH_KEY_MGMT:
7821 /*
7822 * wpa_supplicant will control these internally
7823 */
7824 ret = -EOPNOTSUPP;
7825 break;
7826
7827 case IW_AUTH_TKIP_COUNTERMEASURES:
7828 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7829 if (!crypt || !crypt->ops->get_flags) {
7830 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7831 "crypt not set!\n");
7832 break;
7833 }
7834
7835 param->value = (crypt->ops->get_flags(crypt->priv) &
7836 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7837
7838 break;
7839
7840 case IW_AUTH_DROP_UNENCRYPTED:
7841 param->value = ieee->drop_unencrypted;
7842 break;
7843
7844 case IW_AUTH_80211_AUTH_ALG:
7845 param->value = priv->ieee->sec.auth_mode;
7846 break;
7847
7848 case IW_AUTH_WPA_ENABLED:
7849 param->value = ieee->wpa_enabled;
7850 break;
7851
7852 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7853 param->value = ieee->ieee802_1x;
7854 break;
7855
7856 case IW_AUTH_ROAMING_CONTROL:
7857 case IW_AUTH_PRIVACY_INVOKED:
7858 param->value = ieee->privacy_invoked;
7859 break;
7860
7861 default:
7862 return -EOPNOTSUPP;
7863 }
7864 return 0;
7865 }
7866
7867 /* SIOCSIWENCODEEXT */
7868 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7869 struct iw_request_info *info,
7870 union iwreq_data *wrqu, char *extra)
7871 {
7872 struct ipw2100_priv *priv = libipw_priv(dev);
7873 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7874 }
7875
7876 /* SIOCGIWENCODEEXT */
7877 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7878 struct iw_request_info *info,
7879 union iwreq_data *wrqu, char *extra)
7880 {
7881 struct ipw2100_priv *priv = libipw_priv(dev);
7882 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7883 }
7884
7885 /* SIOCSIWMLME */
7886 static int ipw2100_wx_set_mlme(struct net_device *dev,
7887 struct iw_request_info *info,
7888 union iwreq_data *wrqu, char *extra)
7889 {
7890 struct ipw2100_priv *priv = libipw_priv(dev);
7891 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7892 __le16 reason;
7893
7894 reason = cpu_to_le16(mlme->reason_code);
7895
7896 switch (mlme->cmd) {
7897 case IW_MLME_DEAUTH:
7898 // silently ignore
7899 break;
7900
7901 case IW_MLME_DISASSOC:
7902 ipw2100_disassociate_bssid(priv);
7903 break;
7904
7905 default:
7906 return -EOPNOTSUPP;
7907 }
7908 return 0;
7909 }
7910
7911 /*
7912 *
7913 * IWPRIV handlers
7914 *
7915 */
7916 #ifdef CONFIG_IPW2100_MONITOR
7917 static int ipw2100_wx_set_promisc(struct net_device *dev,
7918 struct iw_request_info *info,
7919 union iwreq_data *wrqu, char *extra)
7920 {
7921 struct ipw2100_priv *priv = libipw_priv(dev);
7922 int *parms = (int *)extra;
7923 int enable = (parms[0] > 0);
7924 int err = 0;
7925
7926 mutex_lock(&priv->action_mutex);
7927 if (!(priv->status & STATUS_INITIALIZED)) {
7928 err = -EIO;
7929 goto done;
7930 }
7931
7932 if (enable) {
7933 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7934 err = ipw2100_set_channel(priv, parms[1], 0);
7935 goto done;
7936 }
7937 priv->channel = parms[1];
7938 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7939 } else {
7940 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7941 err = ipw2100_switch_mode(priv, priv->last_mode);
7942 }
7943 done:
7944 mutex_unlock(&priv->action_mutex);
7945 return err;
7946 }
7947
7948 static int ipw2100_wx_reset(struct net_device *dev,
7949 struct iw_request_info *info,
7950 union iwreq_data *wrqu, char *extra)
7951 {
7952 struct ipw2100_priv *priv = libipw_priv(dev);
7953 if (priv->status & STATUS_INITIALIZED)
7954 schedule_reset(priv);
7955 return 0;
7956 }
7957
7958 #endif
7959
7960 static int ipw2100_wx_set_powermode(struct net_device *dev,
7961 struct iw_request_info *info,
7962 union iwreq_data *wrqu, char *extra)
7963 {
7964 struct ipw2100_priv *priv = libipw_priv(dev);
7965 int err = 0, mode = *(int *)extra;
7966
7967 mutex_lock(&priv->action_mutex);
7968 if (!(priv->status & STATUS_INITIALIZED)) {
7969 err = -EIO;
7970 goto done;
7971 }
7972
7973 if ((mode < 0) || (mode > POWER_MODES))
7974 mode = IPW_POWER_AUTO;
7975
7976 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7977 err = ipw2100_set_power_mode(priv, mode);
7978 done:
7979 mutex_unlock(&priv->action_mutex);
7980 return err;
7981 }
7982
7983 #define MAX_POWER_STRING 80
7984 static int ipw2100_wx_get_powermode(struct net_device *dev,
7985 struct iw_request_info *info,
7986 union iwreq_data *wrqu, char *extra)
7987 {
7988 /*
7989 * This can be called at any time. No action lock required
7990 */
7991
7992 struct ipw2100_priv *priv = libipw_priv(dev);
7993 int level = IPW_POWER_LEVEL(priv->power_mode);
7994 s32 timeout, period;
7995
7996 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7997 snprintf(extra, MAX_POWER_STRING,
7998 "Power save level: %d (Off)", level);
7999 } else {
8000 switch (level) {
8001 case IPW_POWER_MODE_CAM:
8002 snprintf(extra, MAX_POWER_STRING,
8003 "Power save level: %d (None)", level);
8004 break;
8005 case IPW_POWER_AUTO:
8006 snprintf(extra, MAX_POWER_STRING,
8007 "Power save level: %d (Auto)", level);
8008 break;
8009 default:
8010 timeout = timeout_duration[level - 1] / 1000;
8011 period = period_duration[level - 1] / 1000;
8012 snprintf(extra, MAX_POWER_STRING,
8013 "Power save level: %d "
8014 "(Timeout %dms, Period %dms)",
8015 level, timeout, period);
8016 }
8017 }
8018
8019 wrqu->data.length = strlen(extra) + 1;
8020
8021 return 0;
8022 }
8023
8024 static int ipw2100_wx_set_preamble(struct net_device *dev,
8025 struct iw_request_info *info,
8026 union iwreq_data *wrqu, char *extra)
8027 {
8028 struct ipw2100_priv *priv = libipw_priv(dev);
8029 int err, mode = *(int *)extra;
8030
8031 mutex_lock(&priv->action_mutex);
8032 if (!(priv->status & STATUS_INITIALIZED)) {
8033 err = -EIO;
8034 goto done;
8035 }
8036
8037 if (mode == 1)
8038 priv->config |= CFG_LONG_PREAMBLE;
8039 else if (mode == 0)
8040 priv->config &= ~CFG_LONG_PREAMBLE;
8041 else {
8042 err = -EINVAL;
8043 goto done;
8044 }
8045
8046 err = ipw2100_system_config(priv, 0);
8047
8048 done:
8049 mutex_unlock(&priv->action_mutex);
8050 return err;
8051 }
8052
8053 static int ipw2100_wx_get_preamble(struct net_device *dev,
8054 struct iw_request_info *info,
8055 union iwreq_data *wrqu, char *extra)
8056 {
8057 /*
8058 * This can be called at any time. No action lock required
8059 */
8060
8061 struct ipw2100_priv *priv = libipw_priv(dev);
8062
8063 if (priv->config & CFG_LONG_PREAMBLE)
8064 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8065 else
8066 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8067
8068 return 0;
8069 }
8070
8071 #ifdef CONFIG_IPW2100_MONITOR
8072 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8073 struct iw_request_info *info,
8074 union iwreq_data *wrqu, char *extra)
8075 {
8076 struct ipw2100_priv *priv = libipw_priv(dev);
8077 int err, mode = *(int *)extra;
8078
8079 mutex_lock(&priv->action_mutex);
8080 if (!(priv->status & STATUS_INITIALIZED)) {
8081 err = -EIO;
8082 goto done;
8083 }
8084
8085 if (mode == 1)
8086 priv->config |= CFG_CRC_CHECK;
8087 else if (mode == 0)
8088 priv->config &= ~CFG_CRC_CHECK;
8089 else {
8090 err = -EINVAL;
8091 goto done;
8092 }
8093 err = 0;
8094
8095 done:
8096 mutex_unlock(&priv->action_mutex);
8097 return err;
8098 }
8099
8100 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8101 struct iw_request_info *info,
8102 union iwreq_data *wrqu, char *extra)
8103 {
8104 /*
8105 * This can be called at any time. No action lock required
8106 */
8107
8108 struct ipw2100_priv *priv = libipw_priv(dev);
8109
8110 if (priv->config & CFG_CRC_CHECK)
8111 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8112 else
8113 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8114
8115 return 0;
8116 }
8117 #endif /* CONFIG_IPW2100_MONITOR */
8118
8119 static iw_handler ipw2100_wx_handlers[] = {
8120 NULL, /* SIOCSIWCOMMIT */
8121 ipw2100_wx_get_name, /* SIOCGIWNAME */
8122 NULL, /* SIOCSIWNWID */
8123 NULL, /* SIOCGIWNWID */
8124 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8125 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8126 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8127 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8128 NULL, /* SIOCSIWSENS */
8129 NULL, /* SIOCGIWSENS */
8130 NULL, /* SIOCSIWRANGE */
8131 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8132 NULL, /* SIOCSIWPRIV */
8133 NULL, /* SIOCGIWPRIV */
8134 NULL, /* SIOCSIWSTATS */
8135 NULL, /* SIOCGIWSTATS */
8136 NULL, /* SIOCSIWSPY */
8137 NULL, /* SIOCGIWSPY */
8138 NULL, /* SIOCGIWTHRSPY */
8139 NULL, /* SIOCWIWTHRSPY */
8140 ipw2100_wx_set_wap, /* SIOCSIWAP */
8141 ipw2100_wx_get_wap, /* SIOCGIWAP */
8142 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8143 NULL, /* SIOCGIWAPLIST -- deprecated */
8144 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8145 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8146 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8147 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8148 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8149 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8150 NULL, /* -- hole -- */
8151 NULL, /* -- hole -- */
8152 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8153 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8154 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8155 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8156 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8157 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8158 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8159 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8160 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8161 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8162 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8163 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8164 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8165 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8166 NULL, /* -- hole -- */
8167 NULL, /* -- hole -- */
8168 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8169 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8170 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8171 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8172 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8173 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8174 NULL, /* SIOCSIWPMKSA */
8175 };
8176
8177 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8178 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8179 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8180 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8181 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8182 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8183 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8184 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8185
8186 static const struct iw_priv_args ipw2100_private_args[] = {
8187
8188 #ifdef CONFIG_IPW2100_MONITOR
8189 {
8190 IPW2100_PRIV_SET_MONITOR,
8191 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8192 {
8193 IPW2100_PRIV_RESET,
8194 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8195 #endif /* CONFIG_IPW2100_MONITOR */
8196
8197 {
8198 IPW2100_PRIV_SET_POWER,
8199 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8200 {
8201 IPW2100_PRIV_GET_POWER,
8202 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8203 "get_power"},
8204 {
8205 IPW2100_PRIV_SET_LONGPREAMBLE,
8206 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8207 {
8208 IPW2100_PRIV_GET_LONGPREAMBLE,
8209 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8210 #ifdef CONFIG_IPW2100_MONITOR
8211 {
8212 IPW2100_PRIV_SET_CRC_CHECK,
8213 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8214 {
8215 IPW2100_PRIV_GET_CRC_CHECK,
8216 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8217 #endif /* CONFIG_IPW2100_MONITOR */
8218 };
8219
8220 static iw_handler ipw2100_private_handler[] = {
8221 #ifdef CONFIG_IPW2100_MONITOR
8222 ipw2100_wx_set_promisc,
8223 ipw2100_wx_reset,
8224 #else /* CONFIG_IPW2100_MONITOR */
8225 NULL,
8226 NULL,
8227 #endif /* CONFIG_IPW2100_MONITOR */
8228 ipw2100_wx_set_powermode,
8229 ipw2100_wx_get_powermode,
8230 ipw2100_wx_set_preamble,
8231 ipw2100_wx_get_preamble,
8232 #ifdef CONFIG_IPW2100_MONITOR
8233 ipw2100_wx_set_crc_check,
8234 ipw2100_wx_get_crc_check,
8235 #else /* CONFIG_IPW2100_MONITOR */
8236 NULL,
8237 NULL,
8238 #endif /* CONFIG_IPW2100_MONITOR */
8239 };
8240
8241 /*
8242 * Get wireless statistics.
8243 * Called by /proc/net/wireless
8244 * Also called by SIOCGIWSTATS
8245 */
8246 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8247 {
8248 enum {
8249 POOR = 30,
8250 FAIR = 60,
8251 GOOD = 80,
8252 VERY_GOOD = 90,
8253 EXCELLENT = 95,
8254 PERFECT = 100
8255 };
8256 int rssi_qual;
8257 int tx_qual;
8258 int beacon_qual;
8259 int quality;
8260
8261 struct ipw2100_priv *priv = libipw_priv(dev);
8262 struct iw_statistics *wstats;
8263 u32 rssi, tx_retries, missed_beacons, tx_failures;
8264 u32 ord_len = sizeof(u32);
8265
8266 if (!priv)
8267 return (struct iw_statistics *)NULL;
8268
8269 wstats = &priv->wstats;
8270
8271 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8272 * ipw2100_wx_wireless_stats seems to be called before fw is
8273 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8274 * and associated; if not associcated, the values are all meaningless
8275 * anyway, so set them all to NULL and INVALID */
8276 if (!(priv->status & STATUS_ASSOCIATED)) {
8277 wstats->miss.beacon = 0;
8278 wstats->discard.retries = 0;
8279 wstats->qual.qual = 0;
8280 wstats->qual.level = 0;
8281 wstats->qual.noise = 0;
8282 wstats->qual.updated = 7;
8283 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8284 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8285 return wstats;
8286 }
8287
8288 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8289 &missed_beacons, &ord_len))
8290 goto fail_get_ordinal;
8291
8292 /* If we don't have a connection the quality and level is 0 */
8293 if (!(priv->status & STATUS_ASSOCIATED)) {
8294 wstats->qual.qual = 0;
8295 wstats->qual.level = 0;
8296 } else {
8297 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8298 &rssi, &ord_len))
8299 goto fail_get_ordinal;
8300 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8301 if (rssi < 10)
8302 rssi_qual = rssi * POOR / 10;
8303 else if (rssi < 15)
8304 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8305 else if (rssi < 20)
8306 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8307 else if (rssi < 30)
8308 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8309 10 + GOOD;
8310 else
8311 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8312 10 + VERY_GOOD;
8313
8314 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8315 &tx_retries, &ord_len))
8316 goto fail_get_ordinal;
8317
8318 if (tx_retries > 75)
8319 tx_qual = (90 - tx_retries) * POOR / 15;
8320 else if (tx_retries > 70)
8321 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8322 else if (tx_retries > 65)
8323 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8324 else if (tx_retries > 50)
8325 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8326 15 + GOOD;
8327 else
8328 tx_qual = (50 - tx_retries) *
8329 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8330
8331 if (missed_beacons > 50)
8332 beacon_qual = (60 - missed_beacons) * POOR / 10;
8333 else if (missed_beacons > 40)
8334 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8335 10 + POOR;
8336 else if (missed_beacons > 32)
8337 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8338 18 + FAIR;
8339 else if (missed_beacons > 20)
8340 beacon_qual = (32 - missed_beacons) *
8341 (VERY_GOOD - GOOD) / 20 + GOOD;
8342 else
8343 beacon_qual = (20 - missed_beacons) *
8344 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8345
8346 quality = min(tx_qual, rssi_qual);
8347 quality = min(beacon_qual, quality);
8348
8349 #ifdef CONFIG_IPW2100_DEBUG
8350 if (beacon_qual == quality)
8351 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8352 else if (tx_qual == quality)
8353 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8354 else if (quality != 100)
8355 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8356 else
8357 IPW_DEBUG_WX("Quality not clamped.\n");
8358 #endif
8359
8360 wstats->qual.qual = quality;
8361 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8362 }
8363
8364 wstats->qual.noise = 0;
8365 wstats->qual.updated = 7;
8366 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8367
8368 /* FIXME: this is percent and not a # */
8369 wstats->miss.beacon = missed_beacons;
8370
8371 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8372 &tx_failures, &ord_len))
8373 goto fail_get_ordinal;
8374 wstats->discard.retries = tx_failures;
8375
8376 return wstats;
8377
8378 fail_get_ordinal:
8379 IPW_DEBUG_WX("failed querying ordinals.\n");
8380
8381 return (struct iw_statistics *)NULL;
8382 }
8383
8384 static struct iw_handler_def ipw2100_wx_handler_def = {
8385 .standard = ipw2100_wx_handlers,
8386 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8387 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8388 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8389 .private = (iw_handler *) ipw2100_private_handler,
8390 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8391 .get_wireless_stats = ipw2100_wx_wireless_stats,
8392 };
8393
8394 static void ipw2100_wx_event_work(struct work_struct *work)
8395 {
8396 struct ipw2100_priv *priv =
8397 container_of(work, struct ipw2100_priv, wx_event_work.work);
8398 union iwreq_data wrqu;
8399 unsigned int len = ETH_ALEN;
8400
8401 if (priv->status & STATUS_STOPPING)
8402 return;
8403
8404 mutex_lock(&priv->action_mutex);
8405
8406 IPW_DEBUG_WX("enter\n");
8407
8408 mutex_unlock(&priv->action_mutex);
8409
8410 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8411
8412 /* Fetch BSSID from the hardware */
8413 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8414 priv->status & STATUS_RF_KILL_MASK ||
8415 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8416 &priv->bssid, &len)) {
8417 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8418 } else {
8419 /* We now have the BSSID, so can finish setting to the full
8420 * associated state */
8421 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8422 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8423 priv->status &= ~STATUS_ASSOCIATING;
8424 priv->status |= STATUS_ASSOCIATED;
8425 netif_carrier_on(priv->net_dev);
8426 netif_wake_queue(priv->net_dev);
8427 }
8428
8429 if (!(priv->status & STATUS_ASSOCIATED)) {
8430 IPW_DEBUG_WX("Configuring ESSID\n");
8431 mutex_lock(&priv->action_mutex);
8432 /* This is a disassociation event, so kick the firmware to
8433 * look for another AP */
8434 if (priv->config & CFG_STATIC_ESSID)
8435 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8436 0);
8437 else
8438 ipw2100_set_essid(priv, NULL, 0, 0);
8439 mutex_unlock(&priv->action_mutex);
8440 }
8441
8442 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8443 }
8444
8445 #define IPW2100_FW_MAJOR_VERSION 1
8446 #define IPW2100_FW_MINOR_VERSION 3
8447
8448 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8449 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8450
8451 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8452 IPW2100_FW_MAJOR_VERSION)
8453
8454 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8455 "." __stringify(IPW2100_FW_MINOR_VERSION)
8456
8457 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8458
8459 /*
8460
8461 BINARY FIRMWARE HEADER FORMAT
8462
8463 offset length desc
8464 0 2 version
8465 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8466 4 4 fw_len
8467 8 4 uc_len
8468 C fw_len firmware data
8469 12 + fw_len uc_len microcode data
8470
8471 */
8472
8473 struct ipw2100_fw_header {
8474 short version;
8475 short mode;
8476 unsigned int fw_size;
8477 unsigned int uc_size;
8478 } __attribute__ ((packed));
8479
8480 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8481 {
8482 struct ipw2100_fw_header *h =
8483 (struct ipw2100_fw_header *)fw->fw_entry->data;
8484
8485 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8486 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8487 "(detected version id of %u). "
8488 "See Documentation/networking/README.ipw2100\n",
8489 h->version);
8490 return 1;
8491 }
8492
8493 fw->version = h->version;
8494 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8495 fw->fw.size = h->fw_size;
8496 fw->uc.data = fw->fw.data + h->fw_size;
8497 fw->uc.size = h->uc_size;
8498
8499 return 0;
8500 }
8501
8502 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8503 struct ipw2100_fw *fw)
8504 {
8505 char *fw_name;
8506 int rc;
8507
8508 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8509 priv->net_dev->name);
8510
8511 switch (priv->ieee->iw_mode) {
8512 case IW_MODE_ADHOC:
8513 fw_name = IPW2100_FW_NAME("-i");
8514 break;
8515 #ifdef CONFIG_IPW2100_MONITOR
8516 case IW_MODE_MONITOR:
8517 fw_name = IPW2100_FW_NAME("-p");
8518 break;
8519 #endif
8520 case IW_MODE_INFRA:
8521 default:
8522 fw_name = IPW2100_FW_NAME("");
8523 break;
8524 }
8525
8526 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8527
8528 if (rc < 0) {
8529 printk(KERN_ERR DRV_NAME ": "
8530 "%s: Firmware '%s' not available or load failed.\n",
8531 priv->net_dev->name, fw_name);
8532 return rc;
8533 }
8534 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8535 fw->fw_entry->size);
8536
8537 ipw2100_mod_firmware_load(fw);
8538
8539 return 0;
8540 }
8541
8542 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8543 #ifdef CONFIG_IPW2100_MONITOR
8544 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8545 #endif
8546 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8547
8548 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8549 struct ipw2100_fw *fw)
8550 {
8551 fw->version = 0;
8552 if (fw->fw_entry)
8553 release_firmware(fw->fw_entry);
8554 fw->fw_entry = NULL;
8555 }
8556
8557 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8558 size_t max)
8559 {
8560 char ver[MAX_FW_VERSION_LEN];
8561 u32 len = MAX_FW_VERSION_LEN;
8562 u32 tmp;
8563 int i;
8564 /* firmware version is an ascii string (max len of 14) */
8565 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8566 return -EIO;
8567 tmp = max;
8568 if (len >= max)
8569 len = max - 1;
8570 for (i = 0; i < len; i++)
8571 buf[i] = ver[i];
8572 buf[i] = '\0';
8573 return tmp;
8574 }
8575
8576 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8577 size_t max)
8578 {
8579 u32 ver;
8580 u32 len = sizeof(ver);
8581 /* microcode version is a 32 bit integer */
8582 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8583 return -EIO;
8584 return snprintf(buf, max, "%08X", ver);
8585 }
8586
8587 /*
8588 * On exit, the firmware will have been freed from the fw list
8589 */
8590 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8591 {
8592 /* firmware is constructed of N contiguous entries, each entry is
8593 * structured as:
8594 *
8595 * offset sie desc
8596 * 0 4 address to write to
8597 * 4 2 length of data run
8598 * 6 length data
8599 */
8600 unsigned int addr;
8601 unsigned short len;
8602
8603 const unsigned char *firmware_data = fw->fw.data;
8604 unsigned int firmware_data_left = fw->fw.size;
8605
8606 while (firmware_data_left > 0) {
8607 addr = *(u32 *) (firmware_data);
8608 firmware_data += 4;
8609 firmware_data_left -= 4;
8610
8611 len = *(u16 *) (firmware_data);
8612 firmware_data += 2;
8613 firmware_data_left -= 2;
8614
8615 if (len > 32) {
8616 printk(KERN_ERR DRV_NAME ": "
8617 "Invalid firmware run-length of %d bytes\n",
8618 len);
8619 return -EINVAL;
8620 }
8621
8622 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8623 firmware_data += len;
8624 firmware_data_left -= len;
8625 }
8626
8627 return 0;
8628 }
8629
8630 struct symbol_alive_response {
8631 u8 cmd_id;
8632 u8 seq_num;
8633 u8 ucode_rev;
8634 u8 eeprom_valid;
8635 u16 valid_flags;
8636 u8 IEEE_addr[6];
8637 u16 flags;
8638 u16 pcb_rev;
8639 u16 clock_settle_time; // 1us LSB
8640 u16 powerup_settle_time; // 1us LSB
8641 u16 hop_settle_time; // 1us LSB
8642 u8 date[3]; // month, day, year
8643 u8 time[2]; // hours, minutes
8644 u8 ucode_valid;
8645 };
8646
8647 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8648 struct ipw2100_fw *fw)
8649 {
8650 struct net_device *dev = priv->net_dev;
8651 const unsigned char *microcode_data = fw->uc.data;
8652 unsigned int microcode_data_left = fw->uc.size;
8653 void __iomem *reg = (void __iomem *)dev->base_addr;
8654
8655 struct symbol_alive_response response;
8656 int i, j;
8657 u8 data;
8658
8659 /* Symbol control */
8660 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8661 readl(reg);
8662 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8663 readl(reg);
8664
8665 /* HW config */
8666 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8667 readl(reg);
8668 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8669 readl(reg);
8670
8671 /* EN_CS_ACCESS bit to reset control store pointer */
8672 write_nic_byte(dev, 0x210000, 0x40);
8673 readl(reg);
8674 write_nic_byte(dev, 0x210000, 0x0);
8675 readl(reg);
8676 write_nic_byte(dev, 0x210000, 0x40);
8677 readl(reg);
8678
8679 /* copy microcode from buffer into Symbol */
8680
8681 while (microcode_data_left > 0) {
8682 write_nic_byte(dev, 0x210010, *microcode_data++);
8683 write_nic_byte(dev, 0x210010, *microcode_data++);
8684 microcode_data_left -= 2;
8685 }
8686
8687 /* EN_CS_ACCESS bit to reset the control store pointer */
8688 write_nic_byte(dev, 0x210000, 0x0);
8689 readl(reg);
8690
8691 /* Enable System (Reg 0)
8692 * first enable causes garbage in RX FIFO */
8693 write_nic_byte(dev, 0x210000, 0x0);
8694 readl(reg);
8695 write_nic_byte(dev, 0x210000, 0x80);
8696 readl(reg);
8697
8698 /* Reset External Baseband Reg */
8699 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8700 readl(reg);
8701 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8702 readl(reg);
8703
8704 /* HW Config (Reg 5) */
8705 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8706 readl(reg);
8707 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8708 readl(reg);
8709
8710 /* Enable System (Reg 0)
8711 * second enable should be OK */
8712 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8713 readl(reg);
8714 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8715
8716 /* check Symbol is enabled - upped this from 5 as it wasn't always
8717 * catching the update */
8718 for (i = 0; i < 10; i++) {
8719 udelay(10);
8720
8721 /* check Dino is enabled bit */
8722 read_nic_byte(dev, 0x210000, &data);
8723 if (data & 0x1)
8724 break;
8725 }
8726
8727 if (i == 10) {
8728 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8729 dev->name);
8730 return -EIO;
8731 }
8732
8733 /* Get Symbol alive response */
8734 for (i = 0; i < 30; i++) {
8735 /* Read alive response structure */
8736 for (j = 0;
8737 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8738 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8739
8740 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8741 break;
8742 udelay(10);
8743 }
8744
8745 if (i == 30) {
8746 printk(KERN_ERR DRV_NAME
8747 ": %s: No response from Symbol - hw not alive\n",
8748 dev->name);
8749 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8750 return -EIO;
8751 }
8752
8753 return 0;
8754 }
This page took 0.245089 seconds and 6 git commands to generate.