wireless: Remove unnecessary alloc/OOM messages, alloc cleanups
[deliverable/linux.git] / drivers / net / wireless / mwifiex / wmm.c
1 /*
2 * Marvell Wireless LAN device driver: WMM
3 *
4 * Copyright (C) 2011, Marvell International Ltd.
5 *
6 * This software file (the "File") is distributed by Marvell International
7 * Ltd. under the terms of the GNU General Public License Version 2, June 1991
8 * (the "License"). You may use, redistribute and/or modify this File in
9 * accordance with the terms and conditions of the License, a copy of which
10 * is available by writing to the Free Software Foundation, Inc.,
11 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the
12 * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
13 *
14 * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
16 * ARE EXPRESSLY DISCLAIMED. The License provides additional details about
17 * this warranty disclaimer.
18 */
19
20 #include "decl.h"
21 #include "ioctl.h"
22 #include "util.h"
23 #include "fw.h"
24 #include "main.h"
25 #include "wmm.h"
26 #include "11n.h"
27
28
29 /* Maximum value FW can accept for driver delay in packet transmission */
30 #define DRV_PKT_DELAY_TO_FW_MAX 512
31
32
33 #define WMM_QUEUED_PACKET_LOWER_LIMIT 180
34
35 #define WMM_QUEUED_PACKET_UPPER_LIMIT 200
36
37 /* Offset for TOS field in the IP header */
38 #define IPTOS_OFFSET 5
39
40 /* WMM information IE */
41 static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07,
42 0x00, 0x50, 0xf2, 0x02,
43 0x00, 0x01, 0x00
44 };
45
46 static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE,
47 WMM_AC_BK,
48 WMM_AC_VI,
49 WMM_AC_VO
50 };
51
52 static u8 tos_to_tid[] = {
53 /* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */
54 0x01, /* 0 1 0 AC_BK */
55 0x02, /* 0 0 0 AC_BK */
56 0x00, /* 0 0 1 AC_BE */
57 0x03, /* 0 1 1 AC_BE */
58 0x04, /* 1 0 0 AC_VI */
59 0x05, /* 1 0 1 AC_VI */
60 0x06, /* 1 1 0 AC_VO */
61 0x07 /* 1 1 1 AC_VO */
62 };
63
64 /*
65 * This table inverses the tos_to_tid operation to get a priority
66 * which is in sequential order, and can be compared.
67 * Use this to compare the priority of two different TIDs.
68 */
69 static u8 tos_to_tid_inv[] = {
70 0x02, /* from tos_to_tid[2] = 0 */
71 0x00, /* from tos_to_tid[0] = 1 */
72 0x01, /* from tos_to_tid[1] = 2 */
73 0x03,
74 0x04,
75 0x05,
76 0x06,
77 0x07};
78
79 static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} };
80
81 /*
82 * This function debug prints the priority parameters for a WMM AC.
83 */
84 static void
85 mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param)
86 {
87 const char *ac_str[] = { "BK", "BE", "VI", "VO" };
88
89 pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, "
90 "EcwMin=%d, EcwMax=%d, TxopLimit=%d\n",
91 ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap
92 & MWIFIEX_ACI) >> 5]],
93 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5,
94 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4,
95 ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN,
96 ac_param->ecw_bitmap & MWIFIEX_ECW_MIN,
97 (ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4,
98 le16_to_cpu(ac_param->tx_op_limit));
99 }
100
101 /*
102 * This function allocates a route address list.
103 *
104 * The function also initializes the list with the provided RA.
105 */
106 static struct mwifiex_ra_list_tbl *
107 mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, u8 *ra)
108 {
109 struct mwifiex_ra_list_tbl *ra_list;
110
111 ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC);
112 if (!ra_list)
113 return NULL;
114
115 INIT_LIST_HEAD(&ra_list->list);
116 skb_queue_head_init(&ra_list->skb_head);
117
118 memcpy(ra_list->ra, ra, ETH_ALEN);
119
120 ra_list->total_pkts_size = 0;
121
122 dev_dbg(adapter->dev, "info: allocated ra_list %p\n", ra_list);
123
124 return ra_list;
125 }
126
127 /* This function returns random no between 16 and 32 to be used as threshold
128 * for no of packets after which BA setup is initiated.
129 */
130 static u8 mwifiex_get_random_ba_threshold(void)
131 {
132 u32 sec, usec;
133 struct timeval ba_tstamp;
134 u8 ba_threshold;
135
136 /* setup ba_packet_threshold here random number between
137 * [BA_SETUP_PACKET_OFFSET,
138 * BA_SETUP_PACKET_OFFSET+BA_SETUP_MAX_PACKET_THRESHOLD-1]
139 */
140
141 do_gettimeofday(&ba_tstamp);
142 sec = (ba_tstamp.tv_sec & 0xFFFF) + (ba_tstamp.tv_sec >> 16);
143 usec = (ba_tstamp.tv_usec & 0xFFFF) + (ba_tstamp.tv_usec >> 16);
144 ba_threshold = (((sec << 16) + usec) % BA_SETUP_MAX_PACKET_THRESHOLD)
145 + BA_SETUP_PACKET_OFFSET;
146
147 return ba_threshold;
148 }
149
150 /*
151 * This function allocates and adds a RA list for all TIDs
152 * with the given RA.
153 */
154 void
155 mwifiex_ralist_add(struct mwifiex_private *priv, u8 *ra)
156 {
157 int i;
158 struct mwifiex_ra_list_tbl *ra_list;
159 struct mwifiex_adapter *adapter = priv->adapter;
160 struct mwifiex_sta_node *node;
161 unsigned long flags;
162
163 spin_lock_irqsave(&priv->sta_list_spinlock, flags);
164 node = mwifiex_get_sta_entry(priv, ra);
165 spin_unlock_irqrestore(&priv->sta_list_spinlock, flags);
166
167 for (i = 0; i < MAX_NUM_TID; ++i) {
168 ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra);
169 dev_dbg(adapter->dev, "info: created ra_list %p\n", ra_list);
170
171 if (!ra_list)
172 break;
173
174 ra_list->is_11n_enabled = 0;
175 if (!mwifiex_queuing_ra_based(priv)) {
176 ra_list->is_11n_enabled = IS_11N_ENABLED(priv);
177 } else {
178 ra_list->is_11n_enabled =
179 mwifiex_is_sta_11n_enabled(priv, node);
180 if (ra_list->is_11n_enabled)
181 ra_list->max_amsdu = node->max_amsdu;
182 }
183
184 dev_dbg(adapter->dev, "data: ralist %p: is_11n_enabled=%d\n",
185 ra_list, ra_list->is_11n_enabled);
186
187 if (ra_list->is_11n_enabled) {
188 ra_list->pkt_count = 0;
189 ra_list->ba_packet_thr =
190 mwifiex_get_random_ba_threshold();
191 }
192 list_add_tail(&ra_list->list,
193 &priv->wmm.tid_tbl_ptr[i].ra_list);
194
195 if (!priv->wmm.tid_tbl_ptr[i].ra_list_curr)
196 priv->wmm.tid_tbl_ptr[i].ra_list_curr = ra_list;
197 }
198 }
199
200 /*
201 * This function sets the WMM queue priorities to their default values.
202 */
203 static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv)
204 {
205 /* Default queue priorities: VO->VI->BE->BK */
206 priv->wmm.queue_priority[0] = WMM_AC_VO;
207 priv->wmm.queue_priority[1] = WMM_AC_VI;
208 priv->wmm.queue_priority[2] = WMM_AC_BE;
209 priv->wmm.queue_priority[3] = WMM_AC_BK;
210 }
211
212 /*
213 * This function map ACs to TIDs.
214 */
215 static void
216 mwifiex_wmm_queue_priorities_tid(struct mwifiex_wmm_desc *wmm)
217 {
218 u8 *queue_priority = wmm->queue_priority;
219 int i;
220
221 for (i = 0; i < 4; ++i) {
222 tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1];
223 tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0];
224 }
225
226 for (i = 0; i < MAX_NUM_TID; ++i)
227 tos_to_tid_inv[tos_to_tid[i]] = (u8)i;
228
229 atomic_set(&wmm->highest_queued_prio, HIGH_PRIO_TID);
230 }
231
232 /*
233 * This function initializes WMM priority queues.
234 */
235 void
236 mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv,
237 struct ieee_types_wmm_parameter *wmm_ie)
238 {
239 u16 cw_min, avg_back_off, tmp[4];
240 u32 i, j, num_ac;
241 u8 ac_idx;
242
243 if (!wmm_ie || !priv->wmm_enabled) {
244 /* WMM is not enabled, just set the defaults and return */
245 mwifiex_wmm_default_queue_priorities(priv);
246 return;
247 }
248
249 dev_dbg(priv->adapter->dev, "info: WMM Parameter IE: version=%d, "
250 "qos_info Parameter Set Count=%d, Reserved=%#x\n",
251 wmm_ie->vend_hdr.version, wmm_ie->qos_info_bitmap &
252 IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK,
253 wmm_ie->reserved);
254
255 for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) {
256 u8 ecw = wmm_ie->ac_params[num_ac].ecw_bitmap;
257 u8 aci_aifsn = wmm_ie->ac_params[num_ac].aci_aifsn_bitmap;
258 cw_min = (1 << (ecw & MWIFIEX_ECW_MIN)) - 1;
259 avg_back_off = (cw_min >> 1) + (aci_aifsn & MWIFIEX_AIFSN);
260
261 ac_idx = wmm_aci_to_qidx_map[(aci_aifsn & MWIFIEX_ACI) >> 5];
262 priv->wmm.queue_priority[ac_idx] = ac_idx;
263 tmp[ac_idx] = avg_back_off;
264
265 dev_dbg(priv->adapter->dev,
266 "info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n",
267 (1 << ((ecw & MWIFIEX_ECW_MAX) >> 4)) - 1,
268 cw_min, avg_back_off);
269 mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]);
270 }
271
272 /* Bubble sort */
273 for (i = 0; i < num_ac; i++) {
274 for (j = 1; j < num_ac - i; j++) {
275 if (tmp[j - 1] > tmp[j]) {
276 swap(tmp[j - 1], tmp[j]);
277 swap(priv->wmm.queue_priority[j - 1],
278 priv->wmm.queue_priority[j]);
279 } else if (tmp[j - 1] == tmp[j]) {
280 if (priv->wmm.queue_priority[j - 1]
281 < priv->wmm.queue_priority[j])
282 swap(priv->wmm.queue_priority[j - 1],
283 priv->wmm.queue_priority[j]);
284 }
285 }
286 }
287
288 mwifiex_wmm_queue_priorities_tid(&priv->wmm);
289 }
290
291 /*
292 * This function evaluates whether or not an AC is to be downgraded.
293 *
294 * In case the AC is not enabled, the highest AC is returned that is
295 * enabled and does not require admission control.
296 */
297 static enum mwifiex_wmm_ac_e
298 mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv,
299 enum mwifiex_wmm_ac_e eval_ac)
300 {
301 int down_ac;
302 enum mwifiex_wmm_ac_e ret_ac;
303 struct mwifiex_wmm_ac_status *ac_status;
304
305 ac_status = &priv->wmm.ac_status[eval_ac];
306
307 if (!ac_status->disabled)
308 /* Okay to use this AC, its enabled */
309 return eval_ac;
310
311 /* Setup a default return value of the lowest priority */
312 ret_ac = WMM_AC_BK;
313
314 /*
315 * Find the highest AC that is enabled and does not require
316 * admission control. The spec disallows downgrading to an AC,
317 * which is enabled due to a completed admission control.
318 * Unadmitted traffic is not to be sent on an AC with admitted
319 * traffic.
320 */
321 for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) {
322 ac_status = &priv->wmm.ac_status[down_ac];
323
324 if (!ac_status->disabled && !ac_status->flow_required)
325 /* AC is enabled and does not require admission
326 control */
327 ret_ac = (enum mwifiex_wmm_ac_e) down_ac;
328 }
329
330 return ret_ac;
331 }
332
333 /*
334 * This function downgrades WMM priority queue.
335 */
336 void
337 mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv)
338 {
339 int ac_val;
340
341 dev_dbg(priv->adapter->dev, "info: WMM: AC Priorities:"
342 "BK(0), BE(1), VI(2), VO(3)\n");
343
344 if (!priv->wmm_enabled) {
345 /* WMM is not enabled, default priorities */
346 for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++)
347 priv->wmm.ac_down_graded_vals[ac_val] =
348 (enum mwifiex_wmm_ac_e) ac_val;
349 } else {
350 for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) {
351 priv->wmm.ac_down_graded_vals[ac_val]
352 = mwifiex_wmm_eval_downgrade_ac(priv,
353 (enum mwifiex_wmm_ac_e) ac_val);
354 dev_dbg(priv->adapter->dev,
355 "info: WMM: AC PRIO %d maps to %d\n",
356 ac_val, priv->wmm.ac_down_graded_vals[ac_val]);
357 }
358 }
359 }
360
361 /*
362 * This function converts the IP TOS field to an WMM AC
363 * Queue assignment.
364 */
365 static enum mwifiex_wmm_ac_e
366 mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos)
367 {
368 /* Map of TOS UP values to WMM AC */
369 const enum mwifiex_wmm_ac_e tos_to_ac[] = { WMM_AC_BE,
370 WMM_AC_BK,
371 WMM_AC_BK,
372 WMM_AC_BE,
373 WMM_AC_VI,
374 WMM_AC_VI,
375 WMM_AC_VO,
376 WMM_AC_VO
377 };
378
379 if (tos >= ARRAY_SIZE(tos_to_ac))
380 return WMM_AC_BE;
381
382 return tos_to_ac[tos];
383 }
384
385 /*
386 * This function evaluates a given TID and downgrades it to a lower
387 * TID if the WMM Parameter IE received from the AP indicates that the
388 * AP is disabled (due to call admission control (ACM bit). Mapping
389 * of TID to AC is taken care of internally.
390 */
391 static u8
392 mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid)
393 {
394 enum mwifiex_wmm_ac_e ac, ac_down;
395 u8 new_tid;
396
397 ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid);
398 ac_down = priv->wmm.ac_down_graded_vals[ac];
399
400 /* Send the index to tid array, picking from the array will be
401 * taken care by dequeuing function
402 */
403 new_tid = ac_to_tid[ac_down][tid % 2];
404
405 return new_tid;
406 }
407
408 /*
409 * This function initializes the WMM state information and the
410 * WMM data path queues.
411 */
412 void
413 mwifiex_wmm_init(struct mwifiex_adapter *adapter)
414 {
415 int i, j;
416 struct mwifiex_private *priv;
417
418 for (j = 0; j < adapter->priv_num; ++j) {
419 priv = adapter->priv[j];
420 if (!priv)
421 continue;
422
423 for (i = 0; i < MAX_NUM_TID; ++i) {
424 priv->aggr_prio_tbl[i].amsdu = tos_to_tid_inv[i];
425 priv->aggr_prio_tbl[i].ampdu_ap = tos_to_tid_inv[i];
426 priv->aggr_prio_tbl[i].ampdu_user = tos_to_tid_inv[i];
427 priv->wmm.tid_tbl_ptr[i].ra_list_curr = NULL;
428 }
429
430 priv->aggr_prio_tbl[6].amsdu
431 = priv->aggr_prio_tbl[6].ampdu_ap
432 = priv->aggr_prio_tbl[6].ampdu_user
433 = BA_STREAM_NOT_ALLOWED;
434
435 priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap
436 = priv->aggr_prio_tbl[7].ampdu_user
437 = BA_STREAM_NOT_ALLOWED;
438
439 priv->add_ba_param.timeout = MWIFIEX_DEFAULT_BLOCK_ACK_TIMEOUT;
440 priv->add_ba_param.tx_win_size = MWIFIEX_AMPDU_DEF_TXWINSIZE;
441 priv->add_ba_param.rx_win_size = MWIFIEX_AMPDU_DEF_RXWINSIZE;
442
443 mwifiex_reset_11n_rx_seq_num(priv);
444
445 atomic_set(&priv->wmm.tx_pkts_queued, 0);
446 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
447 }
448 }
449
450 /*
451 * This function checks if WMM Tx queue is empty.
452 */
453 int
454 mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter)
455 {
456 int i;
457 struct mwifiex_private *priv;
458
459 for (i = 0; i < adapter->priv_num; ++i) {
460 priv = adapter->priv[i];
461 if (priv && atomic_read(&priv->wmm.tx_pkts_queued))
462 return false;
463 }
464
465 return true;
466 }
467
468 /*
469 * This function deletes all packets in an RA list node.
470 *
471 * The packet sent completion callback handler are called with
472 * status failure, after they are dequeued to ensure proper
473 * cleanup. The RA list node itself is freed at the end.
474 */
475 static void
476 mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv,
477 struct mwifiex_ra_list_tbl *ra_list)
478 {
479 struct mwifiex_adapter *adapter = priv->adapter;
480 struct sk_buff *skb, *tmp;
481
482 skb_queue_walk_safe(&ra_list->skb_head, skb, tmp)
483 mwifiex_write_data_complete(adapter, skb, 0, -1);
484 }
485
486 /*
487 * This function deletes all packets in an RA list.
488 *
489 * Each nodes in the RA list are freed individually first, and then
490 * the RA list itself is freed.
491 */
492 static void
493 mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv,
494 struct list_head *ra_list_head)
495 {
496 struct mwifiex_ra_list_tbl *ra_list;
497
498 list_for_each_entry(ra_list, ra_list_head, list)
499 mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list);
500 }
501
502 /*
503 * This function deletes all packets in all RA lists.
504 */
505 static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv)
506 {
507 int i;
508
509 for (i = 0; i < MAX_NUM_TID; i++)
510 mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i].
511 ra_list);
512
513 atomic_set(&priv->wmm.tx_pkts_queued, 0);
514 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
515 }
516
517 /*
518 * This function deletes all route addresses from all RA lists.
519 */
520 static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv)
521 {
522 struct mwifiex_ra_list_tbl *ra_list, *tmp_node;
523 int i;
524
525 for (i = 0; i < MAX_NUM_TID; ++i) {
526 dev_dbg(priv->adapter->dev,
527 "info: ra_list: freeing buf for tid %d\n", i);
528 list_for_each_entry_safe(ra_list, tmp_node,
529 &priv->wmm.tid_tbl_ptr[i].ra_list,
530 list) {
531 list_del(&ra_list->list);
532 kfree(ra_list);
533 }
534
535 INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list);
536
537 priv->wmm.tid_tbl_ptr[i].ra_list_curr = NULL;
538 }
539 }
540
541 /*
542 * This function cleans up the Tx and Rx queues.
543 *
544 * Cleanup includes -
545 * - All packets in RA lists
546 * - All entries in Rx reorder table
547 * - All entries in Tx BA stream table
548 * - MPA buffer (if required)
549 * - All RA lists
550 */
551 void
552 mwifiex_clean_txrx(struct mwifiex_private *priv)
553 {
554 unsigned long flags;
555
556 mwifiex_11n_cleanup_reorder_tbl(priv);
557 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
558
559 mwifiex_wmm_cleanup_queues(priv);
560 mwifiex_11n_delete_all_tx_ba_stream_tbl(priv);
561
562 if (priv->adapter->if_ops.cleanup_mpa_buf)
563 priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter);
564
565 mwifiex_wmm_delete_all_ralist(priv);
566 memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid));
567
568 if (priv->adapter->if_ops.clean_pcie_ring)
569 priv->adapter->if_ops.clean_pcie_ring(priv->adapter);
570 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
571 }
572
573 /*
574 * This function retrieves a particular RA list node, matching with the
575 * given TID and RA address.
576 */
577 static struct mwifiex_ra_list_tbl *
578 mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid,
579 u8 *ra_addr)
580 {
581 struct mwifiex_ra_list_tbl *ra_list;
582
583 list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list,
584 list) {
585 if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN))
586 return ra_list;
587 }
588
589 return NULL;
590 }
591
592 /*
593 * This function retrieves an RA list node for a given TID and
594 * RA address pair.
595 *
596 * If no such node is found, a new node is added first and then
597 * retrieved.
598 */
599 static struct mwifiex_ra_list_tbl *
600 mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid, u8 *ra_addr)
601 {
602 struct mwifiex_ra_list_tbl *ra_list;
603
604 ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
605 if (ra_list)
606 return ra_list;
607 mwifiex_ralist_add(priv, ra_addr);
608
609 return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
610 }
611
612 /*
613 * This function checks if a particular RA list node exists in a given TID
614 * table index.
615 */
616 int
617 mwifiex_is_ralist_valid(struct mwifiex_private *priv,
618 struct mwifiex_ra_list_tbl *ra_list, int ptr_index)
619 {
620 struct mwifiex_ra_list_tbl *rlist;
621
622 list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list,
623 list) {
624 if (rlist == ra_list)
625 return true;
626 }
627
628 return false;
629 }
630
631 /*
632 * This function adds a packet to WMM queue.
633 *
634 * In disconnected state the packet is immediately dropped and the
635 * packet send completion callback is called with status failure.
636 *
637 * Otherwise, the correct RA list node is located and the packet
638 * is queued at the list tail.
639 */
640 void
641 mwifiex_wmm_add_buf_txqueue(struct mwifiex_private *priv,
642 struct sk_buff *skb)
643 {
644 struct mwifiex_adapter *adapter = priv->adapter;
645 u32 tid;
646 struct mwifiex_ra_list_tbl *ra_list;
647 u8 ra[ETH_ALEN], tid_down;
648 unsigned long flags;
649
650 if (!priv->media_connected && !mwifiex_is_skb_mgmt_frame(skb)) {
651 dev_dbg(adapter->dev, "data: drop packet in disconnect\n");
652 mwifiex_write_data_complete(adapter, skb, 0, -1);
653 return;
654 }
655
656 tid = skb->priority;
657
658 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
659
660 tid_down = mwifiex_wmm_downgrade_tid(priv, tid);
661
662 /* In case of infra as we have already created the list during
663 association we just don't have to call get_queue_raptr, we will
664 have only 1 raptr for a tid in case of infra */
665 if (!mwifiex_queuing_ra_based(priv) &&
666 !mwifiex_is_skb_mgmt_frame(skb)) {
667 if (!list_empty(&priv->wmm.tid_tbl_ptr[tid_down].ra_list))
668 ra_list = list_first_entry(
669 &priv->wmm.tid_tbl_ptr[tid_down].ra_list,
670 struct mwifiex_ra_list_tbl, list);
671 else
672 ra_list = NULL;
673 } else {
674 memcpy(ra, skb->data, ETH_ALEN);
675 if (ra[0] & 0x01 || mwifiex_is_skb_mgmt_frame(skb))
676 memset(ra, 0xff, ETH_ALEN);
677 ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra);
678 }
679
680 if (!ra_list) {
681 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
682 mwifiex_write_data_complete(adapter, skb, 0, -1);
683 return;
684 }
685
686 skb_queue_tail(&ra_list->skb_head, skb);
687
688 ra_list->total_pkts_size += skb->len;
689 ra_list->pkt_count++;
690
691 atomic_inc(&priv->wmm.tx_pkts_queued);
692
693 if (atomic_read(&priv->wmm.highest_queued_prio) <
694 tos_to_tid_inv[tid_down])
695 atomic_set(&priv->wmm.highest_queued_prio,
696 tos_to_tid_inv[tid_down]);
697
698 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
699 }
700
701 /*
702 * This function processes the get WMM status command response from firmware.
703 *
704 * The response may contain multiple TLVs -
705 * - AC Queue status TLVs
706 * - Current WMM Parameter IE TLV
707 * - Admission Control action frame TLVs
708 *
709 * This function parses the TLVs and then calls further specific functions
710 * to process any changes in the queue prioritize or state.
711 */
712 int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv,
713 const struct host_cmd_ds_command *resp)
714 {
715 u8 *curr = (u8 *) &resp->params.get_wmm_status;
716 uint16_t resp_len = le16_to_cpu(resp->size), tlv_len;
717 int valid = true;
718
719 struct mwifiex_ie_types_data *tlv_hdr;
720 struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus;
721 struct ieee_types_wmm_parameter *wmm_param_ie = NULL;
722 struct mwifiex_wmm_ac_status *ac_status;
723
724 dev_dbg(priv->adapter->dev, "info: WMM: WMM_GET_STATUS cmdresp received: %d\n",
725 resp_len);
726
727 while ((resp_len >= sizeof(tlv_hdr->header)) && valid) {
728 tlv_hdr = (struct mwifiex_ie_types_data *) curr;
729 tlv_len = le16_to_cpu(tlv_hdr->header.len);
730
731 switch (le16_to_cpu(tlv_hdr->header.type)) {
732 case TLV_TYPE_WMMQSTATUS:
733 tlv_wmm_qstatus =
734 (struct mwifiex_ie_types_wmm_queue_status *)
735 tlv_hdr;
736 dev_dbg(priv->adapter->dev,
737 "info: CMD_RESP: WMM_GET_STATUS:"
738 " QSTATUS TLV: %d, %d, %d\n",
739 tlv_wmm_qstatus->queue_index,
740 tlv_wmm_qstatus->flow_required,
741 tlv_wmm_qstatus->disabled);
742
743 ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus->
744 queue_index];
745 ac_status->disabled = tlv_wmm_qstatus->disabled;
746 ac_status->flow_required =
747 tlv_wmm_qstatus->flow_required;
748 ac_status->flow_created = tlv_wmm_qstatus->flow_created;
749 break;
750
751 case WLAN_EID_VENDOR_SPECIFIC:
752 /*
753 * Point the regular IEEE IE 2 bytes into the Marvell IE
754 * and setup the IEEE IE type and length byte fields
755 */
756
757 wmm_param_ie =
758 (struct ieee_types_wmm_parameter *) (curr +
759 2);
760 wmm_param_ie->vend_hdr.len = (u8) tlv_len;
761 wmm_param_ie->vend_hdr.element_id =
762 WLAN_EID_VENDOR_SPECIFIC;
763
764 dev_dbg(priv->adapter->dev,
765 "info: CMD_RESP: WMM_GET_STATUS:"
766 " WMM Parameter Set Count: %d\n",
767 wmm_param_ie->qos_info_bitmap &
768 IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK);
769
770 memcpy((u8 *) &priv->curr_bss_params.bss_descriptor.
771 wmm_ie, wmm_param_ie,
772 wmm_param_ie->vend_hdr.len + 2);
773
774 break;
775
776 default:
777 valid = false;
778 break;
779 }
780
781 curr += (tlv_len + sizeof(tlv_hdr->header));
782 resp_len -= (tlv_len + sizeof(tlv_hdr->header));
783 }
784
785 mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie);
786 mwifiex_wmm_setup_ac_downgrade(priv);
787
788 return 0;
789 }
790
791 /*
792 * Callback handler from the command module to allow insertion of a WMM TLV.
793 *
794 * If the BSS we are associating to supports WMM, this function adds the
795 * required WMM Information IE to the association request command buffer in
796 * the form of a Marvell extended IEEE IE.
797 */
798 u32
799 mwifiex_wmm_process_association_req(struct mwifiex_private *priv,
800 u8 **assoc_buf,
801 struct ieee_types_wmm_parameter *wmm_ie,
802 struct ieee80211_ht_cap *ht_cap)
803 {
804 struct mwifiex_ie_types_wmm_param_set *wmm_tlv;
805 u32 ret_len = 0;
806
807 /* Null checks */
808 if (!assoc_buf)
809 return 0;
810 if (!(*assoc_buf))
811 return 0;
812
813 if (!wmm_ie)
814 return 0;
815
816 dev_dbg(priv->adapter->dev,
817 "info: WMM: process assoc req: bss->wmm_ie=%#x\n",
818 wmm_ie->vend_hdr.element_id);
819
820 if ((priv->wmm_required ||
821 (ht_cap && (priv->adapter->config_bands & BAND_GN ||
822 priv->adapter->config_bands & BAND_AN))) &&
823 wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) {
824 wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf;
825 wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]);
826 wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]);
827 memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2],
828 le16_to_cpu(wmm_tlv->header.len));
829 if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD)
830 memcpy((u8 *) (wmm_tlv->wmm_ie
831 + le16_to_cpu(wmm_tlv->header.len)
832 - sizeof(priv->wmm_qosinfo)),
833 &priv->wmm_qosinfo, sizeof(priv->wmm_qosinfo));
834
835 ret_len = sizeof(wmm_tlv->header)
836 + le16_to_cpu(wmm_tlv->header.len);
837
838 *assoc_buf += ret_len;
839 }
840
841 return ret_len;
842 }
843
844 /*
845 * This function computes the time delay in the driver queues for a
846 * given packet.
847 *
848 * When the packet is received at the OS/Driver interface, the current
849 * time is set in the packet structure. The difference between the present
850 * time and that received time is computed in this function and limited
851 * based on pre-compiled limits in the driver.
852 */
853 u8
854 mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv,
855 const struct sk_buff *skb)
856 {
857 u8 ret_val;
858 struct timeval out_tstamp, in_tstamp;
859 u32 queue_delay;
860
861 do_gettimeofday(&out_tstamp);
862 in_tstamp = ktime_to_timeval(skb->tstamp);
863
864 queue_delay = (out_tstamp.tv_sec - in_tstamp.tv_sec) * 1000;
865 queue_delay += (out_tstamp.tv_usec - in_tstamp.tv_usec) / 1000;
866
867 /*
868 * Queue delay is passed as a uint8 in units of 2ms (ms shifted
869 * by 1). Min value (other than 0) is therefore 2ms, max is 510ms.
870 *
871 * Pass max value if queue_delay is beyond the uint8 range
872 */
873 ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1);
874
875 dev_dbg(priv->adapter->dev, "data: WMM: Pkt Delay: %d ms,"
876 " %d ms sent to FW\n", queue_delay, ret_val);
877
878 return ret_val;
879 }
880
881 /*
882 * This function retrieves the highest priority RA list table pointer.
883 */
884 static struct mwifiex_ra_list_tbl *
885 mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter,
886 struct mwifiex_private **priv, int *tid)
887 {
888 struct mwifiex_private *priv_tmp;
889 struct mwifiex_ra_list_tbl *ptr, *head;
890 struct mwifiex_bss_prio_node *bssprio_node, *bssprio_head;
891 struct mwifiex_tid_tbl *tid_ptr;
892 atomic_t *hqp;
893 int is_list_empty;
894 unsigned long flags;
895 int i, j;
896
897 for (j = adapter->priv_num - 1; j >= 0; --j) {
898 spin_lock_irqsave(&adapter->bss_prio_tbl[j].bss_prio_lock,
899 flags);
900 is_list_empty = list_empty(&adapter->bss_prio_tbl[j]
901 .bss_prio_head);
902 spin_unlock_irqrestore(&adapter->bss_prio_tbl[j].bss_prio_lock,
903 flags);
904 if (is_list_empty)
905 continue;
906
907 if (adapter->bss_prio_tbl[j].bss_prio_cur ==
908 (struct mwifiex_bss_prio_node *)
909 &adapter->bss_prio_tbl[j].bss_prio_head) {
910 adapter->bss_prio_tbl[j].bss_prio_cur =
911 list_first_entry(&adapter->bss_prio_tbl[j]
912 .bss_prio_head,
913 struct mwifiex_bss_prio_node,
914 list);
915 }
916
917 bssprio_node = adapter->bss_prio_tbl[j].bss_prio_cur;
918 bssprio_head = bssprio_node;
919
920 do {
921 priv_tmp = bssprio_node->priv;
922 hqp = &priv_tmp->wmm.highest_queued_prio;
923
924 for (i = atomic_read(hqp); i >= LOW_PRIO_TID; --i) {
925
926 tid_ptr = &(priv_tmp)->wmm.
927 tid_tbl_ptr[tos_to_tid[i]];
928
929 /* For non-STA ra_list_curr may be NULL */
930 if (!tid_ptr->ra_list_curr)
931 continue;
932
933 spin_lock_irqsave(&tid_ptr->tid_tbl_lock,
934 flags);
935 is_list_empty =
936 list_empty(&adapter->bss_prio_tbl[j]
937 .bss_prio_head);
938 spin_unlock_irqrestore(&tid_ptr->tid_tbl_lock,
939 flags);
940 if (is_list_empty)
941 continue;
942
943 /*
944 * Always choose the next ra we transmitted
945 * last time, this way we pick the ra's in
946 * round robin fashion.
947 */
948 ptr = list_first_entry(
949 &tid_ptr->ra_list_curr->list,
950 struct mwifiex_ra_list_tbl,
951 list);
952
953 head = ptr;
954 if (ptr == (struct mwifiex_ra_list_tbl *)
955 &tid_ptr->ra_list) {
956 /* Get next ra */
957 ptr = list_first_entry(&ptr->list,
958 struct mwifiex_ra_list_tbl, list);
959 head = ptr;
960 }
961
962 do {
963 is_list_empty =
964 skb_queue_empty(&ptr->skb_head);
965
966 if (!is_list_empty)
967 goto found;
968
969 /* Get next ra */
970 ptr = list_first_entry(&ptr->list,
971 struct mwifiex_ra_list_tbl,
972 list);
973 if (ptr ==
974 (struct mwifiex_ra_list_tbl *)
975 &tid_ptr->ra_list)
976 ptr = list_first_entry(
977 &ptr->list,
978 struct mwifiex_ra_list_tbl,
979 list);
980 } while (ptr != head);
981 }
982
983 /* No packet at any TID for this priv. Mark as such
984 * to skip checking TIDs for this priv (until pkt is
985 * added).
986 */
987 atomic_set(hqp, NO_PKT_PRIO_TID);
988
989 /* Get next bss priority node */
990 bssprio_node = list_first_entry(&bssprio_node->list,
991 struct mwifiex_bss_prio_node,
992 list);
993
994 if (bssprio_node ==
995 (struct mwifiex_bss_prio_node *)
996 &adapter->bss_prio_tbl[j].bss_prio_head)
997 /* Get next bss priority node */
998 bssprio_node = list_first_entry(
999 &bssprio_node->list,
1000 struct mwifiex_bss_prio_node,
1001 list);
1002 } while (bssprio_node != bssprio_head);
1003 }
1004 return NULL;
1005
1006 found:
1007 spin_lock_irqsave(&priv_tmp->wmm.ra_list_spinlock, flags);
1008 if (atomic_read(hqp) > i)
1009 atomic_set(hqp, i);
1010 spin_unlock_irqrestore(&priv_tmp->wmm.ra_list_spinlock, flags);
1011
1012 *priv = priv_tmp;
1013 *tid = tos_to_tid[i];
1014
1015 return ptr;
1016 }
1017
1018 /*
1019 * This function checks if 11n aggregation is possible.
1020 */
1021 static int
1022 mwifiex_is_11n_aggragation_possible(struct mwifiex_private *priv,
1023 struct mwifiex_ra_list_tbl *ptr,
1024 int max_buf_size)
1025 {
1026 int count = 0, total_size = 0;
1027 struct sk_buff *skb, *tmp;
1028 int max_amsdu_size;
1029
1030 if (priv->bss_role == MWIFIEX_BSS_ROLE_UAP && priv->ap_11n_enabled &&
1031 ptr->is_11n_enabled)
1032 max_amsdu_size = min_t(int, ptr->max_amsdu, max_buf_size);
1033 else
1034 max_amsdu_size = max_buf_size;
1035
1036 skb_queue_walk_safe(&ptr->skb_head, skb, tmp) {
1037 total_size += skb->len;
1038 if (total_size >= max_amsdu_size)
1039 break;
1040 if (++count >= MIN_NUM_AMSDU)
1041 return true;
1042 }
1043
1044 return false;
1045 }
1046
1047 /*
1048 * This function sends a single packet to firmware for transmission.
1049 */
1050 static void
1051 mwifiex_send_single_packet(struct mwifiex_private *priv,
1052 struct mwifiex_ra_list_tbl *ptr, int ptr_index,
1053 unsigned long ra_list_flags)
1054 __releases(&priv->wmm.ra_list_spinlock)
1055 {
1056 struct sk_buff *skb, *skb_next;
1057 struct mwifiex_tx_param tx_param;
1058 struct mwifiex_adapter *adapter = priv->adapter;
1059 struct mwifiex_txinfo *tx_info;
1060
1061 if (skb_queue_empty(&ptr->skb_head)) {
1062 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1063 ra_list_flags);
1064 dev_dbg(adapter->dev, "data: nothing to send\n");
1065 return;
1066 }
1067
1068 skb = skb_dequeue(&ptr->skb_head);
1069
1070 tx_info = MWIFIEX_SKB_TXCB(skb);
1071 dev_dbg(adapter->dev, "data: dequeuing the packet %p %p\n", ptr, skb);
1072
1073 ptr->total_pkts_size -= skb->len;
1074
1075 if (!skb_queue_empty(&ptr->skb_head))
1076 skb_next = skb_peek(&ptr->skb_head);
1077 else
1078 skb_next = NULL;
1079
1080 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags);
1081
1082 tx_param.next_pkt_len = ((skb_next) ? skb_next->len +
1083 sizeof(struct txpd) : 0);
1084
1085 if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) {
1086 /* Queue the packet back at the head */
1087 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
1088
1089 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1090 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1091 ra_list_flags);
1092 mwifiex_write_data_complete(adapter, skb, 0, -1);
1093 return;
1094 }
1095
1096 skb_queue_tail(&ptr->skb_head, skb);
1097
1098 ptr->total_pkts_size += skb->len;
1099 ptr->pkt_count++;
1100 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
1101 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1102 ra_list_flags);
1103 } else {
1104 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
1105 if (mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1106 priv->wmm.packets_out[ptr_index]++;
1107 priv->wmm.tid_tbl_ptr[ptr_index].ra_list_curr = ptr;
1108 }
1109 adapter->bss_prio_tbl[priv->bss_priority].bss_prio_cur =
1110 list_first_entry(
1111 &adapter->bss_prio_tbl[priv->bss_priority]
1112 .bss_prio_cur->list,
1113 struct mwifiex_bss_prio_node,
1114 list);
1115 atomic_dec(&priv->wmm.tx_pkts_queued);
1116 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1117 ra_list_flags);
1118 }
1119 }
1120
1121 /*
1122 * This function checks if the first packet in the given RA list
1123 * is already processed or not.
1124 */
1125 static int
1126 mwifiex_is_ptr_processed(struct mwifiex_private *priv,
1127 struct mwifiex_ra_list_tbl *ptr)
1128 {
1129 struct sk_buff *skb;
1130 struct mwifiex_txinfo *tx_info;
1131
1132 if (skb_queue_empty(&ptr->skb_head))
1133 return false;
1134
1135 skb = skb_peek(&ptr->skb_head);
1136
1137 tx_info = MWIFIEX_SKB_TXCB(skb);
1138 if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT)
1139 return true;
1140
1141 return false;
1142 }
1143
1144 /*
1145 * This function sends a single processed packet to firmware for
1146 * transmission.
1147 */
1148 static void
1149 mwifiex_send_processed_packet(struct mwifiex_private *priv,
1150 struct mwifiex_ra_list_tbl *ptr, int ptr_index,
1151 unsigned long ra_list_flags)
1152 __releases(&priv->wmm.ra_list_spinlock)
1153 {
1154 struct mwifiex_tx_param tx_param;
1155 struct mwifiex_adapter *adapter = priv->adapter;
1156 int ret = -1;
1157 struct sk_buff *skb, *skb_next;
1158 struct mwifiex_txinfo *tx_info;
1159
1160 if (skb_queue_empty(&ptr->skb_head)) {
1161 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1162 ra_list_flags);
1163 return;
1164 }
1165
1166 skb = skb_dequeue(&ptr->skb_head);
1167
1168 if (!skb_queue_empty(&ptr->skb_head))
1169 skb_next = skb_peek(&ptr->skb_head);
1170 else
1171 skb_next = NULL;
1172
1173 tx_info = MWIFIEX_SKB_TXCB(skb);
1174
1175 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags);
1176
1177 if (adapter->iface_type == MWIFIEX_USB) {
1178 adapter->data_sent = true;
1179 ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_USB_EP_DATA,
1180 skb, NULL);
1181 } else {
1182 tx_param.next_pkt_len =
1183 ((skb_next) ? skb_next->len +
1184 sizeof(struct txpd) : 0);
1185 ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA,
1186 skb, &tx_param);
1187 }
1188
1189 switch (ret) {
1190 case -EBUSY:
1191 dev_dbg(adapter->dev, "data: -EBUSY is returned\n");
1192 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
1193
1194 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1195 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1196 ra_list_flags);
1197 mwifiex_write_data_complete(adapter, skb, 0, -1);
1198 return;
1199 }
1200
1201 skb_queue_tail(&ptr->skb_head, skb);
1202
1203 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
1204 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1205 ra_list_flags);
1206 break;
1207 case -1:
1208 if (adapter->iface_type != MWIFIEX_PCIE)
1209 adapter->data_sent = false;
1210 dev_err(adapter->dev, "host_to_card failed: %#x\n", ret);
1211 adapter->dbg.num_tx_host_to_card_failure++;
1212 mwifiex_write_data_complete(adapter, skb, 0, ret);
1213 break;
1214 case -EINPROGRESS:
1215 if (adapter->iface_type != MWIFIEX_PCIE)
1216 adapter->data_sent = false;
1217 default:
1218 break;
1219 }
1220 if (ret != -EBUSY) {
1221 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
1222 if (mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1223 priv->wmm.packets_out[ptr_index]++;
1224 priv->wmm.tid_tbl_ptr[ptr_index].ra_list_curr = ptr;
1225 }
1226 adapter->bss_prio_tbl[priv->bss_priority].bss_prio_cur =
1227 list_first_entry(
1228 &adapter->bss_prio_tbl[priv->bss_priority]
1229 .bss_prio_cur->list,
1230 struct mwifiex_bss_prio_node,
1231 list);
1232 atomic_dec(&priv->wmm.tx_pkts_queued);
1233 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1234 ra_list_flags);
1235 }
1236 }
1237
1238 /*
1239 * This function dequeues a packet from the highest priority list
1240 * and transmits it.
1241 */
1242 static int
1243 mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter)
1244 {
1245 struct mwifiex_ra_list_tbl *ptr;
1246 struct mwifiex_private *priv = NULL;
1247 int ptr_index = 0;
1248 u8 ra[ETH_ALEN];
1249 int tid_del = 0, tid = 0;
1250 unsigned long flags;
1251
1252 ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index);
1253 if (!ptr)
1254 return -1;
1255
1256 tid = mwifiex_get_tid(ptr);
1257
1258 dev_dbg(adapter->dev, "data: tid=%d\n", tid);
1259
1260 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
1261 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1262 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
1263 return -1;
1264 }
1265
1266 if (mwifiex_is_ptr_processed(priv, ptr)) {
1267 mwifiex_send_processed_packet(priv, ptr, ptr_index, flags);
1268 /* ra_list_spinlock has been freed in
1269 mwifiex_send_processed_packet() */
1270 return 0;
1271 }
1272
1273 if (!ptr->is_11n_enabled ||
1274 mwifiex_is_ba_stream_setup(priv, ptr, tid) ||
1275 priv->wps.session_enable ||
1276 ((priv->sec_info.wpa_enabled ||
1277 priv->sec_info.wpa2_enabled) &&
1278 !priv->wpa_is_gtk_set)) {
1279 mwifiex_send_single_packet(priv, ptr, ptr_index, flags);
1280 /* ra_list_spinlock has been freed in
1281 mwifiex_send_single_packet() */
1282 } else {
1283 if (mwifiex_is_ampdu_allowed(priv, tid) &&
1284 ptr->pkt_count > ptr->ba_packet_thr) {
1285 if (mwifiex_space_avail_for_new_ba_stream(adapter)) {
1286 mwifiex_create_ba_tbl(priv, ptr->ra, tid,
1287 BA_SETUP_INPROGRESS);
1288 mwifiex_send_addba(priv, tid, ptr->ra);
1289 } else if (mwifiex_find_stream_to_delete
1290 (priv, tid, &tid_del, ra)) {
1291 mwifiex_create_ba_tbl(priv, ptr->ra, tid,
1292 BA_SETUP_INPROGRESS);
1293 mwifiex_send_delba(priv, tid_del, ra, 1);
1294 }
1295 }
1296 if (mwifiex_is_amsdu_allowed(priv, tid) &&
1297 mwifiex_is_11n_aggragation_possible(priv, ptr,
1298 adapter->tx_buf_size))
1299 mwifiex_11n_aggregate_pkt(priv, ptr, INTF_HEADER_LEN,
1300 ptr_index, flags);
1301 /* ra_list_spinlock has been freed in
1302 mwifiex_11n_aggregate_pkt() */
1303 else
1304 mwifiex_send_single_packet(priv, ptr, ptr_index, flags);
1305 /* ra_list_spinlock has been freed in
1306 mwifiex_send_single_packet() */
1307 }
1308 return 0;
1309 }
1310
1311 /*
1312 * This function transmits the highest priority packet awaiting in the
1313 * WMM Queues.
1314 */
1315 void
1316 mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter)
1317 {
1318 do {
1319 /* Check if busy */
1320 if (adapter->data_sent || adapter->tx_lock_flag)
1321 break;
1322
1323 if (mwifiex_dequeue_tx_packet(adapter))
1324 break;
1325 } while (!mwifiex_wmm_lists_empty(adapter));
1326 }
This page took 0.058109 seconds and 5 git commands to generate.