iwlwifi: cleans up scanning code
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-commands.h
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63 /*
64 * Please use this file (iwl-commands.h) only for uCode API definitions.
65 * Please use iwl-4965-hw.h for hardware-related definitions.
66 * Please use iwl-dev.h for driver implementation definitions.
67 */
68
69 #ifndef __iwl4965_commands_h__
70 #define __iwl4965_commands_h__
71
72 enum {
73 REPLY_ALIVE = 0x1,
74 REPLY_ERROR = 0x2,
75
76 /* RXON and QOS commands */
77 REPLY_RXON = 0x10,
78 REPLY_RXON_ASSOC = 0x11,
79 REPLY_QOS_PARAM = 0x13,
80 REPLY_RXON_TIMING = 0x14,
81
82 /* Multi-Station support */
83 REPLY_ADD_STA = 0x18,
84 REPLY_REMOVE_STA = 0x19, /* not used */
85 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
86
87 /* Security */
88 REPLY_WEPKEY = 0x20,
89
90 /* RX, TX, LEDs */
91 REPLY_TX = 0x1c,
92 REPLY_RATE_SCALE = 0x47, /* 3945 only */
93 REPLY_LEDS_CMD = 0x48,
94 REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* 4965 only */
95
96 /* WiMAX coexistence */
97 COEX_PRIORITY_TABLE_CMD = 0x5a, /*5000 only */
98 COEX_MEDIUM_NOTIFICATION = 0x5b,
99 COEX_EVENT_CMD = 0x5c,
100
101 /* 802.11h related */
102 RADAR_NOTIFICATION = 0x70, /* not used */
103 REPLY_QUIET_CMD = 0x71, /* not used */
104 REPLY_CHANNEL_SWITCH = 0x72,
105 CHANNEL_SWITCH_NOTIFICATION = 0x73,
106 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
107 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
108
109 /* Power Management */
110 POWER_TABLE_CMD = 0x77,
111 PM_SLEEP_NOTIFICATION = 0x7A,
112 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
113
114 /* Scan commands and notifications */
115 REPLY_SCAN_CMD = 0x80,
116 REPLY_SCAN_ABORT_CMD = 0x81,
117 SCAN_START_NOTIFICATION = 0x82,
118 SCAN_RESULTS_NOTIFICATION = 0x83,
119 SCAN_COMPLETE_NOTIFICATION = 0x84,
120
121 /* IBSS/AP commands */
122 BEACON_NOTIFICATION = 0x90,
123 REPLY_TX_BEACON = 0x91,
124 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
125
126 /* Miscellaneous commands */
127 QUIET_NOTIFICATION = 0x96, /* not used */
128 REPLY_TX_PWR_TABLE_CMD = 0x97,
129 REPLY_TX_POWER_DBM_CMD = 0x98,
130 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
131
132 /* Bluetooth device coexistance config command */
133 REPLY_BT_CONFIG = 0x9b,
134
135 /* Statistics */
136 REPLY_STATISTICS_CMD = 0x9c,
137 STATISTICS_NOTIFICATION = 0x9d,
138
139 /* RF-KILL commands and notifications */
140 REPLY_CARD_STATE_CMD = 0xa0,
141 CARD_STATE_NOTIFICATION = 0xa1,
142
143 /* Missed beacons notification */
144 MISSED_BEACONS_NOTIFICATION = 0xa2,
145
146 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
147 SENSITIVITY_CMD = 0xa8,
148 REPLY_PHY_CALIBRATION_CMD = 0xb0,
149 REPLY_RX_PHY_CMD = 0xc0,
150 REPLY_RX_MPDU_CMD = 0xc1,
151 REPLY_RX = 0xc3,
152 REPLY_COMPRESSED_BA = 0xc5,
153 REPLY_MAX = 0xff
154 };
155
156 /******************************************************************************
157 * (0)
158 * Commonly used structures and definitions:
159 * Command header, rate_n_flags, txpower
160 *
161 *****************************************************************************/
162
163 /* iwl_cmd_header flags value */
164 #define IWL_CMD_FAILED_MSK 0x40
165
166 /**
167 * struct iwl_cmd_header
168 *
169 * This header format appears in the beginning of each command sent from the
170 * driver, and each response/notification received from uCode.
171 */
172 struct iwl_cmd_header {
173 u8 cmd; /* Command ID: REPLY_RXON, etc. */
174 u8 flags; /* IWL_CMD_* */
175 /*
176 * The driver sets up the sequence number to values of its chosing.
177 * uCode does not use this value, but passes it back to the driver
178 * when sending the response to each driver-originated command, so
179 * the driver can match the response to the command. Since the values
180 * don't get used by uCode, the driver may set up an arbitrary format.
181 *
182 * There is one exception: uCode sets bit 15 when it originates
183 * the response/notification, i.e. when the response/notification
184 * is not a direct response to a command sent by the driver. For
185 * example, uCode issues REPLY_3945_RX when it sends a received frame
186 * to the driver; it is not a direct response to any driver command.
187 *
188 * The Linux driver uses the following format:
189 *
190 * 0:7 index/position within Tx queue
191 * 8:13 Tx queue selection
192 * 14:14 driver sets this to indicate command is in the 'huge'
193 * storage at the end of the command buffers, i.e. scan cmd
194 * 15:15 uCode sets this in uCode-originated response/notification
195 */
196 __le16 sequence;
197
198 /* command or response/notification data follows immediately */
199 u8 data[0];
200 } __attribute__ ((packed));
201
202 /**
203 * 4965 rate_n_flags bit fields
204 *
205 * rate_n_flags format is used in following 4965 commands:
206 * REPLY_RX (response only)
207 * REPLY_TX (both command and response)
208 * REPLY_TX_LINK_QUALITY_CMD
209 *
210 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
211 * 2-0: 0) 6 Mbps
212 * 1) 12 Mbps
213 * 2) 18 Mbps
214 * 3) 24 Mbps
215 * 4) 36 Mbps
216 * 5) 48 Mbps
217 * 6) 54 Mbps
218 * 7) 60 Mbps
219 *
220 * 3: 0) Single stream (SISO)
221 * 1) Dual stream (MIMO)
222 *
223 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps FAT duplicate data
224 *
225 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
226 * 3-0: 0xD) 6 Mbps
227 * 0xF) 9 Mbps
228 * 0x5) 12 Mbps
229 * 0x7) 18 Mbps
230 * 0x9) 24 Mbps
231 * 0xB) 36 Mbps
232 * 0x1) 48 Mbps
233 * 0x3) 54 Mbps
234 *
235 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
236 * 3-0: 10) 1 Mbps
237 * 20) 2 Mbps
238 * 55) 5.5 Mbps
239 * 110) 11 Mbps
240 */
241 #define RATE_MCS_CODE_MSK 0x7
242 #define RATE_MCS_MIMO_POS 3
243 #define RATE_MCS_MIMO_MSK 0x8
244 #define RATE_MCS_HT_DUP_POS 5
245 #define RATE_MCS_HT_DUP_MSK 0x20
246
247 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
248 #define RATE_MCS_FLAGS_POS 8
249 #define RATE_MCS_HT_POS 8
250 #define RATE_MCS_HT_MSK 0x100
251
252 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
253 #define RATE_MCS_CCK_POS 9
254 #define RATE_MCS_CCK_MSK 0x200
255
256 /* Bit 10: (1) Use Green Field preamble */
257 #define RATE_MCS_GF_POS 10
258 #define RATE_MCS_GF_MSK 0x400
259
260 /* Bit 11: (1) Use 40Mhz FAT chnl width, (0) use 20 MHz legacy chnl width */
261 #define RATE_MCS_FAT_POS 11
262 #define RATE_MCS_FAT_MSK 0x800
263
264 /* Bit 12: (1) Duplicate data on both 20MHz chnls. FAT (bit 11) must be set. */
265 #define RATE_MCS_DUP_POS 12
266 #define RATE_MCS_DUP_MSK 0x1000
267
268 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
269 #define RATE_MCS_SGI_POS 13
270 #define RATE_MCS_SGI_MSK 0x2000
271
272 /**
273 * rate_n_flags Tx antenna masks (4965 has 2 transmitters):
274 * bit14:15 01 B inactive, A active
275 * 10 B active, A inactive
276 * 11 Both active
277 */
278 #define RATE_MCS_ANT_POS 14
279 #define RATE_MCS_ANT_A_MSK 0x04000
280 #define RATE_MCS_ANT_B_MSK 0x08000
281 #define RATE_MCS_ANT_C_MSK 0x10000
282 #define RATE_MCS_ANT_ABC_MSK 0x1C000
283
284 #define RATE_MCS_ANT_INIT_IND 1
285
286 #define POWER_TABLE_NUM_ENTRIES 33
287 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
288 #define POWER_TABLE_CCK_ENTRY 32
289
290 /**
291 * union iwl4965_tx_power_dual_stream
292 *
293 * Host format used for REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
294 * Use __le32 version (struct tx_power_dual_stream) when building command.
295 *
296 * Driver provides radio gain and DSP attenuation settings to device in pairs,
297 * one value for each transmitter chain. The first value is for transmitter A,
298 * second for transmitter B.
299 *
300 * For SISO bit rates, both values in a pair should be identical.
301 * For MIMO rates, one value may be different from the other,
302 * in order to balance the Tx output between the two transmitters.
303 *
304 * See more details in doc for TXPOWER in iwl-4965-hw.h.
305 */
306 union iwl4965_tx_power_dual_stream {
307 struct {
308 u8 radio_tx_gain[2];
309 u8 dsp_predis_atten[2];
310 } s;
311 u32 dw;
312 };
313
314 /**
315 * struct tx_power_dual_stream
316 *
317 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
318 *
319 * Same format as iwl_tx_power_dual_stream, but __le32
320 */
321 struct tx_power_dual_stream {
322 __le32 dw;
323 } __attribute__ ((packed));
324
325 /**
326 * struct iwl4965_tx_power_db
327 *
328 * Entire table within REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
329 */
330 struct iwl4965_tx_power_db {
331 struct tx_power_dual_stream power_tbl[POWER_TABLE_NUM_ENTRIES];
332 } __attribute__ ((packed));
333
334 /**
335 * Commad REPLY_TX_POWER_DBM_CMD = 0x98
336 * struct iwl5000_tx_power_dbm_cmd
337 */
338 #define IWL50_TX_POWER_AUTO 0x7f
339 struct iwl5000_tx_power_dbm_cmd {
340 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
341 u8 flags;
342 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
343 u8 reserved;
344 } __attribute__ ((packed));
345
346 /******************************************************************************
347 * (0a)
348 * Alive and Error Commands & Responses:
349 *
350 *****************************************************************************/
351
352 #define UCODE_VALID_OK __constant_cpu_to_le32(0x1)
353 #define INITIALIZE_SUBTYPE (9)
354
355 /*
356 * ("Initialize") REPLY_ALIVE = 0x1 (response only, not a command)
357 *
358 * uCode issues this "initialize alive" notification once the initialization
359 * uCode image has completed its work, and is ready to load the runtime image.
360 * This is the *first* "alive" notification that the driver will receive after
361 * rebooting uCode; the "initialize" alive is indicated by subtype field == 9.
362 *
363 * See comments documenting "BSM" (bootstrap state machine).
364 *
365 * For 4965, this notification contains important calibration data for
366 * calculating txpower settings:
367 *
368 * 1) Power supply voltage indication. The voltage sensor outputs higher
369 * values for lower voltage, and vice versa.
370 *
371 * 2) Temperature measurement parameters, for each of two channel widths
372 * (20 MHz and 40 MHz) supported by the radios. Temperature sensing
373 * is done via one of the receiver chains, and channel width influences
374 * the results.
375 *
376 * 3) Tx gain compensation to balance 4965's 2 Tx chains for MIMO operation,
377 * for each of 5 frequency ranges.
378 */
379 struct iwl_init_alive_resp {
380 u8 ucode_minor;
381 u8 ucode_major;
382 __le16 reserved1;
383 u8 sw_rev[8];
384 u8 ver_type;
385 u8 ver_subtype; /* "9" for initialize alive */
386 __le16 reserved2;
387 __le32 log_event_table_ptr;
388 __le32 error_event_table_ptr;
389 __le32 timestamp;
390 __le32 is_valid;
391
392 /* calibration values from "initialize" uCode */
393 __le32 voltage; /* signed, higher value is lower voltage */
394 __le32 therm_r1[2]; /* signed, 1st for normal, 2nd for FAT channel*/
395 __le32 therm_r2[2]; /* signed */
396 __le32 therm_r3[2]; /* signed */
397 __le32 therm_r4[2]; /* signed */
398 __le32 tx_atten[5][2]; /* signed MIMO gain comp, 5 freq groups,
399 * 2 Tx chains */
400 } __attribute__ ((packed));
401
402
403 /**
404 * REPLY_ALIVE = 0x1 (response only, not a command)
405 *
406 * uCode issues this "alive" notification once the runtime image is ready
407 * to receive commands from the driver. This is the *second* "alive"
408 * notification that the driver will receive after rebooting uCode;
409 * this "alive" is indicated by subtype field != 9.
410 *
411 * See comments documenting "BSM" (bootstrap state machine).
412 *
413 * This response includes two pointers to structures within the device's
414 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
415 *
416 * 1) log_event_table_ptr indicates base of the event log. This traces
417 * a 256-entry history of uCode execution within a circular buffer.
418 * Its header format is:
419 *
420 * __le32 log_size; log capacity (in number of entries)
421 * __le32 type; (1) timestamp with each entry, (0) no timestamp
422 * __le32 wraps; # times uCode has wrapped to top of circular buffer
423 * __le32 write_index; next circular buffer entry that uCode would fill
424 *
425 * The header is followed by the circular buffer of log entries. Entries
426 * with timestamps have the following format:
427 *
428 * __le32 event_id; range 0 - 1500
429 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
430 * __le32 data; event_id-specific data value
431 *
432 * Entries without timestamps contain only event_id and data.
433 *
434 * 2) error_event_table_ptr indicates base of the error log. This contains
435 * information about any uCode error that occurs. For 4965, the format
436 * of the error log is:
437 *
438 * __le32 valid; (nonzero) valid, (0) log is empty
439 * __le32 error_id; type of error
440 * __le32 pc; program counter
441 * __le32 blink1; branch link
442 * __le32 blink2; branch link
443 * __le32 ilink1; interrupt link
444 * __le32 ilink2; interrupt link
445 * __le32 data1; error-specific data
446 * __le32 data2; error-specific data
447 * __le32 line; source code line of error
448 * __le32 bcon_time; beacon timer
449 * __le32 tsf_low; network timestamp function timer
450 * __le32 tsf_hi; network timestamp function timer
451 *
452 * The Linux driver can print both logs to the system log when a uCode error
453 * occurs.
454 */
455 struct iwl_alive_resp {
456 u8 ucode_minor;
457 u8 ucode_major;
458 __le16 reserved1;
459 u8 sw_rev[8];
460 u8 ver_type;
461 u8 ver_subtype; /* not "9" for runtime alive */
462 __le16 reserved2;
463 __le32 log_event_table_ptr; /* SRAM address for event log */
464 __le32 error_event_table_ptr; /* SRAM address for error log */
465 __le32 timestamp;
466 __le32 is_valid;
467 } __attribute__ ((packed));
468
469
470 union tsf {
471 u8 byte[8];
472 __le16 word[4];
473 __le32 dw[2];
474 };
475
476 /*
477 * REPLY_ERROR = 0x2 (response only, not a command)
478 */
479 struct iwl_error_resp {
480 __le32 error_type;
481 u8 cmd_id;
482 u8 reserved1;
483 __le16 bad_cmd_seq_num;
484 __le32 error_info;
485 union tsf timestamp;
486 } __attribute__ ((packed));
487
488 /******************************************************************************
489 * (1)
490 * RXON Commands & Responses:
491 *
492 *****************************************************************************/
493
494 /*
495 * Rx config defines & structure
496 */
497 /* rx_config device types */
498 enum {
499 RXON_DEV_TYPE_AP = 1,
500 RXON_DEV_TYPE_ESS = 3,
501 RXON_DEV_TYPE_IBSS = 4,
502 RXON_DEV_TYPE_SNIFFER = 6,
503 };
504
505
506 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK __constant_cpu_to_le16(0x1 << 0)
507 #define RXON_RX_CHAIN_VALID_MSK __constant_cpu_to_le16(0x7 << 1)
508 #define RXON_RX_CHAIN_VALID_POS (1)
509 #define RXON_RX_CHAIN_FORCE_SEL_MSK __constant_cpu_to_le16(0x7 << 4)
510 #define RXON_RX_CHAIN_FORCE_SEL_POS (4)
511 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK __constant_cpu_to_le16(0x7 << 7)
512 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
513 #define RXON_RX_CHAIN_CNT_MSK __constant_cpu_to_le16(0x3 << 10)
514 #define RXON_RX_CHAIN_CNT_POS (10)
515 #define RXON_RX_CHAIN_MIMO_CNT_MSK __constant_cpu_to_le16(0x3 << 12)
516 #define RXON_RX_CHAIN_MIMO_CNT_POS (12)
517 #define RXON_RX_CHAIN_MIMO_FORCE_MSK __constant_cpu_to_le16(0x1 << 14)
518 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
519
520 /* rx_config flags */
521 /* band & modulation selection */
522 #define RXON_FLG_BAND_24G_MSK __constant_cpu_to_le32(1 << 0)
523 #define RXON_FLG_CCK_MSK __constant_cpu_to_le32(1 << 1)
524 /* auto detection enable */
525 #define RXON_FLG_AUTO_DETECT_MSK __constant_cpu_to_le32(1 << 2)
526 /* TGg protection when tx */
527 #define RXON_FLG_TGG_PROTECT_MSK __constant_cpu_to_le32(1 << 3)
528 /* cck short slot & preamble */
529 #define RXON_FLG_SHORT_SLOT_MSK __constant_cpu_to_le32(1 << 4)
530 #define RXON_FLG_SHORT_PREAMBLE_MSK __constant_cpu_to_le32(1 << 5)
531 /* antenna selection */
532 #define RXON_FLG_DIS_DIV_MSK __constant_cpu_to_le32(1 << 7)
533 #define RXON_FLG_ANT_SEL_MSK __constant_cpu_to_le32(0x0f00)
534 #define RXON_FLG_ANT_A_MSK __constant_cpu_to_le32(1 << 8)
535 #define RXON_FLG_ANT_B_MSK __constant_cpu_to_le32(1 << 9)
536 /* radar detection enable */
537 #define RXON_FLG_RADAR_DETECT_MSK __constant_cpu_to_le32(1 << 12)
538 #define RXON_FLG_TGJ_NARROW_BAND_MSK __constant_cpu_to_le32(1 << 13)
539 /* rx response to host with 8-byte TSF
540 * (according to ON_AIR deassertion) */
541 #define RXON_FLG_TSF2HOST_MSK __constant_cpu_to_le32(1 << 15)
542
543
544 /* HT flags */
545 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
546 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK __constant_cpu_to_le32(0x1 << 22)
547
548 #define RXON_FLG_HT_OPERATING_MODE_POS (23)
549
550 #define RXON_FLG_HT_PROT_MSK __constant_cpu_to_le32(0x1 << 23)
551 #define RXON_FLG_FAT_PROT_MSK __constant_cpu_to_le32(0x2 << 23)
552
553 #define RXON_FLG_CHANNEL_MODE_POS (25)
554 #define RXON_FLG_CHANNEL_MODE_MSK __constant_cpu_to_le32(0x3 << 25)
555 #define RXON_FLG_CHANNEL_MODE_PURE_40_MSK __constant_cpu_to_le32(0x1 << 25)
556 #define RXON_FLG_CHANNEL_MODE_MIXED_MSK __constant_cpu_to_le32(0x2 << 25)
557
558 /* rx_config filter flags */
559 /* accept all data frames */
560 #define RXON_FILTER_PROMISC_MSK __constant_cpu_to_le32(1 << 0)
561 /* pass control & management to host */
562 #define RXON_FILTER_CTL2HOST_MSK __constant_cpu_to_le32(1 << 1)
563 /* accept multi-cast */
564 #define RXON_FILTER_ACCEPT_GRP_MSK __constant_cpu_to_le32(1 << 2)
565 /* don't decrypt uni-cast frames */
566 #define RXON_FILTER_DIS_DECRYPT_MSK __constant_cpu_to_le32(1 << 3)
567 /* don't decrypt multi-cast frames */
568 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK __constant_cpu_to_le32(1 << 4)
569 /* STA is associated */
570 #define RXON_FILTER_ASSOC_MSK __constant_cpu_to_le32(1 << 5)
571 /* transfer to host non bssid beacons in associated state */
572 #define RXON_FILTER_BCON_AWARE_MSK __constant_cpu_to_le32(1 << 6)
573
574 /**
575 * REPLY_RXON = 0x10 (command, has simple generic response)
576 *
577 * RXON tunes the radio tuner to a service channel, and sets up a number
578 * of parameters that are used primarily for Rx, but also for Tx operations.
579 *
580 * NOTE: When tuning to a new channel, driver must set the
581 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
582 * info within the device, including the station tables, tx retry
583 * rate tables, and txpower tables. Driver must build a new station
584 * table and txpower table before transmitting anything on the RXON
585 * channel.
586 *
587 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
588 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
589 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
590 */
591 struct iwl4965_rxon_cmd {
592 u8 node_addr[6];
593 __le16 reserved1;
594 u8 bssid_addr[6];
595 __le16 reserved2;
596 u8 wlap_bssid_addr[6];
597 __le16 reserved3;
598 u8 dev_type;
599 u8 air_propagation;
600 __le16 rx_chain;
601 u8 ofdm_basic_rates;
602 u8 cck_basic_rates;
603 __le16 assoc_id;
604 __le32 flags;
605 __le32 filter_flags;
606 __le16 channel;
607 u8 ofdm_ht_single_stream_basic_rates;
608 u8 ofdm_ht_dual_stream_basic_rates;
609 } __attribute__ ((packed));
610
611 /* 5000 HW just extend this cmmand */
612 struct iwl_rxon_cmd {
613 u8 node_addr[6];
614 __le16 reserved1;
615 u8 bssid_addr[6];
616 __le16 reserved2;
617 u8 wlap_bssid_addr[6];
618 __le16 reserved3;
619 u8 dev_type;
620 u8 air_propagation;
621 __le16 rx_chain;
622 u8 ofdm_basic_rates;
623 u8 cck_basic_rates;
624 __le16 assoc_id;
625 __le32 flags;
626 __le32 filter_flags;
627 __le16 channel;
628 u8 ofdm_ht_single_stream_basic_rates;
629 u8 ofdm_ht_dual_stream_basic_rates;
630 u8 ofdm_ht_triple_stream_basic_rates;
631 u8 reserved5;
632 __le16 acquisition_data;
633 __le16 reserved6;
634 } __attribute__ ((packed));
635
636 struct iwl5000_rxon_assoc_cmd {
637 __le32 flags;
638 __le32 filter_flags;
639 u8 ofdm_basic_rates;
640 u8 cck_basic_rates;
641 __le16 reserved1;
642 u8 ofdm_ht_single_stream_basic_rates;
643 u8 ofdm_ht_dual_stream_basic_rates;
644 u8 ofdm_ht_triple_stream_basic_rates;
645 u8 reserved2;
646 __le16 rx_chain_select_flags;
647 __le16 acquisition_data;
648 __le32 reserved3;
649 } __attribute__ ((packed));
650
651 /*
652 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
653 */
654 struct iwl4965_rxon_assoc_cmd {
655 __le32 flags;
656 __le32 filter_flags;
657 u8 ofdm_basic_rates;
658 u8 cck_basic_rates;
659 u8 ofdm_ht_single_stream_basic_rates;
660 u8 ofdm_ht_dual_stream_basic_rates;
661 __le16 rx_chain_select_flags;
662 __le16 reserved;
663 } __attribute__ ((packed));
664
665
666
667
668 /*
669 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
670 */
671 struct iwl4965_rxon_time_cmd {
672 union tsf timestamp;
673 __le16 beacon_interval;
674 __le16 atim_window;
675 __le32 beacon_init_val;
676 __le16 listen_interval;
677 __le16 reserved;
678 } __attribute__ ((packed));
679
680 /*
681 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
682 */
683 struct iwl4965_channel_switch_cmd {
684 u8 band;
685 u8 expect_beacon;
686 __le16 channel;
687 __le32 rxon_flags;
688 __le32 rxon_filter_flags;
689 __le32 switch_time;
690 struct iwl4965_tx_power_db tx_power;
691 } __attribute__ ((packed));
692
693 /*
694 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
695 */
696 struct iwl4965_csa_notification {
697 __le16 band;
698 __le16 channel;
699 __le32 status; /* 0 - OK, 1 - fail */
700 } __attribute__ ((packed));
701
702 /******************************************************************************
703 * (2)
704 * Quality-of-Service (QOS) Commands & Responses:
705 *
706 *****************************************************************************/
707
708 /**
709 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
710 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
711 *
712 * @cw_min: Contention window, start value in numbers of slots.
713 * Should be a power-of-2, minus 1. Device's default is 0x0f.
714 * @cw_max: Contention window, max value in numbers of slots.
715 * Should be a power-of-2, minus 1. Device's default is 0x3f.
716 * @aifsn: Number of slots in Arbitration Interframe Space (before
717 * performing random backoff timing prior to Tx). Device default 1.
718 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
719 *
720 * Device will automatically increase contention window by (2*CW) + 1 for each
721 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
722 * value, to cap the CW value.
723 */
724 struct iwl4965_ac_qos {
725 __le16 cw_min;
726 __le16 cw_max;
727 u8 aifsn;
728 u8 reserved1;
729 __le16 edca_txop;
730 } __attribute__ ((packed));
731
732 /* QoS flags defines */
733 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK __constant_cpu_to_le32(0x01)
734 #define QOS_PARAM_FLG_TGN_MSK __constant_cpu_to_le32(0x02)
735 #define QOS_PARAM_FLG_TXOP_TYPE_MSK __constant_cpu_to_le32(0x10)
736
737 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
738 #define AC_NUM 4
739
740 /*
741 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
742 *
743 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
744 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
745 */
746 struct iwl4965_qosparam_cmd {
747 __le32 qos_flags;
748 struct iwl4965_ac_qos ac[AC_NUM];
749 } __attribute__ ((packed));
750
751 /******************************************************************************
752 * (3)
753 * Add/Modify Stations Commands & Responses:
754 *
755 *****************************************************************************/
756 /*
757 * Multi station support
758 */
759
760 /* Special, dedicated locations within device's station table */
761 #define IWL_AP_ID 0
762 #define IWL_MULTICAST_ID 1
763 #define IWL_STA_ID 2
764 #define IWL4965_BROADCAST_ID 31
765 #define IWL4965_STATION_COUNT 32
766 #define IWL5000_BROADCAST_ID 15
767 #define IWL5000_STATION_COUNT 16
768
769 #define IWL_STATION_COUNT 32 /* MAX(3945,4965)*/
770 #define IWL_INVALID_STATION 255
771
772 #define STA_FLG_PWR_SAVE_MSK __constant_cpu_to_le32(1 << 8);
773 #define STA_FLG_RTS_MIMO_PROT_MSK __constant_cpu_to_le32(1 << 17)
774 #define STA_FLG_AGG_MPDU_8US_MSK __constant_cpu_to_le32(1 << 18)
775 #define STA_FLG_MAX_AGG_SIZE_POS (19)
776 #define STA_FLG_MAX_AGG_SIZE_MSK __constant_cpu_to_le32(3 << 19)
777 #define STA_FLG_FAT_EN_MSK __constant_cpu_to_le32(1 << 21)
778 #define STA_FLG_MIMO_DIS_MSK __constant_cpu_to_le32(1 << 22)
779 #define STA_FLG_AGG_MPDU_DENSITY_POS (23)
780 #define STA_FLG_AGG_MPDU_DENSITY_MSK __constant_cpu_to_le32(7 << 23)
781
782 /* Use in mode field. 1: modify existing entry, 0: add new station entry */
783 #define STA_CONTROL_MODIFY_MSK 0x01
784
785 /* key flags __le16*/
786 #define STA_KEY_FLG_ENCRYPT_MSK __constant_cpu_to_le16(0x0007)
787 #define STA_KEY_FLG_NO_ENC __constant_cpu_to_le16(0x0000)
788 #define STA_KEY_FLG_WEP __constant_cpu_to_le16(0x0001)
789 #define STA_KEY_FLG_CCMP __constant_cpu_to_le16(0x0002)
790 #define STA_KEY_FLG_TKIP __constant_cpu_to_le16(0x0003)
791
792 #define STA_KEY_FLG_KEYID_POS 8
793 #define STA_KEY_FLG_INVALID __constant_cpu_to_le16(0x0800)
794 /* wep key is either from global key (0) or from station info array (1) */
795 #define STA_KEY_FLG_MAP_KEY_MSK __constant_cpu_to_le16(0x0008)
796
797 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
798 #define STA_KEY_FLG_KEY_SIZE_MSK __constant_cpu_to_le16(0x1000)
799 #define STA_KEY_MULTICAST_MSK __constant_cpu_to_le16(0x4000)
800 #define STA_KEY_MAX_NUM 8
801
802 /* Flags indicate whether to modify vs. don't change various station params */
803 #define STA_MODIFY_KEY_MASK 0x01
804 #define STA_MODIFY_TID_DISABLE_TX 0x02
805 #define STA_MODIFY_TX_RATE_MSK 0x04
806 #define STA_MODIFY_ADDBA_TID_MSK 0x08
807 #define STA_MODIFY_DELBA_TID_MSK 0x10
808
809 /* Receiver address (actually, Rx station's index into station table),
810 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
811 #define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
812
813 struct iwl4965_keyinfo {
814 __le16 key_flags;
815 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
816 u8 reserved1;
817 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
818 u8 key_offset;
819 u8 reserved2;
820 u8 key[16]; /* 16-byte unicast decryption key */
821 } __attribute__ ((packed));
822
823 /* 5000 */
824 struct iwl_keyinfo {
825 __le16 key_flags;
826 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
827 u8 reserved1;
828 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
829 u8 key_offset;
830 u8 reserved2;
831 u8 key[16]; /* 16-byte unicast decryption key */
832 __le64 tx_secur_seq_cnt;
833 __le64 hw_tkip_mic_rx_key;
834 __le64 hw_tkip_mic_tx_key;
835 } __attribute__ ((packed));
836
837 /**
838 * struct sta_id_modify
839 * @addr[ETH_ALEN]: station's MAC address
840 * @sta_id: index of station in uCode's station table
841 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
842 *
843 * Driver selects unused table index when adding new station,
844 * or the index to a pre-existing station entry when modifying that station.
845 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
846 *
847 * modify_mask flags select which parameters to modify vs. leave alone.
848 */
849 struct sta_id_modify {
850 u8 addr[ETH_ALEN];
851 __le16 reserved1;
852 u8 sta_id;
853 u8 modify_mask;
854 __le16 reserved2;
855 } __attribute__ ((packed));
856
857 /*
858 * REPLY_ADD_STA = 0x18 (command)
859 *
860 * The device contains an internal table of per-station information,
861 * with info on security keys, aggregation parameters, and Tx rates for
862 * initial Tx attempt and any retries (4965 uses REPLY_TX_LINK_QUALITY_CMD,
863 * 3945 uses REPLY_RATE_SCALE to set up rate tables).
864 *
865 * REPLY_ADD_STA sets up the table entry for one station, either creating
866 * a new entry, or modifying a pre-existing one.
867 *
868 * NOTE: RXON command (without "associated" bit set) wipes the station table
869 * clean. Moving into RF_KILL state does this also. Driver must set up
870 * new station table before transmitting anything on the RXON channel
871 * (except active scans or active measurements; those commands carry
872 * their own txpower/rate setup data).
873 *
874 * When getting started on a new channel, driver must set up the
875 * IWL_BROADCAST_ID entry (last entry in the table). For a client
876 * station in a BSS, once an AP is selected, driver sets up the AP STA
877 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
878 * are all that are needed for a BSS client station. If the device is
879 * used as AP, or in an IBSS network, driver must set up station table
880 * entries for all STAs in network, starting with index IWL_STA_ID.
881 */
882 struct iwl4965_addsta_cmd {
883 u8 mode; /* 1: modify existing, 0: add new station */
884 u8 reserved[3];
885 struct sta_id_modify sta;
886 struct iwl4965_keyinfo key;
887 __le32 station_flags; /* STA_FLG_* */
888 __le32 station_flags_msk; /* STA_FLG_* */
889
890 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
891 * corresponding to bit (e.g. bit 5 controls TID 5).
892 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
893 __le16 tid_disable_tx;
894
895 __le16 reserved1;
896
897 /* TID for which to add block-ack support.
898 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
899 u8 add_immediate_ba_tid;
900
901 /* TID for which to remove block-ack support.
902 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
903 u8 remove_immediate_ba_tid;
904
905 /* Starting Sequence Number for added block-ack support.
906 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
907 __le16 add_immediate_ba_ssn;
908
909 __le32 reserved2;
910 } __attribute__ ((packed));
911
912 /* 5000 */
913 struct iwl_addsta_cmd {
914 u8 mode; /* 1: modify existing, 0: add new station */
915 u8 reserved[3];
916 struct sta_id_modify sta;
917 struct iwl_keyinfo key;
918 __le32 station_flags; /* STA_FLG_* */
919 __le32 station_flags_msk; /* STA_FLG_* */
920
921 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
922 * corresponding to bit (e.g. bit 5 controls TID 5).
923 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
924 __le16 tid_disable_tx;
925
926 __le16 reserved1;
927
928 /* TID for which to add block-ack support.
929 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
930 u8 add_immediate_ba_tid;
931
932 /* TID for which to remove block-ack support.
933 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
934 u8 remove_immediate_ba_tid;
935
936 /* Starting Sequence Number for added block-ack support.
937 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
938 __le16 add_immediate_ba_ssn;
939
940 __le32 reserved2;
941 } __attribute__ ((packed));
942
943
944 #define ADD_STA_SUCCESS_MSK 0x1
945 #define ADD_STA_NO_ROOM_IN_TABLE 0x2
946 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
947 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8
948 /*
949 * REPLY_ADD_STA = 0x18 (response)
950 */
951 struct iwl_add_sta_resp {
952 u8 status; /* ADD_STA_* */
953 } __attribute__ ((packed));
954
955 #define REM_STA_SUCCESS_MSK 0x1
956 /*
957 * REPLY_REM_STA = 0x19 (response)
958 */
959 struct iwl_rem_sta_resp {
960 u8 status;
961 } __attribute__ ((packed));
962
963 /*
964 * REPLY_REM_STA = 0x19 (command)
965 */
966 struct iwl_rem_sta_cmd {
967 u8 num_sta; /* number of removed stations */
968 u8 reserved[3];
969 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
970 u8 reserved2[2];
971 } __attribute__ ((packed));
972
973 /*
974 * REPLY_WEP_KEY = 0x20
975 */
976 struct iwl_wep_key {
977 u8 key_index;
978 u8 key_offset;
979 u8 reserved1[2];
980 u8 key_size;
981 u8 reserved2[3];
982 u8 key[16];
983 } __attribute__ ((packed));
984
985 struct iwl_wep_cmd {
986 u8 num_keys;
987 u8 global_key_type;
988 u8 flags;
989 u8 reserved;
990 struct iwl_wep_key key[0];
991 } __attribute__ ((packed));
992
993 #define WEP_KEY_WEP_TYPE 1
994 #define WEP_KEYS_MAX 4
995 #define WEP_INVALID_OFFSET 0xff
996 #define WEP_KEY_LEN_64 5
997 #define WEP_KEY_LEN_128 13
998
999 /******************************************************************************
1000 * (4)
1001 * Rx Responses:
1002 *
1003 *****************************************************************************/
1004
1005 struct iwl4965_rx_frame_stats {
1006 u8 phy_count;
1007 u8 id;
1008 u8 rssi;
1009 u8 agc;
1010 __le16 sig_avg;
1011 __le16 noise_diff;
1012 u8 payload[0];
1013 } __attribute__ ((packed));
1014
1015 struct iwl4965_rx_frame_hdr {
1016 __le16 channel;
1017 __le16 phy_flags;
1018 u8 reserved1;
1019 u8 rate;
1020 __le16 len;
1021 u8 payload[0];
1022 } __attribute__ ((packed));
1023
1024 #define RX_RES_STATUS_NO_CRC32_ERROR __constant_cpu_to_le32(1 << 0)
1025 #define RX_RES_STATUS_NO_RXE_OVERFLOW __constant_cpu_to_le32(1 << 1)
1026
1027 #define RX_RES_PHY_FLAGS_BAND_24_MSK __constant_cpu_to_le16(1 << 0)
1028 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK __constant_cpu_to_le16(1 << 1)
1029 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK __constant_cpu_to_le16(1 << 2)
1030 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK __constant_cpu_to_le16(1 << 3)
1031 #define RX_RES_PHY_FLAGS_ANTENNA_MSK __constant_cpu_to_le16(0xf0)
1032
1033 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1034 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1035 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1036 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1037 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1038 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1039
1040 #define RX_RES_STATUS_STATION_FOUND (1<<6)
1041 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1042
1043 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1044 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1045 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1046 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1047 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1048
1049 #define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1050 #define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1051 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1052 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1053
1054 struct iwl4965_rx_frame_end {
1055 __le32 status;
1056 __le64 timestamp;
1057 __le32 beacon_timestamp;
1058 } __attribute__ ((packed));
1059
1060 /*
1061 * REPLY_3945_RX = 0x1b (response only, not a command)
1062 *
1063 * NOTE: DO NOT dereference from casts to this structure
1064 * It is provided only for calculating minimum data set size.
1065 * The actual offsets of the hdr and end are dynamic based on
1066 * stats.phy_count
1067 */
1068 struct iwl4965_rx_frame {
1069 struct iwl4965_rx_frame_stats stats;
1070 struct iwl4965_rx_frame_hdr hdr;
1071 struct iwl4965_rx_frame_end end;
1072 } __attribute__ ((packed));
1073
1074 /* Fixed (non-configurable) rx data from phy */
1075 #define RX_PHY_FLAGS_ANTENNAE_OFFSET (4)
1076 #define RX_PHY_FLAGS_ANTENNAE_MASK (0x70)
1077 #define IWL_AGC_DB_MASK (0x3f80) /* MASK(7,13) */
1078 #define IWL_AGC_DB_POS (7)
1079 struct iwl4965_rx_non_cfg_phy {
1080 __le16 ant_selection; /* ant A bit 4, ant B bit 5, ant C bit 6 */
1081 __le16 agc_info; /* agc code 0:6, agc dB 7:13, reserved 14:15 */
1082 u8 rssi_info[6]; /* we use even entries, 0/2/4 for A/B/C rssi */
1083 u8 pad[0];
1084 } __attribute__ ((packed));
1085
1086 /*
1087 * REPLY_RX = 0xc3 (response only, not a command)
1088 * Used only for legacy (non 11n) frames.
1089 */
1090 #define RX_RES_PHY_CNT 14
1091 struct iwl4965_rx_phy_res {
1092 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1093 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1094 u8 stat_id; /* configurable DSP phy data set ID */
1095 u8 reserved1;
1096 __le64 timestamp; /* TSF at on air rise */
1097 __le32 beacon_time_stamp; /* beacon at on-air rise */
1098 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1099 __le16 channel; /* channel number */
1100 __le16 non_cfg_phy[RX_RES_PHY_CNT]; /* upto 14 phy entries */
1101 __le32 reserved2;
1102 __le32 rate_n_flags; /* RATE_MCS_* */
1103 __le16 byte_count; /* frame's byte-count */
1104 __le16 reserved3;
1105 } __attribute__ ((packed));
1106
1107 struct iwl4965_rx_mpdu_res_start {
1108 __le16 byte_count;
1109 __le16 reserved;
1110 } __attribute__ ((packed));
1111
1112
1113 /******************************************************************************
1114 * (5)
1115 * Tx Commands & Responses:
1116 *
1117 * Driver must place each REPLY_TX command into one of the prioritized Tx
1118 * queues in host DRAM, shared between driver and device (see comments for
1119 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1120 * are preparing to transmit, the device pulls the Tx command over the PCI
1121 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1122 * from which data will be transmitted.
1123 *
1124 * uCode handles all timing and protocol related to control frames
1125 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1126 * handle reception of block-acks; uCode updates the host driver via
1127 * REPLY_COMPRESSED_BA (4965).
1128 *
1129 * uCode handles retrying Tx when an ACK is expected but not received.
1130 * This includes trying lower data rates than the one requested in the Tx
1131 * command, as set up by the REPLY_RATE_SCALE (for 3945) or
1132 * REPLY_TX_LINK_QUALITY_CMD (4965).
1133 *
1134 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1135 * This command must be executed after every RXON command, before Tx can occur.
1136 *****************************************************************************/
1137
1138 /* REPLY_TX Tx flags field */
1139
1140 /* 1: Use Request-To-Send protocol before this frame.
1141 * Mutually exclusive vs. TX_CMD_FLG_CTS_MSK. */
1142 #define TX_CMD_FLG_RTS_MSK __constant_cpu_to_le32(1 << 1)
1143
1144 /* 1: Transmit Clear-To-Send to self before this frame.
1145 * Driver should set this for AUTH/DEAUTH/ASSOC-REQ/REASSOC mgmnt frames.
1146 * Mutually exclusive vs. TX_CMD_FLG_RTS_MSK. */
1147 #define TX_CMD_FLG_CTS_MSK __constant_cpu_to_le32(1 << 2)
1148
1149 /* 1: Expect ACK from receiving station
1150 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1151 * Set this for unicast frames, but not broadcast/multicast. */
1152 #define TX_CMD_FLG_ACK_MSK __constant_cpu_to_le32(1 << 3)
1153
1154 /* For 4965:
1155 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1156 * Tx command's initial_rate_index indicates first rate to try;
1157 * uCode walks through table for additional Tx attempts.
1158 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1159 * This rate will be used for all Tx attempts; it will not be scaled. */
1160 #define TX_CMD_FLG_STA_RATE_MSK __constant_cpu_to_le32(1 << 4)
1161
1162 /* 1: Expect immediate block-ack.
1163 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1164 #define TX_CMD_FLG_IMM_BA_RSP_MASK __constant_cpu_to_le32(1 << 6)
1165
1166 /* 1: Frame requires full Tx-Op protection.
1167 * Set this if either RTS or CTS Tx Flag gets set. */
1168 #define TX_CMD_FLG_FULL_TXOP_PROT_MSK __constant_cpu_to_le32(1 << 7)
1169
1170 /* Tx antenna selection field; used only for 3945, reserved (0) for 4965.
1171 * Set field to "0" to allow 3945 uCode to select antenna (normal usage). */
1172 #define TX_CMD_FLG_ANT_SEL_MSK __constant_cpu_to_le32(0xf00)
1173 #define TX_CMD_FLG_ANT_A_MSK __constant_cpu_to_le32(1 << 8)
1174 #define TX_CMD_FLG_ANT_B_MSK __constant_cpu_to_le32(1 << 9)
1175
1176 /* 1: Ignore Bluetooth priority for this frame.
1177 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1178 #define TX_CMD_FLG_BT_DIS_MSK __constant_cpu_to_le32(1 << 12)
1179
1180 /* 1: uCode overrides sequence control field in MAC header.
1181 * 0: Driver provides sequence control field in MAC header.
1182 * Set this for management frames, non-QOS data frames, non-unicast frames,
1183 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1184 #define TX_CMD_FLG_SEQ_CTL_MSK __constant_cpu_to_le32(1 << 13)
1185
1186 /* 1: This frame is non-last MPDU; more fragments are coming.
1187 * 0: Last fragment, or not using fragmentation. */
1188 #define TX_CMD_FLG_MORE_FRAG_MSK __constant_cpu_to_le32(1 << 14)
1189
1190 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1191 * 0: No TSF required in outgoing frame.
1192 * Set this for transmitting beacons and probe responses. */
1193 #define TX_CMD_FLG_TSF_MSK __constant_cpu_to_le32(1 << 16)
1194
1195 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1196 * alignment of frame's payload data field.
1197 * 0: No pad
1198 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1199 * field (but not both). Driver must align frame data (i.e. data following
1200 * MAC header) to DWORD boundary. */
1201 #define TX_CMD_FLG_MH_PAD_MSK __constant_cpu_to_le32(1 << 20)
1202
1203 /* accelerate aggregation support
1204 * 0 - no CCMP encryption; 1 - CCMP encryption */
1205 #define TX_CMD_FLG_AGG_CCMP_MSK __constant_cpu_to_le32(1 << 22)
1206
1207 /* HCCA-AP - disable duration overwriting. */
1208 #define TX_CMD_FLG_DUR_MSK __constant_cpu_to_le32(1 << 25)
1209
1210
1211 /*
1212 * TX command security control
1213 */
1214 #define TX_CMD_SEC_WEP 0x01
1215 #define TX_CMD_SEC_CCM 0x02
1216 #define TX_CMD_SEC_TKIP 0x03
1217 #define TX_CMD_SEC_MSK 0x03
1218 #define TX_CMD_SEC_SHIFT 6
1219 #define TX_CMD_SEC_KEY128 0x08
1220
1221 /*
1222 * security overhead sizes
1223 */
1224 #define WEP_IV_LEN 4
1225 #define WEP_ICV_LEN 4
1226 #define CCMP_MIC_LEN 8
1227 #define TKIP_ICV_LEN 4
1228
1229 /*
1230 * 4965 uCode updates these Tx attempt count values in host DRAM.
1231 * Used for managing Tx retries when expecting block-acks.
1232 * Driver should set these fields to 0.
1233 */
1234 struct iwl4965_dram_scratch {
1235 u8 try_cnt; /* Tx attempts */
1236 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1237 __le16 reserved;
1238 } __attribute__ ((packed));
1239
1240 /*
1241 * REPLY_TX = 0x1c (command)
1242 */
1243 struct iwl_tx_cmd {
1244 /*
1245 * MPDU byte count:
1246 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1247 * + 8 byte IV for CCM or TKIP (not used for WEP)
1248 * + Data payload
1249 * + 8-byte MIC (not used for CCM/WEP)
1250 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1251 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1252 * Range: 14-2342 bytes.
1253 */
1254 __le16 len;
1255
1256 /*
1257 * MPDU or MSDU byte count for next frame.
1258 * Used for fragmentation and bursting, but not 11n aggregation.
1259 * Same as "len", but for next frame. Set to 0 if not applicable.
1260 */
1261 __le16 next_frame_len;
1262
1263 __le32 tx_flags; /* TX_CMD_FLG_* */
1264
1265 /* 4965's uCode may modify this field of the Tx command (in host DRAM!).
1266 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1267 struct iwl4965_dram_scratch scratch;
1268
1269 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1270 __le32 rate_n_flags; /* RATE_MCS_* */
1271
1272 /* Index of destination station in uCode's station table */
1273 u8 sta_id;
1274
1275 /* Type of security encryption: CCM or TKIP */
1276 u8 sec_ctl; /* TX_CMD_SEC_* */
1277
1278 /*
1279 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1280 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1281 * data frames, this field may be used to selectively reduce initial
1282 * rate (via non-0 value) for special frames (e.g. management), while
1283 * still supporting rate scaling for all frames.
1284 */
1285 u8 initial_rate_index;
1286 u8 reserved;
1287 u8 key[16];
1288 __le16 next_frame_flags;
1289 __le16 reserved2;
1290 union {
1291 __le32 life_time;
1292 __le32 attempt;
1293 } stop_time;
1294
1295 /* Host DRAM physical address pointer to "scratch" in this command.
1296 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1297 __le32 dram_lsb_ptr;
1298 u8 dram_msb_ptr;
1299
1300 u8 rts_retry_limit; /*byte 50 */
1301 u8 data_retry_limit; /*byte 51 */
1302 u8 tid_tspec;
1303 union {
1304 __le16 pm_frame_timeout;
1305 __le16 attempt_duration;
1306 } timeout;
1307
1308 /*
1309 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1310 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1311 */
1312 __le16 driver_txop;
1313
1314 /*
1315 * MAC header goes here, followed by 2 bytes padding if MAC header
1316 * length is 26 or 30 bytes, followed by payload data
1317 */
1318 u8 payload[0];
1319 struct ieee80211_hdr hdr[0];
1320 } __attribute__ ((packed));
1321
1322 /* TX command response is sent after *all* transmission attempts.
1323 *
1324 * NOTES:
1325 *
1326 * TX_STATUS_FAIL_NEXT_FRAG
1327 *
1328 * If the fragment flag in the MAC header for the frame being transmitted
1329 * is set and there is insufficient time to transmit the next frame, the
1330 * TX status will be returned with 'TX_STATUS_FAIL_NEXT_FRAG'.
1331 *
1332 * TX_STATUS_FIFO_UNDERRUN
1333 *
1334 * Indicates the host did not provide bytes to the FIFO fast enough while
1335 * a TX was in progress.
1336 *
1337 * TX_STATUS_FAIL_MGMNT_ABORT
1338 *
1339 * This status is only possible if the ABORT ON MGMT RX parameter was
1340 * set to true with the TX command.
1341 *
1342 * If the MSB of the status parameter is set then an abort sequence is
1343 * required. This sequence consists of the host activating the TX Abort
1344 * control line, and then waiting for the TX Abort command response. This
1345 * indicates that a the device is no longer in a transmit state, and that the
1346 * command FIFO has been cleared. The host must then deactivate the TX Abort
1347 * control line. Receiving is still allowed in this case.
1348 */
1349 enum {
1350 TX_STATUS_SUCCESS = 0x01,
1351 TX_STATUS_DIRECT_DONE = 0x02,
1352 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1353 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1354 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1355 TX_STATUS_FAIL_MGMNT_ABORT = 0x85,
1356 TX_STATUS_FAIL_NEXT_FRAG = 0x86,
1357 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1358 TX_STATUS_FAIL_DEST_PS = 0x88,
1359 TX_STATUS_FAIL_ABORTED = 0x89,
1360 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1361 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1362 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1363 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1364 TX_STATUS_FAIL_FRAME_FLUSHED = 0x8e,
1365 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1366 TX_STATUS_FAIL_TX_LOCKED = 0x90,
1367 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1368 };
1369
1370 #define TX_PACKET_MODE_REGULAR 0x0000
1371 #define TX_PACKET_MODE_BURST_SEQ 0x0100
1372 #define TX_PACKET_MODE_BURST_FIRST 0x0200
1373
1374 enum {
1375 TX_POWER_PA_NOT_ACTIVE = 0x0,
1376 };
1377
1378 enum {
1379 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1380 TX_STATUS_DELAY_MSK = 0x00000040,
1381 TX_STATUS_ABORT_MSK = 0x00000080,
1382 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1383 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1384 TX_RESERVED = 0x00780000, /* bits 19:22 */
1385 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1386 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1387 };
1388
1389 static inline int iwl_is_tx_success(u32 status)
1390 {
1391 status &= TX_STATUS_MSK;
1392 return (status == TX_STATUS_SUCCESS)
1393 || (status == TX_STATUS_DIRECT_DONE);
1394 }
1395
1396
1397
1398 /* *******************************
1399 * TX aggregation status
1400 ******************************* */
1401
1402 enum {
1403 AGG_TX_STATE_TRANSMITTED = 0x00,
1404 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1405 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1406 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1407 AGG_TX_STATE_ABORT_MSK = 0x08,
1408 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1409 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1410 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1411 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1412 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1413 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1414 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1415 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1416 };
1417
1418 #define AGG_TX_STATE_LAST_SENT_MSK \
1419 (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1420 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1421 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1422
1423 /* # tx attempts for first frame in aggregation */
1424 #define AGG_TX_STATE_TRY_CNT_POS 12
1425 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1426
1427 /* Command ID and sequence number of Tx command for this frame */
1428 #define AGG_TX_STATE_SEQ_NUM_POS 16
1429 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1430
1431 /*
1432 * REPLY_TX = 0x1c (response)
1433 *
1434 * This response may be in one of two slightly different formats, indicated
1435 * by the frame_count field:
1436 *
1437 * 1) No aggregation (frame_count == 1). This reports Tx results for
1438 * a single frame. Multiple attempts, at various bit rates, may have
1439 * been made for this frame.
1440 *
1441 * 2) Aggregation (frame_count > 1). This reports Tx results for
1442 * 2 or more frames that used block-acknowledge. All frames were
1443 * transmitted at same rate. Rate scaling may have been used if first
1444 * frame in this new agg block failed in previous agg block(s).
1445 *
1446 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1447 * block-ack has not been received by the time the 4965 records this status.
1448 * This status relates to reasons the tx might have been blocked or aborted
1449 * within the sending station (this 4965), rather than whether it was
1450 * received successfully by the destination station.
1451 */
1452 struct agg_tx_status {
1453 __le16 status;
1454 __le16 sequence;
1455 } __attribute__ ((packed));
1456
1457 struct iwl4965_tx_resp {
1458 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1459 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1460 u8 failure_rts; /* # failures due to unsuccessful RTS */
1461 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1462
1463 /* For non-agg: Rate at which frame was successful.
1464 * For agg: Rate at which all frames were transmitted. */
1465 __le32 rate_n_flags; /* RATE_MCS_* */
1466
1467 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1468 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1469 __le16 wireless_media_time; /* uSecs */
1470
1471 __le16 reserved;
1472 __le32 pa_power1; /* RF power amplifier measurement (not used) */
1473 __le32 pa_power2;
1474
1475 /*
1476 * For non-agg: frame status TX_STATUS_*
1477 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1478 * fields follow this one, up to frame_count.
1479 * Bit fields:
1480 * 11- 0: AGG_TX_STATE_* status code
1481 * 15-12: Retry count for 1st frame in aggregation (retries
1482 * occur if tx failed for this frame when it was a
1483 * member of a previous aggregation block). If rate
1484 * scaling is used, retry count indicates the rate
1485 * table entry used for all frames in the new agg.
1486 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1487 */
1488 union {
1489 __le32 status;
1490 struct agg_tx_status agg_status[0]; /* for each agg frame */
1491 } u;
1492 } __attribute__ ((packed));
1493
1494 struct iwl5000_tx_resp {
1495 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1496 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1497 u8 failure_rts; /* # failures due to unsuccessful RTS */
1498 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1499
1500 /* For non-agg: Rate at which frame was successful.
1501 * For agg: Rate at which all frames were transmitted. */
1502 __le32 rate_n_flags; /* RATE_MCS_* */
1503
1504 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1505 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1506 __le16 wireless_media_time; /* uSecs */
1507
1508 __le16 reserved;
1509 __le32 pa_power1; /* RF power amplifier measurement (not used) */
1510 __le32 pa_power2;
1511
1512 __le32 tfd_info;
1513 __le16 seq_ctl;
1514 __le16 byte_cnt;
1515 __le32 tlc_info;
1516 /*
1517 * For non-agg: frame status TX_STATUS_*
1518 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1519 * fields follow this one, up to frame_count.
1520 * Bit fields:
1521 * 11- 0: AGG_TX_STATE_* status code
1522 * 15-12: Retry count for 1st frame in aggregation (retries
1523 * occur if tx failed for this frame when it was a
1524 * member of a previous aggregation block). If rate
1525 * scaling is used, retry count indicates the rate
1526 * table entry used for all frames in the new agg.
1527 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1528 */
1529 struct agg_tx_status status; /* TX status (in aggregation -
1530 * status of 1st frame) */
1531 } __attribute__ ((packed));
1532 /*
1533 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1534 *
1535 * Reports Block-Acknowledge from recipient station
1536 */
1537 struct iwl4965_compressed_ba_resp {
1538 __le32 sta_addr_lo32;
1539 __le16 sta_addr_hi16;
1540 __le16 reserved;
1541
1542 /* Index of recipient (BA-sending) station in uCode's station table */
1543 u8 sta_id;
1544 u8 tid;
1545 __le16 seq_ctl;
1546 __le64 bitmap;
1547 __le16 scd_flow;
1548 __le16 scd_ssn;
1549 } __attribute__ ((packed));
1550
1551 /*
1552 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1553 *
1554 * See details under "TXPOWER" in iwl-4965-hw.h.
1555 */
1556 struct iwl4965_txpowertable_cmd {
1557 u8 band; /* 0: 5 GHz, 1: 2.4 GHz */
1558 u8 reserved;
1559 __le16 channel;
1560 struct iwl4965_tx_power_db tx_power;
1561 } __attribute__ ((packed));
1562
1563 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1564 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1565
1566 /* # of EDCA prioritized tx fifos */
1567 #define LINK_QUAL_AC_NUM AC_NUM
1568
1569 /* # entries in rate scale table to support Tx retries */
1570 #define LINK_QUAL_MAX_RETRY_NUM 16
1571
1572 /* Tx antenna selection values */
1573 #define LINK_QUAL_ANT_A_MSK (1 << 0)
1574 #define LINK_QUAL_ANT_B_MSK (1 << 1)
1575 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1576
1577
1578 /**
1579 * struct iwl_link_qual_general_params
1580 *
1581 * Used in REPLY_TX_LINK_QUALITY_CMD
1582 */
1583 struct iwl_link_qual_general_params {
1584 u8 flags;
1585
1586 /* No entries at or above this (driver chosen) index contain MIMO */
1587 u8 mimo_delimiter;
1588
1589 /* Best single antenna to use for single stream (legacy, SISO). */
1590 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1591
1592 /* Best antennas to use for MIMO (unused for 4965, assumes both). */
1593 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1594
1595 /*
1596 * If driver needs to use different initial rates for different
1597 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1598 * this table will set that up, by indicating the indexes in the
1599 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1600 * Otherwise, driver should set all entries to 0.
1601 *
1602 * Entry usage:
1603 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1604 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1605 */
1606 u8 start_rate_index[LINK_QUAL_AC_NUM];
1607 } __attribute__ ((packed));
1608
1609 /**
1610 * struct iwl_link_qual_agg_params
1611 *
1612 * Used in REPLY_TX_LINK_QUALITY_CMD
1613 */
1614 struct iwl_link_qual_agg_params {
1615
1616 /* Maximum number of uSec in aggregation.
1617 * Driver should set this to 4000 (4 milliseconds). */
1618 __le16 agg_time_limit;
1619
1620 /*
1621 * Number of Tx retries allowed for a frame, before that frame will
1622 * no longer be considered for the start of an aggregation sequence
1623 * (scheduler will then try to tx it as single frame).
1624 * Driver should set this to 3.
1625 */
1626 u8 agg_dis_start_th;
1627
1628 /*
1629 * Maximum number of frames in aggregation.
1630 * 0 = no limit (default). 1 = no aggregation.
1631 * Other values = max # frames in aggregation.
1632 */
1633 u8 agg_frame_cnt_limit;
1634
1635 __le32 reserved;
1636 } __attribute__ ((packed));
1637
1638 /*
1639 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1640 *
1641 * For 4965 only; 3945 uses REPLY_RATE_SCALE.
1642 *
1643 * Each station in the 4965's internal station table has its own table of 16
1644 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1645 * an ACK is not received. This command replaces the entire table for
1646 * one station.
1647 *
1648 * NOTE: Station must already be in 4965's station table. Use REPLY_ADD_STA.
1649 *
1650 * The rate scaling procedures described below work well. Of course, other
1651 * procedures are possible, and may work better for particular environments.
1652 *
1653 *
1654 * FILLING THE RATE TABLE
1655 *
1656 * Given a particular initial rate and mode, as determined by the rate
1657 * scaling algorithm described below, the Linux driver uses the following
1658 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1659 * Link Quality command:
1660 *
1661 *
1662 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1663 * a) Use this same initial rate for first 3 entries.
1664 * b) Find next lower available rate using same mode (SISO or MIMO),
1665 * use for next 3 entries. If no lower rate available, switch to
1666 * legacy mode (no FAT channel, no MIMO, no short guard interval).
1667 * c) If using MIMO, set command's mimo_delimiter to number of entries
1668 * using MIMO (3 or 6).
1669 * d) After trying 2 HT rates, switch to legacy mode (no FAT channel,
1670 * no MIMO, no short guard interval), at the next lower bit rate
1671 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1672 * legacy procedure for remaining table entries.
1673 *
1674 * 2) If using legacy initial rate:
1675 * a) Use the initial rate for only one entry.
1676 * b) For each following entry, reduce the rate to next lower available
1677 * rate, until reaching the lowest available rate.
1678 * c) When reducing rate, also switch antenna selection.
1679 * d) Once lowest available rate is reached, repeat this rate until
1680 * rate table is filled (16 entries), switching antenna each entry.
1681 *
1682 *
1683 * ACCUMULATING HISTORY
1684 *
1685 * The rate scaling algorithm for 4965, as implemented in Linux driver, uses
1686 * two sets of frame Tx success history: One for the current/active modulation
1687 * mode, and one for a speculative/search mode that is being attempted. If the
1688 * speculative mode turns out to be more effective (i.e. actual transfer
1689 * rate is better), then the driver continues to use the speculative mode
1690 * as the new current active mode.
1691 *
1692 * Each history set contains, separately for each possible rate, data for a
1693 * sliding window of the 62 most recent tx attempts at that rate. The data
1694 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1695 * and attempted frames, from which the driver can additionally calculate a
1696 * success ratio (success / attempted) and number of failures
1697 * (attempted - success), and control the size of the window (attempted).
1698 * The driver uses the bit map to remove successes from the success sum, as
1699 * the oldest tx attempts fall out of the window.
1700 *
1701 * When the 4965 makes multiple tx attempts for a given frame, each attempt
1702 * might be at a different rate, and have different modulation characteristics
1703 * (e.g. antenna, fat channel, short guard interval), as set up in the rate
1704 * scaling table in the Link Quality command. The driver must determine
1705 * which rate table entry was used for each tx attempt, to determine which
1706 * rate-specific history to update, and record only those attempts that
1707 * match the modulation characteristics of the history set.
1708 *
1709 * When using block-ack (aggregation), all frames are transmitted at the same
1710 * rate, since there is no per-attempt acknowledgement from the destination
1711 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1712 * rate_n_flags field. After receiving a block-ack, the driver can update
1713 * history for the entire block all at once.
1714 *
1715 *
1716 * FINDING BEST STARTING RATE:
1717 *
1718 * When working with a selected initial modulation mode (see below), the
1719 * driver attempts to find a best initial rate. The initial rate is the
1720 * first entry in the Link Quality command's rate table.
1721 *
1722 * 1) Calculate actual throughput (success ratio * expected throughput, see
1723 * table below) for current initial rate. Do this only if enough frames
1724 * have been attempted to make the value meaningful: at least 6 failed
1725 * tx attempts, or at least 8 successes. If not enough, don't try rate
1726 * scaling yet.
1727 *
1728 * 2) Find available rates adjacent to current initial rate. Available means:
1729 * a) supported by hardware &&
1730 * b) supported by association &&
1731 * c) within any constraints selected by user
1732 *
1733 * 3) Gather measured throughputs for adjacent rates. These might not have
1734 * enough history to calculate a throughput. That's okay, we might try
1735 * using one of them anyway!
1736 *
1737 * 4) Try decreasing rate if, for current rate:
1738 * a) success ratio is < 15% ||
1739 * b) lower adjacent rate has better measured throughput ||
1740 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1741 *
1742 * As a sanity check, if decrease was determined above, leave rate
1743 * unchanged if:
1744 * a) lower rate unavailable
1745 * b) success ratio at current rate > 85% (very good)
1746 * c) current measured throughput is better than expected throughput
1747 * of lower rate (under perfect 100% tx conditions, see table below)
1748 *
1749 * 5) Try increasing rate if, for current rate:
1750 * a) success ratio is < 15% ||
1751 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1752 * b) higher adjacent rate has better measured throughput ||
1753 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1754 *
1755 * As a sanity check, if increase was determined above, leave rate
1756 * unchanged if:
1757 * a) success ratio at current rate < 70%. This is not particularly
1758 * good performance; higher rate is sure to have poorer success.
1759 *
1760 * 6) Re-evaluate the rate after each tx frame. If working with block-
1761 * acknowledge, history and statistics may be calculated for the entire
1762 * block (including prior history that fits within the history windows),
1763 * before re-evaluation.
1764 *
1765 * FINDING BEST STARTING MODULATION MODE:
1766 *
1767 * After working with a modulation mode for a "while" (and doing rate scaling),
1768 * the driver searches for a new initial mode in an attempt to improve
1769 * throughput. The "while" is measured by numbers of attempted frames:
1770 *
1771 * For legacy mode, search for new mode after:
1772 * 480 successful frames, or 160 failed frames
1773 * For high-throughput modes (SISO or MIMO), search for new mode after:
1774 * 4500 successful frames, or 400 failed frames
1775 *
1776 * Mode switch possibilities are (3 for each mode):
1777 *
1778 * For legacy:
1779 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1780 * For SISO:
1781 * Change antenna, try MIMO, try shortened guard interval (SGI)
1782 * For MIMO:
1783 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1784 *
1785 * When trying a new mode, use the same bit rate as the old/current mode when
1786 * trying antenna switches and shortened guard interval. When switching to
1787 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1788 * for which the expected throughput (under perfect conditions) is about the
1789 * same or slightly better than the actual measured throughput delivered by
1790 * the old/current mode.
1791 *
1792 * Actual throughput can be estimated by multiplying the expected throughput
1793 * by the success ratio (successful / attempted tx frames). Frame size is
1794 * not considered in this calculation; it assumes that frame size will average
1795 * out to be fairly consistent over several samples. The following are
1796 * metric values for expected throughput assuming 100% success ratio.
1797 * Only G band has support for CCK rates:
1798 *
1799 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1800 *
1801 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1802 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1803 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1804 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1805 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1806 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1807 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1808 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1809 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1810 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1811 *
1812 * After the new mode has been tried for a short while (minimum of 6 failed
1813 * frames or 8 successful frames), compare success ratio and actual throughput
1814 * estimate of the new mode with the old. If either is better with the new
1815 * mode, continue to use the new mode.
1816 *
1817 * Continue comparing modes until all 3 possibilities have been tried.
1818 * If moving from legacy to HT, try all 3 possibilities from the new HT
1819 * mode. After trying all 3, a best mode is found. Continue to use this mode
1820 * for the longer "while" described above (e.g. 480 successful frames for
1821 * legacy), and then repeat the search process.
1822 *
1823 */
1824 struct iwl_link_quality_cmd {
1825
1826 /* Index of destination/recipient station in uCode's station table */
1827 u8 sta_id;
1828 u8 reserved1;
1829 __le16 control; /* not used */
1830 struct iwl_link_qual_general_params general_params;
1831 struct iwl_link_qual_agg_params agg_params;
1832
1833 /*
1834 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1835 * specifies 1st Tx rate attempted, via index into this table.
1836 * 4965 works its way through table when retrying Tx.
1837 */
1838 struct {
1839 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1840 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1841 __le32 reserved2;
1842 } __attribute__ ((packed));
1843
1844 /*
1845 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1846 *
1847 * 3945 and 4965 support hardware handshake with Bluetooth device on
1848 * same platform. Bluetooth device alerts wireless device when it will Tx;
1849 * wireless device can delay or kill its own Tx to accomodate.
1850 */
1851 struct iwl4965_bt_cmd {
1852 u8 flags;
1853 u8 lead_time;
1854 u8 max_kill;
1855 u8 reserved;
1856 __le32 kill_ack_mask;
1857 __le32 kill_cts_mask;
1858 } __attribute__ ((packed));
1859
1860 /******************************************************************************
1861 * (6)
1862 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1863 *
1864 *****************************************************************************/
1865
1866 /*
1867 * Spectrum Management
1868 */
1869 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
1870 RXON_FILTER_CTL2HOST_MSK | \
1871 RXON_FILTER_ACCEPT_GRP_MSK | \
1872 RXON_FILTER_DIS_DECRYPT_MSK | \
1873 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1874 RXON_FILTER_ASSOC_MSK | \
1875 RXON_FILTER_BCON_AWARE_MSK)
1876
1877 struct iwl4965_measure_channel {
1878 __le32 duration; /* measurement duration in extended beacon
1879 * format */
1880 u8 channel; /* channel to measure */
1881 u8 type; /* see enum iwl4965_measure_type */
1882 __le16 reserved;
1883 } __attribute__ ((packed));
1884
1885 /*
1886 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
1887 */
1888 struct iwl4965_spectrum_cmd {
1889 __le16 len; /* number of bytes starting from token */
1890 u8 token; /* token id */
1891 u8 id; /* measurement id -- 0 or 1 */
1892 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
1893 u8 periodic; /* 1 = periodic */
1894 __le16 path_loss_timeout;
1895 __le32 start_time; /* start time in extended beacon format */
1896 __le32 reserved2;
1897 __le32 flags; /* rxon flags */
1898 __le32 filter_flags; /* rxon filter flags */
1899 __le16 channel_count; /* minimum 1, maximum 10 */
1900 __le16 reserved3;
1901 struct iwl4965_measure_channel channels[10];
1902 } __attribute__ ((packed));
1903
1904 /*
1905 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
1906 */
1907 struct iwl4965_spectrum_resp {
1908 u8 token;
1909 u8 id; /* id of the prior command replaced, or 0xff */
1910 __le16 status; /* 0 - command will be handled
1911 * 1 - cannot handle (conflicts with another
1912 * measurement) */
1913 } __attribute__ ((packed));
1914
1915 enum iwl4965_measurement_state {
1916 IWL_MEASUREMENT_START = 0,
1917 IWL_MEASUREMENT_STOP = 1,
1918 };
1919
1920 enum iwl4965_measurement_status {
1921 IWL_MEASUREMENT_OK = 0,
1922 IWL_MEASUREMENT_CONCURRENT = 1,
1923 IWL_MEASUREMENT_CSA_CONFLICT = 2,
1924 IWL_MEASUREMENT_TGH_CONFLICT = 3,
1925 /* 4-5 reserved */
1926 IWL_MEASUREMENT_STOPPED = 6,
1927 IWL_MEASUREMENT_TIMEOUT = 7,
1928 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
1929 };
1930
1931 #define NUM_ELEMENTS_IN_HISTOGRAM 8
1932
1933 struct iwl4965_measurement_histogram {
1934 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
1935 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
1936 } __attribute__ ((packed));
1937
1938 /* clear channel availability counters */
1939 struct iwl4965_measurement_cca_counters {
1940 __le32 ofdm;
1941 __le32 cck;
1942 } __attribute__ ((packed));
1943
1944 enum iwl4965_measure_type {
1945 IWL_MEASURE_BASIC = (1 << 0),
1946 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
1947 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
1948 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
1949 IWL_MEASURE_FRAME = (1 << 4),
1950 /* bits 5:6 are reserved */
1951 IWL_MEASURE_IDLE = (1 << 7),
1952 };
1953
1954 /*
1955 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
1956 */
1957 struct iwl4965_spectrum_notification {
1958 u8 id; /* measurement id -- 0 or 1 */
1959 u8 token;
1960 u8 channel_index; /* index in measurement channel list */
1961 u8 state; /* 0 - start, 1 - stop */
1962 __le32 start_time; /* lower 32-bits of TSF */
1963 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
1964 u8 channel;
1965 u8 type; /* see enum iwl4965_measurement_type */
1966 u8 reserved1;
1967 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
1968 * valid if applicable for measurement type requested. */
1969 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
1970 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
1971 __le32 cca_time; /* channel load time in usecs */
1972 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
1973 * unidentified */
1974 u8 reserved2[3];
1975 struct iwl4965_measurement_histogram histogram;
1976 __le32 stop_time; /* lower 32-bits of TSF */
1977 __le32 status; /* see iwl4965_measurement_status */
1978 } __attribute__ ((packed));
1979
1980 /******************************************************************************
1981 * (7)
1982 * Power Management Commands, Responses, Notifications:
1983 *
1984 *****************************************************************************/
1985
1986 /**
1987 * struct iwl4965_powertable_cmd - Power Table Command
1988 * @flags: See below:
1989 *
1990 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
1991 *
1992 * PM allow:
1993 * bit 0 - '0' Driver not allow power management
1994 * '1' Driver allow PM (use rest of parameters)
1995 * uCode send sleep notifications:
1996 * bit 1 - '0' Don't send sleep notification
1997 * '1' send sleep notification (SEND_PM_NOTIFICATION)
1998 * Sleep over DTIM
1999 * bit 2 - '0' PM have to walk up every DTIM
2000 * '1' PM could sleep over DTIM till listen Interval.
2001 * PCI power managed
2002 * bit 3 - '0' (PCI_LINK_CTRL & 0x1)
2003 * '1' !(PCI_LINK_CTRL & 0x1)
2004 * Force sleep Modes
2005 * bit 31/30- '00' use both mac/xtal sleeps
2006 * '01' force Mac sleep
2007 * '10' force xtal sleep
2008 * '11' Illegal set
2009 *
2010 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2011 * ucode assume sleep over DTIM is allowed and we don't need to wakeup
2012 * for every DTIM.
2013 */
2014 #define IWL_POWER_VEC_SIZE 5
2015
2016 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK __constant_cpu_to_le16(1 << 0)
2017 #define IWL_POWER_SLEEP_OVER_DTIM_MSK __constant_cpu_to_le16(1 << 2)
2018 #define IWL_POWER_PCI_PM_MSK __constant_cpu_to_le16(1 << 3)
2019 #define IWL_POWER_FAST_PD __constant_cpu_to_le16(1 << 4)
2020
2021 struct iwl4965_powertable_cmd {
2022 __le16 flags;
2023 u8 keep_alive_seconds;
2024 u8 debug_flags;
2025 __le32 rx_data_timeout;
2026 __le32 tx_data_timeout;
2027 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2028 __le32 keep_alive_beacons;
2029 } __attribute__ ((packed));
2030
2031 /*
2032 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2033 * 3945 and 4965 identical.
2034 */
2035 struct iwl4965_sleep_notification {
2036 u8 pm_sleep_mode;
2037 u8 pm_wakeup_src;
2038 __le16 reserved;
2039 __le32 sleep_time;
2040 __le32 tsf_low;
2041 __le32 bcon_timer;
2042 } __attribute__ ((packed));
2043
2044 /* Sleep states. 3945 and 4965 identical. */
2045 enum {
2046 IWL_PM_NO_SLEEP = 0,
2047 IWL_PM_SLP_MAC = 1,
2048 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2049 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2050 IWL_PM_SLP_PHY = 4,
2051 IWL_PM_SLP_REPENT = 5,
2052 IWL_PM_WAKEUP_BY_TIMER = 6,
2053 IWL_PM_WAKEUP_BY_DRIVER = 7,
2054 IWL_PM_WAKEUP_BY_RFKILL = 8,
2055 /* 3 reserved */
2056 IWL_PM_NUM_OF_MODES = 12,
2057 };
2058
2059 /*
2060 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2061 */
2062 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2063 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2064 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2065 struct iwl4965_card_state_cmd {
2066 __le32 status; /* CARD_STATE_CMD_* request new power state */
2067 } __attribute__ ((packed));
2068
2069 /*
2070 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2071 */
2072 struct iwl4965_card_state_notif {
2073 __le32 flags;
2074 } __attribute__ ((packed));
2075
2076 #define HW_CARD_DISABLED 0x01
2077 #define SW_CARD_DISABLED 0x02
2078 #define RF_CARD_DISABLED 0x04
2079 #define RXON_CARD_DISABLED 0x10
2080
2081 struct iwl4965_ct_kill_config {
2082 __le32 reserved;
2083 __le32 critical_temperature_M;
2084 __le32 critical_temperature_R;
2085 } __attribute__ ((packed));
2086
2087 /******************************************************************************
2088 * (8)
2089 * Scan Commands, Responses, Notifications:
2090 *
2091 *****************************************************************************/
2092
2093 /**
2094 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2095 *
2096 * One for each channel in the scan list.
2097 * Each channel can independently select:
2098 * 1) SSID for directed active scans
2099 * 2) Txpower setting (for rate specified within Tx command)
2100 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2101 * quiet_plcp_th, good_CRC_th)
2102 *
2103 * To avoid uCode errors, make sure the following are true (see comments
2104 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2105 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2106 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2107 * 2) quiet_time <= active_dwell
2108 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2109 * passive_dwell < max_out_time
2110 * active_dwell < max_out_time
2111 */
2112 struct iwl_scan_channel {
2113 /*
2114 * type is defined as:
2115 * 0:0 1 = active, 0 = passive
2116 * 1:4 SSID direct bit map; if a bit is set, then corresponding
2117 * SSID IE is transmitted in probe request.
2118 * 5:7 reserved
2119 */
2120 u8 type;
2121 u8 channel; /* band is selected by iwl4965_scan_cmd "flags" field */
2122 u8 tx_gain; /* gain for analog radio */
2123 u8 dsp_atten; /* gain for DSP */
2124 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2125 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2126 } __attribute__ ((packed));
2127
2128 /**
2129 * struct iwl_ssid_ie - directed scan network information element
2130 *
2131 * Up to 4 of these may appear in REPLY_SCAN_CMD, selected by "type" field
2132 * in struct iwl4965_scan_channel; each channel may select different ssids from
2133 * among the 4 entries. SSID IEs get transmitted in reverse order of entry.
2134 */
2135 struct iwl_ssid_ie {
2136 u8 id;
2137 u8 len;
2138 u8 ssid[32];
2139 } __attribute__ ((packed));
2140
2141 #define PROBE_OPTION_MAX 0x4
2142 #define TX_CMD_LIFE_TIME_INFINITE __constant_cpu_to_le32(0xFFFFFFFF)
2143 #define IWL_GOOD_CRC_TH __constant_cpu_to_le16(1)
2144 #define IWL_MAX_SCAN_SIZE 1024
2145
2146 /*
2147 * REPLY_SCAN_CMD = 0x80 (command)
2148 *
2149 * The hardware scan command is very powerful; the driver can set it up to
2150 * maintain (relatively) normal network traffic while doing a scan in the
2151 * background. The max_out_time and suspend_time control the ratio of how
2152 * long the device stays on an associated network channel ("service channel")
2153 * vs. how long it's away from the service channel, i.e. tuned to other channels
2154 * for scanning.
2155 *
2156 * max_out_time is the max time off-channel (in usec), and suspend_time
2157 * is how long (in "extended beacon" format) that the scan is "suspended"
2158 * after returning to the service channel. That is, suspend_time is the
2159 * time that we stay on the service channel, doing normal work, between
2160 * scan segments. The driver may set these parameters differently to support
2161 * scanning when associated vs. not associated, and light vs. heavy traffic
2162 * loads when associated.
2163 *
2164 * After receiving this command, the device's scan engine does the following;
2165 *
2166 * 1) Sends SCAN_START notification to driver
2167 * 2) Checks to see if it has time to do scan for one channel
2168 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2169 * to tell AP that we're going off-channel
2170 * 4) Tunes to first channel in scan list, does active or passive scan
2171 * 5) Sends SCAN_RESULT notification to driver
2172 * 6) Checks to see if it has time to do scan on *next* channel in list
2173 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2174 * before max_out_time expires
2175 * 8) Returns to service channel
2176 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2177 * 10) Stays on service channel until suspend_time expires
2178 * 11) Repeats entire process 2-10 until list is complete
2179 * 12) Sends SCAN_COMPLETE notification
2180 *
2181 * For fast, efficient scans, the scan command also has support for staying on
2182 * a channel for just a short time, if doing active scanning and getting no
2183 * responses to the transmitted probe request. This time is controlled by
2184 * quiet_time, and the number of received packets below which a channel is
2185 * considered "quiet" is controlled by quiet_plcp_threshold.
2186 *
2187 * For active scanning on channels that have regulatory restrictions against
2188 * blindly transmitting, the scan can listen before transmitting, to make sure
2189 * that there is already legitimate activity on the channel. If enough
2190 * packets are cleanly received on the channel (controlled by good_CRC_th,
2191 * typical value 1), the scan engine starts transmitting probe requests.
2192 *
2193 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2194 *
2195 * To avoid uCode errors, see timing restrictions described under
2196 * struct iwl_scan_channel.
2197 */
2198 struct iwl_scan_cmd {
2199 __le16 len;
2200 u8 reserved0;
2201 u8 channel_count; /* # channels in channel list */
2202 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2203 * (only for active scan) */
2204 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2205 __le16 good_CRC_th; /* passive -> active promotion threshold */
2206 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2207 __le32 max_out_time; /* max usec to be away from associated (service)
2208 * channel */
2209 __le32 suspend_time; /* pause scan this long (in "extended beacon
2210 * format") when returning to service chnl:
2211 * 3945; 31:24 # beacons, 19:0 additional usec,
2212 * 4965; 31:22 # beacons, 21:0 additional usec.
2213 */
2214 __le32 flags; /* RXON_FLG_* */
2215 __le32 filter_flags; /* RXON_FILTER_* */
2216
2217 /* For active scans (set to all-0s for passive scans).
2218 * Does not include payload. Must specify Tx rate; no rate scaling. */
2219 struct iwl_tx_cmd tx_cmd;
2220
2221 /* For directed active scans (set to all-0s otherwise) */
2222 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2223
2224 /*
2225 * Probe request frame, followed by channel list.
2226 *
2227 * Size of probe request frame is specified by byte count in tx_cmd.
2228 * Channel list follows immediately after probe request frame.
2229 * Number of channels in list is specified by channel_count.
2230 * Each channel in list is of type:
2231 *
2232 * struct iwl4965_scan_channel channels[0];
2233 *
2234 * NOTE: Only one band of channels can be scanned per pass. You
2235 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2236 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2237 * before requesting another scan.
2238 */
2239 u8 data[0];
2240 } __attribute__ ((packed));
2241
2242 /* Can abort will notify by complete notification with abort status. */
2243 #define CAN_ABORT_STATUS __constant_cpu_to_le32(0x1)
2244 /* complete notification statuses */
2245 #define ABORT_STATUS 0x2
2246
2247 /*
2248 * REPLY_SCAN_CMD = 0x80 (response)
2249 */
2250 struct iwl_scanreq_notification {
2251 __le32 status; /* 1: okay, 2: cannot fulfill request */
2252 } __attribute__ ((packed));
2253
2254 /*
2255 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2256 */
2257 struct iwl_scanstart_notification {
2258 __le32 tsf_low;
2259 __le32 tsf_high;
2260 __le32 beacon_timer;
2261 u8 channel;
2262 u8 band;
2263 u8 reserved[2];
2264 __le32 status;
2265 } __attribute__ ((packed));
2266
2267 #define SCAN_OWNER_STATUS 0x1;
2268 #define MEASURE_OWNER_STATUS 0x2;
2269
2270 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2271 /*
2272 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2273 */
2274 struct iwl_scanresults_notification {
2275 u8 channel;
2276 u8 band;
2277 u8 reserved[2];
2278 __le32 tsf_low;
2279 __le32 tsf_high;
2280 __le32 statistics[NUMBER_OF_STATISTICS];
2281 } __attribute__ ((packed));
2282
2283 /*
2284 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2285 */
2286 struct iwl_scancomplete_notification {
2287 u8 scanned_channels;
2288 u8 status;
2289 u8 reserved;
2290 u8 last_channel;
2291 __le32 tsf_low;
2292 __le32 tsf_high;
2293 } __attribute__ ((packed));
2294
2295
2296 /******************************************************************************
2297 * (9)
2298 * IBSS/AP Commands and Notifications:
2299 *
2300 *****************************************************************************/
2301
2302 /*
2303 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2304 */
2305 struct iwl4965_beacon_notif {
2306 struct iwl4965_tx_resp beacon_notify_hdr;
2307 __le32 low_tsf;
2308 __le32 high_tsf;
2309 __le32 ibss_mgr_status;
2310 } __attribute__ ((packed));
2311
2312 /*
2313 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2314 */
2315 struct iwl4965_tx_beacon_cmd {
2316 struct iwl_tx_cmd tx;
2317 __le16 tim_idx;
2318 u8 tim_size;
2319 u8 reserved1;
2320 struct ieee80211_hdr frame[0]; /* beacon frame */
2321 } __attribute__ ((packed));
2322
2323 /******************************************************************************
2324 * (10)
2325 * Statistics Commands and Notifications:
2326 *
2327 *****************************************************************************/
2328
2329 #define IWL_TEMP_CONVERT 260
2330
2331 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2332 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2333 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2334
2335 /* Used for passing to driver number of successes and failures per rate */
2336 struct rate_histogram {
2337 union {
2338 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2339 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2340 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2341 } success;
2342 union {
2343 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2344 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2345 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2346 } failed;
2347 } __attribute__ ((packed));
2348
2349 /* statistics command response */
2350
2351 struct statistics_rx_phy {
2352 __le32 ina_cnt;
2353 __le32 fina_cnt;
2354 __le32 plcp_err;
2355 __le32 crc32_err;
2356 __le32 overrun_err;
2357 __le32 early_overrun_err;
2358 __le32 crc32_good;
2359 __le32 false_alarm_cnt;
2360 __le32 fina_sync_err_cnt;
2361 __le32 sfd_timeout;
2362 __le32 fina_timeout;
2363 __le32 unresponded_rts;
2364 __le32 rxe_frame_limit_overrun;
2365 __le32 sent_ack_cnt;
2366 __le32 sent_cts_cnt;
2367 __le32 sent_ba_rsp_cnt;
2368 __le32 dsp_self_kill;
2369 __le32 mh_format_err;
2370 __le32 re_acq_main_rssi_sum;
2371 __le32 reserved3;
2372 } __attribute__ ((packed));
2373
2374 struct statistics_rx_ht_phy {
2375 __le32 plcp_err;
2376 __le32 overrun_err;
2377 __le32 early_overrun_err;
2378 __le32 crc32_good;
2379 __le32 crc32_err;
2380 __le32 mh_format_err;
2381 __le32 agg_crc32_good;
2382 __le32 agg_mpdu_cnt;
2383 __le32 agg_cnt;
2384 __le32 reserved2;
2385 } __attribute__ ((packed));
2386
2387 struct statistics_rx_non_phy {
2388 __le32 bogus_cts; /* CTS received when not expecting CTS */
2389 __le32 bogus_ack; /* ACK received when not expecting ACK */
2390 __le32 non_bssid_frames; /* number of frames with BSSID that
2391 * doesn't belong to the STA BSSID */
2392 __le32 filtered_frames; /* count frames that were dumped in the
2393 * filtering process */
2394 __le32 non_channel_beacons; /* beacons with our bss id but not on
2395 * our serving channel */
2396 __le32 channel_beacons; /* beacons with our bss id and in our
2397 * serving channel */
2398 __le32 num_missed_bcon; /* number of missed beacons */
2399 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2400 * ADC was in saturation */
2401 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2402 * for INA */
2403 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2404 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2405 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2406 __le32 interference_data_flag; /* flag for interference data
2407 * availability. 1 when data is
2408 * available. */
2409 __le32 channel_load; /* counts RX Enable time in uSec */
2410 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2411 * and CCK) counter */
2412 __le32 beacon_rssi_a;
2413 __le32 beacon_rssi_b;
2414 __le32 beacon_rssi_c;
2415 __le32 beacon_energy_a;
2416 __le32 beacon_energy_b;
2417 __le32 beacon_energy_c;
2418 } __attribute__ ((packed));
2419
2420 struct statistics_rx {
2421 struct statistics_rx_phy ofdm;
2422 struct statistics_rx_phy cck;
2423 struct statistics_rx_non_phy general;
2424 struct statistics_rx_ht_phy ofdm_ht;
2425 } __attribute__ ((packed));
2426
2427 struct statistics_tx_non_phy_agg {
2428 __le32 ba_timeout;
2429 __le32 ba_reschedule_frames;
2430 __le32 scd_query_agg_frame_cnt;
2431 __le32 scd_query_no_agg;
2432 __le32 scd_query_agg;
2433 __le32 scd_query_mismatch;
2434 __le32 frame_not_ready;
2435 __le32 underrun;
2436 __le32 bt_prio_kill;
2437 __le32 rx_ba_rsp_cnt;
2438 __le32 reserved2;
2439 __le32 reserved3;
2440 } __attribute__ ((packed));
2441
2442 struct statistics_tx {
2443 __le32 preamble_cnt;
2444 __le32 rx_detected_cnt;
2445 __le32 bt_prio_defer_cnt;
2446 __le32 bt_prio_kill_cnt;
2447 __le32 few_bytes_cnt;
2448 __le32 cts_timeout;
2449 __le32 ack_timeout;
2450 __le32 expected_ack_cnt;
2451 __le32 actual_ack_cnt;
2452 __le32 dump_msdu_cnt;
2453 __le32 burst_abort_next_frame_mismatch_cnt;
2454 __le32 burst_abort_missing_next_frame_cnt;
2455 __le32 cts_timeout_collision;
2456 __le32 ack_or_ba_timeout_collision;
2457 struct statistics_tx_non_phy_agg agg;
2458 } __attribute__ ((packed));
2459
2460 struct statistics_dbg {
2461 __le32 burst_check;
2462 __le32 burst_count;
2463 __le32 reserved[4];
2464 } __attribute__ ((packed));
2465
2466 struct statistics_div {
2467 __le32 tx_on_a;
2468 __le32 tx_on_b;
2469 __le32 exec_time;
2470 __le32 probe_time;
2471 __le32 reserved1;
2472 __le32 reserved2;
2473 } __attribute__ ((packed));
2474
2475 struct statistics_general {
2476 __le32 temperature;
2477 __le32 temperature_m;
2478 struct statistics_dbg dbg;
2479 __le32 sleep_time;
2480 __le32 slots_out;
2481 __le32 slots_idle;
2482 __le32 ttl_timestamp;
2483 struct statistics_div div;
2484 __le32 rx_enable_counter;
2485 __le32 reserved1;
2486 __le32 reserved2;
2487 __le32 reserved3;
2488 } __attribute__ ((packed));
2489
2490 /*
2491 * REPLY_STATISTICS_CMD = 0x9c,
2492 * 3945 and 4965 identical.
2493 *
2494 * This command triggers an immediate response containing uCode statistics.
2495 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2496 *
2497 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2498 * internal copy of the statistics (counters) after issuing the response.
2499 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2500 *
2501 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2502 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2503 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2504 */
2505 #define IWL_STATS_CONF_CLEAR_STATS __constant_cpu_to_le32(0x1) /* see above */
2506 #define IWL_STATS_CONF_DISABLE_NOTIF __constant_cpu_to_le32(0x2)/* see above */
2507 struct iwl4965_statistics_cmd {
2508 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2509 } __attribute__ ((packed));
2510
2511 /*
2512 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2513 *
2514 * By default, uCode issues this notification after receiving a beacon
2515 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2516 * REPLY_STATISTICS_CMD 0x9c, above.
2517 *
2518 * Statistics counters continue to increment beacon after beacon, but are
2519 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2520 * 0x9c with CLEAR_STATS bit set (see above).
2521 *
2522 * uCode also issues this notification during scans. uCode clears statistics
2523 * appropriately so that each notification contains statistics for only the
2524 * one channel that has just been scanned.
2525 */
2526 #define STATISTICS_REPLY_FLG_BAND_24G_MSK __constant_cpu_to_le32(0x2)
2527 #define STATISTICS_REPLY_FLG_FAT_MODE_MSK __constant_cpu_to_le32(0x8)
2528 struct iwl4965_notif_statistics {
2529 __le32 flag;
2530 struct statistics_rx rx;
2531 struct statistics_tx tx;
2532 struct statistics_general general;
2533 } __attribute__ ((packed));
2534
2535
2536 /*
2537 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2538 */
2539 /* if ucode missed CONSECUTIVE_MISSED_BCONS_TH beacons in a row,
2540 * then this notification will be sent. */
2541 #define CONSECUTIVE_MISSED_BCONS_TH 20
2542
2543 struct iwl4965_missed_beacon_notif {
2544 __le32 consequtive_missed_beacons;
2545 __le32 total_missed_becons;
2546 __le32 num_expected_beacons;
2547 __le32 num_recvd_beacons;
2548 } __attribute__ ((packed));
2549
2550
2551 /******************************************************************************
2552 * (11)
2553 * Rx Calibration Commands:
2554 *
2555 * With the uCode used for open source drivers, most Tx calibration (except
2556 * for Tx Power) and most Rx calibration is done by uCode during the
2557 * "initialize" phase of uCode boot. Driver must calibrate only:
2558 *
2559 * 1) Tx power (depends on temperature), described elsewhere
2560 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2561 * 3) Receiver sensitivity (to optimize signal detection)
2562 *
2563 *****************************************************************************/
2564
2565 /**
2566 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2567 *
2568 * This command sets up the Rx signal detector for a sensitivity level that
2569 * is high enough to lock onto all signals within the associated network,
2570 * but low enough to ignore signals that are below a certain threshold, so as
2571 * not to have too many "false alarms". False alarms are signals that the
2572 * Rx DSP tries to lock onto, but then discards after determining that they
2573 * are noise.
2574 *
2575 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2576 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2577 * time listening, not transmitting). Driver must adjust sensitivity so that
2578 * the ratio of actual false alarms to actual Rx time falls within this range.
2579 *
2580 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2581 * received beacon. These provide information to the driver to analyze the
2582 * sensitivity. Don't analyze statistics that come in from scanning, or any
2583 * other non-associated-network source. Pertinent statistics include:
2584 *
2585 * From "general" statistics (struct statistics_rx_non_phy):
2586 *
2587 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2588 * Measure of energy of desired signal. Used for establishing a level
2589 * below which the device does not detect signals.
2590 *
2591 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2592 * Measure of background noise in silent period after beacon.
2593 *
2594 * channel_load
2595 * uSecs of actual Rx time during beacon period (varies according to
2596 * how much time was spent transmitting).
2597 *
2598 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2599 *
2600 * false_alarm_cnt
2601 * Signal locks abandoned early (before phy-level header).
2602 *
2603 * plcp_err
2604 * Signal locks abandoned late (during phy-level header).
2605 *
2606 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2607 * beacon to beacon, i.e. each value is an accumulation of all errors
2608 * before and including the latest beacon. Values will wrap around to 0
2609 * after counting up to 2^32 - 1. Driver must differentiate vs.
2610 * previous beacon's values to determine # false alarms in the current
2611 * beacon period.
2612 *
2613 * Total number of false alarms = false_alarms + plcp_errs
2614 *
2615 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2616 * (notice that the start points for OFDM are at or close to settings for
2617 * maximum sensitivity):
2618 *
2619 * START / MIN / MAX
2620 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2621 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2622 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2623 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2624 *
2625 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2626 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2627 * by *adding* 1 to all 4 of the table entries above, up to the max for
2628 * each entry. Conversely, if false alarm rate is too low (less than 5
2629 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2630 * increase sensitivity.
2631 *
2632 * For CCK sensitivity, keep track of the following:
2633 *
2634 * 1). 20-beacon history of maximum background noise, indicated by
2635 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2636 * 3 receivers. For any given beacon, the "silence reference" is
2637 * the maximum of last 60 samples (20 beacons * 3 receivers).
2638 *
2639 * 2). 10-beacon history of strongest signal level, as indicated
2640 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2641 * i.e. the strength of the signal through the best receiver at the
2642 * moment. These measurements are "upside down", with lower values
2643 * for stronger signals, so max energy will be *minimum* value.
2644 *
2645 * Then for any given beacon, the driver must determine the *weakest*
2646 * of the strongest signals; this is the minimum level that needs to be
2647 * successfully detected, when using the best receiver at the moment.
2648 * "Max cck energy" is the maximum (higher value means lower energy!)
2649 * of the last 10 minima. Once this is determined, driver must add
2650 * a little margin by adding "6" to it.
2651 *
2652 * 3). Number of consecutive beacon periods with too few false alarms.
2653 * Reset this to 0 at the first beacon period that falls within the
2654 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2655 *
2656 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2657 * (notice that the start points for CCK are at maximum sensitivity):
2658 *
2659 * START / MIN / MAX
2660 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2661 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2662 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2663 *
2664 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2665 * (greater than 50 for each 204.8 msecs listening), method for reducing
2666 * sensitivity is:
2667 *
2668 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2669 * up to max 400.
2670 *
2671 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2672 * sensitivity has been reduced a significant amount; bring it up to
2673 * a moderate 161. Otherwise, *add* 3, up to max 200.
2674 *
2675 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2676 * sensitivity has been reduced only a moderate or small amount;
2677 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2678 * down to min 0. Otherwise (if gain has been significantly reduced),
2679 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2680 *
2681 * b) Save a snapshot of the "silence reference".
2682 *
2683 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2684 * (less than 5 for each 204.8 msecs listening), method for increasing
2685 * sensitivity is used only if:
2686 *
2687 * 1a) Previous beacon did not have too many false alarms
2688 * 1b) AND difference between previous "silence reference" and current
2689 * "silence reference" (prev - current) is 2 or more,
2690 * OR 2) 100 or more consecutive beacon periods have had rate of
2691 * less than 5 false alarms per 204.8 milliseconds rx time.
2692 *
2693 * Method for increasing sensitivity:
2694 *
2695 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2696 * down to min 125.
2697 *
2698 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2699 * down to min 200.
2700 *
2701 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2702 *
2703 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
2704 * (between 5 and 50 for each 204.8 msecs listening):
2705 *
2706 * 1) Save a snapshot of the silence reference.
2707 *
2708 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
2709 * give some extra margin to energy threshold by *subtracting* 8
2710 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2711 *
2712 * For all cases (too few, too many, good range), make sure that the CCK
2713 * detection threshold (energy) is below the energy level for robust
2714 * detection over the past 10 beacon periods, the "Max cck energy".
2715 * Lower values mean higher energy; this means making sure that the value
2716 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2717 *
2718 * Driver should set the following entries to fixed values:
2719 *
2720 * HD_MIN_ENERGY_OFDM_DET_INDEX 100
2721 * HD_BARKER_CORR_TH_ADD_MIN_INDEX 190
2722 * HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX 390
2723 * HD_OFDM_ENERGY_TH_IN_INDEX 62
2724 */
2725
2726 /*
2727 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2728 */
2729 #define HD_TABLE_SIZE (11) /* number of entries */
2730 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
2731 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
2732 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
2733 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
2734 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
2735 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
2736 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
2737 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
2738 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
2739 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
2740 #define HD_OFDM_ENERGY_TH_IN_INDEX (10)
2741
2742 /* Control field in struct iwl_sensitivity_cmd */
2743 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE __constant_cpu_to_le16(0)
2744 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE __constant_cpu_to_le16(1)
2745
2746 /**
2747 * struct iwl_sensitivity_cmd
2748 * @control: (1) updates working table, (0) updates default table
2749 * @table: energy threshold values, use HD_* as index into table
2750 *
2751 * Always use "1" in "control" to update uCode's working table and DSP.
2752 */
2753 struct iwl_sensitivity_cmd {
2754 __le16 control; /* always use "1" */
2755 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
2756 } __attribute__ ((packed));
2757
2758
2759 /**
2760 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
2761 *
2762 * This command sets the relative gains of 4965's 3 radio receiver chains.
2763 *
2764 * After the first association, driver should accumulate signal and noise
2765 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
2766 * beacons from the associated network (don't collect statistics that come
2767 * in from scanning, or any other non-network source).
2768 *
2769 * DISCONNECTED ANTENNA:
2770 *
2771 * Driver should determine which antennas are actually connected, by comparing
2772 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
2773 * following values over 20 beacons, one accumulator for each of the chains
2774 * a/b/c, from struct statistics_rx_non_phy:
2775 *
2776 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
2777 *
2778 * Find the strongest signal from among a/b/c. Compare the other two to the
2779 * strongest. If any signal is more than 15 dB (times 20, unless you
2780 * divide the accumulated values by 20) below the strongest, the driver
2781 * considers that antenna to be disconnected, and should not try to use that
2782 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
2783 * driver should declare the stronger one as connected, and attempt to use it
2784 * (A and B are the only 2 Tx chains!).
2785 *
2786 *
2787 * RX BALANCE:
2788 *
2789 * Driver should balance the 3 receivers (but just the ones that are connected
2790 * to antennas, see above) for gain, by comparing the average signal levels
2791 * detected during the silence after each beacon (background noise).
2792 * Accumulate (add) the following values over 20 beacons, one accumulator for
2793 * each of the chains a/b/c, from struct statistics_rx_non_phy:
2794 *
2795 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
2796 *
2797 * Find the weakest background noise level from among a/b/c. This Rx chain
2798 * will be the reference, with 0 gain adjustment. Attenuate other channels by
2799 * finding noise difference:
2800 *
2801 * (accum_noise[i] - accum_noise[reference]) / 30
2802 *
2803 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
2804 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
2805 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
2806 * and set bit 2 to indicate "reduce gain". The value for the reference
2807 * (weakest) chain should be "0".
2808 *
2809 * diff_gain_[abc] bit fields:
2810 * 2: (1) reduce gain, (0) increase gain
2811 * 1-0: amount of gain, units of 1.5 dB
2812 */
2813
2814 /* "Differential Gain" opcode used in REPLY_PHY_CALIBRATION_CMD. */
2815 #define PHY_CALIBRATE_DIFF_GAIN_CMD (7)
2816
2817 struct iwl4965_calibration_cmd {
2818 u8 opCode; /* PHY_CALIBRATE_DIFF_GAIN_CMD (7) */
2819 u8 flags; /* not used */
2820 __le16 reserved;
2821 s8 diff_gain_a; /* see above */
2822 s8 diff_gain_b;
2823 s8 diff_gain_c;
2824 u8 reserved1;
2825 } __attribute__ ((packed));
2826
2827 /* Phy calibration command for 5000 series */
2828
2829 enum {
2830 IWL5000_PHY_CALIBRATE_DC_CMD = 8,
2831 IWL5000_PHY_CALIBRATE_LO_CMD = 9,
2832 IWL5000_PHY_CALIBRATE_RX_BB_CMD = 10,
2833 IWL5000_PHY_CALIBRATE_TX_IQ_CMD = 11,
2834 IWL5000_PHY_CALIBRATE_RX_IQ_CMD = 12,
2835 IWL5000_PHY_CALIBRATION_NOISE_CMD = 13,
2836 IWL5000_PHY_CALIBRATE_AGC_TABLE_CMD = 14,
2837 IWL5000_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
2838 IWL5000_PHY_CALIBRATE_BASE_BAND_CMD = 16,
2839 IWL5000_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
2840 IWL5000_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD = 18,
2841 IWL5000_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD = 19,
2842 };
2843
2844 enum {
2845 CALIBRATION_CFG_CMD = 0x65,
2846 CALIBRATION_RES_NOTIFICATION = 0x66,
2847 CALIBRATION_COMPLETE_NOTIFICATION = 0x67
2848 };
2849
2850 struct iwl_cal_crystal_freq_cmd {
2851 u8 cap_pin1;
2852 u8 cap_pin2;
2853 } __attribute__ ((packed));
2854
2855 struct iwl5000_calibration {
2856 u8 op_code;
2857 u8 first_group;
2858 u8 num_groups;
2859 u8 all_data_valid;
2860 struct iwl_cal_crystal_freq_cmd data;
2861 } __attribute__ ((packed));
2862
2863 #define IWL_CALIB_INIT_CFG_ALL __constant_cpu_to_le32(0xffffffff)
2864
2865 struct iwl_calib_cfg_elmnt_s {
2866 __le32 is_enable;
2867 __le32 start;
2868 __le32 send_res;
2869 __le32 apply_res;
2870 __le32 reserved;
2871 } __attribute__ ((packed));
2872
2873 struct iwl_calib_cfg_status_s {
2874 struct iwl_calib_cfg_elmnt_s once;
2875 struct iwl_calib_cfg_elmnt_s perd;
2876 __le32 flags;
2877 } __attribute__ ((packed));
2878
2879 struct iwl5000_calib_cfg_cmd {
2880 struct iwl_calib_cfg_status_s ucd_calib_cfg;
2881 struct iwl_calib_cfg_status_s drv_calib_cfg;
2882 __le32 reserved1;
2883 } __attribute__ ((packed));
2884
2885 struct iwl5000_calib_hdr {
2886 u8 op_code;
2887 u8 first_group;
2888 u8 groups_num;
2889 u8 data_valid;
2890 } __attribute__ ((packed));
2891
2892 struct iwl5000_calibration_chain_noise_reset_cmd {
2893 u8 op_code; /* IWL5000_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
2894 u8 flags; /* not used */
2895 __le16 reserved;
2896 } __attribute__ ((packed));
2897
2898 struct iwl5000_calibration_chain_noise_gain_cmd {
2899 u8 op_code; /* IWL5000_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
2900 u8 flags; /* not used */
2901 __le16 reserved;
2902 u8 delta_gain_1;
2903 u8 delta_gain_2;
2904 __le16 reserved1;
2905 } __attribute__ ((packed));
2906
2907 /******************************************************************************
2908 * (12)
2909 * Miscellaneous Commands:
2910 *
2911 *****************************************************************************/
2912
2913 /*
2914 * LEDs Command & Response
2915 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
2916 *
2917 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
2918 * this command turns it on or off, or sets up a periodic blinking cycle.
2919 */
2920 struct iwl4965_led_cmd {
2921 __le32 interval; /* "interval" in uSec */
2922 u8 id; /* 1: Activity, 2: Link, 3: Tech */
2923 u8 off; /* # intervals off while blinking;
2924 * "0", with >0 "on" value, turns LED on */
2925 u8 on; /* # intervals on while blinking;
2926 * "0", regardless of "off", turns LED off */
2927 u8 reserved;
2928 } __attribute__ ((packed));
2929
2930 /*
2931 * Coexistence WIFI/WIMAX Command
2932 * COEX_PRIORITY_TABLE_CMD = 0x5a
2933 *
2934 */
2935 enum {
2936 COEX_UNASSOC_IDLE = 0,
2937 COEX_UNASSOC_MANUAL_SCAN = 1,
2938 COEX_UNASSOC_AUTO_SCAN = 2,
2939 COEX_CALIBRATION = 3,
2940 COEX_PERIODIC_CALIBRATION = 4,
2941 COEX_CONNECTION_ESTAB = 5,
2942 COEX_ASSOCIATED_IDLE = 6,
2943 COEX_ASSOC_MANUAL_SCAN = 7,
2944 COEX_ASSOC_AUTO_SCAN = 8,
2945 COEX_ASSOC_ACTIVE_LEVEL = 9,
2946 COEX_RF_ON = 10,
2947 COEX_RF_OFF = 11,
2948 COEX_STAND_ALONE_DEBUG = 12,
2949 COEX_IPAN_ASSOC_LEVEL = 13,
2950 COEX_RSRVD1 = 14,
2951 COEX_RSRVD2 = 15,
2952 COEX_NUM_OF_EVENTS = 16
2953 };
2954
2955 struct iwl_wimax_coex_event_entry {
2956 u8 request_prio;
2957 u8 win_medium_prio;
2958 u8 reserved;
2959 u8 flags;
2960 } __attribute__ ((packed));
2961
2962 /* COEX flag masks */
2963
2964 /* Staion table is valid */
2965 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
2966 /* UnMask wakeup src at unassociated sleep */
2967 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
2968 /* UnMask wakeup src at associated sleep */
2969 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
2970 /* Enable CoEx feature. */
2971 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
2972
2973 struct iwl_wimax_coex_cmd {
2974 u8 flags;
2975 u8 reserved[3];
2976 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
2977 } __attribute__ ((packed));
2978
2979 /******************************************************************************
2980 * (13)
2981 * Union of all expected notifications/responses:
2982 *
2983 *****************************************************************************/
2984
2985 struct iwl_rx_packet {
2986 __le32 len;
2987 struct iwl_cmd_header hdr;
2988 union {
2989 struct iwl_alive_resp alive_frame;
2990 struct iwl4965_rx_frame rx_frame;
2991 struct iwl4965_tx_resp tx_resp;
2992 struct iwl4965_spectrum_notification spectrum_notif;
2993 struct iwl4965_csa_notification csa_notif;
2994 struct iwl_error_resp err_resp;
2995 struct iwl4965_card_state_notif card_state_notif;
2996 struct iwl4965_beacon_notif beacon_status;
2997 struct iwl_add_sta_resp add_sta;
2998 struct iwl_rem_sta_resp rem_sta;
2999 struct iwl4965_sleep_notification sleep_notif;
3000 struct iwl4965_spectrum_resp spectrum;
3001 struct iwl4965_notif_statistics stats;
3002 struct iwl4965_compressed_ba_resp compressed_ba;
3003 struct iwl4965_missed_beacon_notif missed_beacon;
3004 struct iwl5000_calibration calib;
3005 __le32 status;
3006 u8 raw[0];
3007 } u;
3008 } __attribute__ ((packed));
3009
3010 #define IWL_RX_FRAME_SIZE (4 + sizeof(struct iwl4965_rx_frame))
3011
3012 #endif /* __iwl4965_commands_h__ */
This page took 0.094117 seconds and 5 git commands to generate.