Merge branch 'vfs-scale-working' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-commands.h
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63 /*
64 * Please use this file (iwl-commands.h) only for uCode API definitions.
65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
66 * Please use iwl-dev.h for driver implementation definitions.
67 */
68
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
71
72 struct iwl_priv;
73
74 /* uCode version contains 4 values: Major/Minor/API/Serial */
75 #define IWL_UCODE_MAJOR(ver) (((ver) & 0xFF000000) >> 24)
76 #define IWL_UCODE_MINOR(ver) (((ver) & 0x00FF0000) >> 16)
77 #define IWL_UCODE_API(ver) (((ver) & 0x0000FF00) >> 8)
78 #define IWL_UCODE_SERIAL(ver) ((ver) & 0x000000FF)
79
80
81 /* Tx rates */
82 #define IWL_CCK_RATES 4
83 #define IWL_OFDM_RATES 8
84 #define IWL_MAX_RATES (IWL_CCK_RATES + IWL_OFDM_RATES)
85
86 enum {
87 REPLY_ALIVE = 0x1,
88 REPLY_ERROR = 0x2,
89
90 /* RXON and QOS commands */
91 REPLY_RXON = 0x10,
92 REPLY_RXON_ASSOC = 0x11,
93 REPLY_QOS_PARAM = 0x13,
94 REPLY_RXON_TIMING = 0x14,
95
96 /* Multi-Station support */
97 REPLY_ADD_STA = 0x18,
98 REPLY_REMOVE_STA = 0x19,
99 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
100 REPLY_TXFIFO_FLUSH = 0x1e,
101
102 /* Security */
103 REPLY_WEPKEY = 0x20,
104
105 /* RX, TX, LEDs */
106 REPLY_3945_RX = 0x1b, /* 3945 only */
107 REPLY_TX = 0x1c,
108 REPLY_RATE_SCALE = 0x47, /* 3945 only */
109 REPLY_LEDS_CMD = 0x48,
110 REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* for 4965 and up */
111
112 /* WiMAX coexistence */
113 COEX_PRIORITY_TABLE_CMD = 0x5a, /* for 5000 series and up */
114 COEX_MEDIUM_NOTIFICATION = 0x5b,
115 COEX_EVENT_CMD = 0x5c,
116
117 /* Calibration */
118 TEMPERATURE_NOTIFICATION = 0x62,
119 CALIBRATION_CFG_CMD = 0x65,
120 CALIBRATION_RES_NOTIFICATION = 0x66,
121 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
122
123 /* 802.11h related */
124 REPLY_QUIET_CMD = 0x71, /* not used */
125 REPLY_CHANNEL_SWITCH = 0x72,
126 CHANNEL_SWITCH_NOTIFICATION = 0x73,
127 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
128 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
129
130 /* Power Management */
131 POWER_TABLE_CMD = 0x77,
132 PM_SLEEP_NOTIFICATION = 0x7A,
133 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
134
135 /* Scan commands and notifications */
136 REPLY_SCAN_CMD = 0x80,
137 REPLY_SCAN_ABORT_CMD = 0x81,
138 SCAN_START_NOTIFICATION = 0x82,
139 SCAN_RESULTS_NOTIFICATION = 0x83,
140 SCAN_COMPLETE_NOTIFICATION = 0x84,
141
142 /* IBSS/AP commands */
143 BEACON_NOTIFICATION = 0x90,
144 REPLY_TX_BEACON = 0x91,
145 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
146
147 /* Miscellaneous commands */
148 REPLY_TX_POWER_DBM_CMD = 0x95,
149 QUIET_NOTIFICATION = 0x96, /* not used */
150 REPLY_TX_PWR_TABLE_CMD = 0x97,
151 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
152 TX_ANT_CONFIGURATION_CMD = 0x98,
153 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
154
155 /* Bluetooth device coexistence config command */
156 REPLY_BT_CONFIG = 0x9b,
157
158 /* Statistics */
159 REPLY_STATISTICS_CMD = 0x9c,
160 STATISTICS_NOTIFICATION = 0x9d,
161
162 /* RF-KILL commands and notifications */
163 REPLY_CARD_STATE_CMD = 0xa0,
164 CARD_STATE_NOTIFICATION = 0xa1,
165
166 /* Missed beacons notification */
167 MISSED_BEACONS_NOTIFICATION = 0xa2,
168
169 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
170 SENSITIVITY_CMD = 0xa8,
171 REPLY_PHY_CALIBRATION_CMD = 0xb0,
172 REPLY_RX_PHY_CMD = 0xc0,
173 REPLY_RX_MPDU_CMD = 0xc1,
174 REPLY_RX = 0xc3,
175 REPLY_COMPRESSED_BA = 0xc5,
176
177 /* BT Coex */
178 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
179 REPLY_BT_COEX_PROT_ENV = 0xcd,
180 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
181 REPLY_BT_COEX_SCO = 0xcf,
182
183 /* PAN commands */
184 REPLY_WIPAN_PARAMS = 0xb2,
185 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
186 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
187 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
188 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
189 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
190 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
191 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
192
193 REPLY_MAX = 0xff
194 };
195
196 /******************************************************************************
197 * (0)
198 * Commonly used structures and definitions:
199 * Command header, rate_n_flags, txpower
200 *
201 *****************************************************************************/
202
203 /* iwl_cmd_header flags value */
204 #define IWL_CMD_FAILED_MSK 0x40
205
206 #define SEQ_TO_QUEUE(s) (((s) >> 8) & 0x1f)
207 #define QUEUE_TO_SEQ(q) (((q) & 0x1f) << 8)
208 #define SEQ_TO_INDEX(s) ((s) & 0xff)
209 #define INDEX_TO_SEQ(i) ((i) & 0xff)
210 #define SEQ_HUGE_FRAME cpu_to_le16(0x4000)
211 #define SEQ_RX_FRAME cpu_to_le16(0x8000)
212
213 /**
214 * struct iwl_cmd_header
215 *
216 * This header format appears in the beginning of each command sent from the
217 * driver, and each response/notification received from uCode.
218 */
219 struct iwl_cmd_header {
220 u8 cmd; /* Command ID: REPLY_RXON, etc. */
221 u8 flags; /* 0:5 reserved, 6 abort, 7 internal */
222 /*
223 * The driver sets up the sequence number to values of its choosing.
224 * uCode does not use this value, but passes it back to the driver
225 * when sending the response to each driver-originated command, so
226 * the driver can match the response to the command. Since the values
227 * don't get used by uCode, the driver may set up an arbitrary format.
228 *
229 * There is one exception: uCode sets bit 15 when it originates
230 * the response/notification, i.e. when the response/notification
231 * is not a direct response to a command sent by the driver. For
232 * example, uCode issues REPLY_3945_RX when it sends a received frame
233 * to the driver; it is not a direct response to any driver command.
234 *
235 * The Linux driver uses the following format:
236 *
237 * 0:7 tfd index - position within TX queue
238 * 8:12 TX queue id
239 * 13 reserved
240 * 14 huge - driver sets this to indicate command is in the
241 * 'huge' storage at the end of the command buffers
242 * 15 unsolicited RX or uCode-originated notification
243 */
244 __le16 sequence;
245
246 /* command or response/notification data follows immediately */
247 u8 data[0];
248 } __packed;
249
250
251 /**
252 * struct iwl3945_tx_power
253 *
254 * Used in REPLY_TX_PWR_TABLE_CMD, REPLY_SCAN_CMD, REPLY_CHANNEL_SWITCH
255 *
256 * Each entry contains two values:
257 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
258 * linear value that multiplies the output of the digital signal processor,
259 * before being sent to the analog radio.
260 * 2) Radio gain. This sets the analog gain of the radio Tx path.
261 * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
262 *
263 * Driver obtains values from struct iwl3945_tx_power power_gain_table[][].
264 */
265 struct iwl3945_tx_power {
266 u8 tx_gain; /* gain for analog radio */
267 u8 dsp_atten; /* gain for DSP */
268 } __packed;
269
270 /**
271 * struct iwl3945_power_per_rate
272 *
273 * Used in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
274 */
275 struct iwl3945_power_per_rate {
276 u8 rate; /* plcp */
277 struct iwl3945_tx_power tpc;
278 u8 reserved;
279 } __packed;
280
281 /**
282 * iwlagn rate_n_flags bit fields
283 *
284 * rate_n_flags format is used in following iwlagn commands:
285 * REPLY_RX (response only)
286 * REPLY_RX_MPDU (response only)
287 * REPLY_TX (both command and response)
288 * REPLY_TX_LINK_QUALITY_CMD
289 *
290 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
291 * 2-0: 0) 6 Mbps
292 * 1) 12 Mbps
293 * 2) 18 Mbps
294 * 3) 24 Mbps
295 * 4) 36 Mbps
296 * 5) 48 Mbps
297 * 6) 54 Mbps
298 * 7) 60 Mbps
299 *
300 * 4-3: 0) Single stream (SISO)
301 * 1) Dual stream (MIMO)
302 * 2) Triple stream (MIMO)
303 *
304 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
305 *
306 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
307 * 3-0: 0xD) 6 Mbps
308 * 0xF) 9 Mbps
309 * 0x5) 12 Mbps
310 * 0x7) 18 Mbps
311 * 0x9) 24 Mbps
312 * 0xB) 36 Mbps
313 * 0x1) 48 Mbps
314 * 0x3) 54 Mbps
315 *
316 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
317 * 6-0: 10) 1 Mbps
318 * 20) 2 Mbps
319 * 55) 5.5 Mbps
320 * 110) 11 Mbps
321 */
322 #define RATE_MCS_CODE_MSK 0x7
323 #define RATE_MCS_SPATIAL_POS 3
324 #define RATE_MCS_SPATIAL_MSK 0x18
325 #define RATE_MCS_HT_DUP_POS 5
326 #define RATE_MCS_HT_DUP_MSK 0x20
327
328 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
329 #define RATE_MCS_FLAGS_POS 8
330 #define RATE_MCS_HT_POS 8
331 #define RATE_MCS_HT_MSK 0x100
332
333 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
334 #define RATE_MCS_CCK_POS 9
335 #define RATE_MCS_CCK_MSK 0x200
336
337 /* Bit 10: (1) Use Green Field preamble */
338 #define RATE_MCS_GF_POS 10
339 #define RATE_MCS_GF_MSK 0x400
340
341 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
342 #define RATE_MCS_HT40_POS 11
343 #define RATE_MCS_HT40_MSK 0x800
344
345 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
346 #define RATE_MCS_DUP_POS 12
347 #define RATE_MCS_DUP_MSK 0x1000
348
349 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
350 #define RATE_MCS_SGI_POS 13
351 #define RATE_MCS_SGI_MSK 0x2000
352
353 /**
354 * rate_n_flags Tx antenna masks
355 * 4965 has 2 transmitters
356 * 5100 has 1 transmitter B
357 * 5150 has 1 transmitter A
358 * 5300 has 3 transmitters
359 * 5350 has 3 transmitters
360 * bit14:16
361 */
362 #define RATE_MCS_ANT_POS 14
363 #define RATE_MCS_ANT_A_MSK 0x04000
364 #define RATE_MCS_ANT_B_MSK 0x08000
365 #define RATE_MCS_ANT_C_MSK 0x10000
366 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
367 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
368 #define RATE_ANT_NUM 3
369
370 #define POWER_TABLE_NUM_ENTRIES 33
371 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
372 #define POWER_TABLE_CCK_ENTRY 32
373
374 #define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
375 #define IWL_PWR_CCK_ENTRIES 2
376
377 /**
378 * union iwl4965_tx_power_dual_stream
379 *
380 * Host format used for REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
381 * Use __le32 version (struct tx_power_dual_stream) when building command.
382 *
383 * Driver provides radio gain and DSP attenuation settings to device in pairs,
384 * one value for each transmitter chain. The first value is for transmitter A,
385 * second for transmitter B.
386 *
387 * For SISO bit rates, both values in a pair should be identical.
388 * For MIMO rates, one value may be different from the other,
389 * in order to balance the Tx output between the two transmitters.
390 *
391 * See more details in doc for TXPOWER in iwl-4965-hw.h.
392 */
393 union iwl4965_tx_power_dual_stream {
394 struct {
395 u8 radio_tx_gain[2];
396 u8 dsp_predis_atten[2];
397 } s;
398 u32 dw;
399 };
400
401 /**
402 * struct tx_power_dual_stream
403 *
404 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
405 *
406 * Same format as iwl_tx_power_dual_stream, but __le32
407 */
408 struct tx_power_dual_stream {
409 __le32 dw;
410 } __packed;
411
412 /**
413 * struct iwl4965_tx_power_db
414 *
415 * Entire table within REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
416 */
417 struct iwl4965_tx_power_db {
418 struct tx_power_dual_stream power_tbl[POWER_TABLE_NUM_ENTRIES];
419 } __packed;
420
421 /**
422 * Command REPLY_TX_POWER_DBM_CMD = 0x98
423 * struct iwlagn_tx_power_dbm_cmd
424 */
425 #define IWLAGN_TX_POWER_AUTO 0x7f
426 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
427
428 struct iwlagn_tx_power_dbm_cmd {
429 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
430 u8 flags;
431 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
432 u8 reserved;
433 } __packed;
434
435 /**
436 * Command TX_ANT_CONFIGURATION_CMD = 0x98
437 * This command is used to configure valid Tx antenna.
438 * By default uCode concludes the valid antenna according to the radio flavor.
439 * This command enables the driver to override/modify this conclusion.
440 */
441 struct iwl_tx_ant_config_cmd {
442 __le32 valid;
443 } __packed;
444
445 /******************************************************************************
446 * (0a)
447 * Alive and Error Commands & Responses:
448 *
449 *****************************************************************************/
450
451 #define UCODE_VALID_OK cpu_to_le32(0x1)
452 #define INITIALIZE_SUBTYPE (9)
453
454 /*
455 * ("Initialize") REPLY_ALIVE = 0x1 (response only, not a command)
456 *
457 * uCode issues this "initialize alive" notification once the initialization
458 * uCode image has completed its work, and is ready to load the runtime image.
459 * This is the *first* "alive" notification that the driver will receive after
460 * rebooting uCode; the "initialize" alive is indicated by subtype field == 9.
461 *
462 * See comments documenting "BSM" (bootstrap state machine).
463 *
464 * For 4965, this notification contains important calibration data for
465 * calculating txpower settings:
466 *
467 * 1) Power supply voltage indication. The voltage sensor outputs higher
468 * values for lower voltage, and vice verse.
469 *
470 * 2) Temperature measurement parameters, for each of two channel widths
471 * (20 MHz and 40 MHz) supported by the radios. Temperature sensing
472 * is done via one of the receiver chains, and channel width influences
473 * the results.
474 *
475 * 3) Tx gain compensation to balance 4965's 2 Tx chains for MIMO operation,
476 * for each of 5 frequency ranges.
477 */
478 struct iwl_init_alive_resp {
479 u8 ucode_minor;
480 u8 ucode_major;
481 __le16 reserved1;
482 u8 sw_rev[8];
483 u8 ver_type;
484 u8 ver_subtype; /* "9" for initialize alive */
485 __le16 reserved2;
486 __le32 log_event_table_ptr;
487 __le32 error_event_table_ptr;
488 __le32 timestamp;
489 __le32 is_valid;
490
491 /* calibration values from "initialize" uCode */
492 __le32 voltage; /* signed, higher value is lower voltage */
493 __le32 therm_r1[2]; /* signed, 1st for normal, 2nd for HT40 */
494 __le32 therm_r2[2]; /* signed */
495 __le32 therm_r3[2]; /* signed */
496 __le32 therm_r4[2]; /* signed */
497 __le32 tx_atten[5][2]; /* signed MIMO gain comp, 5 freq groups,
498 * 2 Tx chains */
499 } __packed;
500
501
502 /**
503 * REPLY_ALIVE = 0x1 (response only, not a command)
504 *
505 * uCode issues this "alive" notification once the runtime image is ready
506 * to receive commands from the driver. This is the *second* "alive"
507 * notification that the driver will receive after rebooting uCode;
508 * this "alive" is indicated by subtype field != 9.
509 *
510 * See comments documenting "BSM" (bootstrap state machine).
511 *
512 * This response includes two pointers to structures within the device's
513 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
514 *
515 * 1) log_event_table_ptr indicates base of the event log. This traces
516 * a 256-entry history of uCode execution within a circular buffer.
517 * Its header format is:
518 *
519 * __le32 log_size; log capacity (in number of entries)
520 * __le32 type; (1) timestamp with each entry, (0) no timestamp
521 * __le32 wraps; # times uCode has wrapped to top of circular buffer
522 * __le32 write_index; next circular buffer entry that uCode would fill
523 *
524 * The header is followed by the circular buffer of log entries. Entries
525 * with timestamps have the following format:
526 *
527 * __le32 event_id; range 0 - 1500
528 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
529 * __le32 data; event_id-specific data value
530 *
531 * Entries without timestamps contain only event_id and data.
532 *
533 *
534 * 2) error_event_table_ptr indicates base of the error log. This contains
535 * information about any uCode error that occurs. For agn, the format
536 * of the error log is:
537 *
538 * __le32 valid; (nonzero) valid, (0) log is empty
539 * __le32 error_id; type of error
540 * __le32 pc; program counter
541 * __le32 blink1; branch link
542 * __le32 blink2; branch link
543 * __le32 ilink1; interrupt link
544 * __le32 ilink2; interrupt link
545 * __le32 data1; error-specific data
546 * __le32 data2; error-specific data
547 * __le32 line; source code line of error
548 * __le32 bcon_time; beacon timer
549 * __le32 tsf_low; network timestamp function timer
550 * __le32 tsf_hi; network timestamp function timer
551 * __le32 gp1; GP1 timer register
552 * __le32 gp2; GP2 timer register
553 * __le32 gp3; GP3 timer register
554 * __le32 ucode_ver; uCode version
555 * __le32 hw_ver; HW Silicon version
556 * __le32 brd_ver; HW board version
557 * __le32 log_pc; log program counter
558 * __le32 frame_ptr; frame pointer
559 * __le32 stack_ptr; stack pointer
560 * __le32 hcmd; last host command
561 * __le32 isr0; isr status register LMPM_NIC_ISR0: rxtx_flag
562 * __le32 isr1; isr status register LMPM_NIC_ISR1: host_flag
563 * __le32 isr2; isr status register LMPM_NIC_ISR2: enc_flag
564 * __le32 isr3; isr status register LMPM_NIC_ISR3: time_flag
565 * __le32 isr4; isr status register LMPM_NIC_ISR4: wico interrupt
566 * __le32 isr_pref; isr status register LMPM_NIC_PREF_STAT
567 * __le32 wait_event; wait event() caller address
568 * __le32 l2p_control; L2pControlField
569 * __le32 l2p_duration; L2pDurationField
570 * __le32 l2p_mhvalid; L2pMhValidBits
571 * __le32 l2p_addr_match; L2pAddrMatchStat
572 * __le32 lmpm_pmg_sel; indicate which clocks are turned on (LMPM_PMG_SEL)
573 * __le32 u_timestamp; indicate when the date and time of the compilation
574 * __le32 reserved;
575 *
576 * The Linux driver can print both logs to the system log when a uCode error
577 * occurs.
578 */
579 struct iwl_alive_resp {
580 u8 ucode_minor;
581 u8 ucode_major;
582 __le16 reserved1;
583 u8 sw_rev[8];
584 u8 ver_type;
585 u8 ver_subtype; /* not "9" for runtime alive */
586 __le16 reserved2;
587 __le32 log_event_table_ptr; /* SRAM address for event log */
588 __le32 error_event_table_ptr; /* SRAM address for error log */
589 __le32 timestamp;
590 __le32 is_valid;
591 } __packed;
592
593 /*
594 * REPLY_ERROR = 0x2 (response only, not a command)
595 */
596 struct iwl_error_resp {
597 __le32 error_type;
598 u8 cmd_id;
599 u8 reserved1;
600 __le16 bad_cmd_seq_num;
601 __le32 error_info;
602 __le64 timestamp;
603 } __packed;
604
605 /******************************************************************************
606 * (1)
607 * RXON Commands & Responses:
608 *
609 *****************************************************************************/
610
611 /*
612 * Rx config defines & structure
613 */
614 /* rx_config device types */
615 enum {
616 RXON_DEV_TYPE_AP = 1,
617 RXON_DEV_TYPE_ESS = 3,
618 RXON_DEV_TYPE_IBSS = 4,
619 RXON_DEV_TYPE_SNIFFER = 6,
620 RXON_DEV_TYPE_CP = 7,
621 RXON_DEV_TYPE_2STA = 8,
622 RXON_DEV_TYPE_P2P = 9,
623 };
624
625
626 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
627 #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
628 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
629 #define RXON_RX_CHAIN_VALID_POS (1)
630 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
631 #define RXON_RX_CHAIN_FORCE_SEL_POS (4)
632 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
633 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
634 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
635 #define RXON_RX_CHAIN_CNT_POS (10)
636 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
637 #define RXON_RX_CHAIN_MIMO_CNT_POS (12)
638 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
639 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
640
641 /* rx_config flags */
642 /* band & modulation selection */
643 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
644 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
645 /* auto detection enable */
646 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
647 /* TGg protection when tx */
648 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
649 /* cck short slot & preamble */
650 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
651 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
652 /* antenna selection */
653 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
654 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
655 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
656 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
657 /* radar detection enable */
658 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
659 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
660 /* rx response to host with 8-byte TSF
661 * (according to ON_AIR deassertion) */
662 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
663
664
665 /* HT flags */
666 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
667 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
668
669 #define RXON_FLG_HT_OPERATING_MODE_POS (23)
670
671 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
672 #define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
673
674 #define RXON_FLG_CHANNEL_MODE_POS (25)
675 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
676
677 /* channel mode */
678 enum {
679 CHANNEL_MODE_LEGACY = 0,
680 CHANNEL_MODE_PURE_40 = 1,
681 CHANNEL_MODE_MIXED = 2,
682 CHANNEL_MODE_RESERVED = 3,
683 };
684 #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
685 #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
686 #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
687
688 /* CTS to self (if spec allows) flag */
689 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
690
691 /* rx_config filter flags */
692 /* accept all data frames */
693 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
694 /* pass control & management to host */
695 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
696 /* accept multi-cast */
697 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
698 /* don't decrypt uni-cast frames */
699 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
700 /* don't decrypt multi-cast frames */
701 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
702 /* STA is associated */
703 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
704 /* transfer to host non bssid beacons in associated state */
705 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
706
707 /**
708 * REPLY_RXON = 0x10 (command, has simple generic response)
709 *
710 * RXON tunes the radio tuner to a service channel, and sets up a number
711 * of parameters that are used primarily for Rx, but also for Tx operations.
712 *
713 * NOTE: When tuning to a new channel, driver must set the
714 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
715 * info within the device, including the station tables, tx retry
716 * rate tables, and txpower tables. Driver must build a new station
717 * table and txpower table before transmitting anything on the RXON
718 * channel.
719 *
720 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
721 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
722 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
723 */
724
725 struct iwl3945_rxon_cmd {
726 u8 node_addr[6];
727 __le16 reserved1;
728 u8 bssid_addr[6];
729 __le16 reserved2;
730 u8 wlap_bssid_addr[6];
731 __le16 reserved3;
732 u8 dev_type;
733 u8 air_propagation;
734 __le16 reserved4;
735 u8 ofdm_basic_rates;
736 u8 cck_basic_rates;
737 __le16 assoc_id;
738 __le32 flags;
739 __le32 filter_flags;
740 __le16 channel;
741 __le16 reserved5;
742 } __packed;
743
744 struct iwl4965_rxon_cmd {
745 u8 node_addr[6];
746 __le16 reserved1;
747 u8 bssid_addr[6];
748 __le16 reserved2;
749 u8 wlap_bssid_addr[6];
750 __le16 reserved3;
751 u8 dev_type;
752 u8 air_propagation;
753 __le16 rx_chain;
754 u8 ofdm_basic_rates;
755 u8 cck_basic_rates;
756 __le16 assoc_id;
757 __le32 flags;
758 __le32 filter_flags;
759 __le16 channel;
760 u8 ofdm_ht_single_stream_basic_rates;
761 u8 ofdm_ht_dual_stream_basic_rates;
762 } __packed;
763
764 /* 5000 HW just extend this command */
765 struct iwl_rxon_cmd {
766 u8 node_addr[6];
767 __le16 reserved1;
768 u8 bssid_addr[6];
769 __le16 reserved2;
770 u8 wlap_bssid_addr[6];
771 __le16 reserved3;
772 u8 dev_type;
773 u8 air_propagation;
774 __le16 rx_chain;
775 u8 ofdm_basic_rates;
776 u8 cck_basic_rates;
777 __le16 assoc_id;
778 __le32 flags;
779 __le32 filter_flags;
780 __le16 channel;
781 u8 ofdm_ht_single_stream_basic_rates;
782 u8 ofdm_ht_dual_stream_basic_rates;
783 u8 ofdm_ht_triple_stream_basic_rates;
784 u8 reserved5;
785 __le16 acquisition_data;
786 __le16 reserved6;
787 } __packed;
788
789 /*
790 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
791 */
792 struct iwl3945_rxon_assoc_cmd {
793 __le32 flags;
794 __le32 filter_flags;
795 u8 ofdm_basic_rates;
796 u8 cck_basic_rates;
797 __le16 reserved;
798 } __packed;
799
800 struct iwl4965_rxon_assoc_cmd {
801 __le32 flags;
802 __le32 filter_flags;
803 u8 ofdm_basic_rates;
804 u8 cck_basic_rates;
805 u8 ofdm_ht_single_stream_basic_rates;
806 u8 ofdm_ht_dual_stream_basic_rates;
807 __le16 rx_chain_select_flags;
808 __le16 reserved;
809 } __packed;
810
811 struct iwl5000_rxon_assoc_cmd {
812 __le32 flags;
813 __le32 filter_flags;
814 u8 ofdm_basic_rates;
815 u8 cck_basic_rates;
816 __le16 reserved1;
817 u8 ofdm_ht_single_stream_basic_rates;
818 u8 ofdm_ht_dual_stream_basic_rates;
819 u8 ofdm_ht_triple_stream_basic_rates;
820 u8 reserved2;
821 __le16 rx_chain_select_flags;
822 __le16 acquisition_data;
823 __le32 reserved3;
824 } __packed;
825
826 #define IWL_CONN_MAX_LISTEN_INTERVAL 10
827 #define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
828 #define IWL39_MAX_UCODE_BEACON_INTERVAL 1 /* 1024 */
829
830 /*
831 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
832 */
833 struct iwl_rxon_time_cmd {
834 __le64 timestamp;
835 __le16 beacon_interval;
836 __le16 atim_window;
837 __le32 beacon_init_val;
838 __le16 listen_interval;
839 u8 dtim_period;
840 u8 delta_cp_bss_tbtts;
841 } __packed;
842
843 /*
844 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
845 */
846 struct iwl3945_channel_switch_cmd {
847 u8 band;
848 u8 expect_beacon;
849 __le16 channel;
850 __le32 rxon_flags;
851 __le32 rxon_filter_flags;
852 __le32 switch_time;
853 struct iwl3945_power_per_rate power[IWL_MAX_RATES];
854 } __packed;
855
856 struct iwl4965_channel_switch_cmd {
857 u8 band;
858 u8 expect_beacon;
859 __le16 channel;
860 __le32 rxon_flags;
861 __le32 rxon_filter_flags;
862 __le32 switch_time;
863 struct iwl4965_tx_power_db tx_power;
864 } __packed;
865
866 /**
867 * struct iwl5000_channel_switch_cmd
868 * @band: 0- 5.2GHz, 1- 2.4GHz
869 * @expect_beacon: 0- resume transmits after channel switch
870 * 1- wait for beacon to resume transmits
871 * @channel: new channel number
872 * @rxon_flags: Rx on flags
873 * @rxon_filter_flags: filtering parameters
874 * @switch_time: switch time in extended beacon format
875 * @reserved: reserved bytes
876 */
877 struct iwl5000_channel_switch_cmd {
878 u8 band;
879 u8 expect_beacon;
880 __le16 channel;
881 __le32 rxon_flags;
882 __le32 rxon_filter_flags;
883 __le32 switch_time;
884 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
885 } __packed;
886
887 /**
888 * struct iwl6000_channel_switch_cmd
889 * @band: 0- 5.2GHz, 1- 2.4GHz
890 * @expect_beacon: 0- resume transmits after channel switch
891 * 1- wait for beacon to resume transmits
892 * @channel: new channel number
893 * @rxon_flags: Rx on flags
894 * @rxon_filter_flags: filtering parameters
895 * @switch_time: switch time in extended beacon format
896 * @reserved: reserved bytes
897 */
898 struct iwl6000_channel_switch_cmd {
899 u8 band;
900 u8 expect_beacon;
901 __le16 channel;
902 __le32 rxon_flags;
903 __le32 rxon_filter_flags;
904 __le32 switch_time;
905 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
906 } __packed;
907
908 /*
909 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
910 */
911 struct iwl_csa_notification {
912 __le16 band;
913 __le16 channel;
914 __le32 status; /* 0 - OK, 1 - fail */
915 } __packed;
916
917 /******************************************************************************
918 * (2)
919 * Quality-of-Service (QOS) Commands & Responses:
920 *
921 *****************************************************************************/
922
923 /**
924 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
925 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
926 *
927 * @cw_min: Contention window, start value in numbers of slots.
928 * Should be a power-of-2, minus 1. Device's default is 0x0f.
929 * @cw_max: Contention window, max value in numbers of slots.
930 * Should be a power-of-2, minus 1. Device's default is 0x3f.
931 * @aifsn: Number of slots in Arbitration Interframe Space (before
932 * performing random backoff timing prior to Tx). Device default 1.
933 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
934 *
935 * Device will automatically increase contention window by (2*CW) + 1 for each
936 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
937 * value, to cap the CW value.
938 */
939 struct iwl_ac_qos {
940 __le16 cw_min;
941 __le16 cw_max;
942 u8 aifsn;
943 u8 reserved1;
944 __le16 edca_txop;
945 } __packed;
946
947 /* QoS flags defines */
948 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
949 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
950 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
951
952 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
953 #define AC_NUM 4
954
955 /*
956 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
957 *
958 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
959 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
960 */
961 struct iwl_qosparam_cmd {
962 __le32 qos_flags;
963 struct iwl_ac_qos ac[AC_NUM];
964 } __packed;
965
966 /******************************************************************************
967 * (3)
968 * Add/Modify Stations Commands & Responses:
969 *
970 *****************************************************************************/
971 /*
972 * Multi station support
973 */
974
975 /* Special, dedicated locations within device's station table */
976 #define IWL_AP_ID 0
977 #define IWL_AP_ID_PAN 1
978 #define IWL_STA_ID 2
979 #define IWL3945_BROADCAST_ID 24
980 #define IWL3945_STATION_COUNT 25
981 #define IWL4965_BROADCAST_ID 31
982 #define IWL4965_STATION_COUNT 32
983 #define IWLAGN_PAN_BCAST_ID 14
984 #define IWLAGN_BROADCAST_ID 15
985 #define IWLAGN_STATION_COUNT 16
986
987 #define IWL_STATION_COUNT 32 /* MAX(3945,4965)*/
988 #define IWL_INVALID_STATION 255
989
990 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
991 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
992 #define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
993 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
994 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
995 #define STA_FLG_MAX_AGG_SIZE_POS (19)
996 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
997 #define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
998 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
999 #define STA_FLG_AGG_MPDU_DENSITY_POS (23)
1000 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
1001
1002 /* Use in mode field. 1: modify existing entry, 0: add new station entry */
1003 #define STA_CONTROL_MODIFY_MSK 0x01
1004
1005 /* key flags __le16*/
1006 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
1007 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
1008 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
1009 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
1010 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
1011
1012 #define STA_KEY_FLG_KEYID_POS 8
1013 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
1014 /* wep key is either from global key (0) or from station info array (1) */
1015 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
1016
1017 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
1018 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
1019 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
1020 #define STA_KEY_MAX_NUM 8
1021 #define STA_KEY_MAX_NUM_PAN 16
1022
1023 /* Flags indicate whether to modify vs. don't change various station params */
1024 #define STA_MODIFY_KEY_MASK 0x01
1025 #define STA_MODIFY_TID_DISABLE_TX 0x02
1026 #define STA_MODIFY_TX_RATE_MSK 0x04
1027 #define STA_MODIFY_ADDBA_TID_MSK 0x08
1028 #define STA_MODIFY_DELBA_TID_MSK 0x10
1029 #define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
1030
1031 /* Receiver address (actually, Rx station's index into station table),
1032 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
1033 #define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
1034
1035 struct iwl4965_keyinfo {
1036 __le16 key_flags;
1037 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
1038 u8 reserved1;
1039 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
1040 u8 key_offset;
1041 u8 reserved2;
1042 u8 key[16]; /* 16-byte unicast decryption key */
1043 } __packed;
1044
1045 /* agn */
1046 struct iwl_keyinfo {
1047 __le16 key_flags;
1048 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
1049 u8 reserved1;
1050 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
1051 u8 key_offset;
1052 u8 reserved2;
1053 u8 key[16]; /* 16-byte unicast decryption key */
1054 __le64 tx_secur_seq_cnt;
1055 __le64 hw_tkip_mic_rx_key;
1056 __le64 hw_tkip_mic_tx_key;
1057 } __packed;
1058
1059 /**
1060 * struct sta_id_modify
1061 * @addr[ETH_ALEN]: station's MAC address
1062 * @sta_id: index of station in uCode's station table
1063 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
1064 *
1065 * Driver selects unused table index when adding new station,
1066 * or the index to a pre-existing station entry when modifying that station.
1067 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
1068 *
1069 * modify_mask flags select which parameters to modify vs. leave alone.
1070 */
1071 struct sta_id_modify {
1072 u8 addr[ETH_ALEN];
1073 __le16 reserved1;
1074 u8 sta_id;
1075 u8 modify_mask;
1076 __le16 reserved2;
1077 } __packed;
1078
1079 /*
1080 * REPLY_ADD_STA = 0x18 (command)
1081 *
1082 * The device contains an internal table of per-station information,
1083 * with info on security keys, aggregation parameters, and Tx rates for
1084 * initial Tx attempt and any retries (agn devices uses
1085 * REPLY_TX_LINK_QUALITY_CMD,
1086 * 3945 uses REPLY_RATE_SCALE to set up rate tables).
1087 *
1088 * REPLY_ADD_STA sets up the table entry for one station, either creating
1089 * a new entry, or modifying a pre-existing one.
1090 *
1091 * NOTE: RXON command (without "associated" bit set) wipes the station table
1092 * clean. Moving into RF_KILL state does this also. Driver must set up
1093 * new station table before transmitting anything on the RXON channel
1094 * (except active scans or active measurements; those commands carry
1095 * their own txpower/rate setup data).
1096 *
1097 * When getting started on a new channel, driver must set up the
1098 * IWL_BROADCAST_ID entry (last entry in the table). For a client
1099 * station in a BSS, once an AP is selected, driver sets up the AP STA
1100 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
1101 * are all that are needed for a BSS client station. If the device is
1102 * used as AP, or in an IBSS network, driver must set up station table
1103 * entries for all STAs in network, starting with index IWL_STA_ID.
1104 */
1105
1106 struct iwl3945_addsta_cmd {
1107 u8 mode; /* 1: modify existing, 0: add new station */
1108 u8 reserved[3];
1109 struct sta_id_modify sta;
1110 struct iwl4965_keyinfo key;
1111 __le32 station_flags; /* STA_FLG_* */
1112 __le32 station_flags_msk; /* STA_FLG_* */
1113
1114 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
1115 * corresponding to bit (e.g. bit 5 controls TID 5).
1116 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
1117 __le16 tid_disable_tx;
1118
1119 __le16 rate_n_flags;
1120
1121 /* TID for which to add block-ack support.
1122 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1123 u8 add_immediate_ba_tid;
1124
1125 /* TID for which to remove block-ack support.
1126 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
1127 u8 remove_immediate_ba_tid;
1128
1129 /* Starting Sequence Number for added block-ack support.
1130 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1131 __le16 add_immediate_ba_ssn;
1132 } __packed;
1133
1134 struct iwl4965_addsta_cmd {
1135 u8 mode; /* 1: modify existing, 0: add new station */
1136 u8 reserved[3];
1137 struct sta_id_modify sta;
1138 struct iwl4965_keyinfo key;
1139 __le32 station_flags; /* STA_FLG_* */
1140 __le32 station_flags_msk; /* STA_FLG_* */
1141
1142 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
1143 * corresponding to bit (e.g. bit 5 controls TID 5).
1144 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
1145 __le16 tid_disable_tx;
1146
1147 __le16 reserved1;
1148
1149 /* TID for which to add block-ack support.
1150 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1151 u8 add_immediate_ba_tid;
1152
1153 /* TID for which to remove block-ack support.
1154 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
1155 u8 remove_immediate_ba_tid;
1156
1157 /* Starting Sequence Number for added block-ack support.
1158 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1159 __le16 add_immediate_ba_ssn;
1160
1161 /*
1162 * Number of packets OK to transmit to station even though
1163 * it is asleep -- used to synchronise PS-poll and u-APSD
1164 * responses while ucode keeps track of STA sleep state.
1165 */
1166 __le16 sleep_tx_count;
1167
1168 __le16 reserved2;
1169 } __packed;
1170
1171 /* agn */
1172 struct iwl_addsta_cmd {
1173 u8 mode; /* 1: modify existing, 0: add new station */
1174 u8 reserved[3];
1175 struct sta_id_modify sta;
1176 struct iwl_keyinfo key;
1177 __le32 station_flags; /* STA_FLG_* */
1178 __le32 station_flags_msk; /* STA_FLG_* */
1179
1180 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
1181 * corresponding to bit (e.g. bit 5 controls TID 5).
1182 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
1183 __le16 tid_disable_tx;
1184
1185 __le16 rate_n_flags; /* 3945 only */
1186
1187 /* TID for which to add block-ack support.
1188 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1189 u8 add_immediate_ba_tid;
1190
1191 /* TID for which to remove block-ack support.
1192 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
1193 u8 remove_immediate_ba_tid;
1194
1195 /* Starting Sequence Number for added block-ack support.
1196 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
1197 __le16 add_immediate_ba_ssn;
1198
1199 /*
1200 * Number of packets OK to transmit to station even though
1201 * it is asleep -- used to synchronise PS-poll and u-APSD
1202 * responses while ucode keeps track of STA sleep state.
1203 */
1204 __le16 sleep_tx_count;
1205
1206 __le16 reserved2;
1207 } __packed;
1208
1209
1210 #define ADD_STA_SUCCESS_MSK 0x1
1211 #define ADD_STA_NO_ROOM_IN_TABLE 0x2
1212 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
1213 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8
1214 /*
1215 * REPLY_ADD_STA = 0x18 (response)
1216 */
1217 struct iwl_add_sta_resp {
1218 u8 status; /* ADD_STA_* */
1219 } __packed;
1220
1221 #define REM_STA_SUCCESS_MSK 0x1
1222 /*
1223 * REPLY_REM_STA = 0x19 (response)
1224 */
1225 struct iwl_rem_sta_resp {
1226 u8 status;
1227 } __packed;
1228
1229 /*
1230 * REPLY_REM_STA = 0x19 (command)
1231 */
1232 struct iwl_rem_sta_cmd {
1233 u8 num_sta; /* number of removed stations */
1234 u8 reserved[3];
1235 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
1236 u8 reserved2[2];
1237 } __packed;
1238
1239 #define IWL_TX_FIFO_BK_MSK cpu_to_le32(BIT(0))
1240 #define IWL_TX_FIFO_BE_MSK cpu_to_le32(BIT(1))
1241 #define IWL_TX_FIFO_VI_MSK cpu_to_le32(BIT(2))
1242 #define IWL_TX_FIFO_VO_MSK cpu_to_le32(BIT(3))
1243 #define IWL_AGG_TX_QUEUE_MSK cpu_to_le32(0xffc00)
1244
1245 #define IWL_DROP_SINGLE 0
1246 #define IWL_DROP_SELECTED 1
1247 #define IWL_DROP_ALL 2
1248
1249 /*
1250 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
1251 *
1252 * When using full FIFO flush this command checks the scheduler HW block WR/RD
1253 * pointers to check if all the frames were transferred by DMA into the
1254 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
1255 * empty the command can finish.
1256 * This command is used to flush the TXFIFO from transmit commands, it may
1257 * operate on single or multiple queues, the command queue can't be flushed by
1258 * this command. The command response is returned when all the queue flush
1259 * operations are done. Each TX command flushed return response with the FLUSH
1260 * status set in the TX response status. When FIFO flush operation is used,
1261 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
1262 * are set.
1263 *
1264 * @fifo_control: bit mask for which queues to flush
1265 * @flush_control: flush controls
1266 * 0: Dump single MSDU
1267 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1268 * 2: Dump all FIFO
1269 */
1270 struct iwl_txfifo_flush_cmd {
1271 __le32 fifo_control;
1272 __le16 flush_control;
1273 __le16 reserved;
1274 } __packed;
1275
1276 /*
1277 * REPLY_WEP_KEY = 0x20
1278 */
1279 struct iwl_wep_key {
1280 u8 key_index;
1281 u8 key_offset;
1282 u8 reserved1[2];
1283 u8 key_size;
1284 u8 reserved2[3];
1285 u8 key[16];
1286 } __packed;
1287
1288 struct iwl_wep_cmd {
1289 u8 num_keys;
1290 u8 global_key_type;
1291 u8 flags;
1292 u8 reserved;
1293 struct iwl_wep_key key[0];
1294 } __packed;
1295
1296 #define WEP_KEY_WEP_TYPE 1
1297 #define WEP_KEYS_MAX 4
1298 #define WEP_INVALID_OFFSET 0xff
1299 #define WEP_KEY_LEN_64 5
1300 #define WEP_KEY_LEN_128 13
1301
1302 /******************************************************************************
1303 * (4)
1304 * Rx Responses:
1305 *
1306 *****************************************************************************/
1307
1308 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1309 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1310
1311 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1312 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1313 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1314 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1315 #define RX_RES_PHY_FLAGS_ANTENNA_MSK 0xf0
1316 #define RX_RES_PHY_FLAGS_ANTENNA_POS 4
1317
1318 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1319 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1320 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1321 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1322 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1323 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1324
1325 #define RX_RES_STATUS_STATION_FOUND (1<<6)
1326 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1327
1328 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1329 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1330 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1331 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1332 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1333
1334 #define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1335 #define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1336 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1337 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1338
1339
1340 struct iwl3945_rx_frame_stats {
1341 u8 phy_count;
1342 u8 id;
1343 u8 rssi;
1344 u8 agc;
1345 __le16 sig_avg;
1346 __le16 noise_diff;
1347 u8 payload[0];
1348 } __packed;
1349
1350 struct iwl3945_rx_frame_hdr {
1351 __le16 channel;
1352 __le16 phy_flags;
1353 u8 reserved1;
1354 u8 rate;
1355 __le16 len;
1356 u8 payload[0];
1357 } __packed;
1358
1359 struct iwl3945_rx_frame_end {
1360 __le32 status;
1361 __le64 timestamp;
1362 __le32 beacon_timestamp;
1363 } __packed;
1364
1365 /*
1366 * REPLY_3945_RX = 0x1b (response only, not a command)
1367 *
1368 * NOTE: DO NOT dereference from casts to this structure
1369 * It is provided only for calculating minimum data set size.
1370 * The actual offsets of the hdr and end are dynamic based on
1371 * stats.phy_count
1372 */
1373 struct iwl3945_rx_frame {
1374 struct iwl3945_rx_frame_stats stats;
1375 struct iwl3945_rx_frame_hdr hdr;
1376 struct iwl3945_rx_frame_end end;
1377 } __packed;
1378
1379 #define IWL39_RX_FRAME_SIZE (4 + sizeof(struct iwl3945_rx_frame))
1380
1381 /* Fixed (non-configurable) rx data from phy */
1382
1383 #define IWL49_RX_RES_PHY_CNT 14
1384 #define IWL49_RX_PHY_FLAGS_ANTENNAE_OFFSET (4)
1385 #define IWL49_RX_PHY_FLAGS_ANTENNAE_MASK (0x70)
1386 #define IWL49_AGC_DB_MASK (0x3f80) /* MASK(7,13) */
1387 #define IWL49_AGC_DB_POS (7)
1388 struct iwl4965_rx_non_cfg_phy {
1389 __le16 ant_selection; /* ant A bit 4, ant B bit 5, ant C bit 6 */
1390 __le16 agc_info; /* agc code 0:6, agc dB 7:13, reserved 14:15 */
1391 u8 rssi_info[6]; /* we use even entries, 0/2/4 for A/B/C rssi */
1392 u8 pad[0];
1393 } __packed;
1394
1395
1396 #define IWLAGN_RX_RES_PHY_CNT 8
1397 #define IWLAGN_RX_RES_AGC_IDX 1
1398 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1399 #define IWLAGN_RX_RES_RSSI_C_IDX 3
1400 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1401 #define IWLAGN_OFDM_AGC_BIT_POS 9
1402 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1403 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1404 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1405 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1406 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1407 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1408 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1409 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1410 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1411
1412 struct iwlagn_non_cfg_phy {
1413 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1414 } __packed;
1415
1416
1417 /*
1418 * REPLY_RX = 0xc3 (response only, not a command)
1419 * Used only for legacy (non 11n) frames.
1420 */
1421 struct iwl_rx_phy_res {
1422 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1423 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1424 u8 stat_id; /* configurable DSP phy data set ID */
1425 u8 reserved1;
1426 __le64 timestamp; /* TSF at on air rise */
1427 __le32 beacon_time_stamp; /* beacon at on-air rise */
1428 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1429 __le16 channel; /* channel number */
1430 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1431 __le32 rate_n_flags; /* RATE_MCS_* */
1432 __le16 byte_count; /* frame's byte-count */
1433 __le16 frame_time; /* frame's time on the air */
1434 } __packed;
1435
1436 struct iwl_rx_mpdu_res_start {
1437 __le16 byte_count;
1438 __le16 reserved;
1439 } __packed;
1440
1441
1442 /******************************************************************************
1443 * (5)
1444 * Tx Commands & Responses:
1445 *
1446 * Driver must place each REPLY_TX command into one of the prioritized Tx
1447 * queues in host DRAM, shared between driver and device (see comments for
1448 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1449 * are preparing to transmit, the device pulls the Tx command over the PCI
1450 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1451 * from which data will be transmitted.
1452 *
1453 * uCode handles all timing and protocol related to control frames
1454 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1455 * handle reception of block-acks; uCode updates the host driver via
1456 * REPLY_COMPRESSED_BA.
1457 *
1458 * uCode handles retrying Tx when an ACK is expected but not received.
1459 * This includes trying lower data rates than the one requested in the Tx
1460 * command, as set up by the REPLY_RATE_SCALE (for 3945) or
1461 * REPLY_TX_LINK_QUALITY_CMD (agn).
1462 *
1463 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1464 * This command must be executed after every RXON command, before Tx can occur.
1465 *****************************************************************************/
1466
1467 /* REPLY_TX Tx flags field */
1468
1469 /*
1470 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1471 * before this frame. if CTS-to-self required check
1472 * RXON_FLG_SELF_CTS_EN status.
1473 * unused in 3945/4965, used in 5000 series and after
1474 */
1475 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1476
1477 /*
1478 * 1: Use Request-To-Send protocol before this frame.
1479 * Mutually exclusive vs. TX_CMD_FLG_CTS_MSK.
1480 * used in 3945/4965, unused in 5000 series and after
1481 */
1482 #define TX_CMD_FLG_RTS_MSK cpu_to_le32(1 << 1)
1483
1484 /*
1485 * 1: Transmit Clear-To-Send to self before this frame.
1486 * Driver should set this for AUTH/DEAUTH/ASSOC-REQ/REASSOC mgmnt frames.
1487 * Mutually exclusive vs. TX_CMD_FLG_RTS_MSK.
1488 * used in 3945/4965, unused in 5000 series and after
1489 */
1490 #define TX_CMD_FLG_CTS_MSK cpu_to_le32(1 << 2)
1491
1492 /* 1: Expect ACK from receiving station
1493 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1494 * Set this for unicast frames, but not broadcast/multicast. */
1495 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1496
1497 /* For agn devices:
1498 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1499 * Tx command's initial_rate_index indicates first rate to try;
1500 * uCode walks through table for additional Tx attempts.
1501 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1502 * This rate will be used for all Tx attempts; it will not be scaled. */
1503 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1504
1505 /* 1: Expect immediate block-ack.
1506 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1507 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1508
1509 /*
1510 * 1: Frame requires full Tx-Op protection.
1511 * Set this if either RTS or CTS Tx Flag gets set.
1512 * used in 3945/4965, unused in 5000 series and after
1513 */
1514 #define TX_CMD_FLG_FULL_TXOP_PROT_MSK cpu_to_le32(1 << 7)
1515
1516 /* Tx antenna selection field; used only for 3945, reserved (0) for agn devices.
1517 * Set field to "0" to allow 3945 uCode to select antenna (normal usage). */
1518 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1519 #define TX_CMD_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
1520 #define TX_CMD_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
1521
1522 /* 1: Ignore Bluetooth priority for this frame.
1523 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1524 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1525
1526 /* 1: uCode overrides sequence control field in MAC header.
1527 * 0: Driver provides sequence control field in MAC header.
1528 * Set this for management frames, non-QOS data frames, non-unicast frames,
1529 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1530 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1531
1532 /* 1: This frame is non-last MPDU; more fragments are coming.
1533 * 0: Last fragment, or not using fragmentation. */
1534 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1535
1536 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1537 * 0: No TSF required in outgoing frame.
1538 * Set this for transmitting beacons and probe responses. */
1539 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1540
1541 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1542 * alignment of frame's payload data field.
1543 * 0: No pad
1544 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1545 * field (but not both). Driver must align frame data (i.e. data following
1546 * MAC header) to DWORD boundary. */
1547 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1548
1549 /* accelerate aggregation support
1550 * 0 - no CCMP encryption; 1 - CCMP encryption */
1551 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1552
1553 /* HCCA-AP - disable duration overwriting. */
1554 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1555
1556
1557 /*
1558 * TX command security control
1559 */
1560 #define TX_CMD_SEC_WEP 0x01
1561 #define TX_CMD_SEC_CCM 0x02
1562 #define TX_CMD_SEC_TKIP 0x03
1563 #define TX_CMD_SEC_MSK 0x03
1564 #define TX_CMD_SEC_SHIFT 6
1565 #define TX_CMD_SEC_KEY128 0x08
1566
1567 /*
1568 * security overhead sizes
1569 */
1570 #define WEP_IV_LEN 4
1571 #define WEP_ICV_LEN 4
1572 #define CCMP_MIC_LEN 8
1573 #define TKIP_ICV_LEN 4
1574
1575 /*
1576 * REPLY_TX = 0x1c (command)
1577 */
1578
1579 struct iwl3945_tx_cmd {
1580 /*
1581 * MPDU byte count:
1582 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1583 * + 8 byte IV for CCM or TKIP (not used for WEP)
1584 * + Data payload
1585 * + 8-byte MIC (not used for CCM/WEP)
1586 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1587 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1588 * Range: 14-2342 bytes.
1589 */
1590 __le16 len;
1591
1592 /*
1593 * MPDU or MSDU byte count for next frame.
1594 * Used for fragmentation and bursting, but not 11n aggregation.
1595 * Same as "len", but for next frame. Set to 0 if not applicable.
1596 */
1597 __le16 next_frame_len;
1598
1599 __le32 tx_flags; /* TX_CMD_FLG_* */
1600
1601 u8 rate;
1602
1603 /* Index of recipient station in uCode's station table */
1604 u8 sta_id;
1605 u8 tid_tspec;
1606 u8 sec_ctl;
1607 u8 key[16];
1608 union {
1609 u8 byte[8];
1610 __le16 word[4];
1611 __le32 dw[2];
1612 } tkip_mic;
1613 __le32 next_frame_info;
1614 union {
1615 __le32 life_time;
1616 __le32 attempt;
1617 } stop_time;
1618 u8 supp_rates[2];
1619 u8 rts_retry_limit; /*byte 50 */
1620 u8 data_retry_limit; /*byte 51 */
1621 union {
1622 __le16 pm_frame_timeout;
1623 __le16 attempt_duration;
1624 } timeout;
1625
1626 /*
1627 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1628 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1629 */
1630 __le16 driver_txop;
1631
1632 /*
1633 * MAC header goes here, followed by 2 bytes padding if MAC header
1634 * length is 26 or 30 bytes, followed by payload data
1635 */
1636 u8 payload[0];
1637 struct ieee80211_hdr hdr[0];
1638 } __packed;
1639
1640 /*
1641 * REPLY_TX = 0x1c (response)
1642 */
1643 struct iwl3945_tx_resp {
1644 u8 failure_rts;
1645 u8 failure_frame;
1646 u8 bt_kill_count;
1647 u8 rate;
1648 __le32 wireless_media_time;
1649 __le32 status; /* TX status */
1650 } __packed;
1651
1652
1653 /*
1654 * 4965 uCode updates these Tx attempt count values in host DRAM.
1655 * Used for managing Tx retries when expecting block-acks.
1656 * Driver should set these fields to 0.
1657 */
1658 struct iwl_dram_scratch {
1659 u8 try_cnt; /* Tx attempts */
1660 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1661 __le16 reserved;
1662 } __packed;
1663
1664 struct iwl_tx_cmd {
1665 /*
1666 * MPDU byte count:
1667 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1668 * + 8 byte IV for CCM or TKIP (not used for WEP)
1669 * + Data payload
1670 * + 8-byte MIC (not used for CCM/WEP)
1671 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1672 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1673 * Range: 14-2342 bytes.
1674 */
1675 __le16 len;
1676
1677 /*
1678 * MPDU or MSDU byte count for next frame.
1679 * Used for fragmentation and bursting, but not 11n aggregation.
1680 * Same as "len", but for next frame. Set to 0 if not applicable.
1681 */
1682 __le16 next_frame_len;
1683
1684 __le32 tx_flags; /* TX_CMD_FLG_* */
1685
1686 /* uCode may modify this field of the Tx command (in host DRAM!).
1687 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1688 struct iwl_dram_scratch scratch;
1689
1690 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1691 __le32 rate_n_flags; /* RATE_MCS_* */
1692
1693 /* Index of destination station in uCode's station table */
1694 u8 sta_id;
1695
1696 /* Type of security encryption: CCM or TKIP */
1697 u8 sec_ctl; /* TX_CMD_SEC_* */
1698
1699 /*
1700 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1701 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1702 * data frames, this field may be used to selectively reduce initial
1703 * rate (via non-0 value) for special frames (e.g. management), while
1704 * still supporting rate scaling for all frames.
1705 */
1706 u8 initial_rate_index;
1707 u8 reserved;
1708 u8 key[16];
1709 __le16 next_frame_flags;
1710 __le16 reserved2;
1711 union {
1712 __le32 life_time;
1713 __le32 attempt;
1714 } stop_time;
1715
1716 /* Host DRAM physical address pointer to "scratch" in this command.
1717 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1718 __le32 dram_lsb_ptr;
1719 u8 dram_msb_ptr;
1720
1721 u8 rts_retry_limit; /*byte 50 */
1722 u8 data_retry_limit; /*byte 51 */
1723 u8 tid_tspec;
1724 union {
1725 __le16 pm_frame_timeout;
1726 __le16 attempt_duration;
1727 } timeout;
1728
1729 /*
1730 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1731 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1732 */
1733 __le16 driver_txop;
1734
1735 /*
1736 * MAC header goes here, followed by 2 bytes padding if MAC header
1737 * length is 26 or 30 bytes, followed by payload data
1738 */
1739 u8 payload[0];
1740 struct ieee80211_hdr hdr[0];
1741 } __packed;
1742
1743 /* TX command response is sent after *3945* transmission attempts.
1744 *
1745 * NOTES:
1746 *
1747 * TX_STATUS_FAIL_NEXT_FRAG
1748 *
1749 * If the fragment flag in the MAC header for the frame being transmitted
1750 * is set and there is insufficient time to transmit the next frame, the
1751 * TX status will be returned with 'TX_STATUS_FAIL_NEXT_FRAG'.
1752 *
1753 * TX_STATUS_FIFO_UNDERRUN
1754 *
1755 * Indicates the host did not provide bytes to the FIFO fast enough while
1756 * a TX was in progress.
1757 *
1758 * TX_STATUS_FAIL_MGMNT_ABORT
1759 *
1760 * This status is only possible if the ABORT ON MGMT RX parameter was
1761 * set to true with the TX command.
1762 *
1763 * If the MSB of the status parameter is set then an abort sequence is
1764 * required. This sequence consists of the host activating the TX Abort
1765 * control line, and then waiting for the TX Abort command response. This
1766 * indicates that a the device is no longer in a transmit state, and that the
1767 * command FIFO has been cleared. The host must then deactivate the TX Abort
1768 * control line. Receiving is still allowed in this case.
1769 */
1770 enum {
1771 TX_3945_STATUS_SUCCESS = 0x01,
1772 TX_3945_STATUS_DIRECT_DONE = 0x02,
1773 TX_3945_STATUS_FAIL_SHORT_LIMIT = 0x82,
1774 TX_3945_STATUS_FAIL_LONG_LIMIT = 0x83,
1775 TX_3945_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1776 TX_3945_STATUS_FAIL_MGMNT_ABORT = 0x85,
1777 TX_3945_STATUS_FAIL_NEXT_FRAG = 0x86,
1778 TX_3945_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1779 TX_3945_STATUS_FAIL_DEST_PS = 0x88,
1780 TX_3945_STATUS_FAIL_ABORTED = 0x89,
1781 TX_3945_STATUS_FAIL_BT_RETRY = 0x8a,
1782 TX_3945_STATUS_FAIL_STA_INVALID = 0x8b,
1783 TX_3945_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1784 TX_3945_STATUS_FAIL_TID_DISABLE = 0x8d,
1785 TX_3945_STATUS_FAIL_FRAME_FLUSHED = 0x8e,
1786 TX_3945_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1787 TX_3945_STATUS_FAIL_TX_LOCKED = 0x90,
1788 TX_3945_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1789 };
1790
1791 /*
1792 * TX command response is sent after *agn* transmission attempts.
1793 *
1794 * both postpone and abort status are expected behavior from uCode. there is
1795 * no special operation required from driver; except for RFKILL_FLUSH,
1796 * which required tx flush host command to flush all the tx frames in queues
1797 */
1798 enum {
1799 TX_STATUS_SUCCESS = 0x01,
1800 TX_STATUS_DIRECT_DONE = 0x02,
1801 /* postpone TX */
1802 TX_STATUS_POSTPONE_DELAY = 0x40,
1803 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1804 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1805 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1806 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1807 /* abort TX */
1808 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1809 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1810 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1811 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1812 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1813 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1814 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1815 TX_STATUS_FAIL_DEST_PS = 0x88,
1816 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1817 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1818 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1819 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1820 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1821 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1822 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1823 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1824 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1825 };
1826
1827 #define TX_PACKET_MODE_REGULAR 0x0000
1828 #define TX_PACKET_MODE_BURST_SEQ 0x0100
1829 #define TX_PACKET_MODE_BURST_FIRST 0x0200
1830
1831 enum {
1832 TX_POWER_PA_NOT_ACTIVE = 0x0,
1833 };
1834
1835 enum {
1836 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1837 TX_STATUS_DELAY_MSK = 0x00000040,
1838 TX_STATUS_ABORT_MSK = 0x00000080,
1839 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1840 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1841 TX_RESERVED = 0x00780000, /* bits 19:22 */
1842 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1843 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1844 };
1845
1846 /* *******************************
1847 * TX aggregation status
1848 ******************************* */
1849
1850 enum {
1851 AGG_TX_STATE_TRANSMITTED = 0x00,
1852 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1853 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1854 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1855 AGG_TX_STATE_ABORT_MSK = 0x08,
1856 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1857 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1858 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1859 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1860 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1861 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1862 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1863 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1864 };
1865
1866 #define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1867 #define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1868
1869 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1870 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1871 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1872
1873 /* # tx attempts for first frame in aggregation */
1874 #define AGG_TX_STATE_TRY_CNT_POS 12
1875 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1876
1877 /* Command ID and sequence number of Tx command for this frame */
1878 #define AGG_TX_STATE_SEQ_NUM_POS 16
1879 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1880
1881 /*
1882 * REPLY_TX = 0x1c (response)
1883 *
1884 * This response may be in one of two slightly different formats, indicated
1885 * by the frame_count field:
1886 *
1887 * 1) No aggregation (frame_count == 1). This reports Tx results for
1888 * a single frame. Multiple attempts, at various bit rates, may have
1889 * been made for this frame.
1890 *
1891 * 2) Aggregation (frame_count > 1). This reports Tx results for
1892 * 2 or more frames that used block-acknowledge. All frames were
1893 * transmitted at same rate. Rate scaling may have been used if first
1894 * frame in this new agg block failed in previous agg block(s).
1895 *
1896 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1897 * block-ack has not been received by the time the agn device records
1898 * this status.
1899 * This status relates to reasons the tx might have been blocked or aborted
1900 * within the sending station (this agn device), rather than whether it was
1901 * received successfully by the destination station.
1902 */
1903 struct agg_tx_status {
1904 __le16 status;
1905 __le16 sequence;
1906 } __packed;
1907
1908 struct iwl4965_tx_resp {
1909 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1910 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1911 u8 failure_rts; /* # failures due to unsuccessful RTS */
1912 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1913
1914 /* For non-agg: Rate at which frame was successful.
1915 * For agg: Rate at which all frames were transmitted. */
1916 __le32 rate_n_flags; /* RATE_MCS_* */
1917
1918 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1919 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1920 __le16 wireless_media_time; /* uSecs */
1921
1922 __le16 reserved;
1923 __le32 pa_power1; /* RF power amplifier measurement (not used) */
1924 __le32 pa_power2;
1925
1926 /*
1927 * For non-agg: frame status TX_STATUS_*
1928 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1929 * fields follow this one, up to frame_count.
1930 * Bit fields:
1931 * 11- 0: AGG_TX_STATE_* status code
1932 * 15-12: Retry count for 1st frame in aggregation (retries
1933 * occur if tx failed for this frame when it was a
1934 * member of a previous aggregation block). If rate
1935 * scaling is used, retry count indicates the rate
1936 * table entry used for all frames in the new agg.
1937 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1938 */
1939 union {
1940 __le32 status;
1941 struct agg_tx_status agg_status[0]; /* for each agg frame */
1942 } u;
1943 } __packed;
1944
1945 /*
1946 * definitions for initial rate index field
1947 * bits [3:0] initial rate index
1948 * bits [6:4] rate table color, used for the initial rate
1949 * bit-7 invalid rate indication
1950 * i.e. rate was not chosen from rate table
1951 * or rate table color was changed during frame retries
1952 * refer tlc rate info
1953 */
1954
1955 #define IWL50_TX_RES_INIT_RATE_INDEX_POS 0
1956 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK 0x0f
1957 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS 4
1958 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK 0x70
1959 #define IWL50_TX_RES_INV_RATE_INDEX_MSK 0x80
1960
1961 /* refer to ra_tid */
1962 #define IWLAGN_TX_RES_TID_POS 0
1963 #define IWLAGN_TX_RES_TID_MSK 0x0f
1964 #define IWLAGN_TX_RES_RA_POS 4
1965 #define IWLAGN_TX_RES_RA_MSK 0xf0
1966
1967 struct iwlagn_tx_resp {
1968 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1969 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1970 u8 failure_rts; /* # failures due to unsuccessful RTS */
1971 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1972
1973 /* For non-agg: Rate at which frame was successful.
1974 * For agg: Rate at which all frames were transmitted. */
1975 __le32 rate_n_flags; /* RATE_MCS_* */
1976
1977 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1978 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1979 __le16 wireless_media_time; /* uSecs */
1980
1981 u8 pa_status; /* RF power amplifier measurement (not used) */
1982 u8 pa_integ_res_a[3];
1983 u8 pa_integ_res_b[3];
1984 u8 pa_integ_res_C[3];
1985
1986 __le32 tfd_info;
1987 __le16 seq_ctl;
1988 __le16 byte_cnt;
1989 u8 tlc_info;
1990 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1991 __le16 frame_ctrl;
1992 /*
1993 * For non-agg: frame status TX_STATUS_*
1994 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1995 * fields follow this one, up to frame_count.
1996 * Bit fields:
1997 * 11- 0: AGG_TX_STATE_* status code
1998 * 15-12: Retry count for 1st frame in aggregation (retries
1999 * occur if tx failed for this frame when it was a
2000 * member of a previous aggregation block). If rate
2001 * scaling is used, retry count indicates the rate
2002 * table entry used for all frames in the new agg.
2003 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
2004 */
2005 struct agg_tx_status status; /* TX status (in aggregation -
2006 * status of 1st frame) */
2007 } __packed;
2008 /*
2009 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
2010 *
2011 * Reports Block-Acknowledge from recipient station
2012 */
2013 struct iwl_compressed_ba_resp {
2014 __le32 sta_addr_lo32;
2015 __le16 sta_addr_hi16;
2016 __le16 reserved;
2017
2018 /* Index of recipient (BA-sending) station in uCode's station table */
2019 u8 sta_id;
2020 u8 tid;
2021 __le16 seq_ctl;
2022 __le64 bitmap;
2023 __le16 scd_flow;
2024 __le16 scd_ssn;
2025 /* following only for 5000 series and up */
2026 u8 txed; /* number of frames sent */
2027 u8 txed_2_done; /* number of frames acked */
2028 } __packed;
2029
2030 /*
2031 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
2032 *
2033 * See details under "TXPOWER" in iwl-4965-hw.h.
2034 */
2035
2036 struct iwl3945_txpowertable_cmd {
2037 u8 band; /* 0: 5 GHz, 1: 2.4 GHz */
2038 u8 reserved;
2039 __le16 channel;
2040 struct iwl3945_power_per_rate power[IWL_MAX_RATES];
2041 } __packed;
2042
2043 struct iwl4965_txpowertable_cmd {
2044 u8 band; /* 0: 5 GHz, 1: 2.4 GHz */
2045 u8 reserved;
2046 __le16 channel;
2047 struct iwl4965_tx_power_db tx_power;
2048 } __packed;
2049
2050
2051 /**
2052 * struct iwl3945_rate_scaling_cmd - Rate Scaling Command & Response
2053 *
2054 * REPLY_RATE_SCALE = 0x47 (command, has simple generic response)
2055 *
2056 * NOTE: The table of rates passed to the uCode via the
2057 * RATE_SCALE command sets up the corresponding order of
2058 * rates used for all related commands, including rate
2059 * masks, etc.
2060 *
2061 * For example, if you set 9MB (PLCP 0x0f) as the first
2062 * rate in the rate table, the bit mask for that rate
2063 * when passed through ofdm_basic_rates on the REPLY_RXON
2064 * command would be bit 0 (1 << 0)
2065 */
2066 struct iwl3945_rate_scaling_info {
2067 __le16 rate_n_flags;
2068 u8 try_cnt;
2069 u8 next_rate_index;
2070 } __packed;
2071
2072 struct iwl3945_rate_scaling_cmd {
2073 u8 table_id;
2074 u8 reserved[3];
2075 struct iwl3945_rate_scaling_info table[IWL_MAX_RATES];
2076 } __packed;
2077
2078
2079 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
2080 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
2081
2082 /* # of EDCA prioritized tx fifos */
2083 #define LINK_QUAL_AC_NUM AC_NUM
2084
2085 /* # entries in rate scale table to support Tx retries */
2086 #define LINK_QUAL_MAX_RETRY_NUM 16
2087
2088 /* Tx antenna selection values */
2089 #define LINK_QUAL_ANT_A_MSK (1 << 0)
2090 #define LINK_QUAL_ANT_B_MSK (1 << 1)
2091 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
2092
2093
2094 /**
2095 * struct iwl_link_qual_general_params
2096 *
2097 * Used in REPLY_TX_LINK_QUALITY_CMD
2098 */
2099 struct iwl_link_qual_general_params {
2100 u8 flags;
2101
2102 /* No entries at or above this (driver chosen) index contain MIMO */
2103 u8 mimo_delimiter;
2104
2105 /* Best single antenna to use for single stream (legacy, SISO). */
2106 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
2107
2108 /* Best antennas to use for MIMO (unused for 4965, assumes both). */
2109 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
2110
2111 /*
2112 * If driver needs to use different initial rates for different
2113 * EDCA QOS access categories (as implemented by tx fifos 0-3),
2114 * this table will set that up, by indicating the indexes in the
2115 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
2116 * Otherwise, driver should set all entries to 0.
2117 *
2118 * Entry usage:
2119 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
2120 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
2121 */
2122 u8 start_rate_index[LINK_QUAL_AC_NUM];
2123 } __packed;
2124
2125 #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
2126 #define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
2127 #define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
2128
2129 #define LINK_QUAL_AGG_DISABLE_START_DEF (3)
2130 #define LINK_QUAL_AGG_DISABLE_START_MAX (255)
2131 #define LINK_QUAL_AGG_DISABLE_START_MIN (0)
2132
2133 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (31)
2134 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
2135 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
2136
2137 /**
2138 * struct iwl_link_qual_agg_params
2139 *
2140 * Used in REPLY_TX_LINK_QUALITY_CMD
2141 */
2142 struct iwl_link_qual_agg_params {
2143
2144 /*
2145 *Maximum number of uSec in aggregation.
2146 * default set to 4000 (4 milliseconds) if not configured in .cfg
2147 */
2148 __le16 agg_time_limit;
2149
2150 /*
2151 * Number of Tx retries allowed for a frame, before that frame will
2152 * no longer be considered for the start of an aggregation sequence
2153 * (scheduler will then try to tx it as single frame).
2154 * Driver should set this to 3.
2155 */
2156 u8 agg_dis_start_th;
2157
2158 /*
2159 * Maximum number of frames in aggregation.
2160 * 0 = no limit (default). 1 = no aggregation.
2161 * Other values = max # frames in aggregation.
2162 */
2163 u8 agg_frame_cnt_limit;
2164
2165 __le32 reserved;
2166 } __packed;
2167
2168 /*
2169 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
2170 *
2171 * For agn devices only; 3945 uses REPLY_RATE_SCALE.
2172 *
2173 * Each station in the agn device's internal station table has its own table
2174 * of 16
2175 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
2176 * an ACK is not received. This command replaces the entire table for
2177 * one station.
2178 *
2179 * NOTE: Station must already be in agn device's station table.
2180 * Use REPLY_ADD_STA.
2181 *
2182 * The rate scaling procedures described below work well. Of course, other
2183 * procedures are possible, and may work better for particular environments.
2184 *
2185 *
2186 * FILLING THE RATE TABLE
2187 *
2188 * Given a particular initial rate and mode, as determined by the rate
2189 * scaling algorithm described below, the Linux driver uses the following
2190 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
2191 * Link Quality command:
2192 *
2193 *
2194 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
2195 * a) Use this same initial rate for first 3 entries.
2196 * b) Find next lower available rate using same mode (SISO or MIMO),
2197 * use for next 3 entries. If no lower rate available, switch to
2198 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
2199 * c) If using MIMO, set command's mimo_delimiter to number of entries
2200 * using MIMO (3 or 6).
2201 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
2202 * no MIMO, no short guard interval), at the next lower bit rate
2203 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
2204 * legacy procedure for remaining table entries.
2205 *
2206 * 2) If using legacy initial rate:
2207 * a) Use the initial rate for only one entry.
2208 * b) For each following entry, reduce the rate to next lower available
2209 * rate, until reaching the lowest available rate.
2210 * c) When reducing rate, also switch antenna selection.
2211 * d) Once lowest available rate is reached, repeat this rate until
2212 * rate table is filled (16 entries), switching antenna each entry.
2213 *
2214 *
2215 * ACCUMULATING HISTORY
2216 *
2217 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
2218 * uses two sets of frame Tx success history: One for the current/active
2219 * modulation mode, and one for a speculative/search mode that is being
2220 * attempted. If the speculative mode turns out to be more effective (i.e.
2221 * actual transfer rate is better), then the driver continues to use the
2222 * speculative mode as the new current active mode.
2223 *
2224 * Each history set contains, separately for each possible rate, data for a
2225 * sliding window of the 62 most recent tx attempts at that rate. The data
2226 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
2227 * and attempted frames, from which the driver can additionally calculate a
2228 * success ratio (success / attempted) and number of failures
2229 * (attempted - success), and control the size of the window (attempted).
2230 * The driver uses the bit map to remove successes from the success sum, as
2231 * the oldest tx attempts fall out of the window.
2232 *
2233 * When the agn device makes multiple tx attempts for a given frame, each
2234 * attempt might be at a different rate, and have different modulation
2235 * characteristics (e.g. antenna, fat channel, short guard interval), as set
2236 * up in the rate scaling table in the Link Quality command. The driver must
2237 * determine which rate table entry was used for each tx attempt, to determine
2238 * which rate-specific history to update, and record only those attempts that
2239 * match the modulation characteristics of the history set.
2240 *
2241 * When using block-ack (aggregation), all frames are transmitted at the same
2242 * rate, since there is no per-attempt acknowledgment from the destination
2243 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
2244 * rate_n_flags field. After receiving a block-ack, the driver can update
2245 * history for the entire block all at once.
2246 *
2247 *
2248 * FINDING BEST STARTING RATE:
2249 *
2250 * When working with a selected initial modulation mode (see below), the
2251 * driver attempts to find a best initial rate. The initial rate is the
2252 * first entry in the Link Quality command's rate table.
2253 *
2254 * 1) Calculate actual throughput (success ratio * expected throughput, see
2255 * table below) for current initial rate. Do this only if enough frames
2256 * have been attempted to make the value meaningful: at least 6 failed
2257 * tx attempts, or at least 8 successes. If not enough, don't try rate
2258 * scaling yet.
2259 *
2260 * 2) Find available rates adjacent to current initial rate. Available means:
2261 * a) supported by hardware &&
2262 * b) supported by association &&
2263 * c) within any constraints selected by user
2264 *
2265 * 3) Gather measured throughputs for adjacent rates. These might not have
2266 * enough history to calculate a throughput. That's okay, we might try
2267 * using one of them anyway!
2268 *
2269 * 4) Try decreasing rate if, for current rate:
2270 * a) success ratio is < 15% ||
2271 * b) lower adjacent rate has better measured throughput ||
2272 * c) higher adjacent rate has worse throughput, and lower is unmeasured
2273 *
2274 * As a sanity check, if decrease was determined above, leave rate
2275 * unchanged if:
2276 * a) lower rate unavailable
2277 * b) success ratio at current rate > 85% (very good)
2278 * c) current measured throughput is better than expected throughput
2279 * of lower rate (under perfect 100% tx conditions, see table below)
2280 *
2281 * 5) Try increasing rate if, for current rate:
2282 * a) success ratio is < 15% ||
2283 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
2284 * b) higher adjacent rate has better measured throughput ||
2285 * c) lower adjacent rate has worse throughput, and higher is unmeasured
2286 *
2287 * As a sanity check, if increase was determined above, leave rate
2288 * unchanged if:
2289 * a) success ratio at current rate < 70%. This is not particularly
2290 * good performance; higher rate is sure to have poorer success.
2291 *
2292 * 6) Re-evaluate the rate after each tx frame. If working with block-
2293 * acknowledge, history and statistics may be calculated for the entire
2294 * block (including prior history that fits within the history windows),
2295 * before re-evaluation.
2296 *
2297 * FINDING BEST STARTING MODULATION MODE:
2298 *
2299 * After working with a modulation mode for a "while" (and doing rate scaling),
2300 * the driver searches for a new initial mode in an attempt to improve
2301 * throughput. The "while" is measured by numbers of attempted frames:
2302 *
2303 * For legacy mode, search for new mode after:
2304 * 480 successful frames, or 160 failed frames
2305 * For high-throughput modes (SISO or MIMO), search for new mode after:
2306 * 4500 successful frames, or 400 failed frames
2307 *
2308 * Mode switch possibilities are (3 for each mode):
2309 *
2310 * For legacy:
2311 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
2312 * For SISO:
2313 * Change antenna, try MIMO, try shortened guard interval (SGI)
2314 * For MIMO:
2315 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
2316 *
2317 * When trying a new mode, use the same bit rate as the old/current mode when
2318 * trying antenna switches and shortened guard interval. When switching to
2319 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
2320 * for which the expected throughput (under perfect conditions) is about the
2321 * same or slightly better than the actual measured throughput delivered by
2322 * the old/current mode.
2323 *
2324 * Actual throughput can be estimated by multiplying the expected throughput
2325 * by the success ratio (successful / attempted tx frames). Frame size is
2326 * not considered in this calculation; it assumes that frame size will average
2327 * out to be fairly consistent over several samples. The following are
2328 * metric values for expected throughput assuming 100% success ratio.
2329 * Only G band has support for CCK rates:
2330 *
2331 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
2332 *
2333 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
2334 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
2335 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
2336 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
2337 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
2338 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
2339 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
2340 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
2341 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
2342 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
2343 *
2344 * After the new mode has been tried for a short while (minimum of 6 failed
2345 * frames or 8 successful frames), compare success ratio and actual throughput
2346 * estimate of the new mode with the old. If either is better with the new
2347 * mode, continue to use the new mode.
2348 *
2349 * Continue comparing modes until all 3 possibilities have been tried.
2350 * If moving from legacy to HT, try all 3 possibilities from the new HT
2351 * mode. After trying all 3, a best mode is found. Continue to use this mode
2352 * for the longer "while" described above (e.g. 480 successful frames for
2353 * legacy), and then repeat the search process.
2354 *
2355 */
2356 struct iwl_link_quality_cmd {
2357
2358 /* Index of destination/recipient station in uCode's station table */
2359 u8 sta_id;
2360 u8 reserved1;
2361 __le16 control; /* not used */
2362 struct iwl_link_qual_general_params general_params;
2363 struct iwl_link_qual_agg_params agg_params;
2364
2365 /*
2366 * Rate info; when using rate-scaling, Tx command's initial_rate_index
2367 * specifies 1st Tx rate attempted, via index into this table.
2368 * agn devices works its way through table when retrying Tx.
2369 */
2370 struct {
2371 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
2372 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
2373 __le32 reserved2;
2374 } __packed;
2375
2376 /*
2377 * BT configuration enable flags:
2378 * bit 0 - 1: BT channel announcement enabled
2379 * 0: disable
2380 * bit 1 - 1: priority of BT device enabled
2381 * 0: disable
2382 * bit 2 - 1: BT 2 wire support enabled
2383 * 0: disable
2384 */
2385 #define BT_COEX_DISABLE (0x0)
2386 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
2387 #define BT_ENABLE_PRIORITY BIT(1)
2388 #define BT_ENABLE_2_WIRE BIT(2)
2389
2390 #define BT_COEX_DISABLE (0x0)
2391 #define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
2392
2393 #define BT_LEAD_TIME_MIN (0x0)
2394 #define BT_LEAD_TIME_DEF (0x1E)
2395 #define BT_LEAD_TIME_MAX (0xFF)
2396
2397 #define BT_MAX_KILL_MIN (0x1)
2398 #define BT_MAX_KILL_DEF (0x5)
2399 #define BT_MAX_KILL_MAX (0xFF)
2400
2401 #define BT_DURATION_LIMIT_DEF 625
2402 #define BT_DURATION_LIMIT_MAX 1250
2403 #define BT_DURATION_LIMIT_MIN 625
2404
2405 #define BT_ON_THRESHOLD_DEF 4
2406 #define BT_ON_THRESHOLD_MAX 1000
2407 #define BT_ON_THRESHOLD_MIN 1
2408
2409 #define BT_FRAG_THRESHOLD_DEF 0
2410 #define BT_FRAG_THRESHOLD_MAX 0
2411 #define BT_FRAG_THRESHOLD_MIN 0
2412
2413 #define BT_AGG_THRESHOLD_DEF 1200
2414 #define BT_AGG_THRESHOLD_MAX 8000
2415 #define BT_AGG_THRESHOLD_MIN 400
2416
2417 /*
2418 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
2419 *
2420 * 3945 and agn devices support hardware handshake with Bluetooth device on
2421 * same platform. Bluetooth device alerts wireless device when it will Tx;
2422 * wireless device can delay or kill its own Tx to accommodate.
2423 */
2424 struct iwl_bt_cmd {
2425 u8 flags;
2426 u8 lead_time;
2427 u8 max_kill;
2428 u8 reserved;
2429 __le32 kill_ack_mask;
2430 __le32 kill_cts_mask;
2431 } __packed;
2432
2433 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
2434
2435 #define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
2436 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
2437 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
2438 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
2439 #define IWLAGN_BT_FLAG_COEX_MODE_3W 2
2440 #define IWLAGN_BT_FLAG_COEX_MODE_4W 3
2441
2442 #define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
2443 /* Disable Sync PSPoll on SCO/eSCO */
2444 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
2445
2446 #define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
2447 #define IWLAGN_BT_PRIO_BOOST_MIN 0x00
2448 #define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
2449
2450 #define IWLAGN_BT_MAX_KILL_DEFAULT 5
2451
2452 #define IWLAGN_BT3_T7_DEFAULT 1
2453
2454 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
2455 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
2456 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
2457
2458 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
2459
2460 #define IWLAGN_BT3_T2_DEFAULT 0xc
2461
2462 #define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
2463 #define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
2464 #define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
2465 #define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
2466 #define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
2467 #define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
2468 #define IWLAGN_BT_VALID_BT4_TIMES cpu_to_le16(BIT(6))
2469 #define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
2470
2471 #define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
2472 IWLAGN_BT_VALID_BOOST | \
2473 IWLAGN_BT_VALID_MAX_KILL | \
2474 IWLAGN_BT_VALID_3W_TIMERS | \
2475 IWLAGN_BT_VALID_KILL_ACK_MASK | \
2476 IWLAGN_BT_VALID_KILL_CTS_MASK | \
2477 IWLAGN_BT_VALID_BT4_TIMES | \
2478 IWLAGN_BT_VALID_3W_LUT)
2479
2480 struct iwlagn_bt_cmd {
2481 u8 flags;
2482 u8 ledtime; /* unused */
2483 u8 max_kill;
2484 u8 bt3_timer_t7_value;
2485 __le32 kill_ack_mask;
2486 __le32 kill_cts_mask;
2487 u8 bt3_prio_sample_time;
2488 u8 bt3_timer_t2_value;
2489 __le16 bt4_reaction_time; /* unused */
2490 __le32 bt3_lookup_table[12];
2491 __le16 bt4_decision_time; /* unused */
2492 __le16 valid;
2493 u8 prio_boost;
2494 /*
2495 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
2496 * if configure the following patterns
2497 */
2498 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
2499 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
2500 };
2501
2502 #define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
2503
2504 struct iwlagn_bt_sco_cmd {
2505 __le32 flags;
2506 };
2507
2508 /******************************************************************************
2509 * (6)
2510 * Spectrum Management (802.11h) Commands, Responses, Notifications:
2511 *
2512 *****************************************************************************/
2513
2514 /*
2515 * Spectrum Management
2516 */
2517 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
2518 RXON_FILTER_CTL2HOST_MSK | \
2519 RXON_FILTER_ACCEPT_GRP_MSK | \
2520 RXON_FILTER_DIS_DECRYPT_MSK | \
2521 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2522 RXON_FILTER_ASSOC_MSK | \
2523 RXON_FILTER_BCON_AWARE_MSK)
2524
2525 struct iwl_measure_channel {
2526 __le32 duration; /* measurement duration in extended beacon
2527 * format */
2528 u8 channel; /* channel to measure */
2529 u8 type; /* see enum iwl_measure_type */
2530 __le16 reserved;
2531 } __packed;
2532
2533 /*
2534 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2535 */
2536 struct iwl_spectrum_cmd {
2537 __le16 len; /* number of bytes starting from token */
2538 u8 token; /* token id */
2539 u8 id; /* measurement id -- 0 or 1 */
2540 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2541 u8 periodic; /* 1 = periodic */
2542 __le16 path_loss_timeout;
2543 __le32 start_time; /* start time in extended beacon format */
2544 __le32 reserved2;
2545 __le32 flags; /* rxon flags */
2546 __le32 filter_flags; /* rxon filter flags */
2547 __le16 channel_count; /* minimum 1, maximum 10 */
2548 __le16 reserved3;
2549 struct iwl_measure_channel channels[10];
2550 } __packed;
2551
2552 /*
2553 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2554 */
2555 struct iwl_spectrum_resp {
2556 u8 token;
2557 u8 id; /* id of the prior command replaced, or 0xff */
2558 __le16 status; /* 0 - command will be handled
2559 * 1 - cannot handle (conflicts with another
2560 * measurement) */
2561 } __packed;
2562
2563 enum iwl_measurement_state {
2564 IWL_MEASUREMENT_START = 0,
2565 IWL_MEASUREMENT_STOP = 1,
2566 };
2567
2568 enum iwl_measurement_status {
2569 IWL_MEASUREMENT_OK = 0,
2570 IWL_MEASUREMENT_CONCURRENT = 1,
2571 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2572 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2573 /* 4-5 reserved */
2574 IWL_MEASUREMENT_STOPPED = 6,
2575 IWL_MEASUREMENT_TIMEOUT = 7,
2576 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2577 };
2578
2579 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2580
2581 struct iwl_measurement_histogram {
2582 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2583 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2584 } __packed;
2585
2586 /* clear channel availability counters */
2587 struct iwl_measurement_cca_counters {
2588 __le32 ofdm;
2589 __le32 cck;
2590 } __packed;
2591
2592 enum iwl_measure_type {
2593 IWL_MEASURE_BASIC = (1 << 0),
2594 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2595 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2596 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2597 IWL_MEASURE_FRAME = (1 << 4),
2598 /* bits 5:6 are reserved */
2599 IWL_MEASURE_IDLE = (1 << 7),
2600 };
2601
2602 /*
2603 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2604 */
2605 struct iwl_spectrum_notification {
2606 u8 id; /* measurement id -- 0 or 1 */
2607 u8 token;
2608 u8 channel_index; /* index in measurement channel list */
2609 u8 state; /* 0 - start, 1 - stop */
2610 __le32 start_time; /* lower 32-bits of TSF */
2611 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2612 u8 channel;
2613 u8 type; /* see enum iwl_measurement_type */
2614 u8 reserved1;
2615 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2616 * valid if applicable for measurement type requested. */
2617 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2618 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2619 __le32 cca_time; /* channel load time in usecs */
2620 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2621 * unidentified */
2622 u8 reserved2[3];
2623 struct iwl_measurement_histogram histogram;
2624 __le32 stop_time; /* lower 32-bits of TSF */
2625 __le32 status; /* see iwl_measurement_status */
2626 } __packed;
2627
2628 /******************************************************************************
2629 * (7)
2630 * Power Management Commands, Responses, Notifications:
2631 *
2632 *****************************************************************************/
2633
2634 /**
2635 * struct iwl_powertable_cmd - Power Table Command
2636 * @flags: See below:
2637 *
2638 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2639 *
2640 * PM allow:
2641 * bit 0 - '0' Driver not allow power management
2642 * '1' Driver allow PM (use rest of parameters)
2643 *
2644 * uCode send sleep notifications:
2645 * bit 1 - '0' Don't send sleep notification
2646 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2647 *
2648 * Sleep over DTIM
2649 * bit 2 - '0' PM have to walk up every DTIM
2650 * '1' PM could sleep over DTIM till listen Interval.
2651 *
2652 * PCI power managed
2653 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2654 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2655 *
2656 * Fast PD
2657 * bit 4 - '1' Put radio to sleep when receiving frame for others
2658 *
2659 * Force sleep Modes
2660 * bit 31/30- '00' use both mac/xtal sleeps
2661 * '01' force Mac sleep
2662 * '10' force xtal sleep
2663 * '11' Illegal set
2664 *
2665 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2666 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2667 * for every DTIM.
2668 */
2669 #define IWL_POWER_VEC_SIZE 5
2670
2671 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2672 #define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2673 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2674 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2675 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2676 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2677 #define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2678 #define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2679 #define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2680 #define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2681 #define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2682
2683 struct iwl3945_powertable_cmd {
2684 __le16 flags;
2685 u8 reserved[2];
2686 __le32 rx_data_timeout;
2687 __le32 tx_data_timeout;
2688 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2689 } __packed;
2690
2691 struct iwl_powertable_cmd {
2692 __le16 flags;
2693 u8 keep_alive_seconds; /* 3945 reserved */
2694 u8 debug_flags; /* 3945 reserved */
2695 __le32 rx_data_timeout;
2696 __le32 tx_data_timeout;
2697 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2698 __le32 keep_alive_beacons;
2699 } __packed;
2700
2701 /*
2702 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2703 * all devices identical.
2704 */
2705 struct iwl_sleep_notification {
2706 u8 pm_sleep_mode;
2707 u8 pm_wakeup_src;
2708 __le16 reserved;
2709 __le32 sleep_time;
2710 __le32 tsf_low;
2711 __le32 bcon_timer;
2712 } __packed;
2713
2714 /* Sleep states. all devices identical. */
2715 enum {
2716 IWL_PM_NO_SLEEP = 0,
2717 IWL_PM_SLP_MAC = 1,
2718 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2719 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2720 IWL_PM_SLP_PHY = 4,
2721 IWL_PM_SLP_REPENT = 5,
2722 IWL_PM_WAKEUP_BY_TIMER = 6,
2723 IWL_PM_WAKEUP_BY_DRIVER = 7,
2724 IWL_PM_WAKEUP_BY_RFKILL = 8,
2725 /* 3 reserved */
2726 IWL_PM_NUM_OF_MODES = 12,
2727 };
2728
2729 /*
2730 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2731 */
2732 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2733 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2734 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2735 struct iwl_card_state_cmd {
2736 __le32 status; /* CARD_STATE_CMD_* request new power state */
2737 } __packed;
2738
2739 /*
2740 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2741 */
2742 struct iwl_card_state_notif {
2743 __le32 flags;
2744 } __packed;
2745
2746 #define HW_CARD_DISABLED 0x01
2747 #define SW_CARD_DISABLED 0x02
2748 #define CT_CARD_DISABLED 0x04
2749 #define RXON_CARD_DISABLED 0x10
2750
2751 struct iwl_ct_kill_config {
2752 __le32 reserved;
2753 __le32 critical_temperature_M;
2754 __le32 critical_temperature_R;
2755 } __packed;
2756
2757 /* 1000, and 6x00 */
2758 struct iwl_ct_kill_throttling_config {
2759 __le32 critical_temperature_exit;
2760 __le32 reserved;
2761 __le32 critical_temperature_enter;
2762 } __packed;
2763
2764 /******************************************************************************
2765 * (8)
2766 * Scan Commands, Responses, Notifications:
2767 *
2768 *****************************************************************************/
2769
2770 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2771 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2772
2773 /**
2774 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2775 *
2776 * One for each channel in the scan list.
2777 * Each channel can independently select:
2778 * 1) SSID for directed active scans
2779 * 2) Txpower setting (for rate specified within Tx command)
2780 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2781 * quiet_plcp_th, good_CRC_th)
2782 *
2783 * To avoid uCode errors, make sure the following are true (see comments
2784 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2785 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2786 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2787 * 2) quiet_time <= active_dwell
2788 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2789 * passive_dwell < max_out_time
2790 * active_dwell < max_out_time
2791 */
2792
2793 /* FIXME: rename to AP1, remove tpc */
2794 struct iwl3945_scan_channel {
2795 /*
2796 * type is defined as:
2797 * 0:0 1 = active, 0 = passive
2798 * 1:4 SSID direct bit map; if a bit is set, then corresponding
2799 * SSID IE is transmitted in probe request.
2800 * 5:7 reserved
2801 */
2802 u8 type;
2803 u8 channel; /* band is selected by iwl3945_scan_cmd "flags" field */
2804 struct iwl3945_tx_power tpc;
2805 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2806 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2807 } __packed;
2808
2809 /* set number of direct probes u8 type */
2810 #define IWL39_SCAN_PROBE_MASK(n) ((BIT(n) | (BIT(n) - BIT(1))))
2811
2812 struct iwl_scan_channel {
2813 /*
2814 * type is defined as:
2815 * 0:0 1 = active, 0 = passive
2816 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2817 * SSID IE is transmitted in probe request.
2818 * 21:31 reserved
2819 */
2820 __le32 type;
2821 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2822 u8 tx_gain; /* gain for analog radio */
2823 u8 dsp_atten; /* gain for DSP */
2824 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2825 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2826 } __packed;
2827
2828 /* set number of direct probes __le32 type */
2829 #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2830
2831 /**
2832 * struct iwl_ssid_ie - directed scan network information element
2833 *
2834 * Up to 20 of these may appear in REPLY_SCAN_CMD (Note: Only 4 are in
2835 * 3945 SCAN api), selected by "type" bit field in struct iwl_scan_channel;
2836 * each channel may select different ssids from among the 20 (4) entries.
2837 * SSID IEs get transmitted in reverse order of entry.
2838 */
2839 struct iwl_ssid_ie {
2840 u8 id;
2841 u8 len;
2842 u8 ssid[32];
2843 } __packed;
2844
2845 #define PROBE_OPTION_MAX_3945 4
2846 #define PROBE_OPTION_MAX 20
2847 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2848 #define IWL_GOOD_CRC_TH_DISABLED 0
2849 #define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2850 #define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2851 #define IWL_MAX_SCAN_SIZE 1024
2852 #define IWL_MAX_CMD_SIZE 4096
2853
2854 /*
2855 * REPLY_SCAN_CMD = 0x80 (command)
2856 *
2857 * The hardware scan command is very powerful; the driver can set it up to
2858 * maintain (relatively) normal network traffic while doing a scan in the
2859 * background. The max_out_time and suspend_time control the ratio of how
2860 * long the device stays on an associated network channel ("service channel")
2861 * vs. how long it's away from the service channel, i.e. tuned to other channels
2862 * for scanning.
2863 *
2864 * max_out_time is the max time off-channel (in usec), and suspend_time
2865 * is how long (in "extended beacon" format) that the scan is "suspended"
2866 * after returning to the service channel. That is, suspend_time is the
2867 * time that we stay on the service channel, doing normal work, between
2868 * scan segments. The driver may set these parameters differently to support
2869 * scanning when associated vs. not associated, and light vs. heavy traffic
2870 * loads when associated.
2871 *
2872 * After receiving this command, the device's scan engine does the following;
2873 *
2874 * 1) Sends SCAN_START notification to driver
2875 * 2) Checks to see if it has time to do scan for one channel
2876 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2877 * to tell AP that we're going off-channel
2878 * 4) Tunes to first channel in scan list, does active or passive scan
2879 * 5) Sends SCAN_RESULT notification to driver
2880 * 6) Checks to see if it has time to do scan on *next* channel in list
2881 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2882 * before max_out_time expires
2883 * 8) Returns to service channel
2884 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2885 * 10) Stays on service channel until suspend_time expires
2886 * 11) Repeats entire process 2-10 until list is complete
2887 * 12) Sends SCAN_COMPLETE notification
2888 *
2889 * For fast, efficient scans, the scan command also has support for staying on
2890 * a channel for just a short time, if doing active scanning and getting no
2891 * responses to the transmitted probe request. This time is controlled by
2892 * quiet_time, and the number of received packets below which a channel is
2893 * considered "quiet" is controlled by quiet_plcp_threshold.
2894 *
2895 * For active scanning on channels that have regulatory restrictions against
2896 * blindly transmitting, the scan can listen before transmitting, to make sure
2897 * that there is already legitimate activity on the channel. If enough
2898 * packets are cleanly received on the channel (controlled by good_CRC_th,
2899 * typical value 1), the scan engine starts transmitting probe requests.
2900 *
2901 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2902 *
2903 * To avoid uCode errors, see timing restrictions described under
2904 * struct iwl_scan_channel.
2905 */
2906
2907 struct iwl3945_scan_cmd {
2908 __le16 len;
2909 u8 reserved0;
2910 u8 channel_count; /* # channels in channel list */
2911 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2912 * (only for active scan) */
2913 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2914 __le16 good_CRC_th; /* passive -> active promotion threshold */
2915 __le16 reserved1;
2916 __le32 max_out_time; /* max usec to be away from associated (service)
2917 * channel */
2918 __le32 suspend_time; /* pause scan this long (in "extended beacon
2919 * format") when returning to service channel:
2920 * 3945; 31:24 # beacons, 19:0 additional usec,
2921 * 4965; 31:22 # beacons, 21:0 additional usec.
2922 */
2923 __le32 flags; /* RXON_FLG_* */
2924 __le32 filter_flags; /* RXON_FILTER_* */
2925
2926 /* For active scans (set to all-0s for passive scans).
2927 * Does not include payload. Must specify Tx rate; no rate scaling. */
2928 struct iwl3945_tx_cmd tx_cmd;
2929
2930 /* For directed active scans (set to all-0s otherwise) */
2931 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX_3945];
2932
2933 /*
2934 * Probe request frame, followed by channel list.
2935 *
2936 * Size of probe request frame is specified by byte count in tx_cmd.
2937 * Channel list follows immediately after probe request frame.
2938 * Number of channels in list is specified by channel_count.
2939 * Each channel in list is of type:
2940 *
2941 * struct iwl3945_scan_channel channels[0];
2942 *
2943 * NOTE: Only one band of channels can be scanned per pass. You
2944 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2945 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2946 * before requesting another scan.
2947 */
2948 u8 data[0];
2949 } __packed;
2950
2951 struct iwl_scan_cmd {
2952 __le16 len;
2953 u8 reserved0;
2954 u8 channel_count; /* # channels in channel list */
2955 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2956 * (only for active scan) */
2957 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2958 __le16 good_CRC_th; /* passive -> active promotion threshold */
2959 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2960 __le32 max_out_time; /* max usec to be away from associated (service)
2961 * channel */
2962 __le32 suspend_time; /* pause scan this long (in "extended beacon
2963 * format") when returning to service chnl:
2964 * 3945; 31:24 # beacons, 19:0 additional usec,
2965 * 4965; 31:22 # beacons, 21:0 additional usec.
2966 */
2967 __le32 flags; /* RXON_FLG_* */
2968 __le32 filter_flags; /* RXON_FILTER_* */
2969
2970 /* For active scans (set to all-0s for passive scans).
2971 * Does not include payload. Must specify Tx rate; no rate scaling. */
2972 struct iwl_tx_cmd tx_cmd;
2973
2974 /* For directed active scans (set to all-0s otherwise) */
2975 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2976
2977 /*
2978 * Probe request frame, followed by channel list.
2979 *
2980 * Size of probe request frame is specified by byte count in tx_cmd.
2981 * Channel list follows immediately after probe request frame.
2982 * Number of channels in list is specified by channel_count.
2983 * Each channel in list is of type:
2984 *
2985 * struct iwl_scan_channel channels[0];
2986 *
2987 * NOTE: Only one band of channels can be scanned per pass. You
2988 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2989 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2990 * before requesting another scan.
2991 */
2992 u8 data[0];
2993 } __packed;
2994
2995 /* Can abort will notify by complete notification with abort status. */
2996 #define CAN_ABORT_STATUS cpu_to_le32(0x1)
2997 /* complete notification statuses */
2998 #define ABORT_STATUS 0x2
2999
3000 /*
3001 * REPLY_SCAN_CMD = 0x80 (response)
3002 */
3003 struct iwl_scanreq_notification {
3004 __le32 status; /* 1: okay, 2: cannot fulfill request */
3005 } __packed;
3006
3007 /*
3008 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
3009 */
3010 struct iwl_scanstart_notification {
3011 __le32 tsf_low;
3012 __le32 tsf_high;
3013 __le32 beacon_timer;
3014 u8 channel;
3015 u8 band;
3016 u8 reserved[2];
3017 __le32 status;
3018 } __packed;
3019
3020 #define SCAN_OWNER_STATUS 0x1;
3021 #define MEASURE_OWNER_STATUS 0x2;
3022
3023 #define IWL_PROBE_STATUS_OK 0
3024 #define IWL_PROBE_STATUS_TX_FAILED BIT(0)
3025 /* error statuses combined with TX_FAILED */
3026 #define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
3027 #define IWL_PROBE_STATUS_FAIL_BT BIT(2)
3028
3029 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
3030 /*
3031 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
3032 */
3033 struct iwl_scanresults_notification {
3034 u8 channel;
3035 u8 band;
3036 u8 probe_status;
3037 u8 num_probe_not_sent; /* not enough time to send */
3038 __le32 tsf_low;
3039 __le32 tsf_high;
3040 __le32 statistics[NUMBER_OF_STATISTICS];
3041 } __packed;
3042
3043 /*
3044 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
3045 */
3046 struct iwl_scancomplete_notification {
3047 u8 scanned_channels;
3048 u8 status;
3049 u8 bt_status; /* BT On/Off status */
3050 u8 last_channel;
3051 __le32 tsf_low;
3052 __le32 tsf_high;
3053 } __packed;
3054
3055
3056 /******************************************************************************
3057 * (9)
3058 * IBSS/AP Commands and Notifications:
3059 *
3060 *****************************************************************************/
3061
3062 enum iwl_ibss_manager {
3063 IWL_NOT_IBSS_MANAGER = 0,
3064 IWL_IBSS_MANAGER = 1,
3065 };
3066
3067 /*
3068 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
3069 */
3070
3071 struct iwl3945_beacon_notif {
3072 struct iwl3945_tx_resp beacon_notify_hdr;
3073 __le32 low_tsf;
3074 __le32 high_tsf;
3075 __le32 ibss_mgr_status;
3076 } __packed;
3077
3078 struct iwl4965_beacon_notif {
3079 struct iwl4965_tx_resp beacon_notify_hdr;
3080 __le32 low_tsf;
3081 __le32 high_tsf;
3082 __le32 ibss_mgr_status;
3083 } __packed;
3084
3085 /*
3086 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
3087 */
3088
3089 struct iwl3945_tx_beacon_cmd {
3090 struct iwl3945_tx_cmd tx;
3091 __le16 tim_idx;
3092 u8 tim_size;
3093 u8 reserved1;
3094 struct ieee80211_hdr frame[0]; /* beacon frame */
3095 } __packed;
3096
3097 struct iwl_tx_beacon_cmd {
3098 struct iwl_tx_cmd tx;
3099 __le16 tim_idx;
3100 u8 tim_size;
3101 u8 reserved1;
3102 struct ieee80211_hdr frame[0]; /* beacon frame */
3103 } __packed;
3104
3105 /******************************************************************************
3106 * (10)
3107 * Statistics Commands and Notifications:
3108 *
3109 *****************************************************************************/
3110
3111 #define IWL_TEMP_CONVERT 260
3112
3113 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8
3114 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4
3115 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12
3116
3117 /* Used for passing to driver number of successes and failures per rate */
3118 struct rate_histogram {
3119 union {
3120 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
3121 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
3122 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
3123 } success;
3124 union {
3125 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
3126 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
3127 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
3128 } failed;
3129 } __packed;
3130
3131 /* statistics command response */
3132
3133 struct iwl39_statistics_rx_phy {
3134 __le32 ina_cnt;
3135 __le32 fina_cnt;
3136 __le32 plcp_err;
3137 __le32 crc32_err;
3138 __le32 overrun_err;
3139 __le32 early_overrun_err;
3140 __le32 crc32_good;
3141 __le32 false_alarm_cnt;
3142 __le32 fina_sync_err_cnt;
3143 __le32 sfd_timeout;
3144 __le32 fina_timeout;
3145 __le32 unresponded_rts;
3146 __le32 rxe_frame_limit_overrun;
3147 __le32 sent_ack_cnt;
3148 __le32 sent_cts_cnt;
3149 } __packed;
3150
3151 struct iwl39_statistics_rx_non_phy {
3152 __le32 bogus_cts; /* CTS received when not expecting CTS */
3153 __le32 bogus_ack; /* ACK received when not expecting ACK */
3154 __le32 non_bssid_frames; /* number of frames with BSSID that
3155 * doesn't belong to the STA BSSID */
3156 __le32 filtered_frames; /* count frames that were dumped in the
3157 * filtering process */
3158 __le32 non_channel_beacons; /* beacons with our bss id but not on
3159 * our serving channel */
3160 } __packed;
3161
3162 struct iwl39_statistics_rx {
3163 struct iwl39_statistics_rx_phy ofdm;
3164 struct iwl39_statistics_rx_phy cck;
3165 struct iwl39_statistics_rx_non_phy general;
3166 } __packed;
3167
3168 struct iwl39_statistics_tx {
3169 __le32 preamble_cnt;
3170 __le32 rx_detected_cnt;
3171 __le32 bt_prio_defer_cnt;
3172 __le32 bt_prio_kill_cnt;
3173 __le32 few_bytes_cnt;
3174 __le32 cts_timeout;
3175 __le32 ack_timeout;
3176 __le32 expected_ack_cnt;
3177 __le32 actual_ack_cnt;
3178 } __packed;
3179
3180 struct statistics_dbg {
3181 __le32 burst_check;
3182 __le32 burst_count;
3183 __le32 wait_for_silence_timeout_cnt;
3184 __le32 reserved[3];
3185 } __packed;
3186
3187 struct iwl39_statistics_div {
3188 __le32 tx_on_a;
3189 __le32 tx_on_b;
3190 __le32 exec_time;
3191 __le32 probe_time;
3192 } __packed;
3193
3194 struct iwl39_statistics_general {
3195 __le32 temperature;
3196 struct statistics_dbg dbg;
3197 __le32 sleep_time;
3198 __le32 slots_out;
3199 __le32 slots_idle;
3200 __le32 ttl_timestamp;
3201 struct iwl39_statistics_div div;
3202 } __packed;
3203
3204 struct statistics_rx_phy {
3205 __le32 ina_cnt;
3206 __le32 fina_cnt;
3207 __le32 plcp_err;
3208 __le32 crc32_err;
3209 __le32 overrun_err;
3210 __le32 early_overrun_err;
3211 __le32 crc32_good;
3212 __le32 false_alarm_cnt;
3213 __le32 fina_sync_err_cnt;
3214 __le32 sfd_timeout;
3215 __le32 fina_timeout;
3216 __le32 unresponded_rts;
3217 __le32 rxe_frame_limit_overrun;
3218 __le32 sent_ack_cnt;
3219 __le32 sent_cts_cnt;
3220 __le32 sent_ba_rsp_cnt;
3221 __le32 dsp_self_kill;
3222 __le32 mh_format_err;
3223 __le32 re_acq_main_rssi_sum;
3224 __le32 reserved3;
3225 } __packed;
3226
3227 struct statistics_rx_ht_phy {
3228 __le32 plcp_err;
3229 __le32 overrun_err;
3230 __le32 early_overrun_err;
3231 __le32 crc32_good;
3232 __le32 crc32_err;
3233 __le32 mh_format_err;
3234 __le32 agg_crc32_good;
3235 __le32 agg_mpdu_cnt;
3236 __le32 agg_cnt;
3237 __le32 unsupport_mcs;
3238 } __packed;
3239
3240 #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
3241
3242 struct statistics_rx_non_phy {
3243 __le32 bogus_cts; /* CTS received when not expecting CTS */
3244 __le32 bogus_ack; /* ACK received when not expecting ACK */
3245 __le32 non_bssid_frames; /* number of frames with BSSID that
3246 * doesn't belong to the STA BSSID */
3247 __le32 filtered_frames; /* count frames that were dumped in the
3248 * filtering process */
3249 __le32 non_channel_beacons; /* beacons with our bss id but not on
3250 * our serving channel */
3251 __le32 channel_beacons; /* beacons with our bss id and in our
3252 * serving channel */
3253 __le32 num_missed_bcon; /* number of missed beacons */
3254 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
3255 * ADC was in saturation */
3256 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
3257 * for INA */
3258 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
3259 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
3260 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
3261 __le32 interference_data_flag; /* flag for interference data
3262 * availability. 1 when data is
3263 * available. */
3264 __le32 channel_load; /* counts RX Enable time in uSec */
3265 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
3266 * and CCK) counter */
3267 __le32 beacon_rssi_a;
3268 __le32 beacon_rssi_b;
3269 __le32 beacon_rssi_c;
3270 __le32 beacon_energy_a;
3271 __le32 beacon_energy_b;
3272 __le32 beacon_energy_c;
3273 } __packed;
3274
3275 struct statistics_rx_non_phy_bt {
3276 struct statistics_rx_non_phy common;
3277 /* additional stats for bt */
3278 __le32 num_bt_kills;
3279 __le32 reserved[2];
3280 } __packed;
3281
3282 struct statistics_rx {
3283 struct statistics_rx_phy ofdm;
3284 struct statistics_rx_phy cck;
3285 struct statistics_rx_non_phy general;
3286 struct statistics_rx_ht_phy ofdm_ht;
3287 } __packed;
3288
3289 struct statistics_rx_bt {
3290 struct statistics_rx_phy ofdm;
3291 struct statistics_rx_phy cck;
3292 struct statistics_rx_non_phy_bt general;
3293 struct statistics_rx_ht_phy ofdm_ht;
3294 } __packed;
3295
3296 /**
3297 * struct statistics_tx_power - current tx power
3298 *
3299 * @ant_a: current tx power on chain a in 1/2 dB step
3300 * @ant_b: current tx power on chain b in 1/2 dB step
3301 * @ant_c: current tx power on chain c in 1/2 dB step
3302 */
3303 struct statistics_tx_power {
3304 u8 ant_a;
3305 u8 ant_b;
3306 u8 ant_c;
3307 u8 reserved;
3308 } __packed;
3309
3310 struct statistics_tx_non_phy_agg {
3311 __le32 ba_timeout;
3312 __le32 ba_reschedule_frames;
3313 __le32 scd_query_agg_frame_cnt;
3314 __le32 scd_query_no_agg;
3315 __le32 scd_query_agg;
3316 __le32 scd_query_mismatch;
3317 __le32 frame_not_ready;
3318 __le32 underrun;
3319 __le32 bt_prio_kill;
3320 __le32 rx_ba_rsp_cnt;
3321 } __packed;
3322
3323 struct statistics_tx {
3324 __le32 preamble_cnt;
3325 __le32 rx_detected_cnt;
3326 __le32 bt_prio_defer_cnt;
3327 __le32 bt_prio_kill_cnt;
3328 __le32 few_bytes_cnt;
3329 __le32 cts_timeout;
3330 __le32 ack_timeout;
3331 __le32 expected_ack_cnt;
3332 __le32 actual_ack_cnt;
3333 __le32 dump_msdu_cnt;
3334 __le32 burst_abort_next_frame_mismatch_cnt;
3335 __le32 burst_abort_missing_next_frame_cnt;
3336 __le32 cts_timeout_collision;
3337 __le32 ack_or_ba_timeout_collision;
3338 struct statistics_tx_non_phy_agg agg;
3339 /*
3340 * "tx_power" are optional parameters provided by uCode,
3341 * 6000 series is the only device provide the information,
3342 * Those are reserved fields for all the other devices
3343 */
3344 struct statistics_tx_power tx_power;
3345 __le32 reserved1;
3346 } __packed;
3347
3348
3349 struct statistics_div {
3350 __le32 tx_on_a;
3351 __le32 tx_on_b;
3352 __le32 exec_time;
3353 __le32 probe_time;
3354 __le32 reserved1;
3355 __le32 reserved2;
3356 } __packed;
3357
3358 struct statistics_general_common {
3359 __le32 temperature; /* radio temperature */
3360 __le32 temperature_m; /* for 5000 and up, this is radio voltage */
3361 struct statistics_dbg dbg;
3362 __le32 sleep_time;
3363 __le32 slots_out;
3364 __le32 slots_idle;
3365 __le32 ttl_timestamp;
3366 struct statistics_div div;
3367 __le32 rx_enable_counter;
3368 /*
3369 * num_of_sos_states:
3370 * count the number of times we have to re-tune
3371 * in order to get out of bad PHY status
3372 */
3373 __le32 num_of_sos_states;
3374 } __packed;
3375
3376 struct statistics_bt_activity {
3377 /* Tx statistics */
3378 __le32 hi_priority_tx_req_cnt;
3379 __le32 hi_priority_tx_denied_cnt;
3380 __le32 lo_priority_tx_req_cnt;
3381 __le32 lo_priority_tx_denied_cnt;
3382 /* Rx statistics */
3383 __le32 hi_priority_rx_req_cnt;
3384 __le32 hi_priority_rx_denied_cnt;
3385 __le32 lo_priority_rx_req_cnt;
3386 __le32 lo_priority_rx_denied_cnt;
3387 } __packed;
3388
3389 struct statistics_general {
3390 struct statistics_general_common common;
3391 __le32 reserved2;
3392 __le32 reserved3;
3393 } __packed;
3394
3395 struct statistics_general_bt {
3396 struct statistics_general_common common;
3397 struct statistics_bt_activity activity;
3398 __le32 reserved2;
3399 __le32 reserved3;
3400 } __packed;
3401
3402 #define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
3403 #define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
3404 #define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
3405
3406 /*
3407 * REPLY_STATISTICS_CMD = 0x9c,
3408 * all devices identical.
3409 *
3410 * This command triggers an immediate response containing uCode statistics.
3411 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
3412 *
3413 * If the CLEAR_STATS configuration flag is set, uCode will clear its
3414 * internal copy of the statistics (counters) after issuing the response.
3415 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
3416 *
3417 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
3418 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
3419 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
3420 */
3421 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
3422 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
3423 struct iwl_statistics_cmd {
3424 __le32 configuration_flags; /* IWL_STATS_CONF_* */
3425 } __packed;
3426
3427 /*
3428 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
3429 *
3430 * By default, uCode issues this notification after receiving a beacon
3431 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
3432 * REPLY_STATISTICS_CMD 0x9c, above.
3433 *
3434 * Statistics counters continue to increment beacon after beacon, but are
3435 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
3436 * 0x9c with CLEAR_STATS bit set (see above).
3437 *
3438 * uCode also issues this notification during scans. uCode clears statistics
3439 * appropriately so that each notification contains statistics for only the
3440 * one channel that has just been scanned.
3441 */
3442 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
3443 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
3444
3445 struct iwl3945_notif_statistics {
3446 __le32 flag;
3447 struct iwl39_statistics_rx rx;
3448 struct iwl39_statistics_tx tx;
3449 struct iwl39_statistics_general general;
3450 } __packed;
3451
3452 struct iwl_notif_statistics {
3453 __le32 flag;
3454 struct statistics_rx rx;
3455 struct statistics_tx tx;
3456 struct statistics_general general;
3457 } __packed;
3458
3459 struct iwl_bt_notif_statistics {
3460 __le32 flag;
3461 struct statistics_rx_bt rx;
3462 struct statistics_tx tx;
3463 struct statistics_general_bt general;
3464 } __packed;
3465
3466 /*
3467 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
3468 *
3469 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
3470 * in regardless of how many missed beacons, which mean when driver receive the
3471 * notification, inside the command, it can find all the beacons information
3472 * which include number of total missed beacons, number of consecutive missed
3473 * beacons, number of beacons received and number of beacons expected to
3474 * receive.
3475 *
3476 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
3477 * in order to bring the radio/PHY back to working state; which has no relation
3478 * to when driver will perform sensitivity calibration.
3479 *
3480 * Driver should set it own missed_beacon_threshold to decide when to perform
3481 * sensitivity calibration based on number of consecutive missed beacons in
3482 * order to improve overall performance, especially in noisy environment.
3483 *
3484 */
3485
3486 #define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
3487 #define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
3488 #define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
3489
3490 struct iwl_missed_beacon_notif {
3491 __le32 consecutive_missed_beacons;
3492 __le32 total_missed_becons;
3493 __le32 num_expected_beacons;
3494 __le32 num_recvd_beacons;
3495 } __packed;
3496
3497
3498 /******************************************************************************
3499 * (11)
3500 * Rx Calibration Commands:
3501 *
3502 * With the uCode used for open source drivers, most Tx calibration (except
3503 * for Tx Power) and most Rx calibration is done by uCode during the
3504 * "initialize" phase of uCode boot. Driver must calibrate only:
3505 *
3506 * 1) Tx power (depends on temperature), described elsewhere
3507 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
3508 * 3) Receiver sensitivity (to optimize signal detection)
3509 *
3510 *****************************************************************************/
3511
3512 /**
3513 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
3514 *
3515 * This command sets up the Rx signal detector for a sensitivity level that
3516 * is high enough to lock onto all signals within the associated network,
3517 * but low enough to ignore signals that are below a certain threshold, so as
3518 * not to have too many "false alarms". False alarms are signals that the
3519 * Rx DSP tries to lock onto, but then discards after determining that they
3520 * are noise.
3521 *
3522 * The optimum number of false alarms is between 5 and 50 per 200 TUs
3523 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
3524 * time listening, not transmitting). Driver must adjust sensitivity so that
3525 * the ratio of actual false alarms to actual Rx time falls within this range.
3526 *
3527 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
3528 * received beacon. These provide information to the driver to analyze the
3529 * sensitivity. Don't analyze statistics that come in from scanning, or any
3530 * other non-associated-network source. Pertinent statistics include:
3531 *
3532 * From "general" statistics (struct statistics_rx_non_phy):
3533 *
3534 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
3535 * Measure of energy of desired signal. Used for establishing a level
3536 * below which the device does not detect signals.
3537 *
3538 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
3539 * Measure of background noise in silent period after beacon.
3540 *
3541 * channel_load
3542 * uSecs of actual Rx time during beacon period (varies according to
3543 * how much time was spent transmitting).
3544 *
3545 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
3546 *
3547 * false_alarm_cnt
3548 * Signal locks abandoned early (before phy-level header).
3549 *
3550 * plcp_err
3551 * Signal locks abandoned late (during phy-level header).
3552 *
3553 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
3554 * beacon to beacon, i.e. each value is an accumulation of all errors
3555 * before and including the latest beacon. Values will wrap around to 0
3556 * after counting up to 2^32 - 1. Driver must differentiate vs.
3557 * previous beacon's values to determine # false alarms in the current
3558 * beacon period.
3559 *
3560 * Total number of false alarms = false_alarms + plcp_errs
3561 *
3562 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
3563 * (notice that the start points for OFDM are at or close to settings for
3564 * maximum sensitivity):
3565 *
3566 * START / MIN / MAX
3567 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
3568 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
3569 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
3570 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
3571 *
3572 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
3573 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
3574 * by *adding* 1 to all 4 of the table entries above, up to the max for
3575 * each entry. Conversely, if false alarm rate is too low (less than 5
3576 * for each 204.8 msecs listening), *subtract* 1 from each entry to
3577 * increase sensitivity.
3578 *
3579 * For CCK sensitivity, keep track of the following:
3580 *
3581 * 1). 20-beacon history of maximum background noise, indicated by
3582 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
3583 * 3 receivers. For any given beacon, the "silence reference" is
3584 * the maximum of last 60 samples (20 beacons * 3 receivers).
3585 *
3586 * 2). 10-beacon history of strongest signal level, as indicated
3587 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
3588 * i.e. the strength of the signal through the best receiver at the
3589 * moment. These measurements are "upside down", with lower values
3590 * for stronger signals, so max energy will be *minimum* value.
3591 *
3592 * Then for any given beacon, the driver must determine the *weakest*
3593 * of the strongest signals; this is the minimum level that needs to be
3594 * successfully detected, when using the best receiver at the moment.
3595 * "Max cck energy" is the maximum (higher value means lower energy!)
3596 * of the last 10 minima. Once this is determined, driver must add
3597 * a little margin by adding "6" to it.
3598 *
3599 * 3). Number of consecutive beacon periods with too few false alarms.
3600 * Reset this to 0 at the first beacon period that falls within the
3601 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
3602 *
3603 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
3604 * (notice that the start points for CCK are at maximum sensitivity):
3605 *
3606 * START / MIN / MAX
3607 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
3608 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
3609 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
3610 *
3611 * If actual rate of CCK false alarms (+ plcp_errors) is too high
3612 * (greater than 50 for each 204.8 msecs listening), method for reducing
3613 * sensitivity is:
3614 *
3615 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
3616 * up to max 400.
3617 *
3618 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
3619 * sensitivity has been reduced a significant amount; bring it up to
3620 * a moderate 161. Otherwise, *add* 3, up to max 200.
3621 *
3622 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
3623 * sensitivity has been reduced only a moderate or small amount;
3624 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
3625 * down to min 0. Otherwise (if gain has been significantly reduced),
3626 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
3627 *
3628 * b) Save a snapshot of the "silence reference".
3629 *
3630 * If actual rate of CCK false alarms (+ plcp_errors) is too low
3631 * (less than 5 for each 204.8 msecs listening), method for increasing
3632 * sensitivity is used only if:
3633 *
3634 * 1a) Previous beacon did not have too many false alarms
3635 * 1b) AND difference between previous "silence reference" and current
3636 * "silence reference" (prev - current) is 2 or more,
3637 * OR 2) 100 or more consecutive beacon periods have had rate of
3638 * less than 5 false alarms per 204.8 milliseconds rx time.
3639 *
3640 * Method for increasing sensitivity:
3641 *
3642 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
3643 * down to min 125.
3644 *
3645 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
3646 * down to min 200.
3647 *
3648 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
3649 *
3650 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
3651 * (between 5 and 50 for each 204.8 msecs listening):
3652 *
3653 * 1) Save a snapshot of the silence reference.
3654 *
3655 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
3656 * give some extra margin to energy threshold by *subtracting* 8
3657 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
3658 *
3659 * For all cases (too few, too many, good range), make sure that the CCK
3660 * detection threshold (energy) is below the energy level for robust
3661 * detection over the past 10 beacon periods, the "Max cck energy".
3662 * Lower values mean higher energy; this means making sure that the value
3663 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
3664 *
3665 */
3666
3667 /*
3668 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3669 */
3670 #define HD_TABLE_SIZE (11) /* number of entries */
3671 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
3672 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
3673 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
3674 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
3675 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
3676 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
3677 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
3678 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
3679 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
3680 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
3681 #define HD_OFDM_ENERGY_TH_IN_INDEX (10)
3682
3683 /*
3684 * Additional table entries in enhance SENSITIVITY_CMD
3685 */
3686 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
3687 #define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
3688 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
3689 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
3690 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
3691 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
3692 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
3693 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
3694 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
3695 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
3696 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
3697 #define HD_RESERVED (22)
3698
3699 /* number of entries for enhanced tbl */
3700 #define ENHANCE_HD_TABLE_SIZE (23)
3701
3702 /* number of additional entries for enhanced tbl */
3703 #define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3704
3705 #define HD_INA_NON_SQUARE_DET_OFDM_DATA cpu_to_le16(0)
3706 #define HD_INA_NON_SQUARE_DET_CCK_DATA cpu_to_le16(0)
3707 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA cpu_to_le16(0)
3708 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA cpu_to_le16(668)
3709 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA cpu_to_le16(4)
3710 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA cpu_to_le16(486)
3711 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA cpu_to_le16(37)
3712 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA cpu_to_le16(853)
3713 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA cpu_to_le16(4)
3714 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA cpu_to_le16(476)
3715 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA cpu_to_le16(99)
3716
3717
3718 /* Control field in struct iwl_sensitivity_cmd */
3719 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3720 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3721
3722 /**
3723 * struct iwl_sensitivity_cmd
3724 * @control: (1) updates working table, (0) updates default table
3725 * @table: energy threshold values, use HD_* as index into table
3726 *
3727 * Always use "1" in "control" to update uCode's working table and DSP.
3728 */
3729 struct iwl_sensitivity_cmd {
3730 __le16 control; /* always use "1" */
3731 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3732 } __packed;
3733
3734 /*
3735 *
3736 */
3737 struct iwl_enhance_sensitivity_cmd {
3738 __le16 control; /* always use "1" */
3739 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3740 } __packed;
3741
3742
3743 /**
3744 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3745 *
3746 * This command sets the relative gains of agn device's 3 radio receiver chains.
3747 *
3748 * After the first association, driver should accumulate signal and noise
3749 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3750 * beacons from the associated network (don't collect statistics that come
3751 * in from scanning, or any other non-network source).
3752 *
3753 * DISCONNECTED ANTENNA:
3754 *
3755 * Driver should determine which antennas are actually connected, by comparing
3756 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3757 * following values over 20 beacons, one accumulator for each of the chains
3758 * a/b/c, from struct statistics_rx_non_phy:
3759 *
3760 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3761 *
3762 * Find the strongest signal from among a/b/c. Compare the other two to the
3763 * strongest. If any signal is more than 15 dB (times 20, unless you
3764 * divide the accumulated values by 20) below the strongest, the driver
3765 * considers that antenna to be disconnected, and should not try to use that
3766 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3767 * driver should declare the stronger one as connected, and attempt to use it
3768 * (A and B are the only 2 Tx chains!).
3769 *
3770 *
3771 * RX BALANCE:
3772 *
3773 * Driver should balance the 3 receivers (but just the ones that are connected
3774 * to antennas, see above) for gain, by comparing the average signal levels
3775 * detected during the silence after each beacon (background noise).
3776 * Accumulate (add) the following values over 20 beacons, one accumulator for
3777 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3778 *
3779 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3780 *
3781 * Find the weakest background noise level from among a/b/c. This Rx chain
3782 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3783 * finding noise difference:
3784 *
3785 * (accum_noise[i] - accum_noise[reference]) / 30
3786 *
3787 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3788 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3789 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3790 * and set bit 2 to indicate "reduce gain". The value for the reference
3791 * (weakest) chain should be "0".
3792 *
3793 * diff_gain_[abc] bit fields:
3794 * 2: (1) reduce gain, (0) increase gain
3795 * 1-0: amount of gain, units of 1.5 dB
3796 */
3797
3798 /* Phy calibration command for series */
3799 /* The default calibrate table size if not specified by firmware */
3800 #define IWL_DEFAULT_STANDARD_PHY_CALIBRATE_TBL_SIZE 18
3801 enum {
3802 IWL_PHY_CALIBRATE_DIFF_GAIN_CMD = 7,
3803 IWL_PHY_CALIBRATE_DC_CMD = 8,
3804 IWL_PHY_CALIBRATE_LO_CMD = 9,
3805 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3806 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3807 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3808 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3809 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3810 IWL_MAX_STANDARD_PHY_CALIBRATE_TBL_SIZE = 19,
3811 };
3812
3813 #define IWL_MAX_PHY_CALIBRATE_TBL_SIZE (253)
3814
3815 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(0xffffffff)
3816
3817 /* This enum defines the bitmap of various calibrations to enable in both
3818 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3819 */
3820 enum iwl_ucode_calib_cfg {
3821 IWL_CALIB_CFG_RX_BB_IDX,
3822 IWL_CALIB_CFG_DC_IDX,
3823 IWL_CALIB_CFG_TX_IQ_IDX,
3824 IWL_CALIB_CFG_RX_IQ_IDX,
3825 IWL_CALIB_CFG_NOISE_IDX,
3826 IWL_CALIB_CFG_CRYSTAL_IDX,
3827 IWL_CALIB_CFG_TEMPERATURE_IDX,
3828 IWL_CALIB_CFG_PAPD_IDX,
3829 };
3830
3831
3832 struct iwl_calib_cfg_elmnt_s {
3833 __le32 is_enable;
3834 __le32 start;
3835 __le32 send_res;
3836 __le32 apply_res;
3837 __le32 reserved;
3838 } __packed;
3839
3840 struct iwl_calib_cfg_status_s {
3841 struct iwl_calib_cfg_elmnt_s once;
3842 struct iwl_calib_cfg_elmnt_s perd;
3843 __le32 flags;
3844 } __packed;
3845
3846 struct iwl_calib_cfg_cmd {
3847 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3848 struct iwl_calib_cfg_status_s drv_calib_cfg;
3849 __le32 reserved1;
3850 } __packed;
3851
3852 struct iwl_calib_hdr {
3853 u8 op_code;
3854 u8 first_group;
3855 u8 groups_num;
3856 u8 data_valid;
3857 } __packed;
3858
3859 struct iwl_calib_cmd {
3860 struct iwl_calib_hdr hdr;
3861 u8 data[0];
3862 } __packed;
3863
3864 /* IWL_PHY_CALIBRATE_DIFF_GAIN_CMD (7) */
3865 struct iwl_calib_diff_gain_cmd {
3866 struct iwl_calib_hdr hdr;
3867 s8 diff_gain_a; /* see above */
3868 s8 diff_gain_b;
3869 s8 diff_gain_c;
3870 u8 reserved1;
3871 } __packed;
3872
3873 struct iwl_calib_xtal_freq_cmd {
3874 struct iwl_calib_hdr hdr;
3875 u8 cap_pin1;
3876 u8 cap_pin2;
3877 u8 pad[2];
3878 } __packed;
3879
3880 #define DEFAULT_RADIO_SENSOR_OFFSET 2700
3881 struct iwl_calib_temperature_offset_cmd {
3882 struct iwl_calib_hdr hdr;
3883 s16 radio_sensor_offset;
3884 s16 reserved;
3885 } __packed;
3886
3887 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3888 struct iwl_calib_chain_noise_reset_cmd {
3889 struct iwl_calib_hdr hdr;
3890 u8 data[0];
3891 };
3892
3893 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3894 struct iwl_calib_chain_noise_gain_cmd {
3895 struct iwl_calib_hdr hdr;
3896 u8 delta_gain_1;
3897 u8 delta_gain_2;
3898 u8 pad[2];
3899 } __packed;
3900
3901 /******************************************************************************
3902 * (12)
3903 * Miscellaneous Commands:
3904 *
3905 *****************************************************************************/
3906
3907 /*
3908 * LEDs Command & Response
3909 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3910 *
3911 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3912 * this command turns it on or off, or sets up a periodic blinking cycle.
3913 */
3914 struct iwl_led_cmd {
3915 __le32 interval; /* "interval" in uSec */
3916 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3917 u8 off; /* # intervals off while blinking;
3918 * "0", with >0 "on" value, turns LED on */
3919 u8 on; /* # intervals on while blinking;
3920 * "0", regardless of "off", turns LED off */
3921 u8 reserved;
3922 } __packed;
3923
3924 /*
3925 * station priority table entries
3926 * also used as potential "events" value for both
3927 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3928 */
3929
3930 /*
3931 * COEX events entry flag masks
3932 * RP - Requested Priority
3933 * WP - Win Medium Priority: priority assigned when the contention has been won
3934 */
3935 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3936 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3937 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3938
3939 #define COEX_CU_UNASSOC_IDLE_RP 4
3940 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3941 #define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3942 #define COEX_CU_CALIBRATION_RP 4
3943 #define COEX_CU_PERIODIC_CALIBRATION_RP 4
3944 #define COEX_CU_CONNECTION_ESTAB_RP 4
3945 #define COEX_CU_ASSOCIATED_IDLE_RP 4
3946 #define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3947 #define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3948 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3949 #define COEX_CU_RF_ON_RP 6
3950 #define COEX_CU_RF_OFF_RP 4
3951 #define COEX_CU_STAND_ALONE_DEBUG_RP 6
3952 #define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3953 #define COEX_CU_RSRVD1_RP 4
3954 #define COEX_CU_RSRVD2_RP 4
3955
3956 #define COEX_CU_UNASSOC_IDLE_WP 3
3957 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3958 #define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3959 #define COEX_CU_CALIBRATION_WP 3
3960 #define COEX_CU_PERIODIC_CALIBRATION_WP 3
3961 #define COEX_CU_CONNECTION_ESTAB_WP 3
3962 #define COEX_CU_ASSOCIATED_IDLE_WP 3
3963 #define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3964 #define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3965 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3966 #define COEX_CU_RF_ON_WP 3
3967 #define COEX_CU_RF_OFF_WP 3
3968 #define COEX_CU_STAND_ALONE_DEBUG_WP 6
3969 #define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3970 #define COEX_CU_RSRVD1_WP 3
3971 #define COEX_CU_RSRVD2_WP 3
3972
3973 #define COEX_UNASSOC_IDLE_FLAGS 0
3974 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3975 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3976 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3977 #define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3978 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3979 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3980 #define COEX_CALIBRATION_FLAGS \
3981 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3982 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3983 #define COEX_PERIODIC_CALIBRATION_FLAGS 0
3984 /*
3985 * COEX_CONNECTION_ESTAB:
3986 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3987 */
3988 #define COEX_CONNECTION_ESTAB_FLAGS \
3989 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3990 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3991 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3992 #define COEX_ASSOCIATED_IDLE_FLAGS 0
3993 #define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3994 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3995 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3996 #define COEX_ASSOC_AUTO_SCAN_FLAGS \
3997 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3998 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3999 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
4000 #define COEX_RF_ON_FLAGS 0
4001 #define COEX_RF_OFF_FLAGS 0
4002 #define COEX_STAND_ALONE_DEBUG_FLAGS \
4003 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
4004 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
4005 #define COEX_IPAN_ASSOC_LEVEL_FLAGS \
4006 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
4007 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
4008 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
4009 #define COEX_RSRVD1_FLAGS 0
4010 #define COEX_RSRVD2_FLAGS 0
4011 /*
4012 * COEX_CU_RF_ON is the event wrapping all radio ownership.
4013 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
4014 */
4015 #define COEX_CU_RF_ON_FLAGS \
4016 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
4017 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
4018 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
4019
4020
4021 enum {
4022 /* un-association part */
4023 COEX_UNASSOC_IDLE = 0,
4024 COEX_UNASSOC_MANUAL_SCAN = 1,
4025 COEX_UNASSOC_AUTO_SCAN = 2,
4026 /* calibration */
4027 COEX_CALIBRATION = 3,
4028 COEX_PERIODIC_CALIBRATION = 4,
4029 /* connection */
4030 COEX_CONNECTION_ESTAB = 5,
4031 /* association part */
4032 COEX_ASSOCIATED_IDLE = 6,
4033 COEX_ASSOC_MANUAL_SCAN = 7,
4034 COEX_ASSOC_AUTO_SCAN = 8,
4035 COEX_ASSOC_ACTIVE_LEVEL = 9,
4036 /* RF ON/OFF */
4037 COEX_RF_ON = 10,
4038 COEX_RF_OFF = 11,
4039 COEX_STAND_ALONE_DEBUG = 12,
4040 /* IPAN */
4041 COEX_IPAN_ASSOC_LEVEL = 13,
4042 /* reserved */
4043 COEX_RSRVD1 = 14,
4044 COEX_RSRVD2 = 15,
4045 COEX_NUM_OF_EVENTS = 16
4046 };
4047
4048 /*
4049 * Coexistence WIFI/WIMAX Command
4050 * COEX_PRIORITY_TABLE_CMD = 0x5a
4051 *
4052 */
4053 struct iwl_wimax_coex_event_entry {
4054 u8 request_prio;
4055 u8 win_medium_prio;
4056 u8 reserved;
4057 u8 flags;
4058 } __packed;
4059
4060 /* COEX flag masks */
4061
4062 /* Station table is valid */
4063 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
4064 /* UnMask wake up src at unassociated sleep */
4065 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
4066 /* UnMask wake up src at associated sleep */
4067 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
4068 /* Enable CoEx feature. */
4069 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
4070
4071 struct iwl_wimax_coex_cmd {
4072 u8 flags;
4073 u8 reserved[3];
4074 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
4075 } __packed;
4076
4077 /*
4078 * Coexistence MEDIUM NOTIFICATION
4079 * COEX_MEDIUM_NOTIFICATION = 0x5b
4080 *
4081 * notification from uCode to host to indicate medium changes
4082 *
4083 */
4084 /*
4085 * status field
4086 * bit 0 - 2: medium status
4087 * bit 3: medium change indication
4088 * bit 4 - 31: reserved
4089 */
4090 /* status option values, (0 - 2 bits) */
4091 #define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
4092 #define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
4093 #define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
4094 #define COEX_MEDIUM_MSK (0x7)
4095
4096 /* send notification status (1 bit) */
4097 #define COEX_MEDIUM_CHANGED (0x8)
4098 #define COEX_MEDIUM_CHANGED_MSK (0x8)
4099 #define COEX_MEDIUM_SHIFT (3)
4100
4101 struct iwl_coex_medium_notification {
4102 __le32 status;
4103 __le32 events;
4104 } __packed;
4105
4106 /*
4107 * Coexistence EVENT Command
4108 * COEX_EVENT_CMD = 0x5c
4109 *
4110 * send from host to uCode for coex event request.
4111 */
4112 /* flags options */
4113 #define COEX_EVENT_REQUEST_MSK (0x1)
4114
4115 struct iwl_coex_event_cmd {
4116 u8 flags;
4117 u8 event;
4118 __le16 reserved;
4119 } __packed;
4120
4121 struct iwl_coex_event_resp {
4122 __le32 status;
4123 } __packed;
4124
4125
4126 /******************************************************************************
4127 * Bluetooth Coexistence commands
4128 *
4129 *****************************************************************************/
4130
4131 /*
4132 * BT Status notification
4133 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
4134 */
4135 enum iwl_bt_coex_profile_traffic_load {
4136 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
4137 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
4138 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
4139 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
4140 /*
4141 * There are no more even though below is a u8, the
4142 * indication from the BT device only has two bits.
4143 */
4144 };
4145
4146 #define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
4147 #define BT_UART_MSG_FRAME1MSGTYPE_MSK \
4148 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
4149 #define BT_UART_MSG_FRAME1SSN_POS (3)
4150 #define BT_UART_MSG_FRAME1SSN_MSK \
4151 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
4152 #define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
4153 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
4154 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
4155 #define BT_UART_MSG_FRAME1RESERVED_POS (6)
4156 #define BT_UART_MSG_FRAME1RESERVED_MSK \
4157 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
4158
4159 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
4160 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
4161 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
4162 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
4163 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
4164 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
4165 #define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
4166 #define BT_UART_MSG_FRAME2CHLSEQN_MSK \
4167 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
4168 #define BT_UART_MSG_FRAME2INBAND_POS (5)
4169 #define BT_UART_MSG_FRAME2INBAND_MSK \
4170 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
4171 #define BT_UART_MSG_FRAME2RESERVED_POS (6)
4172 #define BT_UART_MSG_FRAME2RESERVED_MSK \
4173 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
4174
4175 #define BT_UART_MSG_FRAME3SCOESCO_POS (0)
4176 #define BT_UART_MSG_FRAME3SCOESCO_MSK \
4177 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
4178 #define BT_UART_MSG_FRAME3SNIFF_POS (1)
4179 #define BT_UART_MSG_FRAME3SNIFF_MSK \
4180 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
4181 #define BT_UART_MSG_FRAME3A2DP_POS (2)
4182 #define BT_UART_MSG_FRAME3A2DP_MSK \
4183 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
4184 #define BT_UART_MSG_FRAME3ACL_POS (3)
4185 #define BT_UART_MSG_FRAME3ACL_MSK \
4186 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
4187 #define BT_UART_MSG_FRAME3MASTER_POS (4)
4188 #define BT_UART_MSG_FRAME3MASTER_MSK \
4189 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
4190 #define BT_UART_MSG_FRAME3OBEX_POS (5)
4191 #define BT_UART_MSG_FRAME3OBEX_MSK \
4192 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
4193 #define BT_UART_MSG_FRAME3RESERVED_POS (6)
4194 #define BT_UART_MSG_FRAME3RESERVED_MSK \
4195 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
4196
4197 #define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
4198 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
4199 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
4200 #define BT_UART_MSG_FRAME4RESERVED_POS (6)
4201 #define BT_UART_MSG_FRAME4RESERVED_MSK \
4202 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
4203
4204 #define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
4205 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
4206 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
4207 #define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
4208 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
4209 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
4210 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
4211 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
4212 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
4213 #define BT_UART_MSG_FRAME5RESERVED_POS (6)
4214 #define BT_UART_MSG_FRAME5RESERVED_MSK \
4215 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
4216
4217 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
4218 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
4219 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
4220 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
4221 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
4222 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
4223 #define BT_UART_MSG_FRAME6RESERVED_POS (6)
4224 #define BT_UART_MSG_FRAME6RESERVED_MSK \
4225 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
4226
4227 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
4228 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
4229 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
4230 #define BT_UART_MSG_FRAME7INQUIRYPAGESRMODE_POS (3)
4231 #define BT_UART_MSG_FRAME7INQUIRYPAGESRMODE_MSK \
4232 (0x3 << BT_UART_MSG_FRAME7INQUIRYPAGESRMODE_POS)
4233 #define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
4234 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
4235 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
4236 #define BT_UART_MSG_FRAME7RESERVED_POS (6)
4237 #define BT_UART_MSG_FRAME7RESERVED_MSK \
4238 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
4239
4240
4241 struct iwl_bt_uart_msg {
4242 u8 header;
4243 u8 frame1;
4244 u8 frame2;
4245 u8 frame3;
4246 u8 frame4;
4247 u8 frame5;
4248 u8 frame6;
4249 u8 frame7;
4250 } __attribute__((packed));
4251
4252 struct iwl_bt_coex_profile_notif {
4253 struct iwl_bt_uart_msg last_bt_uart_msg;
4254 u8 bt_status; /* 0 - off, 1 - on */
4255 u8 bt_traffic_load; /* 0 .. 3? */
4256 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
4257 u8 reserved;
4258 } __attribute__((packed));
4259
4260 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
4261 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
4262 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
4263 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
4264 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
4265 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
4266 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
4267
4268 /*
4269 * BT Coexistence Priority table
4270 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
4271 */
4272 enum bt_coex_prio_table_events {
4273 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
4274 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
4275 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
4276 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
4277 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
4278 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
4279 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
4280 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
4281 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
4282 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
4283 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
4284 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
4285 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
4286 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
4287 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
4288 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
4289 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
4290 BT_COEX_PRIO_TBL_EVT_MAX,
4291 };
4292
4293 enum bt_coex_prio_table_priorities {
4294 BT_COEX_PRIO_TBL_DISABLED = 0,
4295 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
4296 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
4297 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
4298 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
4299 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
4300 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
4301 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
4302 BT_COEX_PRIO_TBL_MAX,
4303 };
4304
4305 struct iwl_bt_coex_prio_table_cmd {
4306 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
4307 } __attribute__((packed));
4308
4309 #define IWL_BT_COEX_ENV_CLOSE 0
4310 #define IWL_BT_COEX_ENV_OPEN 1
4311 /*
4312 * BT Protection Envelope
4313 * REPLY_BT_COEX_PROT_ENV = 0xcd
4314 */
4315 struct iwl_bt_coex_prot_env_cmd {
4316 u8 action; /* 0 = closed, 1 = open */
4317 u8 type; /* 0 .. 15 */
4318 u8 reserved[2];
4319 } __attribute__((packed));
4320
4321 /******************************************************************************
4322 * (13)
4323 * Union of all expected notifications/responses:
4324 *
4325 *****************************************************************************/
4326
4327 struct iwl_rx_packet {
4328 /*
4329 * The first 4 bytes of the RX frame header contain both the RX frame
4330 * size and some flags.
4331 * Bit fields:
4332 * 31: flag flush RB request
4333 * 30: flag ignore TC (terminal counter) request
4334 * 29: flag fast IRQ request
4335 * 28-14: Reserved
4336 * 13-00: RX frame size
4337 */
4338 __le32 len_n_flags;
4339 struct iwl_cmd_header hdr;
4340 union {
4341 struct iwl3945_rx_frame rx_frame;
4342 struct iwl3945_tx_resp tx_resp;
4343 struct iwl3945_beacon_notif beacon_status;
4344
4345 struct iwl_alive_resp alive_frame;
4346 struct iwl_spectrum_notification spectrum_notif;
4347 struct iwl_csa_notification csa_notif;
4348 struct iwl_error_resp err_resp;
4349 struct iwl_card_state_notif card_state_notif;
4350 struct iwl_add_sta_resp add_sta;
4351 struct iwl_rem_sta_resp rem_sta;
4352 struct iwl_sleep_notification sleep_notif;
4353 struct iwl_spectrum_resp spectrum;
4354 struct iwl_notif_statistics stats;
4355 struct iwl_bt_notif_statistics stats_bt;
4356 struct iwl_compressed_ba_resp compressed_ba;
4357 struct iwl_missed_beacon_notif missed_beacon;
4358 struct iwl_coex_medium_notification coex_medium_notif;
4359 struct iwl_coex_event_resp coex_event;
4360 struct iwl_bt_coex_profile_notif bt_coex_profile_notif;
4361 __le32 status;
4362 u8 raw[0];
4363 } u;
4364 } __packed;
4365
4366 int iwl_agn_check_rxon_cmd(struct iwl_priv *priv);
4367
4368 /*
4369 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
4370 */
4371
4372 /**
4373 * struct iwl_wipan_slot
4374 * @width: Time in TU
4375 * @type:
4376 * 0 - BSS
4377 * 1 - PAN
4378 */
4379 struct iwl_wipan_slot {
4380 __le16 width;
4381 u8 type;
4382 u8 reserved;
4383 } __packed;
4384
4385 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
4386 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
4387 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
4388 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
4389 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
4390
4391 /**
4392 * struct iwl_wipan_params_cmd
4393 * @flags:
4394 * bit0: reserved
4395 * bit1: CP leave channel with CTS
4396 * bit2: CP leave channel qith Quiet
4397 * bit3: slotted mode
4398 * 1 - work in slotted mode
4399 * 0 - work in non slotted mode
4400 * bit4: filter beacon notification
4401 * bit5: full tx slotted mode. if this flag is set,
4402 * uCode will perform leaving channel methods in context switch
4403 * also when working in same channel mode
4404 * @num_slots: 1 - 10
4405 */
4406 struct iwl_wipan_params_cmd {
4407 __le16 flags;
4408 u8 reserved;
4409 u8 num_slots;
4410 struct iwl_wipan_slot slots[10];
4411 } __packed;
4412
4413 /*
4414 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
4415 *
4416 * TODO: Figure out what this is used for,
4417 * it can only switch between 2.4 GHz
4418 * channels!!
4419 */
4420
4421 struct iwl_wipan_p2p_channel_switch_cmd {
4422 __le16 channel;
4423 __le16 reserved;
4424 };
4425
4426 /*
4427 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
4428 *
4429 * This is used by the device to notify us of the
4430 * NoA schedule it determined so we can forward it
4431 * to userspace for inclusion in probe responses.
4432 *
4433 * In beacons, the NoA schedule is simply appended
4434 * to the frame we give the device.
4435 */
4436
4437 struct iwl_wipan_noa_descriptor {
4438 u8 count;
4439 __le32 duration;
4440 __le32 interval;
4441 __le32 starttime;
4442 } __packed;
4443
4444 struct iwl_wipan_noa_attribute {
4445 u8 id;
4446 __le16 length;
4447 u8 index;
4448 u8 ct_window;
4449 struct iwl_wipan_noa_descriptor descr0, descr1;
4450 u8 reserved;
4451 } __packed;
4452
4453 struct iwl_wipan_noa_notification {
4454 u32 noa_active;
4455 struct iwl_wipan_noa_attribute noa_attribute;
4456 } __packed;
4457
4458 #endif /* __iwl_commands_h__ */
This page took 0.219461 seconds and 6 git commands to generate.