iwlwifi: 3945 remove iwl-3945-commands.h
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-commands.h
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63 /*
64 * Please use this file (iwl-commands.h) only for uCode API definitions.
65 * Please use iwl-4965-hw.h for hardware-related definitions.
66 * Please use iwl-dev.h for driver implementation definitions.
67 */
68
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
71
72 /* uCode version contains 4 values: Major/Minor/API/Serial */
73 #define IWL_UCODE_MAJOR(ver) (((ver) & 0xFF000000) >> 24)
74 #define IWL_UCODE_MINOR(ver) (((ver) & 0x00FF0000) >> 16)
75 #define IWL_UCODE_API(ver) (((ver) & 0x0000FF00) >> 8)
76 #define IWL_UCODE_SERIAL(ver) ((ver) & 0x000000FF)
77
78
79 /* Tx rates */
80 #define IWL_CCK_RATES 4
81 #define IWL_OFDM_RATES 8
82 #define IWL_MAX_RATES (IWL_CCK_RATES + IWL_OFDM_RATES)
83
84 enum {
85 REPLY_ALIVE = 0x1,
86 REPLY_ERROR = 0x2,
87
88 /* RXON and QOS commands */
89 REPLY_RXON = 0x10,
90 REPLY_RXON_ASSOC = 0x11,
91 REPLY_QOS_PARAM = 0x13,
92 REPLY_RXON_TIMING = 0x14,
93
94 /* Multi-Station support */
95 REPLY_ADD_STA = 0x18,
96 REPLY_REMOVE_STA = 0x19, /* not used */
97 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
98
99 /* Security */
100 REPLY_WEPKEY = 0x20,
101
102 /* RX, TX, LEDs */
103 REPLY_3945_RX = 0x1b, /* 3945 only */
104 REPLY_TX = 0x1c,
105 REPLY_RATE_SCALE = 0x47, /* 3945 only */
106 REPLY_LEDS_CMD = 0x48,
107 REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* 4965 only */
108
109 /* WiMAX coexistence */
110 COEX_PRIORITY_TABLE_CMD = 0x5a, /*5000 only */
111 COEX_MEDIUM_NOTIFICATION = 0x5b,
112 COEX_EVENT_CMD = 0x5c,
113
114 /* Calibration */
115 CALIBRATION_CFG_CMD = 0x65,
116 CALIBRATION_RES_NOTIFICATION = 0x66,
117 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
118
119 /* 802.11h related */
120 RADAR_NOTIFICATION = 0x70, /* not used */
121 REPLY_QUIET_CMD = 0x71, /* not used */
122 REPLY_CHANNEL_SWITCH = 0x72,
123 CHANNEL_SWITCH_NOTIFICATION = 0x73,
124 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
125 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
126
127 /* Power Management */
128 POWER_TABLE_CMD = 0x77,
129 PM_SLEEP_NOTIFICATION = 0x7A,
130 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
131
132 /* Scan commands and notifications */
133 REPLY_SCAN_CMD = 0x80,
134 REPLY_SCAN_ABORT_CMD = 0x81,
135 SCAN_START_NOTIFICATION = 0x82,
136 SCAN_RESULTS_NOTIFICATION = 0x83,
137 SCAN_COMPLETE_NOTIFICATION = 0x84,
138
139 /* IBSS/AP commands */
140 BEACON_NOTIFICATION = 0x90,
141 REPLY_TX_BEACON = 0x91,
142 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
143
144 /* Miscellaneous commands */
145 QUIET_NOTIFICATION = 0x96, /* not used */
146 REPLY_TX_PWR_TABLE_CMD = 0x97,
147 REPLY_TX_POWER_DBM_CMD = 0x98,
148 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
149
150 /* Bluetooth device coexistence config command */
151 REPLY_BT_CONFIG = 0x9b,
152
153 /* Statistics */
154 REPLY_STATISTICS_CMD = 0x9c,
155 STATISTICS_NOTIFICATION = 0x9d,
156
157 /* RF-KILL commands and notifications */
158 REPLY_CARD_STATE_CMD = 0xa0,
159 CARD_STATE_NOTIFICATION = 0xa1,
160
161 /* Missed beacons notification */
162 MISSED_BEACONS_NOTIFICATION = 0xa2,
163
164 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
165 SENSITIVITY_CMD = 0xa8,
166 REPLY_PHY_CALIBRATION_CMD = 0xb0,
167 REPLY_RX_PHY_CMD = 0xc0,
168 REPLY_RX_MPDU_CMD = 0xc1,
169 REPLY_RX = 0xc3,
170 REPLY_COMPRESSED_BA = 0xc5,
171 REPLY_MAX = 0xff
172 };
173
174 /******************************************************************************
175 * (0)
176 * Commonly used structures and definitions:
177 * Command header, rate_n_flags, txpower
178 *
179 *****************************************************************************/
180
181 /* iwl_cmd_header flags value */
182 #define IWL_CMD_FAILED_MSK 0x40
183
184 #define SEQ_TO_QUEUE(s) (((s) >> 8) & 0x1f)
185 #define QUEUE_TO_SEQ(q) (((q) & 0x1f) << 8)
186 #define SEQ_TO_INDEX(s) ((s) & 0xff)
187 #define INDEX_TO_SEQ(i) ((i) & 0xff)
188 #define SEQ_HUGE_FRAME cpu_to_le16(0x4000)
189 #define SEQ_RX_FRAME cpu_to_le16(0x8000)
190
191 /**
192 * struct iwl_cmd_header
193 *
194 * This header format appears in the beginning of each command sent from the
195 * driver, and each response/notification received from uCode.
196 */
197 struct iwl_cmd_header {
198 u8 cmd; /* Command ID: REPLY_RXON, etc. */
199 u8 flags; /* 0:5 reserved, 6 abort, 7 internal */
200 /*
201 * The driver sets up the sequence number to values of its choosing.
202 * uCode does not use this value, but passes it back to the driver
203 * when sending the response to each driver-originated command, so
204 * the driver can match the response to the command. Since the values
205 * don't get used by uCode, the driver may set up an arbitrary format.
206 *
207 * There is one exception: uCode sets bit 15 when it originates
208 * the response/notification, i.e. when the response/notification
209 * is not a direct response to a command sent by the driver. For
210 * example, uCode issues REPLY_3945_RX when it sends a received frame
211 * to the driver; it is not a direct response to any driver command.
212 *
213 * The Linux driver uses the following format:
214 *
215 * 0:7 tfd index - position within TX queue
216 * 8:12 TX queue id
217 * 13 reserved
218 * 14 huge - driver sets this to indicate command is in the
219 * 'huge' storage at the end of the command buffers
220 * 15 unsolicited RX or uCode-originated notification
221 */
222 __le16 sequence;
223
224 /* command or response/notification data follows immediately */
225 u8 data[0];
226 } __attribute__ ((packed));
227
228
229 /**
230 * struct iwl3945_tx_power
231 *
232 * Used in REPLY_TX_PWR_TABLE_CMD, REPLY_SCAN_CMD, REPLY_CHANNEL_SWITCH
233 *
234 * Each entry contains two values:
235 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
236 * linear value that multiplies the output of the digital signal processor,
237 * before being sent to the analog radio.
238 * 2) Radio gain. This sets the analog gain of the radio Tx path.
239 * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
240 *
241 * Driver obtains values from struct iwl3945_tx_power power_gain_table[][].
242 */
243 struct iwl3945_tx_power {
244 u8 tx_gain; /* gain for analog radio */
245 u8 dsp_atten; /* gain for DSP */
246 } __attribute__ ((packed));
247
248 /**
249 * struct iwl3945_power_per_rate
250 *
251 * Used in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
252 */
253 struct iwl3945_power_per_rate {
254 u8 rate; /* plcp */
255 struct iwl3945_tx_power tpc;
256 u8 reserved;
257 } __attribute__ ((packed));
258
259 /**
260 * iwlagn rate_n_flags bit fields
261 *
262 * rate_n_flags format is used in following iwlagn commands:
263 * REPLY_RX (response only)
264 * REPLY_RX_MPDU (response only)
265 * REPLY_TX (both command and response)
266 * REPLY_TX_LINK_QUALITY_CMD
267 *
268 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
269 * 2-0: 0) 6 Mbps
270 * 1) 12 Mbps
271 * 2) 18 Mbps
272 * 3) 24 Mbps
273 * 4) 36 Mbps
274 * 5) 48 Mbps
275 * 6) 54 Mbps
276 * 7) 60 Mbps
277 *
278 * 4-3: 0) Single stream (SISO)
279 * 1) Dual stream (MIMO)
280 * 2) Triple stream (MIMO)
281 *
282 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps FAT duplicate data
283 *
284 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
285 * 3-0: 0xD) 6 Mbps
286 * 0xF) 9 Mbps
287 * 0x5) 12 Mbps
288 * 0x7) 18 Mbps
289 * 0x9) 24 Mbps
290 * 0xB) 36 Mbps
291 * 0x1) 48 Mbps
292 * 0x3) 54 Mbps
293 *
294 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
295 * 6-0: 10) 1 Mbps
296 * 20) 2 Mbps
297 * 55) 5.5 Mbps
298 * 110) 11 Mbps
299 */
300 #define RATE_MCS_CODE_MSK 0x7
301 #define RATE_MCS_SPATIAL_POS 3
302 #define RATE_MCS_SPATIAL_MSK 0x18
303 #define RATE_MCS_HT_DUP_POS 5
304 #define RATE_MCS_HT_DUP_MSK 0x20
305
306 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
307 #define RATE_MCS_FLAGS_POS 8
308 #define RATE_MCS_HT_POS 8
309 #define RATE_MCS_HT_MSK 0x100
310
311 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
312 #define RATE_MCS_CCK_POS 9
313 #define RATE_MCS_CCK_MSK 0x200
314
315 /* Bit 10: (1) Use Green Field preamble */
316 #define RATE_MCS_GF_POS 10
317 #define RATE_MCS_GF_MSK 0x400
318
319 /* Bit 11: (1) Use 40Mhz FAT chnl width, (0) use 20 MHz legacy chnl width */
320 #define RATE_MCS_FAT_POS 11
321 #define RATE_MCS_FAT_MSK 0x800
322
323 /* Bit 12: (1) Duplicate data on both 20MHz chnls. FAT (bit 11) must be set. */
324 #define RATE_MCS_DUP_POS 12
325 #define RATE_MCS_DUP_MSK 0x1000
326
327 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
328 #define RATE_MCS_SGI_POS 13
329 #define RATE_MCS_SGI_MSK 0x2000
330
331 /**
332 * rate_n_flags Tx antenna masks
333 * 4965 has 2 transmitters
334 * 5100 has 1 transmitter B
335 * 5150 has 1 transmitter A
336 * 5300 has 3 transmitters
337 * 5350 has 3 transmitters
338 * bit14:16
339 */
340 #define RATE_MCS_ANT_POS 14
341 #define RATE_MCS_ANT_A_MSK 0x04000
342 #define RATE_MCS_ANT_B_MSK 0x08000
343 #define RATE_MCS_ANT_C_MSK 0x10000
344 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
345 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
346 #define RATE_ANT_NUM 3
347
348 #define POWER_TABLE_NUM_ENTRIES 33
349 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
350 #define POWER_TABLE_CCK_ENTRY 32
351
352 /**
353 * union iwl4965_tx_power_dual_stream
354 *
355 * Host format used for REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
356 * Use __le32 version (struct tx_power_dual_stream) when building command.
357 *
358 * Driver provides radio gain and DSP attenuation settings to device in pairs,
359 * one value for each transmitter chain. The first value is for transmitter A,
360 * second for transmitter B.
361 *
362 * For SISO bit rates, both values in a pair should be identical.
363 * For MIMO rates, one value may be different from the other,
364 * in order to balance the Tx output between the two transmitters.
365 *
366 * See more details in doc for TXPOWER in iwl-4965-hw.h.
367 */
368 union iwl4965_tx_power_dual_stream {
369 struct {
370 u8 radio_tx_gain[2];
371 u8 dsp_predis_atten[2];
372 } s;
373 u32 dw;
374 };
375
376 /**
377 * struct tx_power_dual_stream
378 *
379 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
380 *
381 * Same format as iwl_tx_power_dual_stream, but __le32
382 */
383 struct tx_power_dual_stream {
384 __le32 dw;
385 } __attribute__ ((packed));
386
387 /**
388 * struct iwl4965_tx_power_db
389 *
390 * Entire table within REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
391 */
392 struct iwl4965_tx_power_db {
393 struct tx_power_dual_stream power_tbl[POWER_TABLE_NUM_ENTRIES];
394 } __attribute__ ((packed));
395
396 /**
397 * Command REPLY_TX_POWER_DBM_CMD = 0x98
398 * struct iwl5000_tx_power_dbm_cmd
399 */
400 #define IWL50_TX_POWER_AUTO 0x7f
401 #define IWL50_TX_POWER_NO_CLOSED (0x1 << 6)
402
403 struct iwl5000_tx_power_dbm_cmd {
404 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
405 u8 flags;
406 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
407 u8 reserved;
408 } __attribute__ ((packed));
409
410 /******************************************************************************
411 * (0a)
412 * Alive and Error Commands & Responses:
413 *
414 *****************************************************************************/
415
416 #define UCODE_VALID_OK cpu_to_le32(0x1)
417 #define INITIALIZE_SUBTYPE (9)
418
419 /*
420 * ("Initialize") REPLY_ALIVE = 0x1 (response only, not a command)
421 *
422 * uCode issues this "initialize alive" notification once the initialization
423 * uCode image has completed its work, and is ready to load the runtime image.
424 * This is the *first* "alive" notification that the driver will receive after
425 * rebooting uCode; the "initialize" alive is indicated by subtype field == 9.
426 *
427 * See comments documenting "BSM" (bootstrap state machine).
428 *
429 * For 4965, this notification contains important calibration data for
430 * calculating txpower settings:
431 *
432 * 1) Power supply voltage indication. The voltage sensor outputs higher
433 * values for lower voltage, and vice verse.
434 *
435 * 2) Temperature measurement parameters, for each of two channel widths
436 * (20 MHz and 40 MHz) supported by the radios. Temperature sensing
437 * is done via one of the receiver chains, and channel width influences
438 * the results.
439 *
440 * 3) Tx gain compensation to balance 4965's 2 Tx chains for MIMO operation,
441 * for each of 5 frequency ranges.
442 */
443 struct iwl_init_alive_resp {
444 u8 ucode_minor;
445 u8 ucode_major;
446 __le16 reserved1;
447 u8 sw_rev[8];
448 u8 ver_type;
449 u8 ver_subtype; /* "9" for initialize alive */
450 __le16 reserved2;
451 __le32 log_event_table_ptr;
452 __le32 error_event_table_ptr;
453 __le32 timestamp;
454 __le32 is_valid;
455
456 /* calibration values from "initialize" uCode */
457 __le32 voltage; /* signed, higher value is lower voltage */
458 __le32 therm_r1[2]; /* signed, 1st for normal, 2nd for FAT channel*/
459 __le32 therm_r2[2]; /* signed */
460 __le32 therm_r3[2]; /* signed */
461 __le32 therm_r4[2]; /* signed */
462 __le32 tx_atten[5][2]; /* signed MIMO gain comp, 5 freq groups,
463 * 2 Tx chains */
464 } __attribute__ ((packed));
465
466
467 /**
468 * REPLY_ALIVE = 0x1 (response only, not a command)
469 *
470 * uCode issues this "alive" notification once the runtime image is ready
471 * to receive commands from the driver. This is the *second* "alive"
472 * notification that the driver will receive after rebooting uCode;
473 * this "alive" is indicated by subtype field != 9.
474 *
475 * See comments documenting "BSM" (bootstrap state machine).
476 *
477 * This response includes two pointers to structures within the device's
478 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
479 *
480 * 1) log_event_table_ptr indicates base of the event log. This traces
481 * a 256-entry history of uCode execution within a circular buffer.
482 * Its header format is:
483 *
484 * __le32 log_size; log capacity (in number of entries)
485 * __le32 type; (1) timestamp with each entry, (0) no timestamp
486 * __le32 wraps; # times uCode has wrapped to top of circular buffer
487 * __le32 write_index; next circular buffer entry that uCode would fill
488 *
489 * The header is followed by the circular buffer of log entries. Entries
490 * with timestamps have the following format:
491 *
492 * __le32 event_id; range 0 - 1500
493 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
494 * __le32 data; event_id-specific data value
495 *
496 * Entries without timestamps contain only event_id and data.
497 *
498 * 2) error_event_table_ptr indicates base of the error log. This contains
499 * information about any uCode error that occurs. For 4965, the format
500 * of the error log is:
501 *
502 * __le32 valid; (nonzero) valid, (0) log is empty
503 * __le32 error_id; type of error
504 * __le32 pc; program counter
505 * __le32 blink1; branch link
506 * __le32 blink2; branch link
507 * __le32 ilink1; interrupt link
508 * __le32 ilink2; interrupt link
509 * __le32 data1; error-specific data
510 * __le32 data2; error-specific data
511 * __le32 line; source code line of error
512 * __le32 bcon_time; beacon timer
513 * __le32 tsf_low; network timestamp function timer
514 * __le32 tsf_hi; network timestamp function timer
515 *
516 * The Linux driver can print both logs to the system log when a uCode error
517 * occurs.
518 */
519 struct iwl_alive_resp {
520 u8 ucode_minor;
521 u8 ucode_major;
522 __le16 reserved1;
523 u8 sw_rev[8];
524 u8 ver_type;
525 u8 ver_subtype; /* not "9" for runtime alive */
526 __le16 reserved2;
527 __le32 log_event_table_ptr; /* SRAM address for event log */
528 __le32 error_event_table_ptr; /* SRAM address for error log */
529 __le32 timestamp;
530 __le32 is_valid;
531 } __attribute__ ((packed));
532
533 /*
534 * REPLY_ERROR = 0x2 (response only, not a command)
535 */
536 struct iwl_error_resp {
537 __le32 error_type;
538 u8 cmd_id;
539 u8 reserved1;
540 __le16 bad_cmd_seq_num;
541 __le32 error_info;
542 __le64 timestamp;
543 } __attribute__ ((packed));
544
545 /******************************************************************************
546 * (1)
547 * RXON Commands & Responses:
548 *
549 *****************************************************************************/
550
551 /*
552 * Rx config defines & structure
553 */
554 /* rx_config device types */
555 enum {
556 RXON_DEV_TYPE_AP = 1,
557 RXON_DEV_TYPE_ESS = 3,
558 RXON_DEV_TYPE_IBSS = 4,
559 RXON_DEV_TYPE_SNIFFER = 6,
560 };
561
562
563 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
564 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
565 #define RXON_RX_CHAIN_VALID_POS (1)
566 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
567 #define RXON_RX_CHAIN_FORCE_SEL_POS (4)
568 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
569 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
570 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
571 #define RXON_RX_CHAIN_CNT_POS (10)
572 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
573 #define RXON_RX_CHAIN_MIMO_CNT_POS (12)
574 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
575 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
576
577 /* rx_config flags */
578 /* band & modulation selection */
579 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
580 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
581 /* auto detection enable */
582 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
583 /* TGg protection when tx */
584 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
585 /* cck short slot & preamble */
586 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
587 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
588 /* antenna selection */
589 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
590 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
591 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
592 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
593 /* radar detection enable */
594 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
595 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
596 /* rx response to host with 8-byte TSF
597 * (according to ON_AIR deassertion) */
598 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
599
600
601 /* HT flags */
602 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
603 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
604
605 #define RXON_FLG_HT_OPERATING_MODE_POS (23)
606
607 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
608 #define RXON_FLG_FAT_PROT_MSK cpu_to_le32(0x2 << 23)
609
610 #define RXON_FLG_CHANNEL_MODE_POS (25)
611 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
612 #define RXON_FLG_CHANNEL_MODE_PURE_40_MSK cpu_to_le32(0x1 << 25)
613 #define RXON_FLG_CHANNEL_MODE_MIXED_MSK cpu_to_le32(0x2 << 25)
614 /* CTS to self (if spec allows) flag */
615 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
616
617 /* rx_config filter flags */
618 /* accept all data frames */
619 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
620 /* pass control & management to host */
621 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
622 /* accept multi-cast */
623 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
624 /* don't decrypt uni-cast frames */
625 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
626 /* don't decrypt multi-cast frames */
627 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
628 /* STA is associated */
629 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
630 /* transfer to host non bssid beacons in associated state */
631 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
632
633 /**
634 * REPLY_RXON = 0x10 (command, has simple generic response)
635 *
636 * RXON tunes the radio tuner to a service channel, and sets up a number
637 * of parameters that are used primarily for Rx, but also for Tx operations.
638 *
639 * NOTE: When tuning to a new channel, driver must set the
640 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
641 * info within the device, including the station tables, tx retry
642 * rate tables, and txpower tables. Driver must build a new station
643 * table and txpower table before transmitting anything on the RXON
644 * channel.
645 *
646 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
647 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
648 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
649 */
650
651 struct iwl3945_rxon_cmd {
652 u8 node_addr[6];
653 __le16 reserved1;
654 u8 bssid_addr[6];
655 __le16 reserved2;
656 u8 wlap_bssid_addr[6];
657 __le16 reserved3;
658 u8 dev_type;
659 u8 air_propagation;
660 __le16 reserved4;
661 u8 ofdm_basic_rates;
662 u8 cck_basic_rates;
663 __le16 assoc_id;
664 __le32 flags;
665 __le32 filter_flags;
666 __le16 channel;
667 __le16 reserved5;
668 } __attribute__ ((packed));
669
670 struct iwl4965_rxon_cmd {
671 u8 node_addr[6];
672 __le16 reserved1;
673 u8 bssid_addr[6];
674 __le16 reserved2;
675 u8 wlap_bssid_addr[6];
676 __le16 reserved3;
677 u8 dev_type;
678 u8 air_propagation;
679 __le16 rx_chain;
680 u8 ofdm_basic_rates;
681 u8 cck_basic_rates;
682 __le16 assoc_id;
683 __le32 flags;
684 __le32 filter_flags;
685 __le16 channel;
686 u8 ofdm_ht_single_stream_basic_rates;
687 u8 ofdm_ht_dual_stream_basic_rates;
688 } __attribute__ ((packed));
689
690 /* 5000 HW just extend this command */
691 struct iwl_rxon_cmd {
692 u8 node_addr[6];
693 __le16 reserved1;
694 u8 bssid_addr[6];
695 __le16 reserved2;
696 u8 wlap_bssid_addr[6];
697 __le16 reserved3;
698 u8 dev_type;
699 u8 air_propagation;
700 __le16 rx_chain;
701 u8 ofdm_basic_rates;
702 u8 cck_basic_rates;
703 __le16 assoc_id;
704 __le32 flags;
705 __le32 filter_flags;
706 __le16 channel;
707 u8 ofdm_ht_single_stream_basic_rates;
708 u8 ofdm_ht_dual_stream_basic_rates;
709 u8 ofdm_ht_triple_stream_basic_rates;
710 u8 reserved5;
711 __le16 acquisition_data;
712 __le16 reserved6;
713 } __attribute__ ((packed));
714
715 /*
716 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
717 */
718 struct iwl3945_rxon_assoc_cmd {
719 __le32 flags;
720 __le32 filter_flags;
721 u8 ofdm_basic_rates;
722 u8 cck_basic_rates;
723 __le16 reserved;
724 } __attribute__ ((packed));
725
726 struct iwl4965_rxon_assoc_cmd {
727 __le32 flags;
728 __le32 filter_flags;
729 u8 ofdm_basic_rates;
730 u8 cck_basic_rates;
731 u8 ofdm_ht_single_stream_basic_rates;
732 u8 ofdm_ht_dual_stream_basic_rates;
733 __le16 rx_chain_select_flags;
734 __le16 reserved;
735 } __attribute__ ((packed));
736
737 struct iwl5000_rxon_assoc_cmd {
738 __le32 flags;
739 __le32 filter_flags;
740 u8 ofdm_basic_rates;
741 u8 cck_basic_rates;
742 __le16 reserved1;
743 u8 ofdm_ht_single_stream_basic_rates;
744 u8 ofdm_ht_dual_stream_basic_rates;
745 u8 ofdm_ht_triple_stream_basic_rates;
746 u8 reserved2;
747 __le16 rx_chain_select_flags;
748 __le16 acquisition_data;
749 __le32 reserved3;
750 } __attribute__ ((packed));
751
752 #define IWL_CONN_MAX_LISTEN_INTERVAL 10
753
754 /*
755 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
756 */
757 struct iwl_rxon_time_cmd {
758 __le64 timestamp;
759 __le16 beacon_interval;
760 __le16 atim_window;
761 __le32 beacon_init_val;
762 __le16 listen_interval;
763 __le16 reserved;
764 } __attribute__ ((packed));
765
766 /*
767 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
768 */
769 struct iwl3945_channel_switch_cmd {
770 u8 band;
771 u8 expect_beacon;
772 __le16 channel;
773 __le32 rxon_flags;
774 __le32 rxon_filter_flags;
775 __le32 switch_time;
776 struct iwl3945_power_per_rate power[IWL_MAX_RATES];
777 } __attribute__ ((packed));
778
779 struct iwl_channel_switch_cmd {
780 u8 band;
781 u8 expect_beacon;
782 __le16 channel;
783 __le32 rxon_flags;
784 __le32 rxon_filter_flags;
785 __le32 switch_time;
786 struct iwl4965_tx_power_db tx_power;
787 } __attribute__ ((packed));
788
789 /*
790 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
791 */
792 struct iwl_csa_notification {
793 __le16 band;
794 __le16 channel;
795 __le32 status; /* 0 - OK, 1 - fail */
796 } __attribute__ ((packed));
797
798 /******************************************************************************
799 * (2)
800 * Quality-of-Service (QOS) Commands & Responses:
801 *
802 *****************************************************************************/
803
804 /**
805 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
806 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
807 *
808 * @cw_min: Contention window, start value in numbers of slots.
809 * Should be a power-of-2, minus 1. Device's default is 0x0f.
810 * @cw_max: Contention window, max value in numbers of slots.
811 * Should be a power-of-2, minus 1. Device's default is 0x3f.
812 * @aifsn: Number of slots in Arbitration Interframe Space (before
813 * performing random backoff timing prior to Tx). Device default 1.
814 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
815 *
816 * Device will automatically increase contention window by (2*CW) + 1 for each
817 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
818 * value, to cap the CW value.
819 */
820 struct iwl_ac_qos {
821 __le16 cw_min;
822 __le16 cw_max;
823 u8 aifsn;
824 u8 reserved1;
825 __le16 edca_txop;
826 } __attribute__ ((packed));
827
828 /* QoS flags defines */
829 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
830 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
831 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
832
833 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
834 #define AC_NUM 4
835
836 /*
837 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
838 *
839 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
840 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
841 */
842 struct iwl_qosparam_cmd {
843 __le32 qos_flags;
844 struct iwl_ac_qos ac[AC_NUM];
845 } __attribute__ ((packed));
846
847 /******************************************************************************
848 * (3)
849 * Add/Modify Stations Commands & Responses:
850 *
851 *****************************************************************************/
852 /*
853 * Multi station support
854 */
855
856 /* Special, dedicated locations within device's station table */
857 #define IWL_AP_ID 0
858 #define IWL_MULTICAST_ID 1
859 #define IWL_STA_ID 2
860 #define IWL3945_BROADCAST_ID 24
861 #define IWL3945_STATION_COUNT 25
862 #define IWL4965_BROADCAST_ID 31
863 #define IWL4965_STATION_COUNT 32
864 #define IWL5000_BROADCAST_ID 15
865 #define IWL5000_STATION_COUNT 16
866
867 #define IWL_STATION_COUNT 32 /* MAX(3945,4965)*/
868 #define IWL_INVALID_STATION 255
869
870 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2);
871 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8);
872 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8);
873 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
874 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
875 #define STA_FLG_MAX_AGG_SIZE_POS (19)
876 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
877 #define STA_FLG_FAT_EN_MSK cpu_to_le32(1 << 21)
878 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
879 #define STA_FLG_AGG_MPDU_DENSITY_POS (23)
880 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
881
882 /* Use in mode field. 1: modify existing entry, 0: add new station entry */
883 #define STA_CONTROL_MODIFY_MSK 0x01
884
885 /* key flags __le16*/
886 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
887 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
888 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
889 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
890 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
891
892 #define STA_KEY_FLG_KEYID_POS 8
893 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
894 /* wep key is either from global key (0) or from station info array (1) */
895 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
896
897 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
898 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
899 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
900 #define STA_KEY_MAX_NUM 8
901
902 /* Flags indicate whether to modify vs. don't change various station params */
903 #define STA_MODIFY_KEY_MASK 0x01
904 #define STA_MODIFY_TID_DISABLE_TX 0x02
905 #define STA_MODIFY_TX_RATE_MSK 0x04
906 #define STA_MODIFY_ADDBA_TID_MSK 0x08
907 #define STA_MODIFY_DELBA_TID_MSK 0x10
908
909 /* Receiver address (actually, Rx station's index into station table),
910 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
911 #define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
912
913 struct iwl4965_keyinfo {
914 __le16 key_flags;
915 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
916 u8 reserved1;
917 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
918 u8 key_offset;
919 u8 reserved2;
920 u8 key[16]; /* 16-byte unicast decryption key */
921 } __attribute__ ((packed));
922
923 /* 5000 */
924 struct iwl_keyinfo {
925 __le16 key_flags;
926 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
927 u8 reserved1;
928 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
929 u8 key_offset;
930 u8 reserved2;
931 u8 key[16]; /* 16-byte unicast decryption key */
932 __le64 tx_secur_seq_cnt;
933 __le64 hw_tkip_mic_rx_key;
934 __le64 hw_tkip_mic_tx_key;
935 } __attribute__ ((packed));
936
937 /**
938 * struct sta_id_modify
939 * @addr[ETH_ALEN]: station's MAC address
940 * @sta_id: index of station in uCode's station table
941 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
942 *
943 * Driver selects unused table index when adding new station,
944 * or the index to a pre-existing station entry when modifying that station.
945 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
946 *
947 * modify_mask flags select which parameters to modify vs. leave alone.
948 */
949 struct sta_id_modify {
950 u8 addr[ETH_ALEN];
951 __le16 reserved1;
952 u8 sta_id;
953 u8 modify_mask;
954 __le16 reserved2;
955 } __attribute__ ((packed));
956
957 /*
958 * REPLY_ADD_STA = 0x18 (command)
959 *
960 * The device contains an internal table of per-station information,
961 * with info on security keys, aggregation parameters, and Tx rates for
962 * initial Tx attempt and any retries (4965 uses REPLY_TX_LINK_QUALITY_CMD,
963 * 3945 uses REPLY_RATE_SCALE to set up rate tables).
964 *
965 * REPLY_ADD_STA sets up the table entry for one station, either creating
966 * a new entry, or modifying a pre-existing one.
967 *
968 * NOTE: RXON command (without "associated" bit set) wipes the station table
969 * clean. Moving into RF_KILL state does this also. Driver must set up
970 * new station table before transmitting anything on the RXON channel
971 * (except active scans or active measurements; those commands carry
972 * their own txpower/rate setup data).
973 *
974 * When getting started on a new channel, driver must set up the
975 * IWL_BROADCAST_ID entry (last entry in the table). For a client
976 * station in a BSS, once an AP is selected, driver sets up the AP STA
977 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
978 * are all that are needed for a BSS client station. If the device is
979 * used as AP, or in an IBSS network, driver must set up station table
980 * entries for all STAs in network, starting with index IWL_STA_ID.
981 */
982
983 struct iwl3945_addsta_cmd {
984 u8 mode; /* 1: modify existing, 0: add new station */
985 u8 reserved[3];
986 struct sta_id_modify sta;
987 struct iwl4965_keyinfo key;
988 __le32 station_flags; /* STA_FLG_* */
989 __le32 station_flags_msk; /* STA_FLG_* */
990
991 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
992 * corresponding to bit (e.g. bit 5 controls TID 5).
993 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
994 __le16 tid_disable_tx;
995
996 __le16 rate_n_flags;
997
998 /* TID for which to add block-ack support.
999 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1000 u8 add_immediate_ba_tid;
1001
1002 /* TID for which to remove block-ack support.
1003 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
1004 u8 remove_immediate_ba_tid;
1005
1006 /* Starting Sequence Number for added block-ack support.
1007 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1008 __le16 add_immediate_ba_ssn;
1009 } __attribute__ ((packed));
1010
1011 struct iwl4965_addsta_cmd {
1012 u8 mode; /* 1: modify existing, 0: add new station */
1013 u8 reserved[3];
1014 struct sta_id_modify sta;
1015 struct iwl4965_keyinfo key;
1016 __le32 station_flags; /* STA_FLG_* */
1017 __le32 station_flags_msk; /* STA_FLG_* */
1018
1019 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
1020 * corresponding to bit (e.g. bit 5 controls TID 5).
1021 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
1022 __le16 tid_disable_tx;
1023
1024 __le16 reserved1;
1025
1026 /* TID for which to add block-ack support.
1027 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1028 u8 add_immediate_ba_tid;
1029
1030 /* TID for which to remove block-ack support.
1031 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
1032 u8 remove_immediate_ba_tid;
1033
1034 /* Starting Sequence Number for added block-ack support.
1035 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1036 __le16 add_immediate_ba_ssn;
1037
1038 __le32 reserved2;
1039 } __attribute__ ((packed));
1040
1041 /* 5000 */
1042 struct iwl_addsta_cmd {
1043 u8 mode; /* 1: modify existing, 0: add new station */
1044 u8 reserved[3];
1045 struct sta_id_modify sta;
1046 struct iwl_keyinfo key;
1047 __le32 station_flags; /* STA_FLG_* */
1048 __le32 station_flags_msk; /* STA_FLG_* */
1049
1050 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
1051 * corresponding to bit (e.g. bit 5 controls TID 5).
1052 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
1053 __le16 tid_disable_tx;
1054
1055 __le16 reserved1;
1056
1057 /* TID for which to add block-ack support.
1058 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1059 u8 add_immediate_ba_tid;
1060
1061 /* TID for which to remove block-ack support.
1062 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
1063 u8 remove_immediate_ba_tid;
1064
1065 /* Starting Sequence Number for added block-ack support.
1066 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1067 __le16 add_immediate_ba_ssn;
1068
1069 __le32 reserved2;
1070 } __attribute__ ((packed));
1071
1072
1073 #define ADD_STA_SUCCESS_MSK 0x1
1074 #define ADD_STA_NO_ROOM_IN_TABLE 0x2
1075 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
1076 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8
1077 /*
1078 * REPLY_ADD_STA = 0x18 (response)
1079 */
1080 struct iwl_add_sta_resp {
1081 u8 status; /* ADD_STA_* */
1082 } __attribute__ ((packed));
1083
1084 #define REM_STA_SUCCESS_MSK 0x1
1085 /*
1086 * REPLY_REM_STA = 0x19 (response)
1087 */
1088 struct iwl_rem_sta_resp {
1089 u8 status;
1090 } __attribute__ ((packed));
1091
1092 /*
1093 * REPLY_REM_STA = 0x19 (command)
1094 */
1095 struct iwl_rem_sta_cmd {
1096 u8 num_sta; /* number of removed stations */
1097 u8 reserved[3];
1098 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
1099 u8 reserved2[2];
1100 } __attribute__ ((packed));
1101
1102 /*
1103 * REPLY_WEP_KEY = 0x20
1104 */
1105 struct iwl_wep_key {
1106 u8 key_index;
1107 u8 key_offset;
1108 u8 reserved1[2];
1109 u8 key_size;
1110 u8 reserved2[3];
1111 u8 key[16];
1112 } __attribute__ ((packed));
1113
1114 struct iwl_wep_cmd {
1115 u8 num_keys;
1116 u8 global_key_type;
1117 u8 flags;
1118 u8 reserved;
1119 struct iwl_wep_key key[0];
1120 } __attribute__ ((packed));
1121
1122 #define WEP_KEY_WEP_TYPE 1
1123 #define WEP_KEYS_MAX 4
1124 #define WEP_INVALID_OFFSET 0xff
1125 #define WEP_KEY_LEN_64 5
1126 #define WEP_KEY_LEN_128 13
1127
1128 /******************************************************************************
1129 * (4)
1130 * Rx Responses:
1131 *
1132 *****************************************************************************/
1133
1134 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1135 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1136
1137 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1138 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1139 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1140 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1141 #define RX_RES_PHY_FLAGS_ANTENNA_MSK cpu_to_le16(0xf0)
1142
1143 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1144 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1145 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1146 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1147 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1148 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1149
1150 #define RX_RES_STATUS_STATION_FOUND (1<<6)
1151 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1152
1153 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1154 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1155 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1156 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1157 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1158
1159 #define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1160 #define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1161 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1162 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1163
1164
1165 struct iwl3945_rx_frame_stats {
1166 u8 phy_count;
1167 u8 id;
1168 u8 rssi;
1169 u8 agc;
1170 __le16 sig_avg;
1171 __le16 noise_diff;
1172 u8 payload[0];
1173 } __attribute__ ((packed));
1174
1175 struct iwl3945_rx_frame_hdr {
1176 __le16 channel;
1177 __le16 phy_flags;
1178 u8 reserved1;
1179 u8 rate;
1180 __le16 len;
1181 u8 payload[0];
1182 } __attribute__ ((packed));
1183
1184 struct iwl3945_rx_frame_end {
1185 __le32 status;
1186 __le64 timestamp;
1187 __le32 beacon_timestamp;
1188 } __attribute__ ((packed));
1189
1190 /*
1191 * REPLY_3945_RX = 0x1b (response only, not a command)
1192 *
1193 * NOTE: DO NOT dereference from casts to this structure
1194 * It is provided only for calculating minimum data set size.
1195 * The actual offsets of the hdr and end are dynamic based on
1196 * stats.phy_count
1197 */
1198 struct iwl3945_rx_frame {
1199 struct iwl3945_rx_frame_stats stats;
1200 struct iwl3945_rx_frame_hdr hdr;
1201 struct iwl3945_rx_frame_end end;
1202 } __attribute__ ((packed));
1203
1204 #define IWL39_RX_FRAME_SIZE (4 + sizeof(struct iwl3945_rx_frame))
1205
1206 /* Fixed (non-configurable) rx data from phy */
1207
1208 #define IWL49_RX_RES_PHY_CNT 14
1209 #define IWL49_RX_PHY_FLAGS_ANTENNAE_OFFSET (4)
1210 #define IWL49_RX_PHY_FLAGS_ANTENNAE_MASK (0x70)
1211 #define IWL49_AGC_DB_MASK (0x3f80) /* MASK(7,13) */
1212 #define IWL49_AGC_DB_POS (7)
1213 struct iwl4965_rx_non_cfg_phy {
1214 __le16 ant_selection; /* ant A bit 4, ant B bit 5, ant C bit 6 */
1215 __le16 agc_info; /* agc code 0:6, agc dB 7:13, reserved 14:15 */
1216 u8 rssi_info[6]; /* we use even entries, 0/2/4 for A/B/C rssi */
1217 u8 pad[0];
1218 } __attribute__ ((packed));
1219
1220
1221 #define IWL50_RX_RES_PHY_CNT 8
1222 #define IWL50_RX_RES_AGC_IDX 1
1223 #define IWL50_RX_RES_RSSI_AB_IDX 2
1224 #define IWL50_RX_RES_RSSI_C_IDX 3
1225 #define IWL50_OFDM_AGC_MSK 0xfe00
1226 #define IWL50_OFDM_AGC_BIT_POS 9
1227 #define IWL50_OFDM_RSSI_A_MSK 0x00ff
1228 #define IWL50_OFDM_RSSI_A_BIT_POS 0
1229 #define IWL50_OFDM_RSSI_B_MSK 0xff0000
1230 #define IWL50_OFDM_RSSI_B_BIT_POS 16
1231 #define IWL50_OFDM_RSSI_C_MSK 0x00ff
1232 #define IWL50_OFDM_RSSI_C_BIT_POS 0
1233
1234 struct iwl5000_non_cfg_phy {
1235 __le32 non_cfg_phy[IWL50_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1236 } __attribute__ ((packed));
1237
1238
1239 /*
1240 * REPLY_RX = 0xc3 (response only, not a command)
1241 * Used only for legacy (non 11n) frames.
1242 */
1243 struct iwl_rx_phy_res {
1244 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1245 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1246 u8 stat_id; /* configurable DSP phy data set ID */
1247 u8 reserved1;
1248 __le64 timestamp; /* TSF at on air rise */
1249 __le32 beacon_time_stamp; /* beacon at on-air rise */
1250 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1251 __le16 channel; /* channel number */
1252 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1253 __le32 rate_n_flags; /* RATE_MCS_* */
1254 __le16 byte_count; /* frame's byte-count */
1255 __le16 reserved3;
1256 } __attribute__ ((packed));
1257
1258 struct iwl4965_rx_mpdu_res_start {
1259 __le16 byte_count;
1260 __le16 reserved;
1261 } __attribute__ ((packed));
1262
1263
1264 /******************************************************************************
1265 * (5)
1266 * Tx Commands & Responses:
1267 *
1268 * Driver must place each REPLY_TX command into one of the prioritized Tx
1269 * queues in host DRAM, shared between driver and device (see comments for
1270 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1271 * are preparing to transmit, the device pulls the Tx command over the PCI
1272 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1273 * from which data will be transmitted.
1274 *
1275 * uCode handles all timing and protocol related to control frames
1276 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1277 * handle reception of block-acks; uCode updates the host driver via
1278 * REPLY_COMPRESSED_BA (4965).
1279 *
1280 * uCode handles retrying Tx when an ACK is expected but not received.
1281 * This includes trying lower data rates than the one requested in the Tx
1282 * command, as set up by the REPLY_RATE_SCALE (for 3945) or
1283 * REPLY_TX_LINK_QUALITY_CMD (4965).
1284 *
1285 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1286 * This command must be executed after every RXON command, before Tx can occur.
1287 *****************************************************************************/
1288
1289 /* REPLY_TX Tx flags field */
1290
1291 /* 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1292 * before this frame. if CTS-to-self required check
1293 * RXON_FLG_SELF_CTS_EN status. */
1294 #define TX_CMD_FLG_RTS_CTS_MSK cpu_to_le32(1 << 0)
1295
1296 /* 1: Use Request-To-Send protocol before this frame.
1297 * Mutually exclusive vs. TX_CMD_FLG_CTS_MSK. */
1298 #define TX_CMD_FLG_RTS_MSK cpu_to_le32(1 << 1)
1299
1300 /* 1: Transmit Clear-To-Send to self before this frame.
1301 * Driver should set this for AUTH/DEAUTH/ASSOC-REQ/REASSOC mgmnt frames.
1302 * Mutually exclusive vs. TX_CMD_FLG_RTS_MSK. */
1303 #define TX_CMD_FLG_CTS_MSK cpu_to_le32(1 << 2)
1304
1305 /* 1: Expect ACK from receiving station
1306 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1307 * Set this for unicast frames, but not broadcast/multicast. */
1308 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1309
1310 /* For 4965:
1311 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1312 * Tx command's initial_rate_index indicates first rate to try;
1313 * uCode walks through table for additional Tx attempts.
1314 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1315 * This rate will be used for all Tx attempts; it will not be scaled. */
1316 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1317
1318 /* 1: Expect immediate block-ack.
1319 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1320 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1321
1322 /* 1: Frame requires full Tx-Op protection.
1323 * Set this if either RTS or CTS Tx Flag gets set. */
1324 #define TX_CMD_FLG_FULL_TXOP_PROT_MSK cpu_to_le32(1 << 7)
1325
1326 /* Tx antenna selection field; used only for 3945, reserved (0) for 4965.
1327 * Set field to "0" to allow 3945 uCode to select antenna (normal usage). */
1328 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1329 #define TX_CMD_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
1330 #define TX_CMD_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
1331
1332 /* 1: Ignore Bluetooth priority for this frame.
1333 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1334 #define TX_CMD_FLG_BT_DIS_MSK cpu_to_le32(1 << 12)
1335
1336 /* 1: uCode overrides sequence control field in MAC header.
1337 * 0: Driver provides sequence control field in MAC header.
1338 * Set this for management frames, non-QOS data frames, non-unicast frames,
1339 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1340 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1341
1342 /* 1: This frame is non-last MPDU; more fragments are coming.
1343 * 0: Last fragment, or not using fragmentation. */
1344 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1345
1346 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1347 * 0: No TSF required in outgoing frame.
1348 * Set this for transmitting beacons and probe responses. */
1349 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1350
1351 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1352 * alignment of frame's payload data field.
1353 * 0: No pad
1354 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1355 * field (but not both). Driver must align frame data (i.e. data following
1356 * MAC header) to DWORD boundary. */
1357 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1358
1359 /* accelerate aggregation support
1360 * 0 - no CCMP encryption; 1 - CCMP encryption */
1361 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1362
1363 /* HCCA-AP - disable duration overwriting. */
1364 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1365
1366
1367 /*
1368 * TX command security control
1369 */
1370 #define TX_CMD_SEC_WEP 0x01
1371 #define TX_CMD_SEC_CCM 0x02
1372 #define TX_CMD_SEC_TKIP 0x03
1373 #define TX_CMD_SEC_MSK 0x03
1374 #define TX_CMD_SEC_SHIFT 6
1375 #define TX_CMD_SEC_KEY128 0x08
1376
1377 /*
1378 * security overhead sizes
1379 */
1380 #define WEP_IV_LEN 4
1381 #define WEP_ICV_LEN 4
1382 #define CCMP_MIC_LEN 8
1383 #define TKIP_ICV_LEN 4
1384
1385 /*
1386 * REPLY_TX = 0x1c (command)
1387 */
1388
1389 struct iwl3945_tx_cmd {
1390 /*
1391 * MPDU byte count:
1392 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1393 * + 8 byte IV for CCM or TKIP (not used for WEP)
1394 * + Data payload
1395 * + 8-byte MIC (not used for CCM/WEP)
1396 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1397 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1398 * Range: 14-2342 bytes.
1399 */
1400 __le16 len;
1401
1402 /*
1403 * MPDU or MSDU byte count for next frame.
1404 * Used for fragmentation and bursting, but not 11n aggregation.
1405 * Same as "len", but for next frame. Set to 0 if not applicable.
1406 */
1407 __le16 next_frame_len;
1408
1409 __le32 tx_flags; /* TX_CMD_FLG_* */
1410
1411 u8 rate;
1412
1413 /* Index of recipient station in uCode's station table */
1414 u8 sta_id;
1415 u8 tid_tspec;
1416 u8 sec_ctl;
1417 u8 key[16];
1418 union {
1419 u8 byte[8];
1420 __le16 word[4];
1421 __le32 dw[2];
1422 } tkip_mic;
1423 __le32 next_frame_info;
1424 union {
1425 __le32 life_time;
1426 __le32 attempt;
1427 } stop_time;
1428 u8 supp_rates[2];
1429 u8 rts_retry_limit; /*byte 50 */
1430 u8 data_retry_limit; /*byte 51 */
1431 union {
1432 __le16 pm_frame_timeout;
1433 __le16 attempt_duration;
1434 } timeout;
1435
1436 /*
1437 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1438 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1439 */
1440 __le16 driver_txop;
1441
1442 /*
1443 * MAC header goes here, followed by 2 bytes padding if MAC header
1444 * length is 26 or 30 bytes, followed by payload data
1445 */
1446 u8 payload[0];
1447 struct ieee80211_hdr hdr[0];
1448 } __attribute__ ((packed));
1449
1450 /*
1451 * REPLY_TX = 0x1c (response)
1452 */
1453 struct iwl3945_tx_resp {
1454 u8 failure_rts;
1455 u8 failure_frame;
1456 u8 bt_kill_count;
1457 u8 rate;
1458 __le32 wireless_media_time;
1459 __le32 status; /* TX status */
1460 } __attribute__ ((packed));
1461
1462
1463 /*
1464 * 4965 uCode updates these Tx attempt count values in host DRAM.
1465 * Used for managing Tx retries when expecting block-acks.
1466 * Driver should set these fields to 0.
1467 */
1468 struct iwl_dram_scratch {
1469 u8 try_cnt; /* Tx attempts */
1470 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1471 __le16 reserved;
1472 } __attribute__ ((packed));
1473
1474 struct iwl_tx_cmd {
1475 /*
1476 * MPDU byte count:
1477 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1478 * + 8 byte IV for CCM or TKIP (not used for WEP)
1479 * + Data payload
1480 * + 8-byte MIC (not used for CCM/WEP)
1481 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1482 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1483 * Range: 14-2342 bytes.
1484 */
1485 __le16 len;
1486
1487 /*
1488 * MPDU or MSDU byte count for next frame.
1489 * Used for fragmentation and bursting, but not 11n aggregation.
1490 * Same as "len", but for next frame. Set to 0 if not applicable.
1491 */
1492 __le16 next_frame_len;
1493
1494 __le32 tx_flags; /* TX_CMD_FLG_* */
1495
1496 /* uCode may modify this field of the Tx command (in host DRAM!).
1497 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1498 struct iwl_dram_scratch scratch;
1499
1500 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1501 __le32 rate_n_flags; /* RATE_MCS_* */
1502
1503 /* Index of destination station in uCode's station table */
1504 u8 sta_id;
1505
1506 /* Type of security encryption: CCM or TKIP */
1507 u8 sec_ctl; /* TX_CMD_SEC_* */
1508
1509 /*
1510 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1511 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1512 * data frames, this field may be used to selectively reduce initial
1513 * rate (via non-0 value) for special frames (e.g. management), while
1514 * still supporting rate scaling for all frames.
1515 */
1516 u8 initial_rate_index;
1517 u8 reserved;
1518 u8 key[16];
1519 __le16 next_frame_flags;
1520 __le16 reserved2;
1521 union {
1522 __le32 life_time;
1523 __le32 attempt;
1524 } stop_time;
1525
1526 /* Host DRAM physical address pointer to "scratch" in this command.
1527 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1528 __le32 dram_lsb_ptr;
1529 u8 dram_msb_ptr;
1530
1531 u8 rts_retry_limit; /*byte 50 */
1532 u8 data_retry_limit; /*byte 51 */
1533 u8 tid_tspec;
1534 union {
1535 __le16 pm_frame_timeout;
1536 __le16 attempt_duration;
1537 } timeout;
1538
1539 /*
1540 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1541 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1542 */
1543 __le16 driver_txop;
1544
1545 /*
1546 * MAC header goes here, followed by 2 bytes padding if MAC header
1547 * length is 26 or 30 bytes, followed by payload data
1548 */
1549 u8 payload[0];
1550 struct ieee80211_hdr hdr[0];
1551 } __attribute__ ((packed));
1552
1553 /* TX command response is sent after *all* transmission attempts.
1554 *
1555 * NOTES:
1556 *
1557 * TX_STATUS_FAIL_NEXT_FRAG
1558 *
1559 * If the fragment flag in the MAC header for the frame being transmitted
1560 * is set and there is insufficient time to transmit the next frame, the
1561 * TX status will be returned with 'TX_STATUS_FAIL_NEXT_FRAG'.
1562 *
1563 * TX_STATUS_FIFO_UNDERRUN
1564 *
1565 * Indicates the host did not provide bytes to the FIFO fast enough while
1566 * a TX was in progress.
1567 *
1568 * TX_STATUS_FAIL_MGMNT_ABORT
1569 *
1570 * This status is only possible if the ABORT ON MGMT RX parameter was
1571 * set to true with the TX command.
1572 *
1573 * If the MSB of the status parameter is set then an abort sequence is
1574 * required. This sequence consists of the host activating the TX Abort
1575 * control line, and then waiting for the TX Abort command response. This
1576 * indicates that a the device is no longer in a transmit state, and that the
1577 * command FIFO has been cleared. The host must then deactivate the TX Abort
1578 * control line. Receiving is still allowed in this case.
1579 */
1580 enum {
1581 TX_STATUS_SUCCESS = 0x01,
1582 TX_STATUS_DIRECT_DONE = 0x02,
1583 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1584 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1585 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1586 TX_STATUS_FAIL_MGMNT_ABORT = 0x85,
1587 TX_STATUS_FAIL_NEXT_FRAG = 0x86,
1588 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1589 TX_STATUS_FAIL_DEST_PS = 0x88,
1590 TX_STATUS_FAIL_ABORTED = 0x89,
1591 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1592 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1593 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1594 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1595 TX_STATUS_FAIL_FRAME_FLUSHED = 0x8e,
1596 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1597 TX_STATUS_FAIL_TX_LOCKED = 0x90,
1598 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1599 };
1600
1601 #define TX_PACKET_MODE_REGULAR 0x0000
1602 #define TX_PACKET_MODE_BURST_SEQ 0x0100
1603 #define TX_PACKET_MODE_BURST_FIRST 0x0200
1604
1605 enum {
1606 TX_POWER_PA_NOT_ACTIVE = 0x0,
1607 };
1608
1609 enum {
1610 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1611 TX_STATUS_DELAY_MSK = 0x00000040,
1612 TX_STATUS_ABORT_MSK = 0x00000080,
1613 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1614 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1615 TX_RESERVED = 0x00780000, /* bits 19:22 */
1616 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1617 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1618 };
1619
1620 static inline bool iwl_is_tx_success(u32 status)
1621 {
1622 status &= TX_STATUS_MSK;
1623 return (status == TX_STATUS_SUCCESS) ||
1624 (status == TX_STATUS_DIRECT_DONE);
1625 }
1626
1627
1628
1629 /* *******************************
1630 * TX aggregation status
1631 ******************************* */
1632
1633 enum {
1634 AGG_TX_STATE_TRANSMITTED = 0x00,
1635 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1636 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1637 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1638 AGG_TX_STATE_ABORT_MSK = 0x08,
1639 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1640 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1641 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1642 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1643 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1644 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1645 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1646 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1647 };
1648
1649 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1650 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1651 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1652
1653 /* # tx attempts for first frame in aggregation */
1654 #define AGG_TX_STATE_TRY_CNT_POS 12
1655 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1656
1657 /* Command ID and sequence number of Tx command for this frame */
1658 #define AGG_TX_STATE_SEQ_NUM_POS 16
1659 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1660
1661 /*
1662 * REPLY_TX = 0x1c (response)
1663 *
1664 * This response may be in one of two slightly different formats, indicated
1665 * by the frame_count field:
1666 *
1667 * 1) No aggregation (frame_count == 1). This reports Tx results for
1668 * a single frame. Multiple attempts, at various bit rates, may have
1669 * been made for this frame.
1670 *
1671 * 2) Aggregation (frame_count > 1). This reports Tx results for
1672 * 2 or more frames that used block-acknowledge. All frames were
1673 * transmitted at same rate. Rate scaling may have been used if first
1674 * frame in this new agg block failed in previous agg block(s).
1675 *
1676 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1677 * block-ack has not been received by the time the 4965 records this status.
1678 * This status relates to reasons the tx might have been blocked or aborted
1679 * within the sending station (this 4965), rather than whether it was
1680 * received successfully by the destination station.
1681 */
1682 struct agg_tx_status {
1683 __le16 status;
1684 __le16 sequence;
1685 } __attribute__ ((packed));
1686
1687 struct iwl4965_tx_resp {
1688 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1689 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1690 u8 failure_rts; /* # failures due to unsuccessful RTS */
1691 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1692
1693 /* For non-agg: Rate at which frame was successful.
1694 * For agg: Rate at which all frames were transmitted. */
1695 __le32 rate_n_flags; /* RATE_MCS_* */
1696
1697 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1698 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1699 __le16 wireless_media_time; /* uSecs */
1700
1701 __le16 reserved;
1702 __le32 pa_power1; /* RF power amplifier measurement (not used) */
1703 __le32 pa_power2;
1704
1705 /*
1706 * For non-agg: frame status TX_STATUS_*
1707 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1708 * fields follow this one, up to frame_count.
1709 * Bit fields:
1710 * 11- 0: AGG_TX_STATE_* status code
1711 * 15-12: Retry count for 1st frame in aggregation (retries
1712 * occur if tx failed for this frame when it was a
1713 * member of a previous aggregation block). If rate
1714 * scaling is used, retry count indicates the rate
1715 * table entry used for all frames in the new agg.
1716 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1717 */
1718 union {
1719 __le32 status;
1720 struct agg_tx_status agg_status[0]; /* for each agg frame */
1721 } u;
1722 } __attribute__ ((packed));
1723
1724 /*
1725 * definitions for initial rate index field
1726 * bits [3:0] initial rate index
1727 * bits [6:4] rate table color, used for the initial rate
1728 * bit-7 invalid rate indication
1729 * i.e. rate was not chosen from rate table
1730 * or rate table color was changed during frame retries
1731 * refer tlc rate info
1732 */
1733
1734 #define IWL50_TX_RES_INIT_RATE_INDEX_POS 0
1735 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK 0x0f
1736 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS 4
1737 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK 0x70
1738 #define IWL50_TX_RES_INV_RATE_INDEX_MSK 0x80
1739
1740 /* refer to ra_tid */
1741 #define IWL50_TX_RES_TID_POS 0
1742 #define IWL50_TX_RES_TID_MSK 0x0f
1743 #define IWL50_TX_RES_RA_POS 4
1744 #define IWL50_TX_RES_RA_MSK 0xf0
1745
1746 struct iwl5000_tx_resp {
1747 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1748 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1749 u8 failure_rts; /* # failures due to unsuccessful RTS */
1750 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1751
1752 /* For non-agg: Rate at which frame was successful.
1753 * For agg: Rate at which all frames were transmitted. */
1754 __le32 rate_n_flags; /* RATE_MCS_* */
1755
1756 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1757 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1758 __le16 wireless_media_time; /* uSecs */
1759
1760 u8 pa_status; /* RF power amplifier measurement (not used) */
1761 u8 pa_integ_res_a[3];
1762 u8 pa_integ_res_b[3];
1763 u8 pa_integ_res_C[3];
1764
1765 __le32 tfd_info;
1766 __le16 seq_ctl;
1767 __le16 byte_cnt;
1768 u8 tlc_info;
1769 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1770 __le16 frame_ctrl;
1771 /*
1772 * For non-agg: frame status TX_STATUS_*
1773 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1774 * fields follow this one, up to frame_count.
1775 * Bit fields:
1776 * 11- 0: AGG_TX_STATE_* status code
1777 * 15-12: Retry count for 1st frame in aggregation (retries
1778 * occur if tx failed for this frame when it was a
1779 * member of a previous aggregation block). If rate
1780 * scaling is used, retry count indicates the rate
1781 * table entry used for all frames in the new agg.
1782 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1783 */
1784 struct agg_tx_status status; /* TX status (in aggregation -
1785 * status of 1st frame) */
1786 } __attribute__ ((packed));
1787 /*
1788 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1789 *
1790 * Reports Block-Acknowledge from recipient station
1791 */
1792 struct iwl_compressed_ba_resp {
1793 __le32 sta_addr_lo32;
1794 __le16 sta_addr_hi16;
1795 __le16 reserved;
1796
1797 /* Index of recipient (BA-sending) station in uCode's station table */
1798 u8 sta_id;
1799 u8 tid;
1800 __le16 seq_ctl;
1801 __le64 bitmap;
1802 __le16 scd_flow;
1803 __le16 scd_ssn;
1804 } __attribute__ ((packed));
1805
1806 /*
1807 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1808 *
1809 * See details under "TXPOWER" in iwl-4965-hw.h.
1810 */
1811
1812 struct iwl3945_txpowertable_cmd {
1813 u8 band; /* 0: 5 GHz, 1: 2.4 GHz */
1814 u8 reserved;
1815 __le16 channel;
1816 struct iwl3945_power_per_rate power[IWL_MAX_RATES];
1817 } __attribute__ ((packed));
1818
1819 struct iwl4965_txpowertable_cmd {
1820 u8 band; /* 0: 5 GHz, 1: 2.4 GHz */
1821 u8 reserved;
1822 __le16 channel;
1823 struct iwl4965_tx_power_db tx_power;
1824 } __attribute__ ((packed));
1825
1826
1827 /**
1828 * struct iwl3945_rate_scaling_cmd - Rate Scaling Command & Response
1829 *
1830 * REPLY_RATE_SCALE = 0x47 (command, has simple generic response)
1831 *
1832 * NOTE: The table of rates passed to the uCode via the
1833 * RATE_SCALE command sets up the corresponding order of
1834 * rates used for all related commands, including rate
1835 * masks, etc.
1836 *
1837 * For example, if you set 9MB (PLCP 0x0f) as the first
1838 * rate in the rate table, the bit mask for that rate
1839 * when passed through ofdm_basic_rates on the REPLY_RXON
1840 * command would be bit 0 (1 << 0)
1841 */
1842 struct iwl3945_rate_scaling_info {
1843 __le16 rate_n_flags;
1844 u8 try_cnt;
1845 u8 next_rate_index;
1846 } __attribute__ ((packed));
1847
1848 struct iwl3945_rate_scaling_cmd {
1849 u8 table_id;
1850 u8 reserved[3];
1851 struct iwl3945_rate_scaling_info table[IWL_MAX_RATES];
1852 } __attribute__ ((packed));
1853
1854
1855 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1856 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1857
1858 /* # of EDCA prioritized tx fifos */
1859 #define LINK_QUAL_AC_NUM AC_NUM
1860
1861 /* # entries in rate scale table to support Tx retries */
1862 #define LINK_QUAL_MAX_RETRY_NUM 16
1863
1864 /* Tx antenna selection values */
1865 #define LINK_QUAL_ANT_A_MSK (1 << 0)
1866 #define LINK_QUAL_ANT_B_MSK (1 << 1)
1867 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1868
1869
1870 /**
1871 * struct iwl_link_qual_general_params
1872 *
1873 * Used in REPLY_TX_LINK_QUALITY_CMD
1874 */
1875 struct iwl_link_qual_general_params {
1876 u8 flags;
1877
1878 /* No entries at or above this (driver chosen) index contain MIMO */
1879 u8 mimo_delimiter;
1880
1881 /* Best single antenna to use for single stream (legacy, SISO). */
1882 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1883
1884 /* Best antennas to use for MIMO (unused for 4965, assumes both). */
1885 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1886
1887 /*
1888 * If driver needs to use different initial rates for different
1889 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1890 * this table will set that up, by indicating the indexes in the
1891 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1892 * Otherwise, driver should set all entries to 0.
1893 *
1894 * Entry usage:
1895 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1896 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1897 */
1898 u8 start_rate_index[LINK_QUAL_AC_NUM];
1899 } __attribute__ ((packed));
1900
1901 /**
1902 * struct iwl_link_qual_agg_params
1903 *
1904 * Used in REPLY_TX_LINK_QUALITY_CMD
1905 */
1906 struct iwl_link_qual_agg_params {
1907
1908 /* Maximum number of uSec in aggregation.
1909 * Driver should set this to 4000 (4 milliseconds). */
1910 __le16 agg_time_limit;
1911
1912 /*
1913 * Number of Tx retries allowed for a frame, before that frame will
1914 * no longer be considered for the start of an aggregation sequence
1915 * (scheduler will then try to tx it as single frame).
1916 * Driver should set this to 3.
1917 */
1918 u8 agg_dis_start_th;
1919
1920 /*
1921 * Maximum number of frames in aggregation.
1922 * 0 = no limit (default). 1 = no aggregation.
1923 * Other values = max # frames in aggregation.
1924 */
1925 u8 agg_frame_cnt_limit;
1926
1927 __le32 reserved;
1928 } __attribute__ ((packed));
1929
1930 /*
1931 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1932 *
1933 * For 4965 only; 3945 uses REPLY_RATE_SCALE.
1934 *
1935 * Each station in the 4965's internal station table has its own table of 16
1936 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1937 * an ACK is not received. This command replaces the entire table for
1938 * one station.
1939 *
1940 * NOTE: Station must already be in 4965's station table. Use REPLY_ADD_STA.
1941 *
1942 * The rate scaling procedures described below work well. Of course, other
1943 * procedures are possible, and may work better for particular environments.
1944 *
1945 *
1946 * FILLING THE RATE TABLE
1947 *
1948 * Given a particular initial rate and mode, as determined by the rate
1949 * scaling algorithm described below, the Linux driver uses the following
1950 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1951 * Link Quality command:
1952 *
1953 *
1954 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1955 * a) Use this same initial rate for first 3 entries.
1956 * b) Find next lower available rate using same mode (SISO or MIMO),
1957 * use for next 3 entries. If no lower rate available, switch to
1958 * legacy mode (no FAT channel, no MIMO, no short guard interval).
1959 * c) If using MIMO, set command's mimo_delimiter to number of entries
1960 * using MIMO (3 or 6).
1961 * d) After trying 2 HT rates, switch to legacy mode (no FAT channel,
1962 * no MIMO, no short guard interval), at the next lower bit rate
1963 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1964 * legacy procedure for remaining table entries.
1965 *
1966 * 2) If using legacy initial rate:
1967 * a) Use the initial rate for only one entry.
1968 * b) For each following entry, reduce the rate to next lower available
1969 * rate, until reaching the lowest available rate.
1970 * c) When reducing rate, also switch antenna selection.
1971 * d) Once lowest available rate is reached, repeat this rate until
1972 * rate table is filled (16 entries), switching antenna each entry.
1973 *
1974 *
1975 * ACCUMULATING HISTORY
1976 *
1977 * The rate scaling algorithm for 4965, as implemented in Linux driver, uses
1978 * two sets of frame Tx success history: One for the current/active modulation
1979 * mode, and one for a speculative/search mode that is being attempted. If the
1980 * speculative mode turns out to be more effective (i.e. actual transfer
1981 * rate is better), then the driver continues to use the speculative mode
1982 * as the new current active mode.
1983 *
1984 * Each history set contains, separately for each possible rate, data for a
1985 * sliding window of the 62 most recent tx attempts at that rate. The data
1986 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1987 * and attempted frames, from which the driver can additionally calculate a
1988 * success ratio (success / attempted) and number of failures
1989 * (attempted - success), and control the size of the window (attempted).
1990 * The driver uses the bit map to remove successes from the success sum, as
1991 * the oldest tx attempts fall out of the window.
1992 *
1993 * When the 4965 makes multiple tx attempts for a given frame, each attempt
1994 * might be at a different rate, and have different modulation characteristics
1995 * (e.g. antenna, fat channel, short guard interval), as set up in the rate
1996 * scaling table in the Link Quality command. The driver must determine
1997 * which rate table entry was used for each tx attempt, to determine which
1998 * rate-specific history to update, and record only those attempts that
1999 * match the modulation characteristics of the history set.
2000 *
2001 * When using block-ack (aggregation), all frames are transmitted at the same
2002 * rate, since there is no per-attempt acknowledgment from the destination
2003 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
2004 * rate_n_flags field. After receiving a block-ack, the driver can update
2005 * history for the entire block all at once.
2006 *
2007 *
2008 * FINDING BEST STARTING RATE:
2009 *
2010 * When working with a selected initial modulation mode (see below), the
2011 * driver attempts to find a best initial rate. The initial rate is the
2012 * first entry in the Link Quality command's rate table.
2013 *
2014 * 1) Calculate actual throughput (success ratio * expected throughput, see
2015 * table below) for current initial rate. Do this only if enough frames
2016 * have been attempted to make the value meaningful: at least 6 failed
2017 * tx attempts, or at least 8 successes. If not enough, don't try rate
2018 * scaling yet.
2019 *
2020 * 2) Find available rates adjacent to current initial rate. Available means:
2021 * a) supported by hardware &&
2022 * b) supported by association &&
2023 * c) within any constraints selected by user
2024 *
2025 * 3) Gather measured throughputs for adjacent rates. These might not have
2026 * enough history to calculate a throughput. That's okay, we might try
2027 * using one of them anyway!
2028 *
2029 * 4) Try decreasing rate if, for current rate:
2030 * a) success ratio is < 15% ||
2031 * b) lower adjacent rate has better measured throughput ||
2032 * c) higher adjacent rate has worse throughput, and lower is unmeasured
2033 *
2034 * As a sanity check, if decrease was determined above, leave rate
2035 * unchanged if:
2036 * a) lower rate unavailable
2037 * b) success ratio at current rate > 85% (very good)
2038 * c) current measured throughput is better than expected throughput
2039 * of lower rate (under perfect 100% tx conditions, see table below)
2040 *
2041 * 5) Try increasing rate if, for current rate:
2042 * a) success ratio is < 15% ||
2043 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
2044 * b) higher adjacent rate has better measured throughput ||
2045 * c) lower adjacent rate has worse throughput, and higher is unmeasured
2046 *
2047 * As a sanity check, if increase was determined above, leave rate
2048 * unchanged if:
2049 * a) success ratio at current rate < 70%. This is not particularly
2050 * good performance; higher rate is sure to have poorer success.
2051 *
2052 * 6) Re-evaluate the rate after each tx frame. If working with block-
2053 * acknowledge, history and statistics may be calculated for the entire
2054 * block (including prior history that fits within the history windows),
2055 * before re-evaluation.
2056 *
2057 * FINDING BEST STARTING MODULATION MODE:
2058 *
2059 * After working with a modulation mode for a "while" (and doing rate scaling),
2060 * the driver searches for a new initial mode in an attempt to improve
2061 * throughput. The "while" is measured by numbers of attempted frames:
2062 *
2063 * For legacy mode, search for new mode after:
2064 * 480 successful frames, or 160 failed frames
2065 * For high-throughput modes (SISO or MIMO), search for new mode after:
2066 * 4500 successful frames, or 400 failed frames
2067 *
2068 * Mode switch possibilities are (3 for each mode):
2069 *
2070 * For legacy:
2071 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
2072 * For SISO:
2073 * Change antenna, try MIMO, try shortened guard interval (SGI)
2074 * For MIMO:
2075 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
2076 *
2077 * When trying a new mode, use the same bit rate as the old/current mode when
2078 * trying antenna switches and shortened guard interval. When switching to
2079 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
2080 * for which the expected throughput (under perfect conditions) is about the
2081 * same or slightly better than the actual measured throughput delivered by
2082 * the old/current mode.
2083 *
2084 * Actual throughput can be estimated by multiplying the expected throughput
2085 * by the success ratio (successful / attempted tx frames). Frame size is
2086 * not considered in this calculation; it assumes that frame size will average
2087 * out to be fairly consistent over several samples. The following are
2088 * metric values for expected throughput assuming 100% success ratio.
2089 * Only G band has support for CCK rates:
2090 *
2091 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
2092 *
2093 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
2094 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
2095 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
2096 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
2097 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
2098 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
2099 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
2100 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
2101 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
2102 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
2103 *
2104 * After the new mode has been tried for a short while (minimum of 6 failed
2105 * frames or 8 successful frames), compare success ratio and actual throughput
2106 * estimate of the new mode with the old. If either is better with the new
2107 * mode, continue to use the new mode.
2108 *
2109 * Continue comparing modes until all 3 possibilities have been tried.
2110 * If moving from legacy to HT, try all 3 possibilities from the new HT
2111 * mode. After trying all 3, a best mode is found. Continue to use this mode
2112 * for the longer "while" described above (e.g. 480 successful frames for
2113 * legacy), and then repeat the search process.
2114 *
2115 */
2116 struct iwl_link_quality_cmd {
2117
2118 /* Index of destination/recipient station in uCode's station table */
2119 u8 sta_id;
2120 u8 reserved1;
2121 __le16 control; /* not used */
2122 struct iwl_link_qual_general_params general_params;
2123 struct iwl_link_qual_agg_params agg_params;
2124
2125 /*
2126 * Rate info; when using rate-scaling, Tx command's initial_rate_index
2127 * specifies 1st Tx rate attempted, via index into this table.
2128 * 4965 works its way through table when retrying Tx.
2129 */
2130 struct {
2131 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
2132 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
2133 __le32 reserved2;
2134 } __attribute__ ((packed));
2135
2136 /*
2137 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
2138 *
2139 * 3945 and 4965 support hardware handshake with Bluetooth device on
2140 * same platform. Bluetooth device alerts wireless device when it will Tx;
2141 * wireless device can delay or kill its own Tx to accommodate.
2142 */
2143 struct iwl_bt_cmd {
2144 u8 flags;
2145 u8 lead_time;
2146 u8 max_kill;
2147 u8 reserved;
2148 __le32 kill_ack_mask;
2149 __le32 kill_cts_mask;
2150 } __attribute__ ((packed));
2151
2152 /******************************************************************************
2153 * (6)
2154 * Spectrum Management (802.11h) Commands, Responses, Notifications:
2155 *
2156 *****************************************************************************/
2157
2158 /*
2159 * Spectrum Management
2160 */
2161 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
2162 RXON_FILTER_CTL2HOST_MSK | \
2163 RXON_FILTER_ACCEPT_GRP_MSK | \
2164 RXON_FILTER_DIS_DECRYPT_MSK | \
2165 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2166 RXON_FILTER_ASSOC_MSK | \
2167 RXON_FILTER_BCON_AWARE_MSK)
2168
2169 struct iwl_measure_channel {
2170 __le32 duration; /* measurement duration in extended beacon
2171 * format */
2172 u8 channel; /* channel to measure */
2173 u8 type; /* see enum iwl_measure_type */
2174 __le16 reserved;
2175 } __attribute__ ((packed));
2176
2177 /*
2178 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2179 */
2180 struct iwl_spectrum_cmd {
2181 __le16 len; /* number of bytes starting from token */
2182 u8 token; /* token id */
2183 u8 id; /* measurement id -- 0 or 1 */
2184 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2185 u8 periodic; /* 1 = periodic */
2186 __le16 path_loss_timeout;
2187 __le32 start_time; /* start time in extended beacon format */
2188 __le32 reserved2;
2189 __le32 flags; /* rxon flags */
2190 __le32 filter_flags; /* rxon filter flags */
2191 __le16 channel_count; /* minimum 1, maximum 10 */
2192 __le16 reserved3;
2193 struct iwl_measure_channel channels[10];
2194 } __attribute__ ((packed));
2195
2196 /*
2197 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2198 */
2199 struct iwl_spectrum_resp {
2200 u8 token;
2201 u8 id; /* id of the prior command replaced, or 0xff */
2202 __le16 status; /* 0 - command will be handled
2203 * 1 - cannot handle (conflicts with another
2204 * measurement) */
2205 } __attribute__ ((packed));
2206
2207 enum iwl_measurement_state {
2208 IWL_MEASUREMENT_START = 0,
2209 IWL_MEASUREMENT_STOP = 1,
2210 };
2211
2212 enum iwl_measurement_status {
2213 IWL_MEASUREMENT_OK = 0,
2214 IWL_MEASUREMENT_CONCURRENT = 1,
2215 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2216 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2217 /* 4-5 reserved */
2218 IWL_MEASUREMENT_STOPPED = 6,
2219 IWL_MEASUREMENT_TIMEOUT = 7,
2220 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2221 };
2222
2223 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2224
2225 struct iwl_measurement_histogram {
2226 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2227 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2228 } __attribute__ ((packed));
2229
2230 /* clear channel availability counters */
2231 struct iwl_measurement_cca_counters {
2232 __le32 ofdm;
2233 __le32 cck;
2234 } __attribute__ ((packed));
2235
2236 enum iwl_measure_type {
2237 IWL_MEASURE_BASIC = (1 << 0),
2238 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2239 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2240 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2241 IWL_MEASURE_FRAME = (1 << 4),
2242 /* bits 5:6 are reserved */
2243 IWL_MEASURE_IDLE = (1 << 7),
2244 };
2245
2246 /*
2247 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2248 */
2249 struct iwl_spectrum_notification {
2250 u8 id; /* measurement id -- 0 or 1 */
2251 u8 token;
2252 u8 channel_index; /* index in measurement channel list */
2253 u8 state; /* 0 - start, 1 - stop */
2254 __le32 start_time; /* lower 32-bits of TSF */
2255 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2256 u8 channel;
2257 u8 type; /* see enum iwl_measurement_type */
2258 u8 reserved1;
2259 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2260 * valid if applicable for measurement type requested. */
2261 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2262 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2263 __le32 cca_time; /* channel load time in usecs */
2264 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2265 * unidentified */
2266 u8 reserved2[3];
2267 struct iwl_measurement_histogram histogram;
2268 __le32 stop_time; /* lower 32-bits of TSF */
2269 __le32 status; /* see iwl_measurement_status */
2270 } __attribute__ ((packed));
2271
2272 /******************************************************************************
2273 * (7)
2274 * Power Management Commands, Responses, Notifications:
2275 *
2276 *****************************************************************************/
2277
2278 /**
2279 * struct iwl_powertable_cmd - Power Table Command
2280 * @flags: See below:
2281 *
2282 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2283 *
2284 * PM allow:
2285 * bit 0 - '0' Driver not allow power management
2286 * '1' Driver allow PM (use rest of parameters)
2287 * uCode send sleep notifications:
2288 * bit 1 - '0' Don't send sleep notification
2289 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2290 * Sleep over DTIM
2291 * bit 2 - '0' PM have to walk up every DTIM
2292 * '1' PM could sleep over DTIM till listen Interval.
2293 * PCI power managed
2294 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2295 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2296 * Force sleep Modes
2297 * bit 31/30- '00' use both mac/xtal sleeps
2298 * '01' force Mac sleep
2299 * '10' force xtal sleep
2300 * '11' Illegal set
2301 *
2302 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2303 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2304 * for every DTIM.
2305 */
2306 #define IWL_POWER_VEC_SIZE 5
2307
2308 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2309 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2310 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2311 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2312
2313 struct iwl3945_powertable_cmd {
2314 __le16 flags;
2315 u8 reserved[2];
2316 __le32 rx_data_timeout;
2317 __le32 tx_data_timeout;
2318 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2319 } __attribute__ ((packed));
2320
2321 struct iwl_powertable_cmd {
2322 __le16 flags;
2323 u8 keep_alive_seconds; /* 3945 reserved */
2324 u8 debug_flags; /* 3945 reserved */
2325 __le32 rx_data_timeout;
2326 __le32 tx_data_timeout;
2327 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2328 __le32 keep_alive_beacons;
2329 } __attribute__ ((packed));
2330
2331 /*
2332 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2333 * 3945 and 4965 identical.
2334 */
2335 struct iwl_sleep_notification {
2336 u8 pm_sleep_mode;
2337 u8 pm_wakeup_src;
2338 __le16 reserved;
2339 __le32 sleep_time;
2340 __le32 tsf_low;
2341 __le32 bcon_timer;
2342 } __attribute__ ((packed));
2343
2344 /* Sleep states. 3945 and 4965 identical. */
2345 enum {
2346 IWL_PM_NO_SLEEP = 0,
2347 IWL_PM_SLP_MAC = 1,
2348 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2349 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2350 IWL_PM_SLP_PHY = 4,
2351 IWL_PM_SLP_REPENT = 5,
2352 IWL_PM_WAKEUP_BY_TIMER = 6,
2353 IWL_PM_WAKEUP_BY_DRIVER = 7,
2354 IWL_PM_WAKEUP_BY_RFKILL = 8,
2355 /* 3 reserved */
2356 IWL_PM_NUM_OF_MODES = 12,
2357 };
2358
2359 /*
2360 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2361 */
2362 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2363 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2364 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2365 struct iwl_card_state_cmd {
2366 __le32 status; /* CARD_STATE_CMD_* request new power state */
2367 } __attribute__ ((packed));
2368
2369 /*
2370 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2371 */
2372 struct iwl_card_state_notif {
2373 __le32 flags;
2374 } __attribute__ ((packed));
2375
2376 #define HW_CARD_DISABLED 0x01
2377 #define SW_CARD_DISABLED 0x02
2378 #define RF_CARD_DISABLED 0x04
2379 #define RXON_CARD_DISABLED 0x10
2380
2381 struct iwl_ct_kill_config {
2382 __le32 reserved;
2383 __le32 critical_temperature_M;
2384 __le32 critical_temperature_R;
2385 } __attribute__ ((packed));
2386
2387 /******************************************************************************
2388 * (8)
2389 * Scan Commands, Responses, Notifications:
2390 *
2391 *****************************************************************************/
2392
2393 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2394 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2395
2396 /**
2397 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2398 *
2399 * One for each channel in the scan list.
2400 * Each channel can independently select:
2401 * 1) SSID for directed active scans
2402 * 2) Txpower setting (for rate specified within Tx command)
2403 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2404 * quiet_plcp_th, good_CRC_th)
2405 *
2406 * To avoid uCode errors, make sure the following are true (see comments
2407 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2408 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2409 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2410 * 2) quiet_time <= active_dwell
2411 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2412 * passive_dwell < max_out_time
2413 * active_dwell < max_out_time
2414 */
2415
2416 /* FIXME: rename to AP1, remove tpc */
2417 struct iwl3945_scan_channel {
2418 /*
2419 * type is defined as:
2420 * 0:0 1 = active, 0 = passive
2421 * 1:4 SSID direct bit map; if a bit is set, then corresponding
2422 * SSID IE is transmitted in probe request.
2423 * 5:7 reserved
2424 */
2425 u8 type;
2426 u8 channel; /* band is selected by iwl3945_scan_cmd "flags" field */
2427 struct iwl3945_tx_power tpc;
2428 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2429 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2430 } __attribute__ ((packed));
2431
2432 struct iwl_scan_channel {
2433 /*
2434 * type is defined as:
2435 * 0:0 1 = active, 0 = passive
2436 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2437 * SSID IE is transmitted in probe request.
2438 * 21:31 reserved
2439 */
2440 __le32 type;
2441 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2442 u8 tx_gain; /* gain for analog radio */
2443 u8 dsp_atten; /* gain for DSP */
2444 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2445 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2446 } __attribute__ ((packed));
2447
2448 /**
2449 * struct iwl_ssid_ie - directed scan network information element
2450 *
2451 * Up to 4 of these may appear in REPLY_SCAN_CMD, selected by "type" field
2452 * in struct iwl_scan_channel; each channel may select different ssids from
2453 * among the 4 entries. SSID IEs get transmitted in reverse order of entry.
2454 */
2455 struct iwl_ssid_ie {
2456 u8 id;
2457 u8 len;
2458 u8 ssid[32];
2459 } __attribute__ ((packed));
2460
2461 #define PROBE_OPTION_MAX_API1 0x4
2462 #define PROBE_OPTION_MAX 0x14
2463 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2464 #define IWL_GOOD_CRC_TH cpu_to_le16(1)
2465 #define IWL_MAX_SCAN_SIZE 1024
2466
2467 /*
2468 * REPLY_SCAN_CMD = 0x80 (command)
2469 *
2470 * The hardware scan command is very powerful; the driver can set it up to
2471 * maintain (relatively) normal network traffic while doing a scan in the
2472 * background. The max_out_time and suspend_time control the ratio of how
2473 * long the device stays on an associated network channel ("service channel")
2474 * vs. how long it's away from the service channel, i.e. tuned to other channels
2475 * for scanning.
2476 *
2477 * max_out_time is the max time off-channel (in usec), and suspend_time
2478 * is how long (in "extended beacon" format) that the scan is "suspended"
2479 * after returning to the service channel. That is, suspend_time is the
2480 * time that we stay on the service channel, doing normal work, between
2481 * scan segments. The driver may set these parameters differently to support
2482 * scanning when associated vs. not associated, and light vs. heavy traffic
2483 * loads when associated.
2484 *
2485 * After receiving this command, the device's scan engine does the following;
2486 *
2487 * 1) Sends SCAN_START notification to driver
2488 * 2) Checks to see if it has time to do scan for one channel
2489 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2490 * to tell AP that we're going off-channel
2491 * 4) Tunes to first channel in scan list, does active or passive scan
2492 * 5) Sends SCAN_RESULT notification to driver
2493 * 6) Checks to see if it has time to do scan on *next* channel in list
2494 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2495 * before max_out_time expires
2496 * 8) Returns to service channel
2497 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2498 * 10) Stays on service channel until suspend_time expires
2499 * 11) Repeats entire process 2-10 until list is complete
2500 * 12) Sends SCAN_COMPLETE notification
2501 *
2502 * For fast, efficient scans, the scan command also has support for staying on
2503 * a channel for just a short time, if doing active scanning and getting no
2504 * responses to the transmitted probe request. This time is controlled by
2505 * quiet_time, and the number of received packets below which a channel is
2506 * considered "quiet" is controlled by quiet_plcp_threshold.
2507 *
2508 * For active scanning on channels that have regulatory restrictions against
2509 * blindly transmitting, the scan can listen before transmitting, to make sure
2510 * that there is already legitimate activity on the channel. If enough
2511 * packets are cleanly received on the channel (controlled by good_CRC_th,
2512 * typical value 1), the scan engine starts transmitting probe requests.
2513 *
2514 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2515 *
2516 * To avoid uCode errors, see timing restrictions described under
2517 * struct iwl_scan_channel.
2518 */
2519
2520 struct iwl3945_scan_cmd {
2521 __le16 len;
2522 u8 reserved0;
2523 u8 channel_count; /* # channels in channel list */
2524 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2525 * (only for active scan) */
2526 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2527 __le16 good_CRC_th; /* passive -> active promotion threshold */
2528 __le16 reserved1;
2529 __le32 max_out_time; /* max usec to be away from associated (service)
2530 * channel */
2531 __le32 suspend_time; /* pause scan this long (in "extended beacon
2532 * format") when returning to service channel:
2533 * 3945; 31:24 # beacons, 19:0 additional usec,
2534 * 4965; 31:22 # beacons, 21:0 additional usec.
2535 */
2536 __le32 flags; /* RXON_FLG_* */
2537 __le32 filter_flags; /* RXON_FILTER_* */
2538
2539 /* For active scans (set to all-0s for passive scans).
2540 * Does not include payload. Must specify Tx rate; no rate scaling. */
2541 struct iwl3945_tx_cmd tx_cmd;
2542
2543 /* For directed active scans (set to all-0s otherwise) */
2544 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX_API1];
2545
2546 /*
2547 * Probe request frame, followed by channel list.
2548 *
2549 * Size of probe request frame is specified by byte count in tx_cmd.
2550 * Channel list follows immediately after probe request frame.
2551 * Number of channels in list is specified by channel_count.
2552 * Each channel in list is of type:
2553 *
2554 * struct iwl3945_scan_channel channels[0];
2555 *
2556 * NOTE: Only one band of channels can be scanned per pass. You
2557 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2558 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2559 * before requesting another scan.
2560 */
2561 u8 data[0];
2562 } __attribute__ ((packed));
2563
2564 struct iwl_scan_cmd {
2565 __le16 len;
2566 u8 reserved0;
2567 u8 channel_count; /* # channels in channel list */
2568 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2569 * (only for active scan) */
2570 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2571 __le16 good_CRC_th; /* passive -> active promotion threshold */
2572 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2573 __le32 max_out_time; /* max usec to be away from associated (service)
2574 * channel */
2575 __le32 suspend_time; /* pause scan this long (in "extended beacon
2576 * format") when returning to service chnl:
2577 * 3945; 31:24 # beacons, 19:0 additional usec,
2578 * 4965; 31:22 # beacons, 21:0 additional usec.
2579 */
2580 __le32 flags; /* RXON_FLG_* */
2581 __le32 filter_flags; /* RXON_FILTER_* */
2582
2583 /* For active scans (set to all-0s for passive scans).
2584 * Does not include payload. Must specify Tx rate; no rate scaling. */
2585 struct iwl_tx_cmd tx_cmd;
2586
2587 /* For directed active scans (set to all-0s otherwise) */
2588 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2589
2590 /*
2591 * Probe request frame, followed by channel list.
2592 *
2593 * Size of probe request frame is specified by byte count in tx_cmd.
2594 * Channel list follows immediately after probe request frame.
2595 * Number of channels in list is specified by channel_count.
2596 * Each channel in list is of type:
2597 *
2598 * struct iwl_scan_channel channels[0];
2599 *
2600 * NOTE: Only one band of channels can be scanned per pass. You
2601 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2602 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2603 * before requesting another scan.
2604 */
2605 u8 data[0];
2606 } __attribute__ ((packed));
2607
2608 /* Can abort will notify by complete notification with abort status. */
2609 #define CAN_ABORT_STATUS cpu_to_le32(0x1)
2610 /* complete notification statuses */
2611 #define ABORT_STATUS 0x2
2612
2613 /*
2614 * REPLY_SCAN_CMD = 0x80 (response)
2615 */
2616 struct iwl_scanreq_notification {
2617 __le32 status; /* 1: okay, 2: cannot fulfill request */
2618 } __attribute__ ((packed));
2619
2620 /*
2621 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2622 */
2623 struct iwl_scanstart_notification {
2624 __le32 tsf_low;
2625 __le32 tsf_high;
2626 __le32 beacon_timer;
2627 u8 channel;
2628 u8 band;
2629 u8 reserved[2];
2630 __le32 status;
2631 } __attribute__ ((packed));
2632
2633 #define SCAN_OWNER_STATUS 0x1;
2634 #define MEASURE_OWNER_STATUS 0x2;
2635
2636 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2637 /*
2638 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2639 */
2640 struct iwl_scanresults_notification {
2641 u8 channel;
2642 u8 band;
2643 u8 reserved[2];
2644 __le32 tsf_low;
2645 __le32 tsf_high;
2646 __le32 statistics[NUMBER_OF_STATISTICS];
2647 } __attribute__ ((packed));
2648
2649 /*
2650 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2651 */
2652 struct iwl_scancomplete_notification {
2653 u8 scanned_channels;
2654 u8 status;
2655 u8 reserved;
2656 u8 last_channel;
2657 __le32 tsf_low;
2658 __le32 tsf_high;
2659 } __attribute__ ((packed));
2660
2661
2662 /******************************************************************************
2663 * (9)
2664 * IBSS/AP Commands and Notifications:
2665 *
2666 *****************************************************************************/
2667
2668 /*
2669 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2670 */
2671
2672 struct iwl3945_beacon_notif {
2673 struct iwl3945_tx_resp beacon_notify_hdr;
2674 __le32 low_tsf;
2675 __le32 high_tsf;
2676 __le32 ibss_mgr_status;
2677 } __attribute__ ((packed));
2678
2679 struct iwl4965_beacon_notif {
2680 struct iwl4965_tx_resp beacon_notify_hdr;
2681 __le32 low_tsf;
2682 __le32 high_tsf;
2683 __le32 ibss_mgr_status;
2684 } __attribute__ ((packed));
2685
2686 /*
2687 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2688 */
2689
2690 struct iwl3945_tx_beacon_cmd {
2691 struct iwl3945_tx_cmd tx;
2692 __le16 tim_idx;
2693 u8 tim_size;
2694 u8 reserved1;
2695 struct ieee80211_hdr frame[0]; /* beacon frame */
2696 } __attribute__ ((packed));
2697
2698 struct iwl_tx_beacon_cmd {
2699 struct iwl_tx_cmd tx;
2700 __le16 tim_idx;
2701 u8 tim_size;
2702 u8 reserved1;
2703 struct ieee80211_hdr frame[0]; /* beacon frame */
2704 } __attribute__ ((packed));
2705
2706 /******************************************************************************
2707 * (10)
2708 * Statistics Commands and Notifications:
2709 *
2710 *****************************************************************************/
2711
2712 #define IWL_TEMP_CONVERT 260
2713
2714 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2715 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2716 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2717
2718 /* Used for passing to driver number of successes and failures per rate */
2719 struct rate_histogram {
2720 union {
2721 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2722 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2723 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2724 } success;
2725 union {
2726 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2727 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2728 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2729 } failed;
2730 } __attribute__ ((packed));
2731
2732 /* statistics command response */
2733
2734 struct iwl39_statistics_rx_phy {
2735 __le32 ina_cnt;
2736 __le32 fina_cnt;
2737 __le32 plcp_err;
2738 __le32 crc32_err;
2739 __le32 overrun_err;
2740 __le32 early_overrun_err;
2741 __le32 crc32_good;
2742 __le32 false_alarm_cnt;
2743 __le32 fina_sync_err_cnt;
2744 __le32 sfd_timeout;
2745 __le32 fina_timeout;
2746 __le32 unresponded_rts;
2747 __le32 rxe_frame_limit_overrun;
2748 __le32 sent_ack_cnt;
2749 __le32 sent_cts_cnt;
2750 } __attribute__ ((packed));
2751
2752 struct iwl39_statistics_rx_non_phy {
2753 __le32 bogus_cts; /* CTS received when not expecting CTS */
2754 __le32 bogus_ack; /* ACK received when not expecting ACK */
2755 __le32 non_bssid_frames; /* number of frames with BSSID that
2756 * doesn't belong to the STA BSSID */
2757 __le32 filtered_frames; /* count frames that were dumped in the
2758 * filtering process */
2759 __le32 non_channel_beacons; /* beacons with our bss id but not on
2760 * our serving channel */
2761 } __attribute__ ((packed));
2762
2763 struct iwl39_statistics_rx {
2764 struct iwl39_statistics_rx_phy ofdm;
2765 struct iwl39_statistics_rx_phy cck;
2766 struct iwl39_statistics_rx_non_phy general;
2767 } __attribute__ ((packed));
2768
2769 struct iwl39_statistics_tx {
2770 __le32 preamble_cnt;
2771 __le32 rx_detected_cnt;
2772 __le32 bt_prio_defer_cnt;
2773 __le32 bt_prio_kill_cnt;
2774 __le32 few_bytes_cnt;
2775 __le32 cts_timeout;
2776 __le32 ack_timeout;
2777 __le32 expected_ack_cnt;
2778 __le32 actual_ack_cnt;
2779 } __attribute__ ((packed));
2780
2781 struct statistics_dbg {
2782 __le32 burst_check;
2783 __le32 burst_count;
2784 __le32 reserved[4];
2785 } __attribute__ ((packed));
2786
2787 struct iwl39_statistics_div {
2788 __le32 tx_on_a;
2789 __le32 tx_on_b;
2790 __le32 exec_time;
2791 __le32 probe_time;
2792 } __attribute__ ((packed));
2793
2794 struct iwl39_statistics_general {
2795 __le32 temperature;
2796 struct statistics_dbg dbg;
2797 __le32 sleep_time;
2798 __le32 slots_out;
2799 __le32 slots_idle;
2800 __le32 ttl_timestamp;
2801 struct iwl39_statistics_div div;
2802 } __attribute__ ((packed));
2803
2804 struct statistics_rx_phy {
2805 __le32 ina_cnt;
2806 __le32 fina_cnt;
2807 __le32 plcp_err;
2808 __le32 crc32_err;
2809 __le32 overrun_err;
2810 __le32 early_overrun_err;
2811 __le32 crc32_good;
2812 __le32 false_alarm_cnt;
2813 __le32 fina_sync_err_cnt;
2814 __le32 sfd_timeout;
2815 __le32 fina_timeout;
2816 __le32 unresponded_rts;
2817 __le32 rxe_frame_limit_overrun;
2818 __le32 sent_ack_cnt;
2819 __le32 sent_cts_cnt;
2820 __le32 sent_ba_rsp_cnt;
2821 __le32 dsp_self_kill;
2822 __le32 mh_format_err;
2823 __le32 re_acq_main_rssi_sum;
2824 __le32 reserved3;
2825 } __attribute__ ((packed));
2826
2827 struct statistics_rx_ht_phy {
2828 __le32 plcp_err;
2829 __le32 overrun_err;
2830 __le32 early_overrun_err;
2831 __le32 crc32_good;
2832 __le32 crc32_err;
2833 __le32 mh_format_err;
2834 __le32 agg_crc32_good;
2835 __le32 agg_mpdu_cnt;
2836 __le32 agg_cnt;
2837 __le32 reserved2;
2838 } __attribute__ ((packed));
2839
2840 #define INTERFERENCE_DATA_AVAILABLE __constant_cpu_to_le32(1)
2841
2842 struct statistics_rx_non_phy {
2843 __le32 bogus_cts; /* CTS received when not expecting CTS */
2844 __le32 bogus_ack; /* ACK received when not expecting ACK */
2845 __le32 non_bssid_frames; /* number of frames with BSSID that
2846 * doesn't belong to the STA BSSID */
2847 __le32 filtered_frames; /* count frames that were dumped in the
2848 * filtering process */
2849 __le32 non_channel_beacons; /* beacons with our bss id but not on
2850 * our serving channel */
2851 __le32 channel_beacons; /* beacons with our bss id and in our
2852 * serving channel */
2853 __le32 num_missed_bcon; /* number of missed beacons */
2854 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2855 * ADC was in saturation */
2856 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2857 * for INA */
2858 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2859 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2860 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2861 __le32 interference_data_flag; /* flag for interference data
2862 * availability. 1 when data is
2863 * available. */
2864 __le32 channel_load; /* counts RX Enable time in uSec */
2865 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2866 * and CCK) counter */
2867 __le32 beacon_rssi_a;
2868 __le32 beacon_rssi_b;
2869 __le32 beacon_rssi_c;
2870 __le32 beacon_energy_a;
2871 __le32 beacon_energy_b;
2872 __le32 beacon_energy_c;
2873 } __attribute__ ((packed));
2874
2875 struct statistics_rx {
2876 struct statistics_rx_phy ofdm;
2877 struct statistics_rx_phy cck;
2878 struct statistics_rx_non_phy general;
2879 struct statistics_rx_ht_phy ofdm_ht;
2880 } __attribute__ ((packed));
2881
2882 struct statistics_tx_non_phy_agg {
2883 __le32 ba_timeout;
2884 __le32 ba_reschedule_frames;
2885 __le32 scd_query_agg_frame_cnt;
2886 __le32 scd_query_no_agg;
2887 __le32 scd_query_agg;
2888 __le32 scd_query_mismatch;
2889 __le32 frame_not_ready;
2890 __le32 underrun;
2891 __le32 bt_prio_kill;
2892 __le32 rx_ba_rsp_cnt;
2893 __le32 reserved2;
2894 __le32 reserved3;
2895 } __attribute__ ((packed));
2896
2897 struct statistics_tx {
2898 __le32 preamble_cnt;
2899 __le32 rx_detected_cnt;
2900 __le32 bt_prio_defer_cnt;
2901 __le32 bt_prio_kill_cnt;
2902 __le32 few_bytes_cnt;
2903 __le32 cts_timeout;
2904 __le32 ack_timeout;
2905 __le32 expected_ack_cnt;
2906 __le32 actual_ack_cnt;
2907 __le32 dump_msdu_cnt;
2908 __le32 burst_abort_next_frame_mismatch_cnt;
2909 __le32 burst_abort_missing_next_frame_cnt;
2910 __le32 cts_timeout_collision;
2911 __le32 ack_or_ba_timeout_collision;
2912 struct statistics_tx_non_phy_agg agg;
2913 } __attribute__ ((packed));
2914
2915
2916 struct statistics_div {
2917 __le32 tx_on_a;
2918 __le32 tx_on_b;
2919 __le32 exec_time;
2920 __le32 probe_time;
2921 __le32 reserved1;
2922 __le32 reserved2;
2923 } __attribute__ ((packed));
2924
2925 struct statistics_general {
2926 __le32 temperature;
2927 __le32 temperature_m;
2928 struct statistics_dbg dbg;
2929 __le32 sleep_time;
2930 __le32 slots_out;
2931 __le32 slots_idle;
2932 __le32 ttl_timestamp;
2933 struct statistics_div div;
2934 __le32 rx_enable_counter;
2935 __le32 reserved1;
2936 __le32 reserved2;
2937 __le32 reserved3;
2938 } __attribute__ ((packed));
2939
2940 /*
2941 * REPLY_STATISTICS_CMD = 0x9c,
2942 * 3945 and 4965 identical.
2943 *
2944 * This command triggers an immediate response containing uCode statistics.
2945 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2946 *
2947 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2948 * internal copy of the statistics (counters) after issuing the response.
2949 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2950 *
2951 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2952 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2953 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2954 */
2955 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2956 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2957 struct iwl_statistics_cmd {
2958 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2959 } __attribute__ ((packed));
2960
2961 /*
2962 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2963 *
2964 * By default, uCode issues this notification after receiving a beacon
2965 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2966 * REPLY_STATISTICS_CMD 0x9c, above.
2967 *
2968 * Statistics counters continue to increment beacon after beacon, but are
2969 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2970 * 0x9c with CLEAR_STATS bit set (see above).
2971 *
2972 * uCode also issues this notification during scans. uCode clears statistics
2973 * appropriately so that each notification contains statistics for only the
2974 * one channel that has just been scanned.
2975 */
2976 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2977 #define STATISTICS_REPLY_FLG_FAT_MODE_MSK cpu_to_le32(0x8)
2978
2979 struct iwl3945_notif_statistics {
2980 __le32 flag;
2981 struct iwl39_statistics_rx rx;
2982 struct iwl39_statistics_tx tx;
2983 struct iwl39_statistics_general general;
2984 } __attribute__ ((packed));
2985
2986 struct iwl_notif_statistics {
2987 __le32 flag;
2988 struct statistics_rx rx;
2989 struct statistics_tx tx;
2990 struct statistics_general general;
2991 } __attribute__ ((packed));
2992
2993
2994 /*
2995 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2996 */
2997 /* if ucode missed CONSECUTIVE_MISSED_BCONS_TH beacons in a row,
2998 * then this notification will be sent. */
2999 #define CONSECUTIVE_MISSED_BCONS_TH 20
3000
3001 struct iwl_missed_beacon_notif {
3002 __le32 consequtive_missed_beacons;
3003 __le32 total_missed_becons;
3004 __le32 num_expected_beacons;
3005 __le32 num_recvd_beacons;
3006 } __attribute__ ((packed));
3007
3008
3009 /******************************************************************************
3010 * (11)
3011 * Rx Calibration Commands:
3012 *
3013 * With the uCode used for open source drivers, most Tx calibration (except
3014 * for Tx Power) and most Rx calibration is done by uCode during the
3015 * "initialize" phase of uCode boot. Driver must calibrate only:
3016 *
3017 * 1) Tx power (depends on temperature), described elsewhere
3018 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
3019 * 3) Receiver sensitivity (to optimize signal detection)
3020 *
3021 *****************************************************************************/
3022
3023 /**
3024 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
3025 *
3026 * This command sets up the Rx signal detector for a sensitivity level that
3027 * is high enough to lock onto all signals within the associated network,
3028 * but low enough to ignore signals that are below a certain threshold, so as
3029 * not to have too many "false alarms". False alarms are signals that the
3030 * Rx DSP tries to lock onto, but then discards after determining that they
3031 * are noise.
3032 *
3033 * The optimum number of false alarms is between 5 and 50 per 200 TUs
3034 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
3035 * time listening, not transmitting). Driver must adjust sensitivity so that
3036 * the ratio of actual false alarms to actual Rx time falls within this range.
3037 *
3038 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
3039 * received beacon. These provide information to the driver to analyze the
3040 * sensitivity. Don't analyze statistics that come in from scanning, or any
3041 * other non-associated-network source. Pertinent statistics include:
3042 *
3043 * From "general" statistics (struct statistics_rx_non_phy):
3044 *
3045 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
3046 * Measure of energy of desired signal. Used for establishing a level
3047 * below which the device does not detect signals.
3048 *
3049 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
3050 * Measure of background noise in silent period after beacon.
3051 *
3052 * channel_load
3053 * uSecs of actual Rx time during beacon period (varies according to
3054 * how much time was spent transmitting).
3055 *
3056 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
3057 *
3058 * false_alarm_cnt
3059 * Signal locks abandoned early (before phy-level header).
3060 *
3061 * plcp_err
3062 * Signal locks abandoned late (during phy-level header).
3063 *
3064 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
3065 * beacon to beacon, i.e. each value is an accumulation of all errors
3066 * before and including the latest beacon. Values will wrap around to 0
3067 * after counting up to 2^32 - 1. Driver must differentiate vs.
3068 * previous beacon's values to determine # false alarms in the current
3069 * beacon period.
3070 *
3071 * Total number of false alarms = false_alarms + plcp_errs
3072 *
3073 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
3074 * (notice that the start points for OFDM are at or close to settings for
3075 * maximum sensitivity):
3076 *
3077 * START / MIN / MAX
3078 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
3079 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
3080 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
3081 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
3082 *
3083 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
3084 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
3085 * by *adding* 1 to all 4 of the table entries above, up to the max for
3086 * each entry. Conversely, if false alarm rate is too low (less than 5
3087 * for each 204.8 msecs listening), *subtract* 1 from each entry to
3088 * increase sensitivity.
3089 *
3090 * For CCK sensitivity, keep track of the following:
3091 *
3092 * 1). 20-beacon history of maximum background noise, indicated by
3093 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
3094 * 3 receivers. For any given beacon, the "silence reference" is
3095 * the maximum of last 60 samples (20 beacons * 3 receivers).
3096 *
3097 * 2). 10-beacon history of strongest signal level, as indicated
3098 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
3099 * i.e. the strength of the signal through the best receiver at the
3100 * moment. These measurements are "upside down", with lower values
3101 * for stronger signals, so max energy will be *minimum* value.
3102 *
3103 * Then for any given beacon, the driver must determine the *weakest*
3104 * of the strongest signals; this is the minimum level that needs to be
3105 * successfully detected, when using the best receiver at the moment.
3106 * "Max cck energy" is the maximum (higher value means lower energy!)
3107 * of the last 10 minima. Once this is determined, driver must add
3108 * a little margin by adding "6" to it.
3109 *
3110 * 3). Number of consecutive beacon periods with too few false alarms.
3111 * Reset this to 0 at the first beacon period that falls within the
3112 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
3113 *
3114 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
3115 * (notice that the start points for CCK are at maximum sensitivity):
3116 *
3117 * START / MIN / MAX
3118 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
3119 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
3120 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
3121 *
3122 * If actual rate of CCK false alarms (+ plcp_errors) is too high
3123 * (greater than 50 for each 204.8 msecs listening), method for reducing
3124 * sensitivity is:
3125 *
3126 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
3127 * up to max 400.
3128 *
3129 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
3130 * sensitivity has been reduced a significant amount; bring it up to
3131 * a moderate 161. Otherwise, *add* 3, up to max 200.
3132 *
3133 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
3134 * sensitivity has been reduced only a moderate or small amount;
3135 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
3136 * down to min 0. Otherwise (if gain has been significantly reduced),
3137 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
3138 *
3139 * b) Save a snapshot of the "silence reference".
3140 *
3141 * If actual rate of CCK false alarms (+ plcp_errors) is too low
3142 * (less than 5 for each 204.8 msecs listening), method for increasing
3143 * sensitivity is used only if:
3144 *
3145 * 1a) Previous beacon did not have too many false alarms
3146 * 1b) AND difference between previous "silence reference" and current
3147 * "silence reference" (prev - current) is 2 or more,
3148 * OR 2) 100 or more consecutive beacon periods have had rate of
3149 * less than 5 false alarms per 204.8 milliseconds rx time.
3150 *
3151 * Method for increasing sensitivity:
3152 *
3153 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
3154 * down to min 125.
3155 *
3156 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
3157 * down to min 200.
3158 *
3159 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
3160 *
3161 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
3162 * (between 5 and 50 for each 204.8 msecs listening):
3163 *
3164 * 1) Save a snapshot of the silence reference.
3165 *
3166 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
3167 * give some extra margin to energy threshold by *subtracting* 8
3168 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
3169 *
3170 * For all cases (too few, too many, good range), make sure that the CCK
3171 * detection threshold (energy) is below the energy level for robust
3172 * detection over the past 10 beacon periods, the "Max cck energy".
3173 * Lower values mean higher energy; this means making sure that the value
3174 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
3175 *
3176 * Driver should set the following entries to fixed values:
3177 *
3178 * HD_MIN_ENERGY_OFDM_DET_INDEX 100
3179 * HD_BARKER_CORR_TH_ADD_MIN_INDEX 190
3180 * HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX 390
3181 * HD_OFDM_ENERGY_TH_IN_INDEX 62
3182 */
3183
3184 /*
3185 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3186 */
3187 #define HD_TABLE_SIZE (11) /* number of entries */
3188 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
3189 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
3190 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
3191 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
3192 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
3193 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
3194 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
3195 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
3196 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
3197 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
3198 #define HD_OFDM_ENERGY_TH_IN_INDEX (10)
3199
3200 /* Control field in struct iwl_sensitivity_cmd */
3201 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3202 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3203
3204 /**
3205 * struct iwl_sensitivity_cmd
3206 * @control: (1) updates working table, (0) updates default table
3207 * @table: energy threshold values, use HD_* as index into table
3208 *
3209 * Always use "1" in "control" to update uCode's working table and DSP.
3210 */
3211 struct iwl_sensitivity_cmd {
3212 __le16 control; /* always use "1" */
3213 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3214 } __attribute__ ((packed));
3215
3216
3217 /**
3218 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3219 *
3220 * This command sets the relative gains of 4965's 3 radio receiver chains.
3221 *
3222 * After the first association, driver should accumulate signal and noise
3223 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3224 * beacons from the associated network (don't collect statistics that come
3225 * in from scanning, or any other non-network source).
3226 *
3227 * DISCONNECTED ANTENNA:
3228 *
3229 * Driver should determine which antennas are actually connected, by comparing
3230 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3231 * following values over 20 beacons, one accumulator for each of the chains
3232 * a/b/c, from struct statistics_rx_non_phy:
3233 *
3234 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3235 *
3236 * Find the strongest signal from among a/b/c. Compare the other two to the
3237 * strongest. If any signal is more than 15 dB (times 20, unless you
3238 * divide the accumulated values by 20) below the strongest, the driver
3239 * considers that antenna to be disconnected, and should not try to use that
3240 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3241 * driver should declare the stronger one as connected, and attempt to use it
3242 * (A and B are the only 2 Tx chains!).
3243 *
3244 *
3245 * RX BALANCE:
3246 *
3247 * Driver should balance the 3 receivers (but just the ones that are connected
3248 * to antennas, see above) for gain, by comparing the average signal levels
3249 * detected during the silence after each beacon (background noise).
3250 * Accumulate (add) the following values over 20 beacons, one accumulator for
3251 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3252 *
3253 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3254 *
3255 * Find the weakest background noise level from among a/b/c. This Rx chain
3256 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3257 * finding noise difference:
3258 *
3259 * (accum_noise[i] - accum_noise[reference]) / 30
3260 *
3261 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3262 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3263 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3264 * and set bit 2 to indicate "reduce gain". The value for the reference
3265 * (weakest) chain should be "0".
3266 *
3267 * diff_gain_[abc] bit fields:
3268 * 2: (1) reduce gain, (0) increase gain
3269 * 1-0: amount of gain, units of 1.5 dB
3270 */
3271
3272 /* Phy calibration command for series */
3273
3274 enum {
3275 IWL_PHY_CALIBRATE_DIFF_GAIN_CMD = 7,
3276 IWL_PHY_CALIBRATE_DC_CMD = 8,
3277 IWL_PHY_CALIBRATE_LO_CMD = 9,
3278 IWL_PHY_CALIBRATE_RX_BB_CMD = 10,
3279 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3280 IWL_PHY_CALIBRATE_RX_IQ_CMD = 12,
3281 IWL_PHY_CALIBRATION_NOISE_CMD = 13,
3282 IWL_PHY_CALIBRATE_AGC_TABLE_CMD = 14,
3283 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3284 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3285 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3286 IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD = 18,
3287 IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD = 19,
3288 };
3289
3290
3291 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(0xffffffff)
3292
3293 struct iwl_calib_cfg_elmnt_s {
3294 __le32 is_enable;
3295 __le32 start;
3296 __le32 send_res;
3297 __le32 apply_res;
3298 __le32 reserved;
3299 } __attribute__ ((packed));
3300
3301 struct iwl_calib_cfg_status_s {
3302 struct iwl_calib_cfg_elmnt_s once;
3303 struct iwl_calib_cfg_elmnt_s perd;
3304 __le32 flags;
3305 } __attribute__ ((packed));
3306
3307 struct iwl_calib_cfg_cmd {
3308 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3309 struct iwl_calib_cfg_status_s drv_calib_cfg;
3310 __le32 reserved1;
3311 } __attribute__ ((packed));
3312
3313 struct iwl_calib_hdr {
3314 u8 op_code;
3315 u8 first_group;
3316 u8 groups_num;
3317 u8 data_valid;
3318 } __attribute__ ((packed));
3319
3320 struct iwl_calib_cmd {
3321 struct iwl_calib_hdr hdr;
3322 u8 data[0];
3323 } __attribute__ ((packed));
3324
3325 /* IWL_PHY_CALIBRATE_DIFF_GAIN_CMD (7) */
3326 struct iwl_calib_diff_gain_cmd {
3327 struct iwl_calib_hdr hdr;
3328 s8 diff_gain_a; /* see above */
3329 s8 diff_gain_b;
3330 s8 diff_gain_c;
3331 u8 reserved1;
3332 } __attribute__ ((packed));
3333
3334 struct iwl_calib_xtal_freq_cmd {
3335 struct iwl_calib_hdr hdr;
3336 u8 cap_pin1;
3337 u8 cap_pin2;
3338 u8 pad[2];
3339 } __attribute__ ((packed));
3340
3341 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3342 struct iwl_calib_chain_noise_reset_cmd {
3343 struct iwl_calib_hdr hdr;
3344 u8 data[0];
3345 };
3346
3347 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3348 struct iwl_calib_chain_noise_gain_cmd {
3349 struct iwl_calib_hdr hdr;
3350 u8 delta_gain_1;
3351 u8 delta_gain_2;
3352 u8 pad[2];
3353 } __attribute__ ((packed));
3354
3355 /******************************************************************************
3356 * (12)
3357 * Miscellaneous Commands:
3358 *
3359 *****************************************************************************/
3360
3361 /*
3362 * LEDs Command & Response
3363 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3364 *
3365 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3366 * this command turns it on or off, or sets up a periodic blinking cycle.
3367 */
3368 struct iwl_led_cmd {
3369 __le32 interval; /* "interval" in uSec */
3370 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3371 u8 off; /* # intervals off while blinking;
3372 * "0", with >0 "on" value, turns LED on */
3373 u8 on; /* # intervals on while blinking;
3374 * "0", regardless of "off", turns LED off */
3375 u8 reserved;
3376 } __attribute__ ((packed));
3377
3378 /*
3379 * Coexistence WIFI/WIMAX Command
3380 * COEX_PRIORITY_TABLE_CMD = 0x5a
3381 *
3382 */
3383 enum {
3384 COEX_UNASSOC_IDLE = 0,
3385 COEX_UNASSOC_MANUAL_SCAN = 1,
3386 COEX_UNASSOC_AUTO_SCAN = 2,
3387 COEX_CALIBRATION = 3,
3388 COEX_PERIODIC_CALIBRATION = 4,
3389 COEX_CONNECTION_ESTAB = 5,
3390 COEX_ASSOCIATED_IDLE = 6,
3391 COEX_ASSOC_MANUAL_SCAN = 7,
3392 COEX_ASSOC_AUTO_SCAN = 8,
3393 COEX_ASSOC_ACTIVE_LEVEL = 9,
3394 COEX_RF_ON = 10,
3395 COEX_RF_OFF = 11,
3396 COEX_STAND_ALONE_DEBUG = 12,
3397 COEX_IPAN_ASSOC_LEVEL = 13,
3398 COEX_RSRVD1 = 14,
3399 COEX_RSRVD2 = 15,
3400 COEX_NUM_OF_EVENTS = 16
3401 };
3402
3403 struct iwl_wimax_coex_event_entry {
3404 u8 request_prio;
3405 u8 win_medium_prio;
3406 u8 reserved;
3407 u8 flags;
3408 } __attribute__ ((packed));
3409
3410 /* COEX flag masks */
3411
3412 /* Station table is valid */
3413 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3414 /* UnMask wake up src at unassociated sleep */
3415 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3416 /* UnMask wake up src at associated sleep */
3417 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3418 /* Enable CoEx feature. */
3419 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3420
3421 struct iwl_wimax_coex_cmd {
3422 u8 flags;
3423 u8 reserved[3];
3424 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3425 } __attribute__ ((packed));
3426
3427 /******************************************************************************
3428 * (13)
3429 * Union of all expected notifications/responses:
3430 *
3431 *****************************************************************************/
3432
3433 struct iwl_rx_packet {
3434 __le32 len;
3435 struct iwl_cmd_header hdr;
3436 union {
3437 struct iwl3945_rx_frame rx_frame;
3438 struct iwl3945_tx_resp tx_resp;
3439 struct iwl3945_beacon_notif beacon_status;
3440
3441 struct iwl_alive_resp alive_frame;
3442 struct iwl_spectrum_notification spectrum_notif;
3443 struct iwl_csa_notification csa_notif;
3444 struct iwl_error_resp err_resp;
3445 struct iwl_card_state_notif card_state_notif;
3446 struct iwl_add_sta_resp add_sta;
3447 struct iwl_rem_sta_resp rem_sta;
3448 struct iwl_sleep_notification sleep_notif;
3449 struct iwl_spectrum_resp spectrum;
3450 struct iwl_notif_statistics stats;
3451 struct iwl_compressed_ba_resp compressed_ba;
3452 struct iwl_missed_beacon_notif missed_beacon;
3453 __le32 status;
3454 u8 raw[0];
3455 } u;
3456 } __attribute__ ((packed));
3457
3458 int iwl_agn_check_rxon_cmd(struct iwl_rxon_cmd *rxon);
3459
3460 #endif /* __iwl_commands_h__ */
This page took 0.215224 seconds and 5 git commands to generate.