Merge branch 'linus' into perfcounters/core
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-commands.h
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63 /*
64 * Please use this file (iwl-commands.h) only for uCode API definitions.
65 * Please use iwl-4965-hw.h for hardware-related definitions.
66 * Please use iwl-dev.h for driver implementation definitions.
67 */
68
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
71
72 struct iwl_priv;
73
74 /* uCode version contains 4 values: Major/Minor/API/Serial */
75 #define IWL_UCODE_MAJOR(ver) (((ver) & 0xFF000000) >> 24)
76 #define IWL_UCODE_MINOR(ver) (((ver) & 0x00FF0000) >> 16)
77 #define IWL_UCODE_API(ver) (((ver) & 0x0000FF00) >> 8)
78 #define IWL_UCODE_SERIAL(ver) ((ver) & 0x000000FF)
79
80
81 /* Tx rates */
82 #define IWL_CCK_RATES 4
83 #define IWL_OFDM_RATES 8
84 #define IWL_MAX_RATES (IWL_CCK_RATES + IWL_OFDM_RATES)
85
86 enum {
87 REPLY_ALIVE = 0x1,
88 REPLY_ERROR = 0x2,
89
90 /* RXON and QOS commands */
91 REPLY_RXON = 0x10,
92 REPLY_RXON_ASSOC = 0x11,
93 REPLY_QOS_PARAM = 0x13,
94 REPLY_RXON_TIMING = 0x14,
95
96 /* Multi-Station support */
97 REPLY_ADD_STA = 0x18,
98 REPLY_REMOVE_STA = 0x19, /* not used */
99 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
100
101 /* Security */
102 REPLY_WEPKEY = 0x20,
103
104 /* RX, TX, LEDs */
105 REPLY_3945_RX = 0x1b, /* 3945 only */
106 REPLY_TX = 0x1c,
107 REPLY_RATE_SCALE = 0x47, /* 3945 only */
108 REPLY_LEDS_CMD = 0x48,
109 REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* 4965 only */
110
111 /* WiMAX coexistence */
112 COEX_PRIORITY_TABLE_CMD = 0x5a, /*5000 only */
113 COEX_MEDIUM_NOTIFICATION = 0x5b,
114 COEX_EVENT_CMD = 0x5c,
115
116 /* Calibration */
117 CALIBRATION_CFG_CMD = 0x65,
118 CALIBRATION_RES_NOTIFICATION = 0x66,
119 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
120
121 /* 802.11h related */
122 RADAR_NOTIFICATION = 0x70, /* not used */
123 REPLY_QUIET_CMD = 0x71, /* not used */
124 REPLY_CHANNEL_SWITCH = 0x72,
125 CHANNEL_SWITCH_NOTIFICATION = 0x73,
126 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
127 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
128
129 /* Power Management */
130 POWER_TABLE_CMD = 0x77,
131 PM_SLEEP_NOTIFICATION = 0x7A,
132 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
133
134 /* Scan commands and notifications */
135 REPLY_SCAN_CMD = 0x80,
136 REPLY_SCAN_ABORT_CMD = 0x81,
137 SCAN_START_NOTIFICATION = 0x82,
138 SCAN_RESULTS_NOTIFICATION = 0x83,
139 SCAN_COMPLETE_NOTIFICATION = 0x84,
140
141 /* IBSS/AP commands */
142 BEACON_NOTIFICATION = 0x90,
143 REPLY_TX_BEACON = 0x91,
144 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
145
146 /* Miscellaneous commands */
147 REPLY_TX_POWER_DBM_CMD = 0x95,
148 QUIET_NOTIFICATION = 0x96, /* not used */
149 REPLY_TX_PWR_TABLE_CMD = 0x97,
150 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
151 TX_ANT_CONFIGURATION_CMD = 0x98, /* not used */
152 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
153
154 /* Bluetooth device coexistence config command */
155 REPLY_BT_CONFIG = 0x9b,
156
157 /* Statistics */
158 REPLY_STATISTICS_CMD = 0x9c,
159 STATISTICS_NOTIFICATION = 0x9d,
160
161 /* RF-KILL commands and notifications */
162 REPLY_CARD_STATE_CMD = 0xa0,
163 CARD_STATE_NOTIFICATION = 0xa1,
164
165 /* Missed beacons notification */
166 MISSED_BEACONS_NOTIFICATION = 0xa2,
167
168 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
169 SENSITIVITY_CMD = 0xa8,
170 REPLY_PHY_CALIBRATION_CMD = 0xb0,
171 REPLY_RX_PHY_CMD = 0xc0,
172 REPLY_RX_MPDU_CMD = 0xc1,
173 REPLY_RX = 0xc3,
174 REPLY_COMPRESSED_BA = 0xc5,
175 REPLY_MAX = 0xff
176 };
177
178 /******************************************************************************
179 * (0)
180 * Commonly used structures and definitions:
181 * Command header, rate_n_flags, txpower
182 *
183 *****************************************************************************/
184
185 /* iwl_cmd_header flags value */
186 #define IWL_CMD_FAILED_MSK 0x40
187
188 #define SEQ_TO_QUEUE(s) (((s) >> 8) & 0x1f)
189 #define QUEUE_TO_SEQ(q) (((q) & 0x1f) << 8)
190 #define SEQ_TO_INDEX(s) ((s) & 0xff)
191 #define INDEX_TO_SEQ(i) ((i) & 0xff)
192 #define SEQ_HUGE_FRAME cpu_to_le16(0x4000)
193 #define SEQ_RX_FRAME cpu_to_le16(0x8000)
194
195 /**
196 * struct iwl_cmd_header
197 *
198 * This header format appears in the beginning of each command sent from the
199 * driver, and each response/notification received from uCode.
200 */
201 struct iwl_cmd_header {
202 u8 cmd; /* Command ID: REPLY_RXON, etc. */
203 u8 flags; /* 0:5 reserved, 6 abort, 7 internal */
204 /*
205 * The driver sets up the sequence number to values of its choosing.
206 * uCode does not use this value, but passes it back to the driver
207 * when sending the response to each driver-originated command, so
208 * the driver can match the response to the command. Since the values
209 * don't get used by uCode, the driver may set up an arbitrary format.
210 *
211 * There is one exception: uCode sets bit 15 when it originates
212 * the response/notification, i.e. when the response/notification
213 * is not a direct response to a command sent by the driver. For
214 * example, uCode issues REPLY_3945_RX when it sends a received frame
215 * to the driver; it is not a direct response to any driver command.
216 *
217 * The Linux driver uses the following format:
218 *
219 * 0:7 tfd index - position within TX queue
220 * 8:12 TX queue id
221 * 13 reserved
222 * 14 huge - driver sets this to indicate command is in the
223 * 'huge' storage at the end of the command buffers
224 * 15 unsolicited RX or uCode-originated notification
225 */
226 __le16 sequence;
227
228 /* command or response/notification data follows immediately */
229 u8 data[0];
230 } __attribute__ ((packed));
231
232
233 /**
234 * struct iwl3945_tx_power
235 *
236 * Used in REPLY_TX_PWR_TABLE_CMD, REPLY_SCAN_CMD, REPLY_CHANNEL_SWITCH
237 *
238 * Each entry contains two values:
239 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
240 * linear value that multiplies the output of the digital signal processor,
241 * before being sent to the analog radio.
242 * 2) Radio gain. This sets the analog gain of the radio Tx path.
243 * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
244 *
245 * Driver obtains values from struct iwl3945_tx_power power_gain_table[][].
246 */
247 struct iwl3945_tx_power {
248 u8 tx_gain; /* gain for analog radio */
249 u8 dsp_atten; /* gain for DSP */
250 } __attribute__ ((packed));
251
252 /**
253 * struct iwl3945_power_per_rate
254 *
255 * Used in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
256 */
257 struct iwl3945_power_per_rate {
258 u8 rate; /* plcp */
259 struct iwl3945_tx_power tpc;
260 u8 reserved;
261 } __attribute__ ((packed));
262
263 /**
264 * iwlagn rate_n_flags bit fields
265 *
266 * rate_n_flags format is used in following iwlagn commands:
267 * REPLY_RX (response only)
268 * REPLY_RX_MPDU (response only)
269 * REPLY_TX (both command and response)
270 * REPLY_TX_LINK_QUALITY_CMD
271 *
272 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
273 * 2-0: 0) 6 Mbps
274 * 1) 12 Mbps
275 * 2) 18 Mbps
276 * 3) 24 Mbps
277 * 4) 36 Mbps
278 * 5) 48 Mbps
279 * 6) 54 Mbps
280 * 7) 60 Mbps
281 *
282 * 4-3: 0) Single stream (SISO)
283 * 1) Dual stream (MIMO)
284 * 2) Triple stream (MIMO)
285 *
286 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps FAT duplicate data
287 *
288 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
289 * 3-0: 0xD) 6 Mbps
290 * 0xF) 9 Mbps
291 * 0x5) 12 Mbps
292 * 0x7) 18 Mbps
293 * 0x9) 24 Mbps
294 * 0xB) 36 Mbps
295 * 0x1) 48 Mbps
296 * 0x3) 54 Mbps
297 *
298 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
299 * 6-0: 10) 1 Mbps
300 * 20) 2 Mbps
301 * 55) 5.5 Mbps
302 * 110) 11 Mbps
303 */
304 #define RATE_MCS_CODE_MSK 0x7
305 #define RATE_MCS_SPATIAL_POS 3
306 #define RATE_MCS_SPATIAL_MSK 0x18
307 #define RATE_MCS_HT_DUP_POS 5
308 #define RATE_MCS_HT_DUP_MSK 0x20
309
310 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
311 #define RATE_MCS_FLAGS_POS 8
312 #define RATE_MCS_HT_POS 8
313 #define RATE_MCS_HT_MSK 0x100
314
315 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
316 #define RATE_MCS_CCK_POS 9
317 #define RATE_MCS_CCK_MSK 0x200
318
319 /* Bit 10: (1) Use Green Field preamble */
320 #define RATE_MCS_GF_POS 10
321 #define RATE_MCS_GF_MSK 0x400
322
323 /* Bit 11: (1) Use 40Mhz FAT chnl width, (0) use 20 MHz legacy chnl width */
324 #define RATE_MCS_FAT_POS 11
325 #define RATE_MCS_FAT_MSK 0x800
326
327 /* Bit 12: (1) Duplicate data on both 20MHz chnls. FAT (bit 11) must be set. */
328 #define RATE_MCS_DUP_POS 12
329 #define RATE_MCS_DUP_MSK 0x1000
330
331 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
332 #define RATE_MCS_SGI_POS 13
333 #define RATE_MCS_SGI_MSK 0x2000
334
335 /**
336 * rate_n_flags Tx antenna masks
337 * 4965 has 2 transmitters
338 * 5100 has 1 transmitter B
339 * 5150 has 1 transmitter A
340 * 5300 has 3 transmitters
341 * 5350 has 3 transmitters
342 * bit14:16
343 */
344 #define RATE_MCS_ANT_POS 14
345 #define RATE_MCS_ANT_A_MSK 0x04000
346 #define RATE_MCS_ANT_B_MSK 0x08000
347 #define RATE_MCS_ANT_C_MSK 0x10000
348 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
349 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
350 #define RATE_ANT_NUM 3
351
352 #define POWER_TABLE_NUM_ENTRIES 33
353 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
354 #define POWER_TABLE_CCK_ENTRY 32
355
356 /**
357 * union iwl4965_tx_power_dual_stream
358 *
359 * Host format used for REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
360 * Use __le32 version (struct tx_power_dual_stream) when building command.
361 *
362 * Driver provides radio gain and DSP attenuation settings to device in pairs,
363 * one value for each transmitter chain. The first value is for transmitter A,
364 * second for transmitter B.
365 *
366 * For SISO bit rates, both values in a pair should be identical.
367 * For MIMO rates, one value may be different from the other,
368 * in order to balance the Tx output between the two transmitters.
369 *
370 * See more details in doc for TXPOWER in iwl-4965-hw.h.
371 */
372 union iwl4965_tx_power_dual_stream {
373 struct {
374 u8 radio_tx_gain[2];
375 u8 dsp_predis_atten[2];
376 } s;
377 u32 dw;
378 };
379
380 /**
381 * struct tx_power_dual_stream
382 *
383 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
384 *
385 * Same format as iwl_tx_power_dual_stream, but __le32
386 */
387 struct tx_power_dual_stream {
388 __le32 dw;
389 } __attribute__ ((packed));
390
391 /**
392 * struct iwl4965_tx_power_db
393 *
394 * Entire table within REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
395 */
396 struct iwl4965_tx_power_db {
397 struct tx_power_dual_stream power_tbl[POWER_TABLE_NUM_ENTRIES];
398 } __attribute__ ((packed));
399
400 /**
401 * Command REPLY_TX_POWER_DBM_CMD = 0x98
402 * struct iwl5000_tx_power_dbm_cmd
403 */
404 #define IWL50_TX_POWER_AUTO 0x7f
405 #define IWL50_TX_POWER_NO_CLOSED (0x1 << 6)
406
407 struct iwl5000_tx_power_dbm_cmd {
408 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
409 u8 flags;
410 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
411 u8 reserved;
412 } __attribute__ ((packed));
413
414 /******************************************************************************
415 * (0a)
416 * Alive and Error Commands & Responses:
417 *
418 *****************************************************************************/
419
420 #define UCODE_VALID_OK cpu_to_le32(0x1)
421 #define INITIALIZE_SUBTYPE (9)
422
423 /*
424 * ("Initialize") REPLY_ALIVE = 0x1 (response only, not a command)
425 *
426 * uCode issues this "initialize alive" notification once the initialization
427 * uCode image has completed its work, and is ready to load the runtime image.
428 * This is the *first* "alive" notification that the driver will receive after
429 * rebooting uCode; the "initialize" alive is indicated by subtype field == 9.
430 *
431 * See comments documenting "BSM" (bootstrap state machine).
432 *
433 * For 4965, this notification contains important calibration data for
434 * calculating txpower settings:
435 *
436 * 1) Power supply voltage indication. The voltage sensor outputs higher
437 * values for lower voltage, and vice verse.
438 *
439 * 2) Temperature measurement parameters, for each of two channel widths
440 * (20 MHz and 40 MHz) supported by the radios. Temperature sensing
441 * is done via one of the receiver chains, and channel width influences
442 * the results.
443 *
444 * 3) Tx gain compensation to balance 4965's 2 Tx chains for MIMO operation,
445 * for each of 5 frequency ranges.
446 */
447 struct iwl_init_alive_resp {
448 u8 ucode_minor;
449 u8 ucode_major;
450 __le16 reserved1;
451 u8 sw_rev[8];
452 u8 ver_type;
453 u8 ver_subtype; /* "9" for initialize alive */
454 __le16 reserved2;
455 __le32 log_event_table_ptr;
456 __le32 error_event_table_ptr;
457 __le32 timestamp;
458 __le32 is_valid;
459
460 /* calibration values from "initialize" uCode */
461 __le32 voltage; /* signed, higher value is lower voltage */
462 __le32 therm_r1[2]; /* signed, 1st for normal, 2nd for FAT channel*/
463 __le32 therm_r2[2]; /* signed */
464 __le32 therm_r3[2]; /* signed */
465 __le32 therm_r4[2]; /* signed */
466 __le32 tx_atten[5][2]; /* signed MIMO gain comp, 5 freq groups,
467 * 2 Tx chains */
468 } __attribute__ ((packed));
469
470
471 /**
472 * REPLY_ALIVE = 0x1 (response only, not a command)
473 *
474 * uCode issues this "alive" notification once the runtime image is ready
475 * to receive commands from the driver. This is the *second* "alive"
476 * notification that the driver will receive after rebooting uCode;
477 * this "alive" is indicated by subtype field != 9.
478 *
479 * See comments documenting "BSM" (bootstrap state machine).
480 *
481 * This response includes two pointers to structures within the device's
482 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
483 *
484 * 1) log_event_table_ptr indicates base of the event log. This traces
485 * a 256-entry history of uCode execution within a circular buffer.
486 * Its header format is:
487 *
488 * __le32 log_size; log capacity (in number of entries)
489 * __le32 type; (1) timestamp with each entry, (0) no timestamp
490 * __le32 wraps; # times uCode has wrapped to top of circular buffer
491 * __le32 write_index; next circular buffer entry that uCode would fill
492 *
493 * The header is followed by the circular buffer of log entries. Entries
494 * with timestamps have the following format:
495 *
496 * __le32 event_id; range 0 - 1500
497 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
498 * __le32 data; event_id-specific data value
499 *
500 * Entries without timestamps contain only event_id and data.
501 *
502 * 2) error_event_table_ptr indicates base of the error log. This contains
503 * information about any uCode error that occurs. For 4965, the format
504 * of the error log is:
505 *
506 * __le32 valid; (nonzero) valid, (0) log is empty
507 * __le32 error_id; type of error
508 * __le32 pc; program counter
509 * __le32 blink1; branch link
510 * __le32 blink2; branch link
511 * __le32 ilink1; interrupt link
512 * __le32 ilink2; interrupt link
513 * __le32 data1; error-specific data
514 * __le32 data2; error-specific data
515 * __le32 line; source code line of error
516 * __le32 bcon_time; beacon timer
517 * __le32 tsf_low; network timestamp function timer
518 * __le32 tsf_hi; network timestamp function timer
519 *
520 * The Linux driver can print both logs to the system log when a uCode error
521 * occurs.
522 */
523 struct iwl_alive_resp {
524 u8 ucode_minor;
525 u8 ucode_major;
526 __le16 reserved1;
527 u8 sw_rev[8];
528 u8 ver_type;
529 u8 ver_subtype; /* not "9" for runtime alive */
530 __le16 reserved2;
531 __le32 log_event_table_ptr; /* SRAM address for event log */
532 __le32 error_event_table_ptr; /* SRAM address for error log */
533 __le32 timestamp;
534 __le32 is_valid;
535 } __attribute__ ((packed));
536
537 /*
538 * REPLY_ERROR = 0x2 (response only, not a command)
539 */
540 struct iwl_error_resp {
541 __le32 error_type;
542 u8 cmd_id;
543 u8 reserved1;
544 __le16 bad_cmd_seq_num;
545 __le32 error_info;
546 __le64 timestamp;
547 } __attribute__ ((packed));
548
549 /******************************************************************************
550 * (1)
551 * RXON Commands & Responses:
552 *
553 *****************************************************************************/
554
555 /*
556 * Rx config defines & structure
557 */
558 /* rx_config device types */
559 enum {
560 RXON_DEV_TYPE_AP = 1,
561 RXON_DEV_TYPE_ESS = 3,
562 RXON_DEV_TYPE_IBSS = 4,
563 RXON_DEV_TYPE_SNIFFER = 6,
564 };
565
566
567 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
568 #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
569 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
570 #define RXON_RX_CHAIN_VALID_POS (1)
571 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
572 #define RXON_RX_CHAIN_FORCE_SEL_POS (4)
573 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
574 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
575 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
576 #define RXON_RX_CHAIN_CNT_POS (10)
577 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
578 #define RXON_RX_CHAIN_MIMO_CNT_POS (12)
579 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
580 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
581
582 /* rx_config flags */
583 /* band & modulation selection */
584 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
585 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
586 /* auto detection enable */
587 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
588 /* TGg protection when tx */
589 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
590 /* cck short slot & preamble */
591 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
592 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
593 /* antenna selection */
594 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
595 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
596 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
597 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
598 /* radar detection enable */
599 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
600 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
601 /* rx response to host with 8-byte TSF
602 * (according to ON_AIR deassertion) */
603 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
604
605
606 /* HT flags */
607 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
608 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
609
610 #define RXON_FLG_HT_OPERATING_MODE_POS (23)
611
612 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
613 #define RXON_FLG_FAT_PROT_MSK cpu_to_le32(0x2 << 23)
614
615 #define RXON_FLG_CHANNEL_MODE_POS (25)
616 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
617
618 /* channel mode */
619 enum {
620 CHANNEL_MODE_LEGACY = 0,
621 CHANNEL_MODE_PURE_40 = 1,
622 CHANNEL_MODE_MIXED = 2,
623 CHANNEL_MODE_RESERVED = 3,
624 };
625 #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
626 #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
627 #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
628
629 /* CTS to self (if spec allows) flag */
630 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
631
632 /* rx_config filter flags */
633 /* accept all data frames */
634 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
635 /* pass control & management to host */
636 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
637 /* accept multi-cast */
638 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
639 /* don't decrypt uni-cast frames */
640 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
641 /* don't decrypt multi-cast frames */
642 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
643 /* STA is associated */
644 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
645 /* transfer to host non bssid beacons in associated state */
646 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
647
648 /**
649 * REPLY_RXON = 0x10 (command, has simple generic response)
650 *
651 * RXON tunes the radio tuner to a service channel, and sets up a number
652 * of parameters that are used primarily for Rx, but also for Tx operations.
653 *
654 * NOTE: When tuning to a new channel, driver must set the
655 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
656 * info within the device, including the station tables, tx retry
657 * rate tables, and txpower tables. Driver must build a new station
658 * table and txpower table before transmitting anything on the RXON
659 * channel.
660 *
661 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
662 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
663 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
664 */
665
666 struct iwl3945_rxon_cmd {
667 u8 node_addr[6];
668 __le16 reserved1;
669 u8 bssid_addr[6];
670 __le16 reserved2;
671 u8 wlap_bssid_addr[6];
672 __le16 reserved3;
673 u8 dev_type;
674 u8 air_propagation;
675 __le16 reserved4;
676 u8 ofdm_basic_rates;
677 u8 cck_basic_rates;
678 __le16 assoc_id;
679 __le32 flags;
680 __le32 filter_flags;
681 __le16 channel;
682 __le16 reserved5;
683 } __attribute__ ((packed));
684
685 struct iwl4965_rxon_cmd {
686 u8 node_addr[6];
687 __le16 reserved1;
688 u8 bssid_addr[6];
689 __le16 reserved2;
690 u8 wlap_bssid_addr[6];
691 __le16 reserved3;
692 u8 dev_type;
693 u8 air_propagation;
694 __le16 rx_chain;
695 u8 ofdm_basic_rates;
696 u8 cck_basic_rates;
697 __le16 assoc_id;
698 __le32 flags;
699 __le32 filter_flags;
700 __le16 channel;
701 u8 ofdm_ht_single_stream_basic_rates;
702 u8 ofdm_ht_dual_stream_basic_rates;
703 } __attribute__ ((packed));
704
705 /* 5000 HW just extend this command */
706 struct iwl_rxon_cmd {
707 u8 node_addr[6];
708 __le16 reserved1;
709 u8 bssid_addr[6];
710 __le16 reserved2;
711 u8 wlap_bssid_addr[6];
712 __le16 reserved3;
713 u8 dev_type;
714 u8 air_propagation;
715 __le16 rx_chain;
716 u8 ofdm_basic_rates;
717 u8 cck_basic_rates;
718 __le16 assoc_id;
719 __le32 flags;
720 __le32 filter_flags;
721 __le16 channel;
722 u8 ofdm_ht_single_stream_basic_rates;
723 u8 ofdm_ht_dual_stream_basic_rates;
724 u8 ofdm_ht_triple_stream_basic_rates;
725 u8 reserved5;
726 __le16 acquisition_data;
727 __le16 reserved6;
728 } __attribute__ ((packed));
729
730 /*
731 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
732 */
733 struct iwl3945_rxon_assoc_cmd {
734 __le32 flags;
735 __le32 filter_flags;
736 u8 ofdm_basic_rates;
737 u8 cck_basic_rates;
738 __le16 reserved;
739 } __attribute__ ((packed));
740
741 struct iwl4965_rxon_assoc_cmd {
742 __le32 flags;
743 __le32 filter_flags;
744 u8 ofdm_basic_rates;
745 u8 cck_basic_rates;
746 u8 ofdm_ht_single_stream_basic_rates;
747 u8 ofdm_ht_dual_stream_basic_rates;
748 __le16 rx_chain_select_flags;
749 __le16 reserved;
750 } __attribute__ ((packed));
751
752 struct iwl5000_rxon_assoc_cmd {
753 __le32 flags;
754 __le32 filter_flags;
755 u8 ofdm_basic_rates;
756 u8 cck_basic_rates;
757 __le16 reserved1;
758 u8 ofdm_ht_single_stream_basic_rates;
759 u8 ofdm_ht_dual_stream_basic_rates;
760 u8 ofdm_ht_triple_stream_basic_rates;
761 u8 reserved2;
762 __le16 rx_chain_select_flags;
763 __le16 acquisition_data;
764 __le32 reserved3;
765 } __attribute__ ((packed));
766
767 #define IWL_CONN_MAX_LISTEN_INTERVAL 10
768
769 /*
770 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
771 */
772 struct iwl_rxon_time_cmd {
773 __le64 timestamp;
774 __le16 beacon_interval;
775 __le16 atim_window;
776 __le32 beacon_init_val;
777 __le16 listen_interval;
778 __le16 reserved;
779 } __attribute__ ((packed));
780
781 /*
782 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
783 */
784 struct iwl3945_channel_switch_cmd {
785 u8 band;
786 u8 expect_beacon;
787 __le16 channel;
788 __le32 rxon_flags;
789 __le32 rxon_filter_flags;
790 __le32 switch_time;
791 struct iwl3945_power_per_rate power[IWL_MAX_RATES];
792 } __attribute__ ((packed));
793
794 struct iwl_channel_switch_cmd {
795 u8 band;
796 u8 expect_beacon;
797 __le16 channel;
798 __le32 rxon_flags;
799 __le32 rxon_filter_flags;
800 __le32 switch_time;
801 struct iwl4965_tx_power_db tx_power;
802 } __attribute__ ((packed));
803
804 /*
805 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
806 */
807 struct iwl_csa_notification {
808 __le16 band;
809 __le16 channel;
810 __le32 status; /* 0 - OK, 1 - fail */
811 } __attribute__ ((packed));
812
813 /******************************************************************************
814 * (2)
815 * Quality-of-Service (QOS) Commands & Responses:
816 *
817 *****************************************************************************/
818
819 /**
820 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
821 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
822 *
823 * @cw_min: Contention window, start value in numbers of slots.
824 * Should be a power-of-2, minus 1. Device's default is 0x0f.
825 * @cw_max: Contention window, max value in numbers of slots.
826 * Should be a power-of-2, minus 1. Device's default is 0x3f.
827 * @aifsn: Number of slots in Arbitration Interframe Space (before
828 * performing random backoff timing prior to Tx). Device default 1.
829 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
830 *
831 * Device will automatically increase contention window by (2*CW) + 1 for each
832 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
833 * value, to cap the CW value.
834 */
835 struct iwl_ac_qos {
836 __le16 cw_min;
837 __le16 cw_max;
838 u8 aifsn;
839 u8 reserved1;
840 __le16 edca_txop;
841 } __attribute__ ((packed));
842
843 /* QoS flags defines */
844 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
845 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
846 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
847
848 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
849 #define AC_NUM 4
850
851 /*
852 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
853 *
854 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
855 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
856 */
857 struct iwl_qosparam_cmd {
858 __le32 qos_flags;
859 struct iwl_ac_qos ac[AC_NUM];
860 } __attribute__ ((packed));
861
862 /******************************************************************************
863 * (3)
864 * Add/Modify Stations Commands & Responses:
865 *
866 *****************************************************************************/
867 /*
868 * Multi station support
869 */
870
871 /* Special, dedicated locations within device's station table */
872 #define IWL_AP_ID 0
873 #define IWL_MULTICAST_ID 1
874 #define IWL_STA_ID 2
875 #define IWL3945_BROADCAST_ID 24
876 #define IWL3945_STATION_COUNT 25
877 #define IWL4965_BROADCAST_ID 31
878 #define IWL4965_STATION_COUNT 32
879 #define IWL5000_BROADCAST_ID 15
880 #define IWL5000_STATION_COUNT 16
881
882 #define IWL_STATION_COUNT 32 /* MAX(3945,4965)*/
883 #define IWL_INVALID_STATION 255
884
885 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2);
886 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8);
887 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8);
888 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
889 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
890 #define STA_FLG_MAX_AGG_SIZE_POS (19)
891 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
892 #define STA_FLG_FAT_EN_MSK cpu_to_le32(1 << 21)
893 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
894 #define STA_FLG_AGG_MPDU_DENSITY_POS (23)
895 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
896
897 /* Use in mode field. 1: modify existing entry, 0: add new station entry */
898 #define STA_CONTROL_MODIFY_MSK 0x01
899
900 /* key flags __le16*/
901 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
902 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
903 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
904 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
905 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
906
907 #define STA_KEY_FLG_KEYID_POS 8
908 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
909 /* wep key is either from global key (0) or from station info array (1) */
910 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
911
912 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
913 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
914 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
915 #define STA_KEY_MAX_NUM 8
916
917 /* Flags indicate whether to modify vs. don't change various station params */
918 #define STA_MODIFY_KEY_MASK 0x01
919 #define STA_MODIFY_TID_DISABLE_TX 0x02
920 #define STA_MODIFY_TX_RATE_MSK 0x04
921 #define STA_MODIFY_ADDBA_TID_MSK 0x08
922 #define STA_MODIFY_DELBA_TID_MSK 0x10
923
924 /* Receiver address (actually, Rx station's index into station table),
925 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
926 #define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
927
928 struct iwl4965_keyinfo {
929 __le16 key_flags;
930 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
931 u8 reserved1;
932 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
933 u8 key_offset;
934 u8 reserved2;
935 u8 key[16]; /* 16-byte unicast decryption key */
936 } __attribute__ ((packed));
937
938 /* 5000 */
939 struct iwl_keyinfo {
940 __le16 key_flags;
941 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
942 u8 reserved1;
943 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
944 u8 key_offset;
945 u8 reserved2;
946 u8 key[16]; /* 16-byte unicast decryption key */
947 __le64 tx_secur_seq_cnt;
948 __le64 hw_tkip_mic_rx_key;
949 __le64 hw_tkip_mic_tx_key;
950 } __attribute__ ((packed));
951
952 /**
953 * struct sta_id_modify
954 * @addr[ETH_ALEN]: station's MAC address
955 * @sta_id: index of station in uCode's station table
956 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
957 *
958 * Driver selects unused table index when adding new station,
959 * or the index to a pre-existing station entry when modifying that station.
960 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
961 *
962 * modify_mask flags select which parameters to modify vs. leave alone.
963 */
964 struct sta_id_modify {
965 u8 addr[ETH_ALEN];
966 __le16 reserved1;
967 u8 sta_id;
968 u8 modify_mask;
969 __le16 reserved2;
970 } __attribute__ ((packed));
971
972 /*
973 * REPLY_ADD_STA = 0x18 (command)
974 *
975 * The device contains an internal table of per-station information,
976 * with info on security keys, aggregation parameters, and Tx rates for
977 * initial Tx attempt and any retries (4965 uses REPLY_TX_LINK_QUALITY_CMD,
978 * 3945 uses REPLY_RATE_SCALE to set up rate tables).
979 *
980 * REPLY_ADD_STA sets up the table entry for one station, either creating
981 * a new entry, or modifying a pre-existing one.
982 *
983 * NOTE: RXON command (without "associated" bit set) wipes the station table
984 * clean. Moving into RF_KILL state does this also. Driver must set up
985 * new station table before transmitting anything on the RXON channel
986 * (except active scans or active measurements; those commands carry
987 * their own txpower/rate setup data).
988 *
989 * When getting started on a new channel, driver must set up the
990 * IWL_BROADCAST_ID entry (last entry in the table). For a client
991 * station in a BSS, once an AP is selected, driver sets up the AP STA
992 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
993 * are all that are needed for a BSS client station. If the device is
994 * used as AP, or in an IBSS network, driver must set up station table
995 * entries for all STAs in network, starting with index IWL_STA_ID.
996 */
997
998 struct iwl3945_addsta_cmd {
999 u8 mode; /* 1: modify existing, 0: add new station */
1000 u8 reserved[3];
1001 struct sta_id_modify sta;
1002 struct iwl4965_keyinfo key;
1003 __le32 station_flags; /* STA_FLG_* */
1004 __le32 station_flags_msk; /* STA_FLG_* */
1005
1006 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
1007 * corresponding to bit (e.g. bit 5 controls TID 5).
1008 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
1009 __le16 tid_disable_tx;
1010
1011 __le16 rate_n_flags;
1012
1013 /* TID for which to add block-ack support.
1014 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1015 u8 add_immediate_ba_tid;
1016
1017 /* TID for which to remove block-ack support.
1018 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
1019 u8 remove_immediate_ba_tid;
1020
1021 /* Starting Sequence Number for added block-ack support.
1022 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1023 __le16 add_immediate_ba_ssn;
1024 } __attribute__ ((packed));
1025
1026 struct iwl4965_addsta_cmd {
1027 u8 mode; /* 1: modify existing, 0: add new station */
1028 u8 reserved[3];
1029 struct sta_id_modify sta;
1030 struct iwl4965_keyinfo key;
1031 __le32 station_flags; /* STA_FLG_* */
1032 __le32 station_flags_msk; /* STA_FLG_* */
1033
1034 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
1035 * corresponding to bit (e.g. bit 5 controls TID 5).
1036 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
1037 __le16 tid_disable_tx;
1038
1039 __le16 reserved1;
1040
1041 /* TID for which to add block-ack support.
1042 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1043 u8 add_immediate_ba_tid;
1044
1045 /* TID for which to remove block-ack support.
1046 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
1047 u8 remove_immediate_ba_tid;
1048
1049 /* Starting Sequence Number for added block-ack support.
1050 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1051 __le16 add_immediate_ba_ssn;
1052
1053 __le32 reserved2;
1054 } __attribute__ ((packed));
1055
1056 /* 5000 */
1057 struct iwl_addsta_cmd {
1058 u8 mode; /* 1: modify existing, 0: add new station */
1059 u8 reserved[3];
1060 struct sta_id_modify sta;
1061 struct iwl_keyinfo key;
1062 __le32 station_flags; /* STA_FLG_* */
1063 __le32 station_flags_msk; /* STA_FLG_* */
1064
1065 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
1066 * corresponding to bit (e.g. bit 5 controls TID 5).
1067 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
1068 __le16 tid_disable_tx;
1069
1070 __le16 rate_n_flags; /* 3945 only */
1071
1072 /* TID for which to add block-ack support.
1073 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1074 u8 add_immediate_ba_tid;
1075
1076 /* TID for which to remove block-ack support.
1077 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
1078 u8 remove_immediate_ba_tid;
1079
1080 /* Starting Sequence Number for added block-ack support.
1081 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1082 __le16 add_immediate_ba_ssn;
1083
1084 __le32 reserved2;
1085 } __attribute__ ((packed));
1086
1087
1088 #define ADD_STA_SUCCESS_MSK 0x1
1089 #define ADD_STA_NO_ROOM_IN_TABLE 0x2
1090 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
1091 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8
1092 /*
1093 * REPLY_ADD_STA = 0x18 (response)
1094 */
1095 struct iwl_add_sta_resp {
1096 u8 status; /* ADD_STA_* */
1097 } __attribute__ ((packed));
1098
1099 #define REM_STA_SUCCESS_MSK 0x1
1100 /*
1101 * REPLY_REM_STA = 0x19 (response)
1102 */
1103 struct iwl_rem_sta_resp {
1104 u8 status;
1105 } __attribute__ ((packed));
1106
1107 /*
1108 * REPLY_REM_STA = 0x19 (command)
1109 */
1110 struct iwl_rem_sta_cmd {
1111 u8 num_sta; /* number of removed stations */
1112 u8 reserved[3];
1113 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
1114 u8 reserved2[2];
1115 } __attribute__ ((packed));
1116
1117 /*
1118 * REPLY_WEP_KEY = 0x20
1119 */
1120 struct iwl_wep_key {
1121 u8 key_index;
1122 u8 key_offset;
1123 u8 reserved1[2];
1124 u8 key_size;
1125 u8 reserved2[3];
1126 u8 key[16];
1127 } __attribute__ ((packed));
1128
1129 struct iwl_wep_cmd {
1130 u8 num_keys;
1131 u8 global_key_type;
1132 u8 flags;
1133 u8 reserved;
1134 struct iwl_wep_key key[0];
1135 } __attribute__ ((packed));
1136
1137 #define WEP_KEY_WEP_TYPE 1
1138 #define WEP_KEYS_MAX 4
1139 #define WEP_INVALID_OFFSET 0xff
1140 #define WEP_KEY_LEN_64 5
1141 #define WEP_KEY_LEN_128 13
1142
1143 /******************************************************************************
1144 * (4)
1145 * Rx Responses:
1146 *
1147 *****************************************************************************/
1148
1149 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1150 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1151
1152 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1153 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1154 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1155 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1156 #define RX_RES_PHY_FLAGS_ANTENNA_MSK cpu_to_le16(0xf0)
1157
1158 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1159 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1160 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1161 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1162 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1163 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1164
1165 #define RX_RES_STATUS_STATION_FOUND (1<<6)
1166 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1167
1168 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1169 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1170 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1171 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1172 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1173
1174 #define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1175 #define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1176 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1177 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1178
1179
1180 struct iwl3945_rx_frame_stats {
1181 u8 phy_count;
1182 u8 id;
1183 u8 rssi;
1184 u8 agc;
1185 __le16 sig_avg;
1186 __le16 noise_diff;
1187 u8 payload[0];
1188 } __attribute__ ((packed));
1189
1190 struct iwl3945_rx_frame_hdr {
1191 __le16 channel;
1192 __le16 phy_flags;
1193 u8 reserved1;
1194 u8 rate;
1195 __le16 len;
1196 u8 payload[0];
1197 } __attribute__ ((packed));
1198
1199 struct iwl3945_rx_frame_end {
1200 __le32 status;
1201 __le64 timestamp;
1202 __le32 beacon_timestamp;
1203 } __attribute__ ((packed));
1204
1205 /*
1206 * REPLY_3945_RX = 0x1b (response only, not a command)
1207 *
1208 * NOTE: DO NOT dereference from casts to this structure
1209 * It is provided only for calculating minimum data set size.
1210 * The actual offsets of the hdr and end are dynamic based on
1211 * stats.phy_count
1212 */
1213 struct iwl3945_rx_frame {
1214 struct iwl3945_rx_frame_stats stats;
1215 struct iwl3945_rx_frame_hdr hdr;
1216 struct iwl3945_rx_frame_end end;
1217 } __attribute__ ((packed));
1218
1219 #define IWL39_RX_FRAME_SIZE (4 + sizeof(struct iwl3945_rx_frame))
1220
1221 /* Fixed (non-configurable) rx data from phy */
1222
1223 #define IWL49_RX_RES_PHY_CNT 14
1224 #define IWL49_RX_PHY_FLAGS_ANTENNAE_OFFSET (4)
1225 #define IWL49_RX_PHY_FLAGS_ANTENNAE_MASK (0x70)
1226 #define IWL49_AGC_DB_MASK (0x3f80) /* MASK(7,13) */
1227 #define IWL49_AGC_DB_POS (7)
1228 struct iwl4965_rx_non_cfg_phy {
1229 __le16 ant_selection; /* ant A bit 4, ant B bit 5, ant C bit 6 */
1230 __le16 agc_info; /* agc code 0:6, agc dB 7:13, reserved 14:15 */
1231 u8 rssi_info[6]; /* we use even entries, 0/2/4 for A/B/C rssi */
1232 u8 pad[0];
1233 } __attribute__ ((packed));
1234
1235
1236 #define IWL50_RX_RES_PHY_CNT 8
1237 #define IWL50_RX_RES_AGC_IDX 1
1238 #define IWL50_RX_RES_RSSI_AB_IDX 2
1239 #define IWL50_RX_RES_RSSI_C_IDX 3
1240 #define IWL50_OFDM_AGC_MSK 0xfe00
1241 #define IWL50_OFDM_AGC_BIT_POS 9
1242 #define IWL50_OFDM_RSSI_A_MSK 0x00ff
1243 #define IWL50_OFDM_RSSI_A_BIT_POS 0
1244 #define IWL50_OFDM_RSSI_B_MSK 0xff0000
1245 #define IWL50_OFDM_RSSI_B_BIT_POS 16
1246 #define IWL50_OFDM_RSSI_C_MSK 0x00ff
1247 #define IWL50_OFDM_RSSI_C_BIT_POS 0
1248
1249 struct iwl5000_non_cfg_phy {
1250 __le32 non_cfg_phy[IWL50_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1251 } __attribute__ ((packed));
1252
1253
1254 /*
1255 * REPLY_RX = 0xc3 (response only, not a command)
1256 * Used only for legacy (non 11n) frames.
1257 */
1258 struct iwl_rx_phy_res {
1259 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1260 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1261 u8 stat_id; /* configurable DSP phy data set ID */
1262 u8 reserved1;
1263 __le64 timestamp; /* TSF at on air rise */
1264 __le32 beacon_time_stamp; /* beacon at on-air rise */
1265 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1266 __le16 channel; /* channel number */
1267 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1268 __le32 rate_n_flags; /* RATE_MCS_* */
1269 __le16 byte_count; /* frame's byte-count */
1270 __le16 reserved3;
1271 } __attribute__ ((packed));
1272
1273 struct iwl4965_rx_mpdu_res_start {
1274 __le16 byte_count;
1275 __le16 reserved;
1276 } __attribute__ ((packed));
1277
1278
1279 /******************************************************************************
1280 * (5)
1281 * Tx Commands & Responses:
1282 *
1283 * Driver must place each REPLY_TX command into one of the prioritized Tx
1284 * queues in host DRAM, shared between driver and device (see comments for
1285 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1286 * are preparing to transmit, the device pulls the Tx command over the PCI
1287 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1288 * from which data will be transmitted.
1289 *
1290 * uCode handles all timing and protocol related to control frames
1291 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1292 * handle reception of block-acks; uCode updates the host driver via
1293 * REPLY_COMPRESSED_BA (4965).
1294 *
1295 * uCode handles retrying Tx when an ACK is expected but not received.
1296 * This includes trying lower data rates than the one requested in the Tx
1297 * command, as set up by the REPLY_RATE_SCALE (for 3945) or
1298 * REPLY_TX_LINK_QUALITY_CMD (4965).
1299 *
1300 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1301 * This command must be executed after every RXON command, before Tx can occur.
1302 *****************************************************************************/
1303
1304 /* REPLY_TX Tx flags field */
1305
1306 /* 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1307 * before this frame. if CTS-to-self required check
1308 * RXON_FLG_SELF_CTS_EN status. */
1309 #define TX_CMD_FLG_RTS_CTS_MSK cpu_to_le32(1 << 0)
1310
1311 /* 1: Use Request-To-Send protocol before this frame.
1312 * Mutually exclusive vs. TX_CMD_FLG_CTS_MSK. */
1313 #define TX_CMD_FLG_RTS_MSK cpu_to_le32(1 << 1)
1314
1315 /* 1: Transmit Clear-To-Send to self before this frame.
1316 * Driver should set this for AUTH/DEAUTH/ASSOC-REQ/REASSOC mgmnt frames.
1317 * Mutually exclusive vs. TX_CMD_FLG_RTS_MSK. */
1318 #define TX_CMD_FLG_CTS_MSK cpu_to_le32(1 << 2)
1319
1320 /* 1: Expect ACK from receiving station
1321 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1322 * Set this for unicast frames, but not broadcast/multicast. */
1323 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1324
1325 /* For 4965:
1326 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1327 * Tx command's initial_rate_index indicates first rate to try;
1328 * uCode walks through table for additional Tx attempts.
1329 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1330 * This rate will be used for all Tx attempts; it will not be scaled. */
1331 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1332
1333 /* 1: Expect immediate block-ack.
1334 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1335 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1336
1337 /* 1: Frame requires full Tx-Op protection.
1338 * Set this if either RTS or CTS Tx Flag gets set. */
1339 #define TX_CMD_FLG_FULL_TXOP_PROT_MSK cpu_to_le32(1 << 7)
1340
1341 /* Tx antenna selection field; used only for 3945, reserved (0) for 4965.
1342 * Set field to "0" to allow 3945 uCode to select antenna (normal usage). */
1343 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1344 #define TX_CMD_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
1345 #define TX_CMD_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
1346
1347 /* 1: Ignore Bluetooth priority for this frame.
1348 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1349 #define TX_CMD_FLG_BT_DIS_MSK cpu_to_le32(1 << 12)
1350
1351 /* 1: uCode overrides sequence control field in MAC header.
1352 * 0: Driver provides sequence control field in MAC header.
1353 * Set this for management frames, non-QOS data frames, non-unicast frames,
1354 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1355 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1356
1357 /* 1: This frame is non-last MPDU; more fragments are coming.
1358 * 0: Last fragment, or not using fragmentation. */
1359 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1360
1361 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1362 * 0: No TSF required in outgoing frame.
1363 * Set this for transmitting beacons and probe responses. */
1364 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1365
1366 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1367 * alignment of frame's payload data field.
1368 * 0: No pad
1369 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1370 * field (but not both). Driver must align frame data (i.e. data following
1371 * MAC header) to DWORD boundary. */
1372 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1373
1374 /* accelerate aggregation support
1375 * 0 - no CCMP encryption; 1 - CCMP encryption */
1376 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1377
1378 /* HCCA-AP - disable duration overwriting. */
1379 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1380
1381
1382 /*
1383 * TX command security control
1384 */
1385 #define TX_CMD_SEC_WEP 0x01
1386 #define TX_CMD_SEC_CCM 0x02
1387 #define TX_CMD_SEC_TKIP 0x03
1388 #define TX_CMD_SEC_MSK 0x03
1389 #define TX_CMD_SEC_SHIFT 6
1390 #define TX_CMD_SEC_KEY128 0x08
1391
1392 /*
1393 * security overhead sizes
1394 */
1395 #define WEP_IV_LEN 4
1396 #define WEP_ICV_LEN 4
1397 #define CCMP_MIC_LEN 8
1398 #define TKIP_ICV_LEN 4
1399
1400 /*
1401 * REPLY_TX = 0x1c (command)
1402 */
1403
1404 struct iwl3945_tx_cmd {
1405 /*
1406 * MPDU byte count:
1407 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1408 * + 8 byte IV for CCM or TKIP (not used for WEP)
1409 * + Data payload
1410 * + 8-byte MIC (not used for CCM/WEP)
1411 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1412 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1413 * Range: 14-2342 bytes.
1414 */
1415 __le16 len;
1416
1417 /*
1418 * MPDU or MSDU byte count for next frame.
1419 * Used for fragmentation and bursting, but not 11n aggregation.
1420 * Same as "len", but for next frame. Set to 0 if not applicable.
1421 */
1422 __le16 next_frame_len;
1423
1424 __le32 tx_flags; /* TX_CMD_FLG_* */
1425
1426 u8 rate;
1427
1428 /* Index of recipient station in uCode's station table */
1429 u8 sta_id;
1430 u8 tid_tspec;
1431 u8 sec_ctl;
1432 u8 key[16];
1433 union {
1434 u8 byte[8];
1435 __le16 word[4];
1436 __le32 dw[2];
1437 } tkip_mic;
1438 __le32 next_frame_info;
1439 union {
1440 __le32 life_time;
1441 __le32 attempt;
1442 } stop_time;
1443 u8 supp_rates[2];
1444 u8 rts_retry_limit; /*byte 50 */
1445 u8 data_retry_limit; /*byte 51 */
1446 union {
1447 __le16 pm_frame_timeout;
1448 __le16 attempt_duration;
1449 } timeout;
1450
1451 /*
1452 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1453 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1454 */
1455 __le16 driver_txop;
1456
1457 /*
1458 * MAC header goes here, followed by 2 bytes padding if MAC header
1459 * length is 26 or 30 bytes, followed by payload data
1460 */
1461 u8 payload[0];
1462 struct ieee80211_hdr hdr[0];
1463 } __attribute__ ((packed));
1464
1465 /*
1466 * REPLY_TX = 0x1c (response)
1467 */
1468 struct iwl3945_tx_resp {
1469 u8 failure_rts;
1470 u8 failure_frame;
1471 u8 bt_kill_count;
1472 u8 rate;
1473 __le32 wireless_media_time;
1474 __le32 status; /* TX status */
1475 } __attribute__ ((packed));
1476
1477
1478 /*
1479 * 4965 uCode updates these Tx attempt count values in host DRAM.
1480 * Used for managing Tx retries when expecting block-acks.
1481 * Driver should set these fields to 0.
1482 */
1483 struct iwl_dram_scratch {
1484 u8 try_cnt; /* Tx attempts */
1485 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1486 __le16 reserved;
1487 } __attribute__ ((packed));
1488
1489 struct iwl_tx_cmd {
1490 /*
1491 * MPDU byte count:
1492 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1493 * + 8 byte IV for CCM or TKIP (not used for WEP)
1494 * + Data payload
1495 * + 8-byte MIC (not used for CCM/WEP)
1496 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1497 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1498 * Range: 14-2342 bytes.
1499 */
1500 __le16 len;
1501
1502 /*
1503 * MPDU or MSDU byte count for next frame.
1504 * Used for fragmentation and bursting, but not 11n aggregation.
1505 * Same as "len", but for next frame. Set to 0 if not applicable.
1506 */
1507 __le16 next_frame_len;
1508
1509 __le32 tx_flags; /* TX_CMD_FLG_* */
1510
1511 /* uCode may modify this field of the Tx command (in host DRAM!).
1512 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1513 struct iwl_dram_scratch scratch;
1514
1515 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1516 __le32 rate_n_flags; /* RATE_MCS_* */
1517
1518 /* Index of destination station in uCode's station table */
1519 u8 sta_id;
1520
1521 /* Type of security encryption: CCM or TKIP */
1522 u8 sec_ctl; /* TX_CMD_SEC_* */
1523
1524 /*
1525 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1526 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1527 * data frames, this field may be used to selectively reduce initial
1528 * rate (via non-0 value) for special frames (e.g. management), while
1529 * still supporting rate scaling for all frames.
1530 */
1531 u8 initial_rate_index;
1532 u8 reserved;
1533 u8 key[16];
1534 __le16 next_frame_flags;
1535 __le16 reserved2;
1536 union {
1537 __le32 life_time;
1538 __le32 attempt;
1539 } stop_time;
1540
1541 /* Host DRAM physical address pointer to "scratch" in this command.
1542 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1543 __le32 dram_lsb_ptr;
1544 u8 dram_msb_ptr;
1545
1546 u8 rts_retry_limit; /*byte 50 */
1547 u8 data_retry_limit; /*byte 51 */
1548 u8 tid_tspec;
1549 union {
1550 __le16 pm_frame_timeout;
1551 __le16 attempt_duration;
1552 } timeout;
1553
1554 /*
1555 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1556 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1557 */
1558 __le16 driver_txop;
1559
1560 /*
1561 * MAC header goes here, followed by 2 bytes padding if MAC header
1562 * length is 26 or 30 bytes, followed by payload data
1563 */
1564 u8 payload[0];
1565 struct ieee80211_hdr hdr[0];
1566 } __attribute__ ((packed));
1567
1568 /* TX command response is sent after *all* transmission attempts.
1569 *
1570 * NOTES:
1571 *
1572 * TX_STATUS_FAIL_NEXT_FRAG
1573 *
1574 * If the fragment flag in the MAC header for the frame being transmitted
1575 * is set and there is insufficient time to transmit the next frame, the
1576 * TX status will be returned with 'TX_STATUS_FAIL_NEXT_FRAG'.
1577 *
1578 * TX_STATUS_FIFO_UNDERRUN
1579 *
1580 * Indicates the host did not provide bytes to the FIFO fast enough while
1581 * a TX was in progress.
1582 *
1583 * TX_STATUS_FAIL_MGMNT_ABORT
1584 *
1585 * This status is only possible if the ABORT ON MGMT RX parameter was
1586 * set to true with the TX command.
1587 *
1588 * If the MSB of the status parameter is set then an abort sequence is
1589 * required. This sequence consists of the host activating the TX Abort
1590 * control line, and then waiting for the TX Abort command response. This
1591 * indicates that a the device is no longer in a transmit state, and that the
1592 * command FIFO has been cleared. The host must then deactivate the TX Abort
1593 * control line. Receiving is still allowed in this case.
1594 */
1595 enum {
1596 TX_STATUS_SUCCESS = 0x01,
1597 TX_STATUS_DIRECT_DONE = 0x02,
1598 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1599 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1600 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1601 TX_STATUS_FAIL_MGMNT_ABORT = 0x85,
1602 TX_STATUS_FAIL_NEXT_FRAG = 0x86,
1603 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1604 TX_STATUS_FAIL_DEST_PS = 0x88,
1605 TX_STATUS_FAIL_ABORTED = 0x89,
1606 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1607 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1608 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1609 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1610 TX_STATUS_FAIL_FRAME_FLUSHED = 0x8e,
1611 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1612 TX_STATUS_FAIL_TX_LOCKED = 0x90,
1613 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1614 };
1615
1616 #define TX_PACKET_MODE_REGULAR 0x0000
1617 #define TX_PACKET_MODE_BURST_SEQ 0x0100
1618 #define TX_PACKET_MODE_BURST_FIRST 0x0200
1619
1620 enum {
1621 TX_POWER_PA_NOT_ACTIVE = 0x0,
1622 };
1623
1624 enum {
1625 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1626 TX_STATUS_DELAY_MSK = 0x00000040,
1627 TX_STATUS_ABORT_MSK = 0x00000080,
1628 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1629 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1630 TX_RESERVED = 0x00780000, /* bits 19:22 */
1631 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1632 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1633 };
1634
1635 static inline bool iwl_is_tx_success(u32 status)
1636 {
1637 status &= TX_STATUS_MSK;
1638 return (status == TX_STATUS_SUCCESS) ||
1639 (status == TX_STATUS_DIRECT_DONE);
1640 }
1641
1642
1643
1644 /* *******************************
1645 * TX aggregation status
1646 ******************************* */
1647
1648 enum {
1649 AGG_TX_STATE_TRANSMITTED = 0x00,
1650 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1651 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1652 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1653 AGG_TX_STATE_ABORT_MSK = 0x08,
1654 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1655 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1656 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1657 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1658 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1659 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1660 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1661 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1662 };
1663
1664 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1665 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1666 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1667
1668 /* # tx attempts for first frame in aggregation */
1669 #define AGG_TX_STATE_TRY_CNT_POS 12
1670 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1671
1672 /* Command ID and sequence number of Tx command for this frame */
1673 #define AGG_TX_STATE_SEQ_NUM_POS 16
1674 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1675
1676 /*
1677 * REPLY_TX = 0x1c (response)
1678 *
1679 * This response may be in one of two slightly different formats, indicated
1680 * by the frame_count field:
1681 *
1682 * 1) No aggregation (frame_count == 1). This reports Tx results for
1683 * a single frame. Multiple attempts, at various bit rates, may have
1684 * been made for this frame.
1685 *
1686 * 2) Aggregation (frame_count > 1). This reports Tx results for
1687 * 2 or more frames that used block-acknowledge. All frames were
1688 * transmitted at same rate. Rate scaling may have been used if first
1689 * frame in this new agg block failed in previous agg block(s).
1690 *
1691 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1692 * block-ack has not been received by the time the 4965 records this status.
1693 * This status relates to reasons the tx might have been blocked or aborted
1694 * within the sending station (this 4965), rather than whether it was
1695 * received successfully by the destination station.
1696 */
1697 struct agg_tx_status {
1698 __le16 status;
1699 __le16 sequence;
1700 } __attribute__ ((packed));
1701
1702 struct iwl4965_tx_resp {
1703 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1704 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1705 u8 failure_rts; /* # failures due to unsuccessful RTS */
1706 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1707
1708 /* For non-agg: Rate at which frame was successful.
1709 * For agg: Rate at which all frames were transmitted. */
1710 __le32 rate_n_flags; /* RATE_MCS_* */
1711
1712 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1713 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1714 __le16 wireless_media_time; /* uSecs */
1715
1716 __le16 reserved;
1717 __le32 pa_power1; /* RF power amplifier measurement (not used) */
1718 __le32 pa_power2;
1719
1720 /*
1721 * For non-agg: frame status TX_STATUS_*
1722 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1723 * fields follow this one, up to frame_count.
1724 * Bit fields:
1725 * 11- 0: AGG_TX_STATE_* status code
1726 * 15-12: Retry count for 1st frame in aggregation (retries
1727 * occur if tx failed for this frame when it was a
1728 * member of a previous aggregation block). If rate
1729 * scaling is used, retry count indicates the rate
1730 * table entry used for all frames in the new agg.
1731 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1732 */
1733 union {
1734 __le32 status;
1735 struct agg_tx_status agg_status[0]; /* for each agg frame */
1736 } u;
1737 } __attribute__ ((packed));
1738
1739 /*
1740 * definitions for initial rate index field
1741 * bits [3:0] initial rate index
1742 * bits [6:4] rate table color, used for the initial rate
1743 * bit-7 invalid rate indication
1744 * i.e. rate was not chosen from rate table
1745 * or rate table color was changed during frame retries
1746 * refer tlc rate info
1747 */
1748
1749 #define IWL50_TX_RES_INIT_RATE_INDEX_POS 0
1750 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK 0x0f
1751 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS 4
1752 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK 0x70
1753 #define IWL50_TX_RES_INV_RATE_INDEX_MSK 0x80
1754
1755 /* refer to ra_tid */
1756 #define IWL50_TX_RES_TID_POS 0
1757 #define IWL50_TX_RES_TID_MSK 0x0f
1758 #define IWL50_TX_RES_RA_POS 4
1759 #define IWL50_TX_RES_RA_MSK 0xf0
1760
1761 struct iwl5000_tx_resp {
1762 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1763 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1764 u8 failure_rts; /* # failures due to unsuccessful RTS */
1765 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1766
1767 /* For non-agg: Rate at which frame was successful.
1768 * For agg: Rate at which all frames were transmitted. */
1769 __le32 rate_n_flags; /* RATE_MCS_* */
1770
1771 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1772 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1773 __le16 wireless_media_time; /* uSecs */
1774
1775 u8 pa_status; /* RF power amplifier measurement (not used) */
1776 u8 pa_integ_res_a[3];
1777 u8 pa_integ_res_b[3];
1778 u8 pa_integ_res_C[3];
1779
1780 __le32 tfd_info;
1781 __le16 seq_ctl;
1782 __le16 byte_cnt;
1783 u8 tlc_info;
1784 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1785 __le16 frame_ctrl;
1786 /*
1787 * For non-agg: frame status TX_STATUS_*
1788 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1789 * fields follow this one, up to frame_count.
1790 * Bit fields:
1791 * 11- 0: AGG_TX_STATE_* status code
1792 * 15-12: Retry count for 1st frame in aggregation (retries
1793 * occur if tx failed for this frame when it was a
1794 * member of a previous aggregation block). If rate
1795 * scaling is used, retry count indicates the rate
1796 * table entry used for all frames in the new agg.
1797 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1798 */
1799 struct agg_tx_status status; /* TX status (in aggregation -
1800 * status of 1st frame) */
1801 } __attribute__ ((packed));
1802 /*
1803 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1804 *
1805 * Reports Block-Acknowledge from recipient station
1806 */
1807 struct iwl_compressed_ba_resp {
1808 __le32 sta_addr_lo32;
1809 __le16 sta_addr_hi16;
1810 __le16 reserved;
1811
1812 /* Index of recipient (BA-sending) station in uCode's station table */
1813 u8 sta_id;
1814 u8 tid;
1815 __le16 seq_ctl;
1816 __le64 bitmap;
1817 __le16 scd_flow;
1818 __le16 scd_ssn;
1819 } __attribute__ ((packed));
1820
1821 /*
1822 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1823 *
1824 * See details under "TXPOWER" in iwl-4965-hw.h.
1825 */
1826
1827 struct iwl3945_txpowertable_cmd {
1828 u8 band; /* 0: 5 GHz, 1: 2.4 GHz */
1829 u8 reserved;
1830 __le16 channel;
1831 struct iwl3945_power_per_rate power[IWL_MAX_RATES];
1832 } __attribute__ ((packed));
1833
1834 struct iwl4965_txpowertable_cmd {
1835 u8 band; /* 0: 5 GHz, 1: 2.4 GHz */
1836 u8 reserved;
1837 __le16 channel;
1838 struct iwl4965_tx_power_db tx_power;
1839 } __attribute__ ((packed));
1840
1841
1842 /**
1843 * struct iwl3945_rate_scaling_cmd - Rate Scaling Command & Response
1844 *
1845 * REPLY_RATE_SCALE = 0x47 (command, has simple generic response)
1846 *
1847 * NOTE: The table of rates passed to the uCode via the
1848 * RATE_SCALE command sets up the corresponding order of
1849 * rates used for all related commands, including rate
1850 * masks, etc.
1851 *
1852 * For example, if you set 9MB (PLCP 0x0f) as the first
1853 * rate in the rate table, the bit mask for that rate
1854 * when passed through ofdm_basic_rates on the REPLY_RXON
1855 * command would be bit 0 (1 << 0)
1856 */
1857 struct iwl3945_rate_scaling_info {
1858 __le16 rate_n_flags;
1859 u8 try_cnt;
1860 u8 next_rate_index;
1861 } __attribute__ ((packed));
1862
1863 struct iwl3945_rate_scaling_cmd {
1864 u8 table_id;
1865 u8 reserved[3];
1866 struct iwl3945_rate_scaling_info table[IWL_MAX_RATES];
1867 } __attribute__ ((packed));
1868
1869
1870 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1871 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1872
1873 /* # of EDCA prioritized tx fifos */
1874 #define LINK_QUAL_AC_NUM AC_NUM
1875
1876 /* # entries in rate scale table to support Tx retries */
1877 #define LINK_QUAL_MAX_RETRY_NUM 16
1878
1879 /* Tx antenna selection values */
1880 #define LINK_QUAL_ANT_A_MSK (1 << 0)
1881 #define LINK_QUAL_ANT_B_MSK (1 << 1)
1882 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1883
1884
1885 /**
1886 * struct iwl_link_qual_general_params
1887 *
1888 * Used in REPLY_TX_LINK_QUALITY_CMD
1889 */
1890 struct iwl_link_qual_general_params {
1891 u8 flags;
1892
1893 /* No entries at or above this (driver chosen) index contain MIMO */
1894 u8 mimo_delimiter;
1895
1896 /* Best single antenna to use for single stream (legacy, SISO). */
1897 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1898
1899 /* Best antennas to use for MIMO (unused for 4965, assumes both). */
1900 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1901
1902 /*
1903 * If driver needs to use different initial rates for different
1904 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1905 * this table will set that up, by indicating the indexes in the
1906 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1907 * Otherwise, driver should set all entries to 0.
1908 *
1909 * Entry usage:
1910 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1911 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1912 */
1913 u8 start_rate_index[LINK_QUAL_AC_NUM];
1914 } __attribute__ ((packed));
1915
1916 #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1917 #define LINK_QUAL_AGG_TIME_LIMIT_MAX (65535)
1918 #define LINK_QUAL_AGG_TIME_LIMIT_MIN (0)
1919
1920 #define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1921 #define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1922 #define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1923
1924 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (31)
1925 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (64)
1926 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1927
1928 /**
1929 * struct iwl_link_qual_agg_params
1930 *
1931 * Used in REPLY_TX_LINK_QUALITY_CMD
1932 */
1933 struct iwl_link_qual_agg_params {
1934
1935 /* Maximum number of uSec in aggregation.
1936 * Driver should set this to 4000 (4 milliseconds). */
1937 __le16 agg_time_limit;
1938
1939 /*
1940 * Number of Tx retries allowed for a frame, before that frame will
1941 * no longer be considered for the start of an aggregation sequence
1942 * (scheduler will then try to tx it as single frame).
1943 * Driver should set this to 3.
1944 */
1945 u8 agg_dis_start_th;
1946
1947 /*
1948 * Maximum number of frames in aggregation.
1949 * 0 = no limit (default). 1 = no aggregation.
1950 * Other values = max # frames in aggregation.
1951 */
1952 u8 agg_frame_cnt_limit;
1953
1954 __le32 reserved;
1955 } __attribute__ ((packed));
1956
1957 /*
1958 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1959 *
1960 * For 4965 only; 3945 uses REPLY_RATE_SCALE.
1961 *
1962 * Each station in the 4965's internal station table has its own table of 16
1963 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1964 * an ACK is not received. This command replaces the entire table for
1965 * one station.
1966 *
1967 * NOTE: Station must already be in 4965's station table. Use REPLY_ADD_STA.
1968 *
1969 * The rate scaling procedures described below work well. Of course, other
1970 * procedures are possible, and may work better for particular environments.
1971 *
1972 *
1973 * FILLING THE RATE TABLE
1974 *
1975 * Given a particular initial rate and mode, as determined by the rate
1976 * scaling algorithm described below, the Linux driver uses the following
1977 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1978 * Link Quality command:
1979 *
1980 *
1981 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1982 * a) Use this same initial rate for first 3 entries.
1983 * b) Find next lower available rate using same mode (SISO or MIMO),
1984 * use for next 3 entries. If no lower rate available, switch to
1985 * legacy mode (no FAT channel, no MIMO, no short guard interval).
1986 * c) If using MIMO, set command's mimo_delimiter to number of entries
1987 * using MIMO (3 or 6).
1988 * d) After trying 2 HT rates, switch to legacy mode (no FAT channel,
1989 * no MIMO, no short guard interval), at the next lower bit rate
1990 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1991 * legacy procedure for remaining table entries.
1992 *
1993 * 2) If using legacy initial rate:
1994 * a) Use the initial rate for only one entry.
1995 * b) For each following entry, reduce the rate to next lower available
1996 * rate, until reaching the lowest available rate.
1997 * c) When reducing rate, also switch antenna selection.
1998 * d) Once lowest available rate is reached, repeat this rate until
1999 * rate table is filled (16 entries), switching antenna each entry.
2000 *
2001 *
2002 * ACCUMULATING HISTORY
2003 *
2004 * The rate scaling algorithm for 4965, as implemented in Linux driver, uses
2005 * two sets of frame Tx success history: One for the current/active modulation
2006 * mode, and one for a speculative/search mode that is being attempted. If the
2007 * speculative mode turns out to be more effective (i.e. actual transfer
2008 * rate is better), then the driver continues to use the speculative mode
2009 * as the new current active mode.
2010 *
2011 * Each history set contains, separately for each possible rate, data for a
2012 * sliding window of the 62 most recent tx attempts at that rate. The data
2013 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
2014 * and attempted frames, from which the driver can additionally calculate a
2015 * success ratio (success / attempted) and number of failures
2016 * (attempted - success), and control the size of the window (attempted).
2017 * The driver uses the bit map to remove successes from the success sum, as
2018 * the oldest tx attempts fall out of the window.
2019 *
2020 * When the 4965 makes multiple tx attempts for a given frame, each attempt
2021 * might be at a different rate, and have different modulation characteristics
2022 * (e.g. antenna, fat channel, short guard interval), as set up in the rate
2023 * scaling table in the Link Quality command. The driver must determine
2024 * which rate table entry was used for each tx attempt, to determine which
2025 * rate-specific history to update, and record only those attempts that
2026 * match the modulation characteristics of the history set.
2027 *
2028 * When using block-ack (aggregation), all frames are transmitted at the same
2029 * rate, since there is no per-attempt acknowledgment from the destination
2030 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
2031 * rate_n_flags field. After receiving a block-ack, the driver can update
2032 * history for the entire block all at once.
2033 *
2034 *
2035 * FINDING BEST STARTING RATE:
2036 *
2037 * When working with a selected initial modulation mode (see below), the
2038 * driver attempts to find a best initial rate. The initial rate is the
2039 * first entry in the Link Quality command's rate table.
2040 *
2041 * 1) Calculate actual throughput (success ratio * expected throughput, see
2042 * table below) for current initial rate. Do this only if enough frames
2043 * have been attempted to make the value meaningful: at least 6 failed
2044 * tx attempts, or at least 8 successes. If not enough, don't try rate
2045 * scaling yet.
2046 *
2047 * 2) Find available rates adjacent to current initial rate. Available means:
2048 * a) supported by hardware &&
2049 * b) supported by association &&
2050 * c) within any constraints selected by user
2051 *
2052 * 3) Gather measured throughputs for adjacent rates. These might not have
2053 * enough history to calculate a throughput. That's okay, we might try
2054 * using one of them anyway!
2055 *
2056 * 4) Try decreasing rate if, for current rate:
2057 * a) success ratio is < 15% ||
2058 * b) lower adjacent rate has better measured throughput ||
2059 * c) higher adjacent rate has worse throughput, and lower is unmeasured
2060 *
2061 * As a sanity check, if decrease was determined above, leave rate
2062 * unchanged if:
2063 * a) lower rate unavailable
2064 * b) success ratio at current rate > 85% (very good)
2065 * c) current measured throughput is better than expected throughput
2066 * of lower rate (under perfect 100% tx conditions, see table below)
2067 *
2068 * 5) Try increasing rate if, for current rate:
2069 * a) success ratio is < 15% ||
2070 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
2071 * b) higher adjacent rate has better measured throughput ||
2072 * c) lower adjacent rate has worse throughput, and higher is unmeasured
2073 *
2074 * As a sanity check, if increase was determined above, leave rate
2075 * unchanged if:
2076 * a) success ratio at current rate < 70%. This is not particularly
2077 * good performance; higher rate is sure to have poorer success.
2078 *
2079 * 6) Re-evaluate the rate after each tx frame. If working with block-
2080 * acknowledge, history and statistics may be calculated for the entire
2081 * block (including prior history that fits within the history windows),
2082 * before re-evaluation.
2083 *
2084 * FINDING BEST STARTING MODULATION MODE:
2085 *
2086 * After working with a modulation mode for a "while" (and doing rate scaling),
2087 * the driver searches for a new initial mode in an attempt to improve
2088 * throughput. The "while" is measured by numbers of attempted frames:
2089 *
2090 * For legacy mode, search for new mode after:
2091 * 480 successful frames, or 160 failed frames
2092 * For high-throughput modes (SISO or MIMO), search for new mode after:
2093 * 4500 successful frames, or 400 failed frames
2094 *
2095 * Mode switch possibilities are (3 for each mode):
2096 *
2097 * For legacy:
2098 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
2099 * For SISO:
2100 * Change antenna, try MIMO, try shortened guard interval (SGI)
2101 * For MIMO:
2102 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
2103 *
2104 * When trying a new mode, use the same bit rate as the old/current mode when
2105 * trying antenna switches and shortened guard interval. When switching to
2106 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
2107 * for which the expected throughput (under perfect conditions) is about the
2108 * same or slightly better than the actual measured throughput delivered by
2109 * the old/current mode.
2110 *
2111 * Actual throughput can be estimated by multiplying the expected throughput
2112 * by the success ratio (successful / attempted tx frames). Frame size is
2113 * not considered in this calculation; it assumes that frame size will average
2114 * out to be fairly consistent over several samples. The following are
2115 * metric values for expected throughput assuming 100% success ratio.
2116 * Only G band has support for CCK rates:
2117 *
2118 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
2119 *
2120 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
2121 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
2122 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
2123 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
2124 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
2125 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
2126 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
2127 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
2128 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
2129 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
2130 *
2131 * After the new mode has been tried for a short while (minimum of 6 failed
2132 * frames or 8 successful frames), compare success ratio and actual throughput
2133 * estimate of the new mode with the old. If either is better with the new
2134 * mode, continue to use the new mode.
2135 *
2136 * Continue comparing modes until all 3 possibilities have been tried.
2137 * If moving from legacy to HT, try all 3 possibilities from the new HT
2138 * mode. After trying all 3, a best mode is found. Continue to use this mode
2139 * for the longer "while" described above (e.g. 480 successful frames for
2140 * legacy), and then repeat the search process.
2141 *
2142 */
2143 struct iwl_link_quality_cmd {
2144
2145 /* Index of destination/recipient station in uCode's station table */
2146 u8 sta_id;
2147 u8 reserved1;
2148 __le16 control; /* not used */
2149 struct iwl_link_qual_general_params general_params;
2150 struct iwl_link_qual_agg_params agg_params;
2151
2152 /*
2153 * Rate info; when using rate-scaling, Tx command's initial_rate_index
2154 * specifies 1st Tx rate attempted, via index into this table.
2155 * 4965 works its way through table when retrying Tx.
2156 */
2157 struct {
2158 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
2159 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
2160 __le32 reserved2;
2161 } __attribute__ ((packed));
2162
2163 /*
2164 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
2165 *
2166 * 3945 and 4965 support hardware handshake with Bluetooth device on
2167 * same platform. Bluetooth device alerts wireless device when it will Tx;
2168 * wireless device can delay or kill its own Tx to accommodate.
2169 */
2170 struct iwl_bt_cmd {
2171 u8 flags;
2172 u8 lead_time;
2173 u8 max_kill;
2174 u8 reserved;
2175 __le32 kill_ack_mask;
2176 __le32 kill_cts_mask;
2177 } __attribute__ ((packed));
2178
2179 /******************************************************************************
2180 * (6)
2181 * Spectrum Management (802.11h) Commands, Responses, Notifications:
2182 *
2183 *****************************************************************************/
2184
2185 /*
2186 * Spectrum Management
2187 */
2188 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
2189 RXON_FILTER_CTL2HOST_MSK | \
2190 RXON_FILTER_ACCEPT_GRP_MSK | \
2191 RXON_FILTER_DIS_DECRYPT_MSK | \
2192 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2193 RXON_FILTER_ASSOC_MSK | \
2194 RXON_FILTER_BCON_AWARE_MSK)
2195
2196 struct iwl_measure_channel {
2197 __le32 duration; /* measurement duration in extended beacon
2198 * format */
2199 u8 channel; /* channel to measure */
2200 u8 type; /* see enum iwl_measure_type */
2201 __le16 reserved;
2202 } __attribute__ ((packed));
2203
2204 /*
2205 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2206 */
2207 struct iwl_spectrum_cmd {
2208 __le16 len; /* number of bytes starting from token */
2209 u8 token; /* token id */
2210 u8 id; /* measurement id -- 0 or 1 */
2211 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2212 u8 periodic; /* 1 = periodic */
2213 __le16 path_loss_timeout;
2214 __le32 start_time; /* start time in extended beacon format */
2215 __le32 reserved2;
2216 __le32 flags; /* rxon flags */
2217 __le32 filter_flags; /* rxon filter flags */
2218 __le16 channel_count; /* minimum 1, maximum 10 */
2219 __le16 reserved3;
2220 struct iwl_measure_channel channels[10];
2221 } __attribute__ ((packed));
2222
2223 /*
2224 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2225 */
2226 struct iwl_spectrum_resp {
2227 u8 token;
2228 u8 id; /* id of the prior command replaced, or 0xff */
2229 __le16 status; /* 0 - command will be handled
2230 * 1 - cannot handle (conflicts with another
2231 * measurement) */
2232 } __attribute__ ((packed));
2233
2234 enum iwl_measurement_state {
2235 IWL_MEASUREMENT_START = 0,
2236 IWL_MEASUREMENT_STOP = 1,
2237 };
2238
2239 enum iwl_measurement_status {
2240 IWL_MEASUREMENT_OK = 0,
2241 IWL_MEASUREMENT_CONCURRENT = 1,
2242 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2243 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2244 /* 4-5 reserved */
2245 IWL_MEASUREMENT_STOPPED = 6,
2246 IWL_MEASUREMENT_TIMEOUT = 7,
2247 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2248 };
2249
2250 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2251
2252 struct iwl_measurement_histogram {
2253 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2254 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2255 } __attribute__ ((packed));
2256
2257 /* clear channel availability counters */
2258 struct iwl_measurement_cca_counters {
2259 __le32 ofdm;
2260 __le32 cck;
2261 } __attribute__ ((packed));
2262
2263 enum iwl_measure_type {
2264 IWL_MEASURE_BASIC = (1 << 0),
2265 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2266 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2267 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2268 IWL_MEASURE_FRAME = (1 << 4),
2269 /* bits 5:6 are reserved */
2270 IWL_MEASURE_IDLE = (1 << 7),
2271 };
2272
2273 /*
2274 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2275 */
2276 struct iwl_spectrum_notification {
2277 u8 id; /* measurement id -- 0 or 1 */
2278 u8 token;
2279 u8 channel_index; /* index in measurement channel list */
2280 u8 state; /* 0 - start, 1 - stop */
2281 __le32 start_time; /* lower 32-bits of TSF */
2282 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2283 u8 channel;
2284 u8 type; /* see enum iwl_measurement_type */
2285 u8 reserved1;
2286 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2287 * valid if applicable for measurement type requested. */
2288 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2289 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2290 __le32 cca_time; /* channel load time in usecs */
2291 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2292 * unidentified */
2293 u8 reserved2[3];
2294 struct iwl_measurement_histogram histogram;
2295 __le32 stop_time; /* lower 32-bits of TSF */
2296 __le32 status; /* see iwl_measurement_status */
2297 } __attribute__ ((packed));
2298
2299 /******************************************************************************
2300 * (7)
2301 * Power Management Commands, Responses, Notifications:
2302 *
2303 *****************************************************************************/
2304
2305 /**
2306 * struct iwl_powertable_cmd - Power Table Command
2307 * @flags: See below:
2308 *
2309 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2310 *
2311 * PM allow:
2312 * bit 0 - '0' Driver not allow power management
2313 * '1' Driver allow PM (use rest of parameters)
2314 * uCode send sleep notifications:
2315 * bit 1 - '0' Don't send sleep notification
2316 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2317 * Sleep over DTIM
2318 * bit 2 - '0' PM have to walk up every DTIM
2319 * '1' PM could sleep over DTIM till listen Interval.
2320 * PCI power managed
2321 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2322 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2323 * Force sleep Modes
2324 * bit 31/30- '00' use both mac/xtal sleeps
2325 * '01' force Mac sleep
2326 * '10' force xtal sleep
2327 * '11' Illegal set
2328 *
2329 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2330 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2331 * for every DTIM.
2332 */
2333 #define IWL_POWER_VEC_SIZE 5
2334
2335 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2336 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2337 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2338 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2339
2340 struct iwl3945_powertable_cmd {
2341 __le16 flags;
2342 u8 reserved[2];
2343 __le32 rx_data_timeout;
2344 __le32 tx_data_timeout;
2345 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2346 } __attribute__ ((packed));
2347
2348 struct iwl_powertable_cmd {
2349 __le16 flags;
2350 u8 keep_alive_seconds; /* 3945 reserved */
2351 u8 debug_flags; /* 3945 reserved */
2352 __le32 rx_data_timeout;
2353 __le32 tx_data_timeout;
2354 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2355 __le32 keep_alive_beacons;
2356 } __attribute__ ((packed));
2357
2358 /*
2359 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2360 * 3945 and 4965 identical.
2361 */
2362 struct iwl_sleep_notification {
2363 u8 pm_sleep_mode;
2364 u8 pm_wakeup_src;
2365 __le16 reserved;
2366 __le32 sleep_time;
2367 __le32 tsf_low;
2368 __le32 bcon_timer;
2369 } __attribute__ ((packed));
2370
2371 /* Sleep states. 3945 and 4965 identical. */
2372 enum {
2373 IWL_PM_NO_SLEEP = 0,
2374 IWL_PM_SLP_MAC = 1,
2375 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2376 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2377 IWL_PM_SLP_PHY = 4,
2378 IWL_PM_SLP_REPENT = 5,
2379 IWL_PM_WAKEUP_BY_TIMER = 6,
2380 IWL_PM_WAKEUP_BY_DRIVER = 7,
2381 IWL_PM_WAKEUP_BY_RFKILL = 8,
2382 /* 3 reserved */
2383 IWL_PM_NUM_OF_MODES = 12,
2384 };
2385
2386 /*
2387 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2388 */
2389 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2390 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2391 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2392 struct iwl_card_state_cmd {
2393 __le32 status; /* CARD_STATE_CMD_* request new power state */
2394 } __attribute__ ((packed));
2395
2396 /*
2397 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2398 */
2399 struct iwl_card_state_notif {
2400 __le32 flags;
2401 } __attribute__ ((packed));
2402
2403 #define HW_CARD_DISABLED 0x01
2404 #define SW_CARD_DISABLED 0x02
2405 #define RF_CARD_DISABLED 0x04
2406 #define RXON_CARD_DISABLED 0x10
2407
2408 struct iwl_ct_kill_config {
2409 __le32 reserved;
2410 __le32 critical_temperature_M;
2411 __le32 critical_temperature_R;
2412 } __attribute__ ((packed));
2413
2414 /******************************************************************************
2415 * (8)
2416 * Scan Commands, Responses, Notifications:
2417 *
2418 *****************************************************************************/
2419
2420 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2421 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2422
2423 /**
2424 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2425 *
2426 * One for each channel in the scan list.
2427 * Each channel can independently select:
2428 * 1) SSID for directed active scans
2429 * 2) Txpower setting (for rate specified within Tx command)
2430 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2431 * quiet_plcp_th, good_CRC_th)
2432 *
2433 * To avoid uCode errors, make sure the following are true (see comments
2434 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2435 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2436 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2437 * 2) quiet_time <= active_dwell
2438 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2439 * passive_dwell < max_out_time
2440 * active_dwell < max_out_time
2441 */
2442
2443 /* FIXME: rename to AP1, remove tpc */
2444 struct iwl3945_scan_channel {
2445 /*
2446 * type is defined as:
2447 * 0:0 1 = active, 0 = passive
2448 * 1:4 SSID direct bit map; if a bit is set, then corresponding
2449 * SSID IE is transmitted in probe request.
2450 * 5:7 reserved
2451 */
2452 u8 type;
2453 u8 channel; /* band is selected by iwl3945_scan_cmd "flags" field */
2454 struct iwl3945_tx_power tpc;
2455 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2456 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2457 } __attribute__ ((packed));
2458
2459 /* set number of direct probes u8 type */
2460 #define IWL39_SCAN_PROBE_MASK(n) ((BIT(n) | (BIT(n) - BIT(1))))
2461
2462 struct iwl_scan_channel {
2463 /*
2464 * type is defined as:
2465 * 0:0 1 = active, 0 = passive
2466 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2467 * SSID IE is transmitted in probe request.
2468 * 21:31 reserved
2469 */
2470 __le32 type;
2471 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2472 u8 tx_gain; /* gain for analog radio */
2473 u8 dsp_atten; /* gain for DSP */
2474 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2475 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2476 } __attribute__ ((packed));
2477
2478 /* set number of direct probes __le32 type */
2479 #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2480
2481 /**
2482 * struct iwl_ssid_ie - directed scan network information element
2483 *
2484 * Up to 4 of these may appear in REPLY_SCAN_CMD, selected by "type" field
2485 * in struct iwl_scan_channel; each channel may select different ssids from
2486 * among the 4 entries. SSID IEs get transmitted in reverse order of entry.
2487 */
2488 struct iwl_ssid_ie {
2489 u8 id;
2490 u8 len;
2491 u8 ssid[32];
2492 } __attribute__ ((packed));
2493
2494 #define PROBE_OPTION_MAX_3945 4
2495 #define PROBE_OPTION_MAX 20
2496 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2497 #define IWL_GOOD_CRC_TH cpu_to_le16(1)
2498 #define IWL_MAX_SCAN_SIZE 1024
2499 #define IWL_MAX_PROBE_REQUEST 200
2500
2501 /*
2502 * REPLY_SCAN_CMD = 0x80 (command)
2503 *
2504 * The hardware scan command is very powerful; the driver can set it up to
2505 * maintain (relatively) normal network traffic while doing a scan in the
2506 * background. The max_out_time and suspend_time control the ratio of how
2507 * long the device stays on an associated network channel ("service channel")
2508 * vs. how long it's away from the service channel, i.e. tuned to other channels
2509 * for scanning.
2510 *
2511 * max_out_time is the max time off-channel (in usec), and suspend_time
2512 * is how long (in "extended beacon" format) that the scan is "suspended"
2513 * after returning to the service channel. That is, suspend_time is the
2514 * time that we stay on the service channel, doing normal work, between
2515 * scan segments. The driver may set these parameters differently to support
2516 * scanning when associated vs. not associated, and light vs. heavy traffic
2517 * loads when associated.
2518 *
2519 * After receiving this command, the device's scan engine does the following;
2520 *
2521 * 1) Sends SCAN_START notification to driver
2522 * 2) Checks to see if it has time to do scan for one channel
2523 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2524 * to tell AP that we're going off-channel
2525 * 4) Tunes to first channel in scan list, does active or passive scan
2526 * 5) Sends SCAN_RESULT notification to driver
2527 * 6) Checks to see if it has time to do scan on *next* channel in list
2528 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2529 * before max_out_time expires
2530 * 8) Returns to service channel
2531 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2532 * 10) Stays on service channel until suspend_time expires
2533 * 11) Repeats entire process 2-10 until list is complete
2534 * 12) Sends SCAN_COMPLETE notification
2535 *
2536 * For fast, efficient scans, the scan command also has support for staying on
2537 * a channel for just a short time, if doing active scanning and getting no
2538 * responses to the transmitted probe request. This time is controlled by
2539 * quiet_time, and the number of received packets below which a channel is
2540 * considered "quiet" is controlled by quiet_plcp_threshold.
2541 *
2542 * For active scanning on channels that have regulatory restrictions against
2543 * blindly transmitting, the scan can listen before transmitting, to make sure
2544 * that there is already legitimate activity on the channel. If enough
2545 * packets are cleanly received on the channel (controlled by good_CRC_th,
2546 * typical value 1), the scan engine starts transmitting probe requests.
2547 *
2548 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2549 *
2550 * To avoid uCode errors, see timing restrictions described under
2551 * struct iwl_scan_channel.
2552 */
2553
2554 struct iwl3945_scan_cmd {
2555 __le16 len;
2556 u8 reserved0;
2557 u8 channel_count; /* # channels in channel list */
2558 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2559 * (only for active scan) */
2560 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2561 __le16 good_CRC_th; /* passive -> active promotion threshold */
2562 __le16 reserved1;
2563 __le32 max_out_time; /* max usec to be away from associated (service)
2564 * channel */
2565 __le32 suspend_time; /* pause scan this long (in "extended beacon
2566 * format") when returning to service channel:
2567 * 3945; 31:24 # beacons, 19:0 additional usec,
2568 * 4965; 31:22 # beacons, 21:0 additional usec.
2569 */
2570 __le32 flags; /* RXON_FLG_* */
2571 __le32 filter_flags; /* RXON_FILTER_* */
2572
2573 /* For active scans (set to all-0s for passive scans).
2574 * Does not include payload. Must specify Tx rate; no rate scaling. */
2575 struct iwl3945_tx_cmd tx_cmd;
2576
2577 /* For directed active scans (set to all-0s otherwise) */
2578 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX_3945];
2579
2580 /*
2581 * Probe request frame, followed by channel list.
2582 *
2583 * Size of probe request frame is specified by byte count in tx_cmd.
2584 * Channel list follows immediately after probe request frame.
2585 * Number of channels in list is specified by channel_count.
2586 * Each channel in list is of type:
2587 *
2588 * struct iwl3945_scan_channel channels[0];
2589 *
2590 * NOTE: Only one band of channels can be scanned per pass. You
2591 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2592 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2593 * before requesting another scan.
2594 */
2595 u8 data[0];
2596 } __attribute__ ((packed));
2597
2598 struct iwl_scan_cmd {
2599 __le16 len;
2600 u8 reserved0;
2601 u8 channel_count; /* # channels in channel list */
2602 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2603 * (only for active scan) */
2604 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2605 __le16 good_CRC_th; /* passive -> active promotion threshold */
2606 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2607 __le32 max_out_time; /* max usec to be away from associated (service)
2608 * channel */
2609 __le32 suspend_time; /* pause scan this long (in "extended beacon
2610 * format") when returning to service chnl:
2611 * 3945; 31:24 # beacons, 19:0 additional usec,
2612 * 4965; 31:22 # beacons, 21:0 additional usec.
2613 */
2614 __le32 flags; /* RXON_FLG_* */
2615 __le32 filter_flags; /* RXON_FILTER_* */
2616
2617 /* For active scans (set to all-0s for passive scans).
2618 * Does not include payload. Must specify Tx rate; no rate scaling. */
2619 struct iwl_tx_cmd tx_cmd;
2620
2621 /* For directed active scans (set to all-0s otherwise) */
2622 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2623
2624 /*
2625 * Probe request frame, followed by channel list.
2626 *
2627 * Size of probe request frame is specified by byte count in tx_cmd.
2628 * Channel list follows immediately after probe request frame.
2629 * Number of channels in list is specified by channel_count.
2630 * Each channel in list is of type:
2631 *
2632 * struct iwl_scan_channel channels[0];
2633 *
2634 * NOTE: Only one band of channels can be scanned per pass. You
2635 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2636 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2637 * before requesting another scan.
2638 */
2639 u8 data[0];
2640 } __attribute__ ((packed));
2641
2642 /* Can abort will notify by complete notification with abort status. */
2643 #define CAN_ABORT_STATUS cpu_to_le32(0x1)
2644 /* complete notification statuses */
2645 #define ABORT_STATUS 0x2
2646
2647 /*
2648 * REPLY_SCAN_CMD = 0x80 (response)
2649 */
2650 struct iwl_scanreq_notification {
2651 __le32 status; /* 1: okay, 2: cannot fulfill request */
2652 } __attribute__ ((packed));
2653
2654 /*
2655 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2656 */
2657 struct iwl_scanstart_notification {
2658 __le32 tsf_low;
2659 __le32 tsf_high;
2660 __le32 beacon_timer;
2661 u8 channel;
2662 u8 band;
2663 u8 reserved[2];
2664 __le32 status;
2665 } __attribute__ ((packed));
2666
2667 #define SCAN_OWNER_STATUS 0x1;
2668 #define MEASURE_OWNER_STATUS 0x2;
2669
2670 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2671 /*
2672 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2673 */
2674 struct iwl_scanresults_notification {
2675 u8 channel;
2676 u8 band;
2677 u8 reserved[2];
2678 __le32 tsf_low;
2679 __le32 tsf_high;
2680 __le32 statistics[NUMBER_OF_STATISTICS];
2681 } __attribute__ ((packed));
2682
2683 /*
2684 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2685 */
2686 struct iwl_scancomplete_notification {
2687 u8 scanned_channels;
2688 u8 status;
2689 u8 reserved;
2690 u8 last_channel;
2691 __le32 tsf_low;
2692 __le32 tsf_high;
2693 } __attribute__ ((packed));
2694
2695
2696 /******************************************************************************
2697 * (9)
2698 * IBSS/AP Commands and Notifications:
2699 *
2700 *****************************************************************************/
2701
2702 /*
2703 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2704 */
2705
2706 struct iwl3945_beacon_notif {
2707 struct iwl3945_tx_resp beacon_notify_hdr;
2708 __le32 low_tsf;
2709 __le32 high_tsf;
2710 __le32 ibss_mgr_status;
2711 } __attribute__ ((packed));
2712
2713 struct iwl4965_beacon_notif {
2714 struct iwl4965_tx_resp beacon_notify_hdr;
2715 __le32 low_tsf;
2716 __le32 high_tsf;
2717 __le32 ibss_mgr_status;
2718 } __attribute__ ((packed));
2719
2720 /*
2721 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2722 */
2723
2724 struct iwl3945_tx_beacon_cmd {
2725 struct iwl3945_tx_cmd tx;
2726 __le16 tim_idx;
2727 u8 tim_size;
2728 u8 reserved1;
2729 struct ieee80211_hdr frame[0]; /* beacon frame */
2730 } __attribute__ ((packed));
2731
2732 struct iwl_tx_beacon_cmd {
2733 struct iwl_tx_cmd tx;
2734 __le16 tim_idx;
2735 u8 tim_size;
2736 u8 reserved1;
2737 struct ieee80211_hdr frame[0]; /* beacon frame */
2738 } __attribute__ ((packed));
2739
2740 /******************************************************************************
2741 * (10)
2742 * Statistics Commands and Notifications:
2743 *
2744 *****************************************************************************/
2745
2746 #define IWL_TEMP_CONVERT 260
2747
2748 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2749 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2750 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2751
2752 /* Used for passing to driver number of successes and failures per rate */
2753 struct rate_histogram {
2754 union {
2755 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2756 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2757 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2758 } success;
2759 union {
2760 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2761 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2762 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2763 } failed;
2764 } __attribute__ ((packed));
2765
2766 /* statistics command response */
2767
2768 struct iwl39_statistics_rx_phy {
2769 __le32 ina_cnt;
2770 __le32 fina_cnt;
2771 __le32 plcp_err;
2772 __le32 crc32_err;
2773 __le32 overrun_err;
2774 __le32 early_overrun_err;
2775 __le32 crc32_good;
2776 __le32 false_alarm_cnt;
2777 __le32 fina_sync_err_cnt;
2778 __le32 sfd_timeout;
2779 __le32 fina_timeout;
2780 __le32 unresponded_rts;
2781 __le32 rxe_frame_limit_overrun;
2782 __le32 sent_ack_cnt;
2783 __le32 sent_cts_cnt;
2784 } __attribute__ ((packed));
2785
2786 struct iwl39_statistics_rx_non_phy {
2787 __le32 bogus_cts; /* CTS received when not expecting CTS */
2788 __le32 bogus_ack; /* ACK received when not expecting ACK */
2789 __le32 non_bssid_frames; /* number of frames with BSSID that
2790 * doesn't belong to the STA BSSID */
2791 __le32 filtered_frames; /* count frames that were dumped in the
2792 * filtering process */
2793 __le32 non_channel_beacons; /* beacons with our bss id but not on
2794 * our serving channel */
2795 } __attribute__ ((packed));
2796
2797 struct iwl39_statistics_rx {
2798 struct iwl39_statistics_rx_phy ofdm;
2799 struct iwl39_statistics_rx_phy cck;
2800 struct iwl39_statistics_rx_non_phy general;
2801 } __attribute__ ((packed));
2802
2803 struct iwl39_statistics_tx {
2804 __le32 preamble_cnt;
2805 __le32 rx_detected_cnt;
2806 __le32 bt_prio_defer_cnt;
2807 __le32 bt_prio_kill_cnt;
2808 __le32 few_bytes_cnt;
2809 __le32 cts_timeout;
2810 __le32 ack_timeout;
2811 __le32 expected_ack_cnt;
2812 __le32 actual_ack_cnt;
2813 } __attribute__ ((packed));
2814
2815 struct statistics_dbg {
2816 __le32 burst_check;
2817 __le32 burst_count;
2818 __le32 reserved[4];
2819 } __attribute__ ((packed));
2820
2821 struct iwl39_statistics_div {
2822 __le32 tx_on_a;
2823 __le32 tx_on_b;
2824 __le32 exec_time;
2825 __le32 probe_time;
2826 } __attribute__ ((packed));
2827
2828 struct iwl39_statistics_general {
2829 __le32 temperature;
2830 struct statistics_dbg dbg;
2831 __le32 sleep_time;
2832 __le32 slots_out;
2833 __le32 slots_idle;
2834 __le32 ttl_timestamp;
2835 struct iwl39_statistics_div div;
2836 } __attribute__ ((packed));
2837
2838 struct statistics_rx_phy {
2839 __le32 ina_cnt;
2840 __le32 fina_cnt;
2841 __le32 plcp_err;
2842 __le32 crc32_err;
2843 __le32 overrun_err;
2844 __le32 early_overrun_err;
2845 __le32 crc32_good;
2846 __le32 false_alarm_cnt;
2847 __le32 fina_sync_err_cnt;
2848 __le32 sfd_timeout;
2849 __le32 fina_timeout;
2850 __le32 unresponded_rts;
2851 __le32 rxe_frame_limit_overrun;
2852 __le32 sent_ack_cnt;
2853 __le32 sent_cts_cnt;
2854 __le32 sent_ba_rsp_cnt;
2855 __le32 dsp_self_kill;
2856 __le32 mh_format_err;
2857 __le32 re_acq_main_rssi_sum;
2858 __le32 reserved3;
2859 } __attribute__ ((packed));
2860
2861 struct statistics_rx_ht_phy {
2862 __le32 plcp_err;
2863 __le32 overrun_err;
2864 __le32 early_overrun_err;
2865 __le32 crc32_good;
2866 __le32 crc32_err;
2867 __le32 mh_format_err;
2868 __le32 agg_crc32_good;
2869 __le32 agg_mpdu_cnt;
2870 __le32 agg_cnt;
2871 __le32 reserved2;
2872 } __attribute__ ((packed));
2873
2874 #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2875
2876 struct statistics_rx_non_phy {
2877 __le32 bogus_cts; /* CTS received when not expecting CTS */
2878 __le32 bogus_ack; /* ACK received when not expecting ACK */
2879 __le32 non_bssid_frames; /* number of frames with BSSID that
2880 * doesn't belong to the STA BSSID */
2881 __le32 filtered_frames; /* count frames that were dumped in the
2882 * filtering process */
2883 __le32 non_channel_beacons; /* beacons with our bss id but not on
2884 * our serving channel */
2885 __le32 channel_beacons; /* beacons with our bss id and in our
2886 * serving channel */
2887 __le32 num_missed_bcon; /* number of missed beacons */
2888 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2889 * ADC was in saturation */
2890 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2891 * for INA */
2892 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2893 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2894 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2895 __le32 interference_data_flag; /* flag for interference data
2896 * availability. 1 when data is
2897 * available. */
2898 __le32 channel_load; /* counts RX Enable time in uSec */
2899 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2900 * and CCK) counter */
2901 __le32 beacon_rssi_a;
2902 __le32 beacon_rssi_b;
2903 __le32 beacon_rssi_c;
2904 __le32 beacon_energy_a;
2905 __le32 beacon_energy_b;
2906 __le32 beacon_energy_c;
2907 } __attribute__ ((packed));
2908
2909 struct statistics_rx {
2910 struct statistics_rx_phy ofdm;
2911 struct statistics_rx_phy cck;
2912 struct statistics_rx_non_phy general;
2913 struct statistics_rx_ht_phy ofdm_ht;
2914 } __attribute__ ((packed));
2915
2916 struct statistics_tx_non_phy_agg {
2917 __le32 ba_timeout;
2918 __le32 ba_reschedule_frames;
2919 __le32 scd_query_agg_frame_cnt;
2920 __le32 scd_query_no_agg;
2921 __le32 scd_query_agg;
2922 __le32 scd_query_mismatch;
2923 __le32 frame_not_ready;
2924 __le32 underrun;
2925 __le32 bt_prio_kill;
2926 __le32 rx_ba_rsp_cnt;
2927 __le32 reserved2;
2928 __le32 reserved3;
2929 } __attribute__ ((packed));
2930
2931 struct statistics_tx {
2932 __le32 preamble_cnt;
2933 __le32 rx_detected_cnt;
2934 __le32 bt_prio_defer_cnt;
2935 __le32 bt_prio_kill_cnt;
2936 __le32 few_bytes_cnt;
2937 __le32 cts_timeout;
2938 __le32 ack_timeout;
2939 __le32 expected_ack_cnt;
2940 __le32 actual_ack_cnt;
2941 __le32 dump_msdu_cnt;
2942 __le32 burst_abort_next_frame_mismatch_cnt;
2943 __le32 burst_abort_missing_next_frame_cnt;
2944 __le32 cts_timeout_collision;
2945 __le32 ack_or_ba_timeout_collision;
2946 struct statistics_tx_non_phy_agg agg;
2947 } __attribute__ ((packed));
2948
2949
2950 struct statistics_div {
2951 __le32 tx_on_a;
2952 __le32 tx_on_b;
2953 __le32 exec_time;
2954 __le32 probe_time;
2955 __le32 reserved1;
2956 __le32 reserved2;
2957 } __attribute__ ((packed));
2958
2959 struct statistics_general {
2960 __le32 temperature;
2961 __le32 temperature_m;
2962 struct statistics_dbg dbg;
2963 __le32 sleep_time;
2964 __le32 slots_out;
2965 __le32 slots_idle;
2966 __le32 ttl_timestamp;
2967 struct statistics_div div;
2968 __le32 rx_enable_counter;
2969 __le32 reserved1;
2970 __le32 reserved2;
2971 __le32 reserved3;
2972 } __attribute__ ((packed));
2973
2974 /*
2975 * REPLY_STATISTICS_CMD = 0x9c,
2976 * 3945 and 4965 identical.
2977 *
2978 * This command triggers an immediate response containing uCode statistics.
2979 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2980 *
2981 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2982 * internal copy of the statistics (counters) after issuing the response.
2983 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2984 *
2985 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2986 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2987 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2988 */
2989 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2990 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2991 struct iwl_statistics_cmd {
2992 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2993 } __attribute__ ((packed));
2994
2995 /*
2996 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2997 *
2998 * By default, uCode issues this notification after receiving a beacon
2999 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
3000 * REPLY_STATISTICS_CMD 0x9c, above.
3001 *
3002 * Statistics counters continue to increment beacon after beacon, but are
3003 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
3004 * 0x9c with CLEAR_STATS bit set (see above).
3005 *
3006 * uCode also issues this notification during scans. uCode clears statistics
3007 * appropriately so that each notification contains statistics for only the
3008 * one channel that has just been scanned.
3009 */
3010 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
3011 #define STATISTICS_REPLY_FLG_FAT_MODE_MSK cpu_to_le32(0x8)
3012
3013 struct iwl3945_notif_statistics {
3014 __le32 flag;
3015 struct iwl39_statistics_rx rx;
3016 struct iwl39_statistics_tx tx;
3017 struct iwl39_statistics_general general;
3018 } __attribute__ ((packed));
3019
3020 struct iwl_notif_statistics {
3021 __le32 flag;
3022 struct statistics_rx rx;
3023 struct statistics_tx tx;
3024 struct statistics_general general;
3025 } __attribute__ ((packed));
3026
3027
3028 /*
3029 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
3030 */
3031 /* if ucode missed CONSECUTIVE_MISSED_BCONS_TH beacons in a row,
3032 * then this notification will be sent. */
3033 #define CONSECUTIVE_MISSED_BCONS_TH 20
3034
3035 struct iwl_missed_beacon_notif {
3036 __le32 consequtive_missed_beacons;
3037 __le32 total_missed_becons;
3038 __le32 num_expected_beacons;
3039 __le32 num_recvd_beacons;
3040 } __attribute__ ((packed));
3041
3042
3043 /******************************************************************************
3044 * (11)
3045 * Rx Calibration Commands:
3046 *
3047 * With the uCode used for open source drivers, most Tx calibration (except
3048 * for Tx Power) and most Rx calibration is done by uCode during the
3049 * "initialize" phase of uCode boot. Driver must calibrate only:
3050 *
3051 * 1) Tx power (depends on temperature), described elsewhere
3052 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
3053 * 3) Receiver sensitivity (to optimize signal detection)
3054 *
3055 *****************************************************************************/
3056
3057 /**
3058 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
3059 *
3060 * This command sets up the Rx signal detector for a sensitivity level that
3061 * is high enough to lock onto all signals within the associated network,
3062 * but low enough to ignore signals that are below a certain threshold, so as
3063 * not to have too many "false alarms". False alarms are signals that the
3064 * Rx DSP tries to lock onto, but then discards after determining that they
3065 * are noise.
3066 *
3067 * The optimum number of false alarms is between 5 and 50 per 200 TUs
3068 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
3069 * time listening, not transmitting). Driver must adjust sensitivity so that
3070 * the ratio of actual false alarms to actual Rx time falls within this range.
3071 *
3072 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
3073 * received beacon. These provide information to the driver to analyze the
3074 * sensitivity. Don't analyze statistics that come in from scanning, or any
3075 * other non-associated-network source. Pertinent statistics include:
3076 *
3077 * From "general" statistics (struct statistics_rx_non_phy):
3078 *
3079 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
3080 * Measure of energy of desired signal. Used for establishing a level
3081 * below which the device does not detect signals.
3082 *
3083 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
3084 * Measure of background noise in silent period after beacon.
3085 *
3086 * channel_load
3087 * uSecs of actual Rx time during beacon period (varies according to
3088 * how much time was spent transmitting).
3089 *
3090 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
3091 *
3092 * false_alarm_cnt
3093 * Signal locks abandoned early (before phy-level header).
3094 *
3095 * plcp_err
3096 * Signal locks abandoned late (during phy-level header).
3097 *
3098 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
3099 * beacon to beacon, i.e. each value is an accumulation of all errors
3100 * before and including the latest beacon. Values will wrap around to 0
3101 * after counting up to 2^32 - 1. Driver must differentiate vs.
3102 * previous beacon's values to determine # false alarms in the current
3103 * beacon period.
3104 *
3105 * Total number of false alarms = false_alarms + plcp_errs
3106 *
3107 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
3108 * (notice that the start points for OFDM are at or close to settings for
3109 * maximum sensitivity):
3110 *
3111 * START / MIN / MAX
3112 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
3113 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
3114 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
3115 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
3116 *
3117 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
3118 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
3119 * by *adding* 1 to all 4 of the table entries above, up to the max for
3120 * each entry. Conversely, if false alarm rate is too low (less than 5
3121 * for each 204.8 msecs listening), *subtract* 1 from each entry to
3122 * increase sensitivity.
3123 *
3124 * For CCK sensitivity, keep track of the following:
3125 *
3126 * 1). 20-beacon history of maximum background noise, indicated by
3127 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
3128 * 3 receivers. For any given beacon, the "silence reference" is
3129 * the maximum of last 60 samples (20 beacons * 3 receivers).
3130 *
3131 * 2). 10-beacon history of strongest signal level, as indicated
3132 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
3133 * i.e. the strength of the signal through the best receiver at the
3134 * moment. These measurements are "upside down", with lower values
3135 * for stronger signals, so max energy will be *minimum* value.
3136 *
3137 * Then for any given beacon, the driver must determine the *weakest*
3138 * of the strongest signals; this is the minimum level that needs to be
3139 * successfully detected, when using the best receiver at the moment.
3140 * "Max cck energy" is the maximum (higher value means lower energy!)
3141 * of the last 10 minima. Once this is determined, driver must add
3142 * a little margin by adding "6" to it.
3143 *
3144 * 3). Number of consecutive beacon periods with too few false alarms.
3145 * Reset this to 0 at the first beacon period that falls within the
3146 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
3147 *
3148 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
3149 * (notice that the start points for CCK are at maximum sensitivity):
3150 *
3151 * START / MIN / MAX
3152 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
3153 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
3154 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
3155 *
3156 * If actual rate of CCK false alarms (+ plcp_errors) is too high
3157 * (greater than 50 for each 204.8 msecs listening), method for reducing
3158 * sensitivity is:
3159 *
3160 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
3161 * up to max 400.
3162 *
3163 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
3164 * sensitivity has been reduced a significant amount; bring it up to
3165 * a moderate 161. Otherwise, *add* 3, up to max 200.
3166 *
3167 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
3168 * sensitivity has been reduced only a moderate or small amount;
3169 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
3170 * down to min 0. Otherwise (if gain has been significantly reduced),
3171 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
3172 *
3173 * b) Save a snapshot of the "silence reference".
3174 *
3175 * If actual rate of CCK false alarms (+ plcp_errors) is too low
3176 * (less than 5 for each 204.8 msecs listening), method for increasing
3177 * sensitivity is used only if:
3178 *
3179 * 1a) Previous beacon did not have too many false alarms
3180 * 1b) AND difference between previous "silence reference" and current
3181 * "silence reference" (prev - current) is 2 or more,
3182 * OR 2) 100 or more consecutive beacon periods have had rate of
3183 * less than 5 false alarms per 204.8 milliseconds rx time.
3184 *
3185 * Method for increasing sensitivity:
3186 *
3187 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
3188 * down to min 125.
3189 *
3190 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
3191 * down to min 200.
3192 *
3193 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
3194 *
3195 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
3196 * (between 5 and 50 for each 204.8 msecs listening):
3197 *
3198 * 1) Save a snapshot of the silence reference.
3199 *
3200 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
3201 * give some extra margin to energy threshold by *subtracting* 8
3202 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
3203 *
3204 * For all cases (too few, too many, good range), make sure that the CCK
3205 * detection threshold (energy) is below the energy level for robust
3206 * detection over the past 10 beacon periods, the "Max cck energy".
3207 * Lower values mean higher energy; this means making sure that the value
3208 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
3209 *
3210 * Driver should set the following entries to fixed values:
3211 *
3212 * HD_MIN_ENERGY_OFDM_DET_INDEX 100
3213 * HD_BARKER_CORR_TH_ADD_MIN_INDEX 190
3214 * HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX 390
3215 * HD_OFDM_ENERGY_TH_IN_INDEX 62
3216 */
3217
3218 /*
3219 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3220 */
3221 #define HD_TABLE_SIZE (11) /* number of entries */
3222 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
3223 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
3224 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
3225 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
3226 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
3227 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
3228 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
3229 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
3230 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
3231 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
3232 #define HD_OFDM_ENERGY_TH_IN_INDEX (10)
3233
3234 /* Control field in struct iwl_sensitivity_cmd */
3235 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3236 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3237
3238 /**
3239 * struct iwl_sensitivity_cmd
3240 * @control: (1) updates working table, (0) updates default table
3241 * @table: energy threshold values, use HD_* as index into table
3242 *
3243 * Always use "1" in "control" to update uCode's working table and DSP.
3244 */
3245 struct iwl_sensitivity_cmd {
3246 __le16 control; /* always use "1" */
3247 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3248 } __attribute__ ((packed));
3249
3250
3251 /**
3252 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3253 *
3254 * This command sets the relative gains of 4965's 3 radio receiver chains.
3255 *
3256 * After the first association, driver should accumulate signal and noise
3257 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3258 * beacons from the associated network (don't collect statistics that come
3259 * in from scanning, or any other non-network source).
3260 *
3261 * DISCONNECTED ANTENNA:
3262 *
3263 * Driver should determine which antennas are actually connected, by comparing
3264 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3265 * following values over 20 beacons, one accumulator for each of the chains
3266 * a/b/c, from struct statistics_rx_non_phy:
3267 *
3268 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3269 *
3270 * Find the strongest signal from among a/b/c. Compare the other two to the
3271 * strongest. If any signal is more than 15 dB (times 20, unless you
3272 * divide the accumulated values by 20) below the strongest, the driver
3273 * considers that antenna to be disconnected, and should not try to use that
3274 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3275 * driver should declare the stronger one as connected, and attempt to use it
3276 * (A and B are the only 2 Tx chains!).
3277 *
3278 *
3279 * RX BALANCE:
3280 *
3281 * Driver should balance the 3 receivers (but just the ones that are connected
3282 * to antennas, see above) for gain, by comparing the average signal levels
3283 * detected during the silence after each beacon (background noise).
3284 * Accumulate (add) the following values over 20 beacons, one accumulator for
3285 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3286 *
3287 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3288 *
3289 * Find the weakest background noise level from among a/b/c. This Rx chain
3290 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3291 * finding noise difference:
3292 *
3293 * (accum_noise[i] - accum_noise[reference]) / 30
3294 *
3295 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3296 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3297 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3298 * and set bit 2 to indicate "reduce gain". The value for the reference
3299 * (weakest) chain should be "0".
3300 *
3301 * diff_gain_[abc] bit fields:
3302 * 2: (1) reduce gain, (0) increase gain
3303 * 1-0: amount of gain, units of 1.5 dB
3304 */
3305
3306 /* Phy calibration command for series */
3307
3308 enum {
3309 IWL_PHY_CALIBRATE_DIFF_GAIN_CMD = 7,
3310 IWL_PHY_CALIBRATE_DC_CMD = 8,
3311 IWL_PHY_CALIBRATE_LO_CMD = 9,
3312 IWL_PHY_CALIBRATE_RX_BB_CMD = 10,
3313 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3314 IWL_PHY_CALIBRATE_RX_IQ_CMD = 12,
3315 IWL_PHY_CALIBRATION_NOISE_CMD = 13,
3316 IWL_PHY_CALIBRATE_AGC_TABLE_CMD = 14,
3317 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3318 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3319 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3320 IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD = 18,
3321 IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD = 19,
3322 };
3323
3324
3325 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(0xffffffff)
3326
3327 struct iwl_calib_cfg_elmnt_s {
3328 __le32 is_enable;
3329 __le32 start;
3330 __le32 send_res;
3331 __le32 apply_res;
3332 __le32 reserved;
3333 } __attribute__ ((packed));
3334
3335 struct iwl_calib_cfg_status_s {
3336 struct iwl_calib_cfg_elmnt_s once;
3337 struct iwl_calib_cfg_elmnt_s perd;
3338 __le32 flags;
3339 } __attribute__ ((packed));
3340
3341 struct iwl_calib_cfg_cmd {
3342 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3343 struct iwl_calib_cfg_status_s drv_calib_cfg;
3344 __le32 reserved1;
3345 } __attribute__ ((packed));
3346
3347 struct iwl_calib_hdr {
3348 u8 op_code;
3349 u8 first_group;
3350 u8 groups_num;
3351 u8 data_valid;
3352 } __attribute__ ((packed));
3353
3354 struct iwl_calib_cmd {
3355 struct iwl_calib_hdr hdr;
3356 u8 data[0];
3357 } __attribute__ ((packed));
3358
3359 /* IWL_PHY_CALIBRATE_DIFF_GAIN_CMD (7) */
3360 struct iwl_calib_diff_gain_cmd {
3361 struct iwl_calib_hdr hdr;
3362 s8 diff_gain_a; /* see above */
3363 s8 diff_gain_b;
3364 s8 diff_gain_c;
3365 u8 reserved1;
3366 } __attribute__ ((packed));
3367
3368 struct iwl_calib_xtal_freq_cmd {
3369 struct iwl_calib_hdr hdr;
3370 u8 cap_pin1;
3371 u8 cap_pin2;
3372 u8 pad[2];
3373 } __attribute__ ((packed));
3374
3375 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3376 struct iwl_calib_chain_noise_reset_cmd {
3377 struct iwl_calib_hdr hdr;
3378 u8 data[0];
3379 };
3380
3381 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3382 struct iwl_calib_chain_noise_gain_cmd {
3383 struct iwl_calib_hdr hdr;
3384 u8 delta_gain_1;
3385 u8 delta_gain_2;
3386 u8 pad[2];
3387 } __attribute__ ((packed));
3388
3389 /******************************************************************************
3390 * (12)
3391 * Miscellaneous Commands:
3392 *
3393 *****************************************************************************/
3394
3395 /*
3396 * LEDs Command & Response
3397 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3398 *
3399 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3400 * this command turns it on or off, or sets up a periodic blinking cycle.
3401 */
3402 struct iwl_led_cmd {
3403 __le32 interval; /* "interval" in uSec */
3404 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3405 u8 off; /* # intervals off while blinking;
3406 * "0", with >0 "on" value, turns LED on */
3407 u8 on; /* # intervals on while blinking;
3408 * "0", regardless of "off", turns LED off */
3409 u8 reserved;
3410 } __attribute__ ((packed));
3411
3412 /*
3413 * Coexistence WIFI/WIMAX Command
3414 * COEX_PRIORITY_TABLE_CMD = 0x5a
3415 *
3416 */
3417 enum {
3418 COEX_UNASSOC_IDLE = 0,
3419 COEX_UNASSOC_MANUAL_SCAN = 1,
3420 COEX_UNASSOC_AUTO_SCAN = 2,
3421 COEX_CALIBRATION = 3,
3422 COEX_PERIODIC_CALIBRATION = 4,
3423 COEX_CONNECTION_ESTAB = 5,
3424 COEX_ASSOCIATED_IDLE = 6,
3425 COEX_ASSOC_MANUAL_SCAN = 7,
3426 COEX_ASSOC_AUTO_SCAN = 8,
3427 COEX_ASSOC_ACTIVE_LEVEL = 9,
3428 COEX_RF_ON = 10,
3429 COEX_RF_OFF = 11,
3430 COEX_STAND_ALONE_DEBUG = 12,
3431 COEX_IPAN_ASSOC_LEVEL = 13,
3432 COEX_RSRVD1 = 14,
3433 COEX_RSRVD2 = 15,
3434 COEX_NUM_OF_EVENTS = 16
3435 };
3436
3437 struct iwl_wimax_coex_event_entry {
3438 u8 request_prio;
3439 u8 win_medium_prio;
3440 u8 reserved;
3441 u8 flags;
3442 } __attribute__ ((packed));
3443
3444 /* COEX flag masks */
3445
3446 /* Station table is valid */
3447 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3448 /* UnMask wake up src at unassociated sleep */
3449 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3450 /* UnMask wake up src at associated sleep */
3451 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3452 /* Enable CoEx feature. */
3453 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3454
3455 struct iwl_wimax_coex_cmd {
3456 u8 flags;
3457 u8 reserved[3];
3458 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3459 } __attribute__ ((packed));
3460
3461 /******************************************************************************
3462 * (13)
3463 * Union of all expected notifications/responses:
3464 *
3465 *****************************************************************************/
3466
3467 struct iwl_rx_packet {
3468 __le32 len;
3469 struct iwl_cmd_header hdr;
3470 union {
3471 struct iwl3945_rx_frame rx_frame;
3472 struct iwl3945_tx_resp tx_resp;
3473 struct iwl3945_beacon_notif beacon_status;
3474
3475 struct iwl_alive_resp alive_frame;
3476 struct iwl_spectrum_notification spectrum_notif;
3477 struct iwl_csa_notification csa_notif;
3478 struct iwl_error_resp err_resp;
3479 struct iwl_card_state_notif card_state_notif;
3480 struct iwl_add_sta_resp add_sta;
3481 struct iwl_rem_sta_resp rem_sta;
3482 struct iwl_sleep_notification sleep_notif;
3483 struct iwl_spectrum_resp spectrum;
3484 struct iwl_notif_statistics stats;
3485 struct iwl_compressed_ba_resp compressed_ba;
3486 struct iwl_missed_beacon_notif missed_beacon;
3487 __le32 status;
3488 u8 raw[0];
3489 } u;
3490 } __attribute__ ((packed));
3491
3492 int iwl_agn_check_rxon_cmd(struct iwl_priv *priv);
3493
3494 #endif /* __iwl_commands_h__ */
This page took 0.105509 seconds and 6 git commands to generate.