mwl8k: undo transmit queue 0/1 swapping in mwl8k_cmd_set_edca_params()
[deliverable/linux.git] / drivers / net / wireless / mwl8k.c
1 /*
2 * drivers/net/wireless/mwl8k.c
3 * Driver for Marvell TOPDOG 802.11 Wireless cards
4 *
5 * Copyright (C) 2008-2009 Marvell Semiconductor Inc.
6 *
7 * This file is licensed under the terms of the GNU General Public
8 * License version 2. This program is licensed "as is" without any
9 * warranty of any kind, whether express or implied.
10 */
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/spinlock.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/completion.h>
21 #include <linux/etherdevice.h>
22 #include <net/mac80211.h>
23 #include <linux/moduleparam.h>
24 #include <linux/firmware.h>
25 #include <linux/workqueue.h>
26
27 #define MWL8K_DESC "Marvell TOPDOG(R) 802.11 Wireless Network Driver"
28 #define MWL8K_NAME KBUILD_MODNAME
29 #define MWL8K_VERSION "0.11"
30
31 /* Register definitions */
32 #define MWL8K_HIU_GEN_PTR 0x00000c10
33 #define MWL8K_MODE_STA 0x0000005a
34 #define MWL8K_MODE_AP 0x000000a5
35 #define MWL8K_HIU_INT_CODE 0x00000c14
36 #define MWL8K_FWSTA_READY 0xf0f1f2f4
37 #define MWL8K_FWAP_READY 0xf1f2f4a5
38 #define MWL8K_INT_CODE_CMD_FINISHED 0x00000005
39 #define MWL8K_HIU_SCRATCH 0x00000c40
40
41 /* Host->device communications */
42 #define MWL8K_HIU_H2A_INTERRUPT_EVENTS 0x00000c18
43 #define MWL8K_HIU_H2A_INTERRUPT_STATUS 0x00000c1c
44 #define MWL8K_HIU_H2A_INTERRUPT_MASK 0x00000c20
45 #define MWL8K_HIU_H2A_INTERRUPT_CLEAR_SEL 0x00000c24
46 #define MWL8K_HIU_H2A_INTERRUPT_STATUS_MASK 0x00000c28
47 #define MWL8K_H2A_INT_DUMMY (1 << 20)
48 #define MWL8K_H2A_INT_RESET (1 << 15)
49 #define MWL8K_H2A_INT_DOORBELL (1 << 1)
50 #define MWL8K_H2A_INT_PPA_READY (1 << 0)
51
52 /* Device->host communications */
53 #define MWL8K_HIU_A2H_INTERRUPT_EVENTS 0x00000c2c
54 #define MWL8K_HIU_A2H_INTERRUPT_STATUS 0x00000c30
55 #define MWL8K_HIU_A2H_INTERRUPT_MASK 0x00000c34
56 #define MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL 0x00000c38
57 #define MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK 0x00000c3c
58 #define MWL8K_A2H_INT_DUMMY (1 << 20)
59 #define MWL8K_A2H_INT_CHNL_SWITCHED (1 << 11)
60 #define MWL8K_A2H_INT_QUEUE_EMPTY (1 << 10)
61 #define MWL8K_A2H_INT_RADAR_DETECT (1 << 7)
62 #define MWL8K_A2H_INT_RADIO_ON (1 << 6)
63 #define MWL8K_A2H_INT_RADIO_OFF (1 << 5)
64 #define MWL8K_A2H_INT_MAC_EVENT (1 << 3)
65 #define MWL8K_A2H_INT_OPC_DONE (1 << 2)
66 #define MWL8K_A2H_INT_RX_READY (1 << 1)
67 #define MWL8K_A2H_INT_TX_DONE (1 << 0)
68
69 #define MWL8K_A2H_EVENTS (MWL8K_A2H_INT_DUMMY | \
70 MWL8K_A2H_INT_CHNL_SWITCHED | \
71 MWL8K_A2H_INT_QUEUE_EMPTY | \
72 MWL8K_A2H_INT_RADAR_DETECT | \
73 MWL8K_A2H_INT_RADIO_ON | \
74 MWL8K_A2H_INT_RADIO_OFF | \
75 MWL8K_A2H_INT_MAC_EVENT | \
76 MWL8K_A2H_INT_OPC_DONE | \
77 MWL8K_A2H_INT_RX_READY | \
78 MWL8K_A2H_INT_TX_DONE)
79
80 #define MWL8K_RX_QUEUES 1
81 #define MWL8K_TX_QUEUES 4
82
83 struct rxd_ops {
84 int rxd_size;
85 void (*rxd_init)(void *rxd, dma_addr_t next_dma_addr);
86 void (*rxd_refill)(void *rxd, dma_addr_t addr, int len);
87 int (*rxd_process)(void *rxd, struct ieee80211_rx_status *status,
88 __le16 *qos);
89 };
90
91 struct mwl8k_device_info {
92 char *part_name;
93 char *helper_image;
94 char *fw_image;
95 struct rxd_ops *ap_rxd_ops;
96 };
97
98 struct mwl8k_rx_queue {
99 int rxd_count;
100
101 /* hw receives here */
102 int head;
103
104 /* refill descs here */
105 int tail;
106
107 void *rxd;
108 dma_addr_t rxd_dma;
109 struct {
110 struct sk_buff *skb;
111 DECLARE_PCI_UNMAP_ADDR(dma)
112 } *buf;
113 };
114
115 struct mwl8k_tx_queue {
116 /* hw transmits here */
117 int head;
118
119 /* sw appends here */
120 int tail;
121
122 struct ieee80211_tx_queue_stats stats;
123 struct mwl8k_tx_desc *txd;
124 dma_addr_t txd_dma;
125 struct sk_buff **skb;
126 };
127
128 struct mwl8k_priv {
129 struct ieee80211_hw *hw;
130 struct pci_dev *pdev;
131
132 struct mwl8k_device_info *device_info;
133
134 void __iomem *sram;
135 void __iomem *regs;
136
137 /* firmware */
138 struct firmware *fw_helper;
139 struct firmware *fw_ucode;
140
141 /* hardware/firmware parameters */
142 bool ap_fw;
143 struct rxd_ops *rxd_ops;
144
145 /* firmware access */
146 struct mutex fw_mutex;
147 struct task_struct *fw_mutex_owner;
148 int fw_mutex_depth;
149 struct completion *hostcmd_wait;
150
151 /* lock held over TX and TX reap */
152 spinlock_t tx_lock;
153
154 /* TX quiesce completion, protected by fw_mutex and tx_lock */
155 struct completion *tx_wait;
156
157 struct ieee80211_vif *vif;
158
159 struct ieee80211_channel *current_channel;
160
161 /* power management status cookie from firmware */
162 u32 *cookie;
163 dma_addr_t cookie_dma;
164
165 u16 num_mcaddrs;
166 u8 hw_rev;
167 u32 fw_rev;
168
169 /*
170 * Running count of TX packets in flight, to avoid
171 * iterating over the transmit rings each time.
172 */
173 int pending_tx_pkts;
174
175 struct mwl8k_rx_queue rxq[MWL8K_RX_QUEUES];
176 struct mwl8k_tx_queue txq[MWL8K_TX_QUEUES];
177
178 /* PHY parameters */
179 struct ieee80211_supported_band band;
180 struct ieee80211_channel channels[14];
181 struct ieee80211_rate rates[14];
182
183 bool radio_on;
184 bool radio_short_preamble;
185 bool sniffer_enabled;
186 bool wmm_enabled;
187
188 struct work_struct sta_notify_worker;
189 spinlock_t sta_notify_list_lock;
190 struct list_head sta_notify_list;
191
192 /* XXX need to convert this to handle multiple interfaces */
193 bool capture_beacon;
194 u8 capture_bssid[ETH_ALEN];
195 struct sk_buff *beacon_skb;
196
197 /*
198 * This FJ worker has to be global as it is scheduled from the
199 * RX handler. At this point we don't know which interface it
200 * belongs to until the list of bssids waiting to complete join
201 * is checked.
202 */
203 struct work_struct finalize_join_worker;
204
205 /* Tasklet to reclaim TX descriptors and buffers after tx */
206 struct tasklet_struct tx_reclaim_task;
207 };
208
209 /* Per interface specific private data */
210 struct mwl8k_vif {
211 /* Non AMPDU sequence number assigned by driver. */
212 u16 seqno;
213 };
214 #define MWL8K_VIF(_vif) ((struct mwl8k_vif *)&((_vif)->drv_priv))
215
216 struct mwl8k_sta {
217 /* Index into station database. Returned by UPDATE_STADB. */
218 u8 peer_id;
219 };
220 #define MWL8K_STA(_sta) ((struct mwl8k_sta *)&((_sta)->drv_priv))
221
222 static const struct ieee80211_channel mwl8k_channels[] = {
223 { .center_freq = 2412, .hw_value = 1, },
224 { .center_freq = 2417, .hw_value = 2, },
225 { .center_freq = 2422, .hw_value = 3, },
226 { .center_freq = 2427, .hw_value = 4, },
227 { .center_freq = 2432, .hw_value = 5, },
228 { .center_freq = 2437, .hw_value = 6, },
229 { .center_freq = 2442, .hw_value = 7, },
230 { .center_freq = 2447, .hw_value = 8, },
231 { .center_freq = 2452, .hw_value = 9, },
232 { .center_freq = 2457, .hw_value = 10, },
233 { .center_freq = 2462, .hw_value = 11, },
234 { .center_freq = 2467, .hw_value = 12, },
235 { .center_freq = 2472, .hw_value = 13, },
236 { .center_freq = 2484, .hw_value = 14, },
237 };
238
239 static const struct ieee80211_rate mwl8k_rates[] = {
240 { .bitrate = 10, .hw_value = 2, },
241 { .bitrate = 20, .hw_value = 4, },
242 { .bitrate = 55, .hw_value = 11, },
243 { .bitrate = 110, .hw_value = 22, },
244 { .bitrate = 220, .hw_value = 44, },
245 { .bitrate = 60, .hw_value = 12, },
246 { .bitrate = 90, .hw_value = 18, },
247 { .bitrate = 120, .hw_value = 24, },
248 { .bitrate = 180, .hw_value = 36, },
249 { .bitrate = 240, .hw_value = 48, },
250 { .bitrate = 360, .hw_value = 72, },
251 { .bitrate = 480, .hw_value = 96, },
252 { .bitrate = 540, .hw_value = 108, },
253 { .bitrate = 720, .hw_value = 144, },
254 };
255
256 /* Set or get info from Firmware */
257 #define MWL8K_CMD_SET 0x0001
258 #define MWL8K_CMD_GET 0x0000
259
260 /* Firmware command codes */
261 #define MWL8K_CMD_CODE_DNLD 0x0001
262 #define MWL8K_CMD_GET_HW_SPEC 0x0003
263 #define MWL8K_CMD_SET_HW_SPEC 0x0004
264 #define MWL8K_CMD_MAC_MULTICAST_ADR 0x0010
265 #define MWL8K_CMD_GET_STAT 0x0014
266 #define MWL8K_CMD_RADIO_CONTROL 0x001c
267 #define MWL8K_CMD_RF_TX_POWER 0x001e
268 #define MWL8K_CMD_RF_ANTENNA 0x0020
269 #define MWL8K_CMD_SET_PRE_SCAN 0x0107
270 #define MWL8K_CMD_SET_POST_SCAN 0x0108
271 #define MWL8K_CMD_SET_RF_CHANNEL 0x010a
272 #define MWL8K_CMD_SET_AID 0x010d
273 #define MWL8K_CMD_SET_RATE 0x0110
274 #define MWL8K_CMD_SET_FINALIZE_JOIN 0x0111
275 #define MWL8K_CMD_RTS_THRESHOLD 0x0113
276 #define MWL8K_CMD_SET_SLOT 0x0114
277 #define MWL8K_CMD_SET_EDCA_PARAMS 0x0115
278 #define MWL8K_CMD_SET_WMM_MODE 0x0123
279 #define MWL8K_CMD_MIMO_CONFIG 0x0125
280 #define MWL8K_CMD_USE_FIXED_RATE 0x0126
281 #define MWL8K_CMD_ENABLE_SNIFFER 0x0150
282 #define MWL8K_CMD_SET_MAC_ADDR 0x0202
283 #define MWL8K_CMD_SET_RATEADAPT_MODE 0x0203
284 #define MWL8K_CMD_UPDATE_STADB 0x1123
285
286 static const char *mwl8k_cmd_name(u16 cmd, char *buf, int bufsize)
287 {
288 #define MWL8K_CMDNAME(x) case MWL8K_CMD_##x: do {\
289 snprintf(buf, bufsize, "%s", #x);\
290 return buf;\
291 } while (0)
292 switch (cmd & ~0x8000) {
293 MWL8K_CMDNAME(CODE_DNLD);
294 MWL8K_CMDNAME(GET_HW_SPEC);
295 MWL8K_CMDNAME(SET_HW_SPEC);
296 MWL8K_CMDNAME(MAC_MULTICAST_ADR);
297 MWL8K_CMDNAME(GET_STAT);
298 MWL8K_CMDNAME(RADIO_CONTROL);
299 MWL8K_CMDNAME(RF_TX_POWER);
300 MWL8K_CMDNAME(RF_ANTENNA);
301 MWL8K_CMDNAME(SET_PRE_SCAN);
302 MWL8K_CMDNAME(SET_POST_SCAN);
303 MWL8K_CMDNAME(SET_RF_CHANNEL);
304 MWL8K_CMDNAME(SET_AID);
305 MWL8K_CMDNAME(SET_RATE);
306 MWL8K_CMDNAME(SET_FINALIZE_JOIN);
307 MWL8K_CMDNAME(RTS_THRESHOLD);
308 MWL8K_CMDNAME(SET_SLOT);
309 MWL8K_CMDNAME(SET_EDCA_PARAMS);
310 MWL8K_CMDNAME(SET_WMM_MODE);
311 MWL8K_CMDNAME(MIMO_CONFIG);
312 MWL8K_CMDNAME(USE_FIXED_RATE);
313 MWL8K_CMDNAME(ENABLE_SNIFFER);
314 MWL8K_CMDNAME(SET_MAC_ADDR);
315 MWL8K_CMDNAME(SET_RATEADAPT_MODE);
316 MWL8K_CMDNAME(UPDATE_STADB);
317 default:
318 snprintf(buf, bufsize, "0x%x", cmd);
319 }
320 #undef MWL8K_CMDNAME
321
322 return buf;
323 }
324
325 /* Hardware and firmware reset */
326 static void mwl8k_hw_reset(struct mwl8k_priv *priv)
327 {
328 iowrite32(MWL8K_H2A_INT_RESET,
329 priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
330 iowrite32(MWL8K_H2A_INT_RESET,
331 priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
332 msleep(20);
333 }
334
335 /* Release fw image */
336 static void mwl8k_release_fw(struct firmware **fw)
337 {
338 if (*fw == NULL)
339 return;
340 release_firmware(*fw);
341 *fw = NULL;
342 }
343
344 static void mwl8k_release_firmware(struct mwl8k_priv *priv)
345 {
346 mwl8k_release_fw(&priv->fw_ucode);
347 mwl8k_release_fw(&priv->fw_helper);
348 }
349
350 /* Request fw image */
351 static int mwl8k_request_fw(struct mwl8k_priv *priv,
352 const char *fname, struct firmware **fw)
353 {
354 /* release current image */
355 if (*fw != NULL)
356 mwl8k_release_fw(fw);
357
358 return request_firmware((const struct firmware **)fw,
359 fname, &priv->pdev->dev);
360 }
361
362 static int mwl8k_request_firmware(struct mwl8k_priv *priv)
363 {
364 struct mwl8k_device_info *di = priv->device_info;
365 int rc;
366
367 if (di->helper_image != NULL) {
368 rc = mwl8k_request_fw(priv, di->helper_image, &priv->fw_helper);
369 if (rc) {
370 printk(KERN_ERR "%s: Error requesting helper "
371 "firmware file %s\n", pci_name(priv->pdev),
372 di->helper_image);
373 return rc;
374 }
375 }
376
377 rc = mwl8k_request_fw(priv, di->fw_image, &priv->fw_ucode);
378 if (rc) {
379 printk(KERN_ERR "%s: Error requesting firmware file %s\n",
380 pci_name(priv->pdev), di->fw_image);
381 mwl8k_release_fw(&priv->fw_helper);
382 return rc;
383 }
384
385 return 0;
386 }
387
388 MODULE_FIRMWARE("mwl8k/helper_8687.fw");
389 MODULE_FIRMWARE("mwl8k/fmimage_8687.fw");
390
391 struct mwl8k_cmd_pkt {
392 __le16 code;
393 __le16 length;
394 __le16 seq_num;
395 __le16 result;
396 char payload[0];
397 } __attribute__((packed));
398
399 /*
400 * Firmware loading.
401 */
402 static int
403 mwl8k_send_fw_load_cmd(struct mwl8k_priv *priv, void *data, int length)
404 {
405 void __iomem *regs = priv->regs;
406 dma_addr_t dma_addr;
407 int loops;
408
409 dma_addr = pci_map_single(priv->pdev, data, length, PCI_DMA_TODEVICE);
410 if (pci_dma_mapping_error(priv->pdev, dma_addr))
411 return -ENOMEM;
412
413 iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR);
414 iowrite32(0, regs + MWL8K_HIU_INT_CODE);
415 iowrite32(MWL8K_H2A_INT_DOORBELL,
416 regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
417 iowrite32(MWL8K_H2A_INT_DUMMY,
418 regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
419
420 loops = 1000;
421 do {
422 u32 int_code;
423
424 int_code = ioread32(regs + MWL8K_HIU_INT_CODE);
425 if (int_code == MWL8K_INT_CODE_CMD_FINISHED) {
426 iowrite32(0, regs + MWL8K_HIU_INT_CODE);
427 break;
428 }
429
430 cond_resched();
431 udelay(1);
432 } while (--loops);
433
434 pci_unmap_single(priv->pdev, dma_addr, length, PCI_DMA_TODEVICE);
435
436 return loops ? 0 : -ETIMEDOUT;
437 }
438
439 static int mwl8k_load_fw_image(struct mwl8k_priv *priv,
440 const u8 *data, size_t length)
441 {
442 struct mwl8k_cmd_pkt *cmd;
443 int done;
444 int rc = 0;
445
446 cmd = kmalloc(sizeof(*cmd) + 256, GFP_KERNEL);
447 if (cmd == NULL)
448 return -ENOMEM;
449
450 cmd->code = cpu_to_le16(MWL8K_CMD_CODE_DNLD);
451 cmd->seq_num = 0;
452 cmd->result = 0;
453
454 done = 0;
455 while (length) {
456 int block_size = length > 256 ? 256 : length;
457
458 memcpy(cmd->payload, data + done, block_size);
459 cmd->length = cpu_to_le16(block_size);
460
461 rc = mwl8k_send_fw_load_cmd(priv, cmd,
462 sizeof(*cmd) + block_size);
463 if (rc)
464 break;
465
466 done += block_size;
467 length -= block_size;
468 }
469
470 if (!rc) {
471 cmd->length = 0;
472 rc = mwl8k_send_fw_load_cmd(priv, cmd, sizeof(*cmd));
473 }
474
475 kfree(cmd);
476
477 return rc;
478 }
479
480 static int mwl8k_feed_fw_image(struct mwl8k_priv *priv,
481 const u8 *data, size_t length)
482 {
483 unsigned char *buffer;
484 int may_continue, rc = 0;
485 u32 done, prev_block_size;
486
487 buffer = kmalloc(1024, GFP_KERNEL);
488 if (buffer == NULL)
489 return -ENOMEM;
490
491 done = 0;
492 prev_block_size = 0;
493 may_continue = 1000;
494 while (may_continue > 0) {
495 u32 block_size;
496
497 block_size = ioread32(priv->regs + MWL8K_HIU_SCRATCH);
498 if (block_size & 1) {
499 block_size &= ~1;
500 may_continue--;
501 } else {
502 done += prev_block_size;
503 length -= prev_block_size;
504 }
505
506 if (block_size > 1024 || block_size > length) {
507 rc = -EOVERFLOW;
508 break;
509 }
510
511 if (length == 0) {
512 rc = 0;
513 break;
514 }
515
516 if (block_size == 0) {
517 rc = -EPROTO;
518 may_continue--;
519 udelay(1);
520 continue;
521 }
522
523 prev_block_size = block_size;
524 memcpy(buffer, data + done, block_size);
525
526 rc = mwl8k_send_fw_load_cmd(priv, buffer, block_size);
527 if (rc)
528 break;
529 }
530
531 if (!rc && length != 0)
532 rc = -EREMOTEIO;
533
534 kfree(buffer);
535
536 return rc;
537 }
538
539 static int mwl8k_load_firmware(struct ieee80211_hw *hw)
540 {
541 struct mwl8k_priv *priv = hw->priv;
542 struct firmware *fw = priv->fw_ucode;
543 int rc;
544 int loops;
545
546 if (!memcmp(fw->data, "\x01\x00\x00\x00", 4)) {
547 struct firmware *helper = priv->fw_helper;
548
549 if (helper == NULL) {
550 printk(KERN_ERR "%s: helper image needed but none "
551 "given\n", pci_name(priv->pdev));
552 return -EINVAL;
553 }
554
555 rc = mwl8k_load_fw_image(priv, helper->data, helper->size);
556 if (rc) {
557 printk(KERN_ERR "%s: unable to load firmware "
558 "helper image\n", pci_name(priv->pdev));
559 return rc;
560 }
561 msleep(5);
562
563 rc = mwl8k_feed_fw_image(priv, fw->data, fw->size);
564 } else {
565 rc = mwl8k_load_fw_image(priv, fw->data, fw->size);
566 }
567
568 if (rc) {
569 printk(KERN_ERR "%s: unable to load firmware image\n",
570 pci_name(priv->pdev));
571 return rc;
572 }
573
574 iowrite32(MWL8K_MODE_STA, priv->regs + MWL8K_HIU_GEN_PTR);
575
576 loops = 500000;
577 do {
578 u32 ready_code;
579
580 ready_code = ioread32(priv->regs + MWL8K_HIU_INT_CODE);
581 if (ready_code == MWL8K_FWAP_READY) {
582 priv->ap_fw = 1;
583 break;
584 } else if (ready_code == MWL8K_FWSTA_READY) {
585 priv->ap_fw = 0;
586 break;
587 }
588
589 cond_resched();
590 udelay(1);
591 } while (--loops);
592
593 return loops ? 0 : -ETIMEDOUT;
594 }
595
596
597 /* DMA header used by firmware and hardware. */
598 struct mwl8k_dma_data {
599 __le16 fwlen;
600 struct ieee80211_hdr wh;
601 char data[0];
602 } __attribute__((packed));
603
604 /* Routines to add/remove DMA header from skb. */
605 static inline void mwl8k_remove_dma_header(struct sk_buff *skb, __le16 qos)
606 {
607 struct mwl8k_dma_data *tr;
608 int hdrlen;
609
610 tr = (struct mwl8k_dma_data *)skb->data;
611 hdrlen = ieee80211_hdrlen(tr->wh.frame_control);
612
613 if (hdrlen != sizeof(tr->wh)) {
614 if (ieee80211_is_data_qos(tr->wh.frame_control)) {
615 memmove(tr->data - hdrlen, &tr->wh, hdrlen - 2);
616 *((__le16 *)(tr->data - 2)) = qos;
617 } else {
618 memmove(tr->data - hdrlen, &tr->wh, hdrlen);
619 }
620 }
621
622 if (hdrlen != sizeof(*tr))
623 skb_pull(skb, sizeof(*tr) - hdrlen);
624 }
625
626 static inline void mwl8k_add_dma_header(struct sk_buff *skb)
627 {
628 struct ieee80211_hdr *wh;
629 int hdrlen;
630 struct mwl8k_dma_data *tr;
631
632 /*
633 * Add a firmware DMA header; the firmware requires that we
634 * present a 2-byte payload length followed by a 4-address
635 * header (without QoS field), followed (optionally) by any
636 * WEP/ExtIV header (but only filled in for CCMP).
637 */
638 wh = (struct ieee80211_hdr *)skb->data;
639
640 hdrlen = ieee80211_hdrlen(wh->frame_control);
641 if (hdrlen != sizeof(*tr))
642 skb_push(skb, sizeof(*tr) - hdrlen);
643
644 if (ieee80211_is_data_qos(wh->frame_control))
645 hdrlen -= 2;
646
647 tr = (struct mwl8k_dma_data *)skb->data;
648 if (wh != &tr->wh)
649 memmove(&tr->wh, wh, hdrlen);
650 if (hdrlen != sizeof(tr->wh))
651 memset(((void *)&tr->wh) + hdrlen, 0, sizeof(tr->wh) - hdrlen);
652
653 /*
654 * Firmware length is the length of the fully formed "802.11
655 * payload". That is, everything except for the 802.11 header.
656 * This includes all crypto material including the MIC.
657 */
658 tr->fwlen = cpu_to_le16(skb->len - sizeof(*tr));
659 }
660
661
662 /*
663 * Packet reception for 88w8366 AP firmware.
664 */
665 struct mwl8k_rxd_8366_ap {
666 __le16 pkt_len;
667 __u8 sq2;
668 __u8 rate;
669 __le32 pkt_phys_addr;
670 __le32 next_rxd_phys_addr;
671 __le16 qos_control;
672 __le16 htsig2;
673 __le32 hw_rssi_info;
674 __le32 hw_noise_floor_info;
675 __u8 noise_floor;
676 __u8 pad0[3];
677 __u8 rssi;
678 __u8 rx_status;
679 __u8 channel;
680 __u8 rx_ctrl;
681 } __attribute__((packed));
682
683 #define MWL8K_8366_AP_RATE_INFO_MCS_FORMAT 0x80
684 #define MWL8K_8366_AP_RATE_INFO_40MHZ 0x40
685 #define MWL8K_8366_AP_RATE_INFO_RATEID(x) ((x) & 0x3f)
686
687 #define MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST 0x80
688
689 static void mwl8k_rxd_8366_ap_init(void *_rxd, dma_addr_t next_dma_addr)
690 {
691 struct mwl8k_rxd_8366_ap *rxd = _rxd;
692
693 rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr);
694 rxd->rx_ctrl = MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST;
695 }
696
697 static void mwl8k_rxd_8366_ap_refill(void *_rxd, dma_addr_t addr, int len)
698 {
699 struct mwl8k_rxd_8366_ap *rxd = _rxd;
700
701 rxd->pkt_len = cpu_to_le16(len);
702 rxd->pkt_phys_addr = cpu_to_le32(addr);
703 wmb();
704 rxd->rx_ctrl = 0;
705 }
706
707 static int
708 mwl8k_rxd_8366_ap_process(void *_rxd, struct ieee80211_rx_status *status,
709 __le16 *qos)
710 {
711 struct mwl8k_rxd_8366_ap *rxd = _rxd;
712
713 if (!(rxd->rx_ctrl & MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST))
714 return -1;
715 rmb();
716
717 memset(status, 0, sizeof(*status));
718
719 status->signal = -rxd->rssi;
720 status->noise = -rxd->noise_floor;
721
722 if (rxd->rate & MWL8K_8366_AP_RATE_INFO_MCS_FORMAT) {
723 status->flag |= RX_FLAG_HT;
724 if (rxd->rate & MWL8K_8366_AP_RATE_INFO_40MHZ)
725 status->flag |= RX_FLAG_40MHZ;
726 status->rate_idx = MWL8K_8366_AP_RATE_INFO_RATEID(rxd->rate);
727 } else {
728 int i;
729
730 for (i = 0; i < ARRAY_SIZE(mwl8k_rates); i++) {
731 if (mwl8k_rates[i].hw_value == rxd->rate) {
732 status->rate_idx = i;
733 break;
734 }
735 }
736 }
737
738 status->band = IEEE80211_BAND_2GHZ;
739 status->freq = ieee80211_channel_to_frequency(rxd->channel);
740
741 *qos = rxd->qos_control;
742
743 return le16_to_cpu(rxd->pkt_len);
744 }
745
746 static struct rxd_ops rxd_8366_ap_ops = {
747 .rxd_size = sizeof(struct mwl8k_rxd_8366_ap),
748 .rxd_init = mwl8k_rxd_8366_ap_init,
749 .rxd_refill = mwl8k_rxd_8366_ap_refill,
750 .rxd_process = mwl8k_rxd_8366_ap_process,
751 };
752
753 /*
754 * Packet reception for STA firmware.
755 */
756 struct mwl8k_rxd_sta {
757 __le16 pkt_len;
758 __u8 link_quality;
759 __u8 noise_level;
760 __le32 pkt_phys_addr;
761 __le32 next_rxd_phys_addr;
762 __le16 qos_control;
763 __le16 rate_info;
764 __le32 pad0[4];
765 __u8 rssi;
766 __u8 channel;
767 __le16 pad1;
768 __u8 rx_ctrl;
769 __u8 rx_status;
770 __u8 pad2[2];
771 } __attribute__((packed));
772
773 #define MWL8K_STA_RATE_INFO_SHORTPRE 0x8000
774 #define MWL8K_STA_RATE_INFO_ANTSELECT(x) (((x) >> 11) & 0x3)
775 #define MWL8K_STA_RATE_INFO_RATEID(x) (((x) >> 3) & 0x3f)
776 #define MWL8K_STA_RATE_INFO_40MHZ 0x0004
777 #define MWL8K_STA_RATE_INFO_SHORTGI 0x0002
778 #define MWL8K_STA_RATE_INFO_MCS_FORMAT 0x0001
779
780 #define MWL8K_STA_RX_CTRL_OWNED_BY_HOST 0x02
781
782 static void mwl8k_rxd_sta_init(void *_rxd, dma_addr_t next_dma_addr)
783 {
784 struct mwl8k_rxd_sta *rxd = _rxd;
785
786 rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr);
787 rxd->rx_ctrl = MWL8K_STA_RX_CTRL_OWNED_BY_HOST;
788 }
789
790 static void mwl8k_rxd_sta_refill(void *_rxd, dma_addr_t addr, int len)
791 {
792 struct mwl8k_rxd_sta *rxd = _rxd;
793
794 rxd->pkt_len = cpu_to_le16(len);
795 rxd->pkt_phys_addr = cpu_to_le32(addr);
796 wmb();
797 rxd->rx_ctrl = 0;
798 }
799
800 static int
801 mwl8k_rxd_sta_process(void *_rxd, struct ieee80211_rx_status *status,
802 __le16 *qos)
803 {
804 struct mwl8k_rxd_sta *rxd = _rxd;
805 u16 rate_info;
806
807 if (!(rxd->rx_ctrl & MWL8K_STA_RX_CTRL_OWNED_BY_HOST))
808 return -1;
809 rmb();
810
811 rate_info = le16_to_cpu(rxd->rate_info);
812
813 memset(status, 0, sizeof(*status));
814
815 status->signal = -rxd->rssi;
816 status->noise = -rxd->noise_level;
817 status->antenna = MWL8K_STA_RATE_INFO_ANTSELECT(rate_info);
818 status->rate_idx = MWL8K_STA_RATE_INFO_RATEID(rate_info);
819
820 if (rate_info & MWL8K_STA_RATE_INFO_SHORTPRE)
821 status->flag |= RX_FLAG_SHORTPRE;
822 if (rate_info & MWL8K_STA_RATE_INFO_40MHZ)
823 status->flag |= RX_FLAG_40MHZ;
824 if (rate_info & MWL8K_STA_RATE_INFO_SHORTGI)
825 status->flag |= RX_FLAG_SHORT_GI;
826 if (rate_info & MWL8K_STA_RATE_INFO_MCS_FORMAT)
827 status->flag |= RX_FLAG_HT;
828
829 status->band = IEEE80211_BAND_2GHZ;
830 status->freq = ieee80211_channel_to_frequency(rxd->channel);
831
832 *qos = rxd->qos_control;
833
834 return le16_to_cpu(rxd->pkt_len);
835 }
836
837 static struct rxd_ops rxd_sta_ops = {
838 .rxd_size = sizeof(struct mwl8k_rxd_sta),
839 .rxd_init = mwl8k_rxd_sta_init,
840 .rxd_refill = mwl8k_rxd_sta_refill,
841 .rxd_process = mwl8k_rxd_sta_process,
842 };
843
844
845 #define MWL8K_RX_DESCS 256
846 #define MWL8K_RX_MAXSZ 3800
847
848 static int mwl8k_rxq_init(struct ieee80211_hw *hw, int index)
849 {
850 struct mwl8k_priv *priv = hw->priv;
851 struct mwl8k_rx_queue *rxq = priv->rxq + index;
852 int size;
853 int i;
854
855 rxq->rxd_count = 0;
856 rxq->head = 0;
857 rxq->tail = 0;
858
859 size = MWL8K_RX_DESCS * priv->rxd_ops->rxd_size;
860
861 rxq->rxd = pci_alloc_consistent(priv->pdev, size, &rxq->rxd_dma);
862 if (rxq->rxd == NULL) {
863 printk(KERN_ERR "%s: failed to alloc RX descriptors\n",
864 wiphy_name(hw->wiphy));
865 return -ENOMEM;
866 }
867 memset(rxq->rxd, 0, size);
868
869 rxq->buf = kmalloc(MWL8K_RX_DESCS * sizeof(*rxq->buf), GFP_KERNEL);
870 if (rxq->buf == NULL) {
871 printk(KERN_ERR "%s: failed to alloc RX skbuff list\n",
872 wiphy_name(hw->wiphy));
873 pci_free_consistent(priv->pdev, size, rxq->rxd, rxq->rxd_dma);
874 return -ENOMEM;
875 }
876 memset(rxq->buf, 0, MWL8K_RX_DESCS * sizeof(*rxq->buf));
877
878 for (i = 0; i < MWL8K_RX_DESCS; i++) {
879 int desc_size;
880 void *rxd;
881 int nexti;
882 dma_addr_t next_dma_addr;
883
884 desc_size = priv->rxd_ops->rxd_size;
885 rxd = rxq->rxd + (i * priv->rxd_ops->rxd_size);
886
887 nexti = i + 1;
888 if (nexti == MWL8K_RX_DESCS)
889 nexti = 0;
890 next_dma_addr = rxq->rxd_dma + (nexti * desc_size);
891
892 priv->rxd_ops->rxd_init(rxd, next_dma_addr);
893 }
894
895 return 0;
896 }
897
898 static int rxq_refill(struct ieee80211_hw *hw, int index, int limit)
899 {
900 struct mwl8k_priv *priv = hw->priv;
901 struct mwl8k_rx_queue *rxq = priv->rxq + index;
902 int refilled;
903
904 refilled = 0;
905 while (rxq->rxd_count < MWL8K_RX_DESCS && limit--) {
906 struct sk_buff *skb;
907 dma_addr_t addr;
908 int rx;
909 void *rxd;
910
911 skb = dev_alloc_skb(MWL8K_RX_MAXSZ);
912 if (skb == NULL)
913 break;
914
915 addr = pci_map_single(priv->pdev, skb->data,
916 MWL8K_RX_MAXSZ, DMA_FROM_DEVICE);
917
918 rxq->rxd_count++;
919 rx = rxq->tail++;
920 if (rxq->tail == MWL8K_RX_DESCS)
921 rxq->tail = 0;
922 rxq->buf[rx].skb = skb;
923 pci_unmap_addr_set(&rxq->buf[rx], dma, addr);
924
925 rxd = rxq->rxd + (rx * priv->rxd_ops->rxd_size);
926 priv->rxd_ops->rxd_refill(rxd, addr, MWL8K_RX_MAXSZ);
927
928 refilled++;
929 }
930
931 return refilled;
932 }
933
934 /* Must be called only when the card's reception is completely halted */
935 static void mwl8k_rxq_deinit(struct ieee80211_hw *hw, int index)
936 {
937 struct mwl8k_priv *priv = hw->priv;
938 struct mwl8k_rx_queue *rxq = priv->rxq + index;
939 int i;
940
941 for (i = 0; i < MWL8K_RX_DESCS; i++) {
942 if (rxq->buf[i].skb != NULL) {
943 pci_unmap_single(priv->pdev,
944 pci_unmap_addr(&rxq->buf[i], dma),
945 MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE);
946 pci_unmap_addr_set(&rxq->buf[i], dma, 0);
947
948 kfree_skb(rxq->buf[i].skb);
949 rxq->buf[i].skb = NULL;
950 }
951 }
952
953 kfree(rxq->buf);
954 rxq->buf = NULL;
955
956 pci_free_consistent(priv->pdev,
957 MWL8K_RX_DESCS * priv->rxd_ops->rxd_size,
958 rxq->rxd, rxq->rxd_dma);
959 rxq->rxd = NULL;
960 }
961
962
963 /*
964 * Scan a list of BSSIDs to process for finalize join.
965 * Allows for extension to process multiple BSSIDs.
966 */
967 static inline int
968 mwl8k_capture_bssid(struct mwl8k_priv *priv, struct ieee80211_hdr *wh)
969 {
970 return priv->capture_beacon &&
971 ieee80211_is_beacon(wh->frame_control) &&
972 !compare_ether_addr(wh->addr3, priv->capture_bssid);
973 }
974
975 static inline void mwl8k_save_beacon(struct ieee80211_hw *hw,
976 struct sk_buff *skb)
977 {
978 struct mwl8k_priv *priv = hw->priv;
979
980 priv->capture_beacon = false;
981 memset(priv->capture_bssid, 0, ETH_ALEN);
982
983 /*
984 * Use GFP_ATOMIC as rxq_process is called from
985 * the primary interrupt handler, memory allocation call
986 * must not sleep.
987 */
988 priv->beacon_skb = skb_copy(skb, GFP_ATOMIC);
989 if (priv->beacon_skb != NULL)
990 ieee80211_queue_work(hw, &priv->finalize_join_worker);
991 }
992
993 static int rxq_process(struct ieee80211_hw *hw, int index, int limit)
994 {
995 struct mwl8k_priv *priv = hw->priv;
996 struct mwl8k_rx_queue *rxq = priv->rxq + index;
997 int processed;
998
999 processed = 0;
1000 while (rxq->rxd_count && limit--) {
1001 struct sk_buff *skb;
1002 void *rxd;
1003 int pkt_len;
1004 struct ieee80211_rx_status status;
1005 __le16 qos;
1006
1007 skb = rxq->buf[rxq->head].skb;
1008 if (skb == NULL)
1009 break;
1010
1011 rxd = rxq->rxd + (rxq->head * priv->rxd_ops->rxd_size);
1012
1013 pkt_len = priv->rxd_ops->rxd_process(rxd, &status, &qos);
1014 if (pkt_len < 0)
1015 break;
1016
1017 rxq->buf[rxq->head].skb = NULL;
1018
1019 pci_unmap_single(priv->pdev,
1020 pci_unmap_addr(&rxq->buf[rxq->head], dma),
1021 MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE);
1022 pci_unmap_addr_set(&rxq->buf[rxq->head], dma, 0);
1023
1024 rxq->head++;
1025 if (rxq->head == MWL8K_RX_DESCS)
1026 rxq->head = 0;
1027
1028 rxq->rxd_count--;
1029
1030 skb_put(skb, pkt_len);
1031 mwl8k_remove_dma_header(skb, qos);
1032
1033 /*
1034 * Check for a pending join operation. Save a
1035 * copy of the beacon and schedule a tasklet to
1036 * send a FINALIZE_JOIN command to the firmware.
1037 */
1038 if (mwl8k_capture_bssid(priv, (void *)skb->data))
1039 mwl8k_save_beacon(hw, skb);
1040
1041 memcpy(IEEE80211_SKB_RXCB(skb), &status, sizeof(status));
1042 ieee80211_rx_irqsafe(hw, skb);
1043
1044 processed++;
1045 }
1046
1047 return processed;
1048 }
1049
1050
1051 /*
1052 * Packet transmission.
1053 */
1054
1055 #define MWL8K_TXD_STATUS_OK 0x00000001
1056 #define MWL8K_TXD_STATUS_OK_RETRY 0x00000002
1057 #define MWL8K_TXD_STATUS_OK_MORE_RETRY 0x00000004
1058 #define MWL8K_TXD_STATUS_MULTICAST_TX 0x00000008
1059 #define MWL8K_TXD_STATUS_FW_OWNED 0x80000000
1060
1061 #define MWL8K_QOS_QLEN_UNSPEC 0xff00
1062 #define MWL8K_QOS_ACK_POLICY_MASK 0x0060
1063 #define MWL8K_QOS_ACK_POLICY_NORMAL 0x0000
1064 #define MWL8K_QOS_ACK_POLICY_BLOCKACK 0x0060
1065 #define MWL8K_QOS_EOSP 0x0010
1066
1067 struct mwl8k_tx_desc {
1068 __le32 status;
1069 __u8 data_rate;
1070 __u8 tx_priority;
1071 __le16 qos_control;
1072 __le32 pkt_phys_addr;
1073 __le16 pkt_len;
1074 __u8 dest_MAC_addr[ETH_ALEN];
1075 __le32 next_txd_phys_addr;
1076 __le32 reserved;
1077 __le16 rate_info;
1078 __u8 peer_id;
1079 __u8 tx_frag_cnt;
1080 } __attribute__((packed));
1081
1082 #define MWL8K_TX_DESCS 128
1083
1084 static int mwl8k_txq_init(struct ieee80211_hw *hw, int index)
1085 {
1086 struct mwl8k_priv *priv = hw->priv;
1087 struct mwl8k_tx_queue *txq = priv->txq + index;
1088 int size;
1089 int i;
1090
1091 memset(&txq->stats, 0, sizeof(struct ieee80211_tx_queue_stats));
1092 txq->stats.limit = MWL8K_TX_DESCS;
1093 txq->head = 0;
1094 txq->tail = 0;
1095
1096 size = MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc);
1097
1098 txq->txd = pci_alloc_consistent(priv->pdev, size, &txq->txd_dma);
1099 if (txq->txd == NULL) {
1100 printk(KERN_ERR "%s: failed to alloc TX descriptors\n",
1101 wiphy_name(hw->wiphy));
1102 return -ENOMEM;
1103 }
1104 memset(txq->txd, 0, size);
1105
1106 txq->skb = kmalloc(MWL8K_TX_DESCS * sizeof(*txq->skb), GFP_KERNEL);
1107 if (txq->skb == NULL) {
1108 printk(KERN_ERR "%s: failed to alloc TX skbuff list\n",
1109 wiphy_name(hw->wiphy));
1110 pci_free_consistent(priv->pdev, size, txq->txd, txq->txd_dma);
1111 return -ENOMEM;
1112 }
1113 memset(txq->skb, 0, MWL8K_TX_DESCS * sizeof(*txq->skb));
1114
1115 for (i = 0; i < MWL8K_TX_DESCS; i++) {
1116 struct mwl8k_tx_desc *tx_desc;
1117 int nexti;
1118
1119 tx_desc = txq->txd + i;
1120 nexti = (i + 1) % MWL8K_TX_DESCS;
1121
1122 tx_desc->status = 0;
1123 tx_desc->next_txd_phys_addr =
1124 cpu_to_le32(txq->txd_dma + nexti * sizeof(*tx_desc));
1125 }
1126
1127 return 0;
1128 }
1129
1130 static inline void mwl8k_tx_start(struct mwl8k_priv *priv)
1131 {
1132 iowrite32(MWL8K_H2A_INT_PPA_READY,
1133 priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
1134 iowrite32(MWL8K_H2A_INT_DUMMY,
1135 priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
1136 ioread32(priv->regs + MWL8K_HIU_INT_CODE);
1137 }
1138
1139 static void mwl8k_dump_tx_rings(struct ieee80211_hw *hw)
1140 {
1141 struct mwl8k_priv *priv = hw->priv;
1142 int i;
1143
1144 for (i = 0; i < MWL8K_TX_QUEUES; i++) {
1145 struct mwl8k_tx_queue *txq = priv->txq + i;
1146 int fw_owned = 0;
1147 int drv_owned = 0;
1148 int unused = 0;
1149 int desc;
1150
1151 for (desc = 0; desc < MWL8K_TX_DESCS; desc++) {
1152 struct mwl8k_tx_desc *tx_desc = txq->txd + desc;
1153 u32 status;
1154
1155 status = le32_to_cpu(tx_desc->status);
1156 if (status & MWL8K_TXD_STATUS_FW_OWNED)
1157 fw_owned++;
1158 else
1159 drv_owned++;
1160
1161 if (tx_desc->pkt_len == 0)
1162 unused++;
1163 }
1164
1165 printk(KERN_ERR "%s: txq[%d] len=%d head=%d tail=%d "
1166 "fw_owned=%d drv_owned=%d unused=%d\n",
1167 wiphy_name(hw->wiphy), i,
1168 txq->stats.len, txq->head, txq->tail,
1169 fw_owned, drv_owned, unused);
1170 }
1171 }
1172
1173 /*
1174 * Must be called with priv->fw_mutex held and tx queues stopped.
1175 */
1176 #define MWL8K_TX_WAIT_TIMEOUT_MS 1000
1177
1178 static int mwl8k_tx_wait_empty(struct ieee80211_hw *hw)
1179 {
1180 struct mwl8k_priv *priv = hw->priv;
1181 DECLARE_COMPLETION_ONSTACK(tx_wait);
1182 int retry;
1183 int rc;
1184
1185 might_sleep();
1186
1187 /*
1188 * The TX queues are stopped at this point, so this test
1189 * doesn't need to take ->tx_lock.
1190 */
1191 if (!priv->pending_tx_pkts)
1192 return 0;
1193
1194 retry = 0;
1195 rc = 0;
1196
1197 spin_lock_bh(&priv->tx_lock);
1198 priv->tx_wait = &tx_wait;
1199 while (!rc) {
1200 int oldcount;
1201 unsigned long timeout;
1202
1203 oldcount = priv->pending_tx_pkts;
1204
1205 spin_unlock_bh(&priv->tx_lock);
1206 timeout = wait_for_completion_timeout(&tx_wait,
1207 msecs_to_jiffies(MWL8K_TX_WAIT_TIMEOUT_MS));
1208 spin_lock_bh(&priv->tx_lock);
1209
1210 if (timeout) {
1211 WARN_ON(priv->pending_tx_pkts);
1212 if (retry) {
1213 printk(KERN_NOTICE "%s: tx rings drained\n",
1214 wiphy_name(hw->wiphy));
1215 }
1216 break;
1217 }
1218
1219 if (priv->pending_tx_pkts < oldcount) {
1220 printk(KERN_NOTICE "%s: waiting for tx rings "
1221 "to drain (%d -> %d pkts)\n",
1222 wiphy_name(hw->wiphy), oldcount,
1223 priv->pending_tx_pkts);
1224 retry = 1;
1225 continue;
1226 }
1227
1228 priv->tx_wait = NULL;
1229
1230 printk(KERN_ERR "%s: tx rings stuck for %d ms\n",
1231 wiphy_name(hw->wiphy), MWL8K_TX_WAIT_TIMEOUT_MS);
1232 mwl8k_dump_tx_rings(hw);
1233
1234 rc = -ETIMEDOUT;
1235 }
1236 spin_unlock_bh(&priv->tx_lock);
1237
1238 return rc;
1239 }
1240
1241 #define MWL8K_TXD_SUCCESS(status) \
1242 ((status) & (MWL8K_TXD_STATUS_OK | \
1243 MWL8K_TXD_STATUS_OK_RETRY | \
1244 MWL8K_TXD_STATUS_OK_MORE_RETRY))
1245
1246 static void mwl8k_txq_reclaim(struct ieee80211_hw *hw, int index, int force)
1247 {
1248 struct mwl8k_priv *priv = hw->priv;
1249 struct mwl8k_tx_queue *txq = priv->txq + index;
1250 int wake = 0;
1251
1252 while (txq->stats.len > 0) {
1253 int tx;
1254 struct mwl8k_tx_desc *tx_desc;
1255 unsigned long addr;
1256 int size;
1257 struct sk_buff *skb;
1258 struct ieee80211_tx_info *info;
1259 u32 status;
1260
1261 tx = txq->head;
1262 tx_desc = txq->txd + tx;
1263
1264 status = le32_to_cpu(tx_desc->status);
1265
1266 if (status & MWL8K_TXD_STATUS_FW_OWNED) {
1267 if (!force)
1268 break;
1269 tx_desc->status &=
1270 ~cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED);
1271 }
1272
1273 txq->head = (tx + 1) % MWL8K_TX_DESCS;
1274 BUG_ON(txq->stats.len == 0);
1275 txq->stats.len--;
1276 priv->pending_tx_pkts--;
1277
1278 addr = le32_to_cpu(tx_desc->pkt_phys_addr);
1279 size = le16_to_cpu(tx_desc->pkt_len);
1280 skb = txq->skb[tx];
1281 txq->skb[tx] = NULL;
1282
1283 BUG_ON(skb == NULL);
1284 pci_unmap_single(priv->pdev, addr, size, PCI_DMA_TODEVICE);
1285
1286 mwl8k_remove_dma_header(skb, tx_desc->qos_control);
1287
1288 /* Mark descriptor as unused */
1289 tx_desc->pkt_phys_addr = 0;
1290 tx_desc->pkt_len = 0;
1291
1292 info = IEEE80211_SKB_CB(skb);
1293 ieee80211_tx_info_clear_status(info);
1294 if (MWL8K_TXD_SUCCESS(status))
1295 info->flags |= IEEE80211_TX_STAT_ACK;
1296
1297 ieee80211_tx_status_irqsafe(hw, skb);
1298
1299 wake = 1;
1300 }
1301
1302 if (wake && priv->radio_on && !mutex_is_locked(&priv->fw_mutex))
1303 ieee80211_wake_queue(hw, index);
1304 }
1305
1306 /* must be called only when the card's transmit is completely halted */
1307 static void mwl8k_txq_deinit(struct ieee80211_hw *hw, int index)
1308 {
1309 struct mwl8k_priv *priv = hw->priv;
1310 struct mwl8k_tx_queue *txq = priv->txq + index;
1311
1312 mwl8k_txq_reclaim(hw, index, 1);
1313
1314 kfree(txq->skb);
1315 txq->skb = NULL;
1316
1317 pci_free_consistent(priv->pdev,
1318 MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc),
1319 txq->txd, txq->txd_dma);
1320 txq->txd = NULL;
1321 }
1322
1323 static int
1324 mwl8k_txq_xmit(struct ieee80211_hw *hw, int index, struct sk_buff *skb)
1325 {
1326 struct mwl8k_priv *priv = hw->priv;
1327 struct ieee80211_tx_info *tx_info;
1328 struct mwl8k_vif *mwl8k_vif;
1329 struct ieee80211_hdr *wh;
1330 struct mwl8k_tx_queue *txq;
1331 struct mwl8k_tx_desc *tx;
1332 dma_addr_t dma;
1333 u32 txstatus;
1334 u8 txdatarate;
1335 u16 qos;
1336
1337 wh = (struct ieee80211_hdr *)skb->data;
1338 if (ieee80211_is_data_qos(wh->frame_control))
1339 qos = le16_to_cpu(*((__le16 *)ieee80211_get_qos_ctl(wh)));
1340 else
1341 qos = 0;
1342
1343 mwl8k_add_dma_header(skb);
1344 wh = &((struct mwl8k_dma_data *)skb->data)->wh;
1345
1346 tx_info = IEEE80211_SKB_CB(skb);
1347 mwl8k_vif = MWL8K_VIF(tx_info->control.vif);
1348
1349 if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1350 u16 seqno = mwl8k_vif->seqno;
1351
1352 wh->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1353 wh->seq_ctrl |= cpu_to_le16(seqno << 4);
1354 mwl8k_vif->seqno = seqno++ % 4096;
1355 }
1356
1357 /* Setup firmware control bit fields for each frame type. */
1358 txstatus = 0;
1359 txdatarate = 0;
1360 if (ieee80211_is_mgmt(wh->frame_control) ||
1361 ieee80211_is_ctl(wh->frame_control)) {
1362 txdatarate = 0;
1363 qos |= MWL8K_QOS_QLEN_UNSPEC | MWL8K_QOS_EOSP;
1364 } else if (ieee80211_is_data(wh->frame_control)) {
1365 txdatarate = 1;
1366 if (is_multicast_ether_addr(wh->addr1))
1367 txstatus |= MWL8K_TXD_STATUS_MULTICAST_TX;
1368
1369 qos &= ~MWL8K_QOS_ACK_POLICY_MASK;
1370 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1371 qos |= MWL8K_QOS_ACK_POLICY_BLOCKACK;
1372 else
1373 qos |= MWL8K_QOS_ACK_POLICY_NORMAL;
1374 }
1375
1376 dma = pci_map_single(priv->pdev, skb->data,
1377 skb->len, PCI_DMA_TODEVICE);
1378
1379 if (pci_dma_mapping_error(priv->pdev, dma)) {
1380 printk(KERN_DEBUG "%s: failed to dma map skb, "
1381 "dropping TX frame.\n", wiphy_name(hw->wiphy));
1382 dev_kfree_skb(skb);
1383 return NETDEV_TX_OK;
1384 }
1385
1386 spin_lock_bh(&priv->tx_lock);
1387
1388 txq = priv->txq + index;
1389
1390 BUG_ON(txq->skb[txq->tail] != NULL);
1391 txq->skb[txq->tail] = skb;
1392
1393 tx = txq->txd + txq->tail;
1394 tx->data_rate = txdatarate;
1395 tx->tx_priority = index;
1396 tx->qos_control = cpu_to_le16(qos);
1397 tx->pkt_phys_addr = cpu_to_le32(dma);
1398 tx->pkt_len = cpu_to_le16(skb->len);
1399 tx->rate_info = 0;
1400 if (!priv->ap_fw && tx_info->control.sta != NULL)
1401 tx->peer_id = MWL8K_STA(tx_info->control.sta)->peer_id;
1402 else
1403 tx->peer_id = 0;
1404 wmb();
1405 tx->status = cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED | txstatus);
1406
1407 txq->stats.count++;
1408 txq->stats.len++;
1409 priv->pending_tx_pkts++;
1410
1411 txq->tail++;
1412 if (txq->tail == MWL8K_TX_DESCS)
1413 txq->tail = 0;
1414
1415 if (txq->head == txq->tail)
1416 ieee80211_stop_queue(hw, index);
1417
1418 mwl8k_tx_start(priv);
1419
1420 spin_unlock_bh(&priv->tx_lock);
1421
1422 return NETDEV_TX_OK;
1423 }
1424
1425
1426 /*
1427 * Firmware access.
1428 *
1429 * We have the following requirements for issuing firmware commands:
1430 * - Some commands require that the packet transmit path is idle when
1431 * the command is issued. (For simplicity, we'll just quiesce the
1432 * transmit path for every command.)
1433 * - There are certain sequences of commands that need to be issued to
1434 * the hardware sequentially, with no other intervening commands.
1435 *
1436 * This leads to an implementation of a "firmware lock" as a mutex that
1437 * can be taken recursively, and which is taken by both the low-level
1438 * command submission function (mwl8k_post_cmd) as well as any users of
1439 * that function that require issuing of an atomic sequence of commands,
1440 * and quiesces the transmit path whenever it's taken.
1441 */
1442 static int mwl8k_fw_lock(struct ieee80211_hw *hw)
1443 {
1444 struct mwl8k_priv *priv = hw->priv;
1445
1446 if (priv->fw_mutex_owner != current) {
1447 int rc;
1448
1449 mutex_lock(&priv->fw_mutex);
1450 ieee80211_stop_queues(hw);
1451
1452 rc = mwl8k_tx_wait_empty(hw);
1453 if (rc) {
1454 ieee80211_wake_queues(hw);
1455 mutex_unlock(&priv->fw_mutex);
1456
1457 return rc;
1458 }
1459
1460 priv->fw_mutex_owner = current;
1461 }
1462
1463 priv->fw_mutex_depth++;
1464
1465 return 0;
1466 }
1467
1468 static void mwl8k_fw_unlock(struct ieee80211_hw *hw)
1469 {
1470 struct mwl8k_priv *priv = hw->priv;
1471
1472 if (!--priv->fw_mutex_depth) {
1473 ieee80211_wake_queues(hw);
1474 priv->fw_mutex_owner = NULL;
1475 mutex_unlock(&priv->fw_mutex);
1476 }
1477 }
1478
1479
1480 /*
1481 * Command processing.
1482 */
1483
1484 /* Timeout firmware commands after 10s */
1485 #define MWL8K_CMD_TIMEOUT_MS 10000
1486
1487 static int mwl8k_post_cmd(struct ieee80211_hw *hw, struct mwl8k_cmd_pkt *cmd)
1488 {
1489 DECLARE_COMPLETION_ONSTACK(cmd_wait);
1490 struct mwl8k_priv *priv = hw->priv;
1491 void __iomem *regs = priv->regs;
1492 dma_addr_t dma_addr;
1493 unsigned int dma_size;
1494 int rc;
1495 unsigned long timeout = 0;
1496 u8 buf[32];
1497
1498 cmd->result = 0xffff;
1499 dma_size = le16_to_cpu(cmd->length);
1500 dma_addr = pci_map_single(priv->pdev, cmd, dma_size,
1501 PCI_DMA_BIDIRECTIONAL);
1502 if (pci_dma_mapping_error(priv->pdev, dma_addr))
1503 return -ENOMEM;
1504
1505 rc = mwl8k_fw_lock(hw);
1506 if (rc) {
1507 pci_unmap_single(priv->pdev, dma_addr, dma_size,
1508 PCI_DMA_BIDIRECTIONAL);
1509 return rc;
1510 }
1511
1512 priv->hostcmd_wait = &cmd_wait;
1513 iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR);
1514 iowrite32(MWL8K_H2A_INT_DOORBELL,
1515 regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
1516 iowrite32(MWL8K_H2A_INT_DUMMY,
1517 regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
1518
1519 timeout = wait_for_completion_timeout(&cmd_wait,
1520 msecs_to_jiffies(MWL8K_CMD_TIMEOUT_MS));
1521
1522 priv->hostcmd_wait = NULL;
1523
1524 mwl8k_fw_unlock(hw);
1525
1526 pci_unmap_single(priv->pdev, dma_addr, dma_size,
1527 PCI_DMA_BIDIRECTIONAL);
1528
1529 if (!timeout) {
1530 printk(KERN_ERR "%s: Command %s timeout after %u ms\n",
1531 wiphy_name(hw->wiphy),
1532 mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
1533 MWL8K_CMD_TIMEOUT_MS);
1534 rc = -ETIMEDOUT;
1535 } else {
1536 int ms;
1537
1538 ms = MWL8K_CMD_TIMEOUT_MS - jiffies_to_msecs(timeout);
1539
1540 rc = cmd->result ? -EINVAL : 0;
1541 if (rc)
1542 printk(KERN_ERR "%s: Command %s error 0x%x\n",
1543 wiphy_name(hw->wiphy),
1544 mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
1545 le16_to_cpu(cmd->result));
1546 else if (ms > 2000)
1547 printk(KERN_NOTICE "%s: Command %s took %d ms\n",
1548 wiphy_name(hw->wiphy),
1549 mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
1550 ms);
1551 }
1552
1553 return rc;
1554 }
1555
1556 /*
1557 * CMD_GET_HW_SPEC (STA version).
1558 */
1559 struct mwl8k_cmd_get_hw_spec_sta {
1560 struct mwl8k_cmd_pkt header;
1561 __u8 hw_rev;
1562 __u8 host_interface;
1563 __le16 num_mcaddrs;
1564 __u8 perm_addr[ETH_ALEN];
1565 __le16 region_code;
1566 __le32 fw_rev;
1567 __le32 ps_cookie;
1568 __le32 caps;
1569 __u8 mcs_bitmap[16];
1570 __le32 rx_queue_ptr;
1571 __le32 num_tx_queues;
1572 __le32 tx_queue_ptrs[MWL8K_TX_QUEUES];
1573 __le32 caps2;
1574 __le32 num_tx_desc_per_queue;
1575 __le32 total_rxd;
1576 } __attribute__((packed));
1577
1578 #define MWL8K_CAP_MAX_AMSDU 0x20000000
1579 #define MWL8K_CAP_GREENFIELD 0x08000000
1580 #define MWL8K_CAP_AMPDU 0x04000000
1581 #define MWL8K_CAP_RX_STBC 0x01000000
1582 #define MWL8K_CAP_TX_STBC 0x00800000
1583 #define MWL8K_CAP_SHORTGI_40MHZ 0x00400000
1584 #define MWL8K_CAP_SHORTGI_20MHZ 0x00200000
1585 #define MWL8K_CAP_RX_ANTENNA_MASK 0x000e0000
1586 #define MWL8K_CAP_TX_ANTENNA_MASK 0x0001c000
1587 #define MWL8K_CAP_DELAY_BA 0x00003000
1588 #define MWL8K_CAP_MIMO 0x00000200
1589 #define MWL8K_CAP_40MHZ 0x00000100
1590
1591 static void mwl8k_set_ht_caps(struct ieee80211_hw *hw, u32 cap)
1592 {
1593 struct mwl8k_priv *priv = hw->priv;
1594 int rx_streams;
1595 int tx_streams;
1596
1597 priv->band.ht_cap.ht_supported = 1;
1598
1599 if (cap & MWL8K_CAP_MAX_AMSDU)
1600 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU;
1601 if (cap & MWL8K_CAP_GREENFIELD)
1602 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_GRN_FLD;
1603 if (cap & MWL8K_CAP_AMPDU) {
1604 hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
1605 priv->band.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1606 priv->band.ht_cap.ampdu_density =
1607 IEEE80211_HT_MPDU_DENSITY_NONE;
1608 }
1609 if (cap & MWL8K_CAP_RX_STBC)
1610 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_RX_STBC;
1611 if (cap & MWL8K_CAP_TX_STBC)
1612 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC;
1613 if (cap & MWL8K_CAP_SHORTGI_40MHZ)
1614 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
1615 if (cap & MWL8K_CAP_SHORTGI_20MHZ)
1616 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
1617 if (cap & MWL8K_CAP_DELAY_BA)
1618 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_DELAY_BA;
1619 if (cap & MWL8K_CAP_40MHZ)
1620 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1621
1622 rx_streams = hweight32(cap & MWL8K_CAP_RX_ANTENNA_MASK);
1623 tx_streams = hweight32(cap & MWL8K_CAP_TX_ANTENNA_MASK);
1624
1625 priv->band.ht_cap.mcs.rx_mask[0] = 0xff;
1626 if (rx_streams >= 2)
1627 priv->band.ht_cap.mcs.rx_mask[1] = 0xff;
1628 if (rx_streams >= 3)
1629 priv->band.ht_cap.mcs.rx_mask[2] = 0xff;
1630 priv->band.ht_cap.mcs.rx_mask[4] = 0x01;
1631 priv->band.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1632
1633 if (rx_streams != tx_streams) {
1634 priv->band.ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
1635 priv->band.ht_cap.mcs.tx_params |= (tx_streams - 1) <<
1636 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
1637 }
1638 }
1639
1640 static int mwl8k_cmd_get_hw_spec_sta(struct ieee80211_hw *hw)
1641 {
1642 struct mwl8k_priv *priv = hw->priv;
1643 struct mwl8k_cmd_get_hw_spec_sta *cmd;
1644 int rc;
1645 int i;
1646
1647 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1648 if (cmd == NULL)
1649 return -ENOMEM;
1650
1651 cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC);
1652 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1653
1654 memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr));
1655 cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
1656 cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma);
1657 cmd->num_tx_queues = cpu_to_le32(MWL8K_TX_QUEUES);
1658 for (i = 0; i < MWL8K_TX_QUEUES; i++)
1659 cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].txd_dma);
1660 cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS);
1661 cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS);
1662
1663 rc = mwl8k_post_cmd(hw, &cmd->header);
1664
1665 if (!rc) {
1666 SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr);
1667 priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs);
1668 priv->fw_rev = le32_to_cpu(cmd->fw_rev);
1669 priv->hw_rev = cmd->hw_rev;
1670 if (cmd->caps & cpu_to_le32(MWL8K_CAP_MIMO))
1671 mwl8k_set_ht_caps(hw, le32_to_cpu(cmd->caps));
1672 }
1673
1674 kfree(cmd);
1675 return rc;
1676 }
1677
1678 /*
1679 * CMD_GET_HW_SPEC (AP version).
1680 */
1681 struct mwl8k_cmd_get_hw_spec_ap {
1682 struct mwl8k_cmd_pkt header;
1683 __u8 hw_rev;
1684 __u8 host_interface;
1685 __le16 num_wcb;
1686 __le16 num_mcaddrs;
1687 __u8 perm_addr[ETH_ALEN];
1688 __le16 region_code;
1689 __le16 num_antenna;
1690 __le32 fw_rev;
1691 __le32 wcbbase0;
1692 __le32 rxwrptr;
1693 __le32 rxrdptr;
1694 __le32 ps_cookie;
1695 __le32 wcbbase1;
1696 __le32 wcbbase2;
1697 __le32 wcbbase3;
1698 } __attribute__((packed));
1699
1700 static int mwl8k_cmd_get_hw_spec_ap(struct ieee80211_hw *hw)
1701 {
1702 struct mwl8k_priv *priv = hw->priv;
1703 struct mwl8k_cmd_get_hw_spec_ap *cmd;
1704 int rc;
1705
1706 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1707 if (cmd == NULL)
1708 return -ENOMEM;
1709
1710 cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC);
1711 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1712
1713 memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr));
1714 cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
1715
1716 rc = mwl8k_post_cmd(hw, &cmd->header);
1717
1718 if (!rc) {
1719 int off;
1720
1721 SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr);
1722 priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs);
1723 priv->fw_rev = le32_to_cpu(cmd->fw_rev);
1724 priv->hw_rev = cmd->hw_rev;
1725
1726 off = le32_to_cpu(cmd->wcbbase0) & 0xffff;
1727 iowrite32(cpu_to_le32(priv->txq[0].txd_dma), priv->sram + off);
1728
1729 off = le32_to_cpu(cmd->rxwrptr) & 0xffff;
1730 iowrite32(cpu_to_le32(priv->rxq[0].rxd_dma), priv->sram + off);
1731
1732 off = le32_to_cpu(cmd->rxrdptr) & 0xffff;
1733 iowrite32(cpu_to_le32(priv->rxq[0].rxd_dma), priv->sram + off);
1734
1735 off = le32_to_cpu(cmd->wcbbase1) & 0xffff;
1736 iowrite32(cpu_to_le32(priv->txq[1].txd_dma), priv->sram + off);
1737
1738 off = le32_to_cpu(cmd->wcbbase2) & 0xffff;
1739 iowrite32(cpu_to_le32(priv->txq[2].txd_dma), priv->sram + off);
1740
1741 off = le32_to_cpu(cmd->wcbbase3) & 0xffff;
1742 iowrite32(cpu_to_le32(priv->txq[3].txd_dma), priv->sram + off);
1743 }
1744
1745 kfree(cmd);
1746 return rc;
1747 }
1748
1749 /*
1750 * CMD_SET_HW_SPEC.
1751 */
1752 struct mwl8k_cmd_set_hw_spec {
1753 struct mwl8k_cmd_pkt header;
1754 __u8 hw_rev;
1755 __u8 host_interface;
1756 __le16 num_mcaddrs;
1757 __u8 perm_addr[ETH_ALEN];
1758 __le16 region_code;
1759 __le32 fw_rev;
1760 __le32 ps_cookie;
1761 __le32 caps;
1762 __le32 rx_queue_ptr;
1763 __le32 num_tx_queues;
1764 __le32 tx_queue_ptrs[MWL8K_TX_QUEUES];
1765 __le32 flags;
1766 __le32 num_tx_desc_per_queue;
1767 __le32 total_rxd;
1768 } __attribute__((packed));
1769
1770 #define MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT 0x00000080
1771
1772 static int mwl8k_cmd_set_hw_spec(struct ieee80211_hw *hw)
1773 {
1774 struct mwl8k_priv *priv = hw->priv;
1775 struct mwl8k_cmd_set_hw_spec *cmd;
1776 int rc;
1777 int i;
1778
1779 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1780 if (cmd == NULL)
1781 return -ENOMEM;
1782
1783 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_HW_SPEC);
1784 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1785
1786 cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
1787 cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma);
1788 cmd->num_tx_queues = cpu_to_le32(MWL8K_TX_QUEUES);
1789 for (i = 0; i < MWL8K_TX_QUEUES; i++)
1790 cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].txd_dma);
1791 cmd->flags = cpu_to_le32(MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT);
1792 cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS);
1793 cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS);
1794
1795 rc = mwl8k_post_cmd(hw, &cmd->header);
1796 kfree(cmd);
1797
1798 return rc;
1799 }
1800
1801 /*
1802 * CMD_MAC_MULTICAST_ADR.
1803 */
1804 struct mwl8k_cmd_mac_multicast_adr {
1805 struct mwl8k_cmd_pkt header;
1806 __le16 action;
1807 __le16 numaddr;
1808 __u8 addr[0][ETH_ALEN];
1809 };
1810
1811 #define MWL8K_ENABLE_RX_DIRECTED 0x0001
1812 #define MWL8K_ENABLE_RX_MULTICAST 0x0002
1813 #define MWL8K_ENABLE_RX_ALL_MULTICAST 0x0004
1814 #define MWL8K_ENABLE_RX_BROADCAST 0x0008
1815
1816 static struct mwl8k_cmd_pkt *
1817 __mwl8k_cmd_mac_multicast_adr(struct ieee80211_hw *hw, int allmulti,
1818 int mc_count, struct dev_addr_list *mclist)
1819 {
1820 struct mwl8k_priv *priv = hw->priv;
1821 struct mwl8k_cmd_mac_multicast_adr *cmd;
1822 int size;
1823
1824 if (allmulti || mc_count > priv->num_mcaddrs) {
1825 allmulti = 1;
1826 mc_count = 0;
1827 }
1828
1829 size = sizeof(*cmd) + mc_count * ETH_ALEN;
1830
1831 cmd = kzalloc(size, GFP_ATOMIC);
1832 if (cmd == NULL)
1833 return NULL;
1834
1835 cmd->header.code = cpu_to_le16(MWL8K_CMD_MAC_MULTICAST_ADR);
1836 cmd->header.length = cpu_to_le16(size);
1837 cmd->action = cpu_to_le16(MWL8K_ENABLE_RX_DIRECTED |
1838 MWL8K_ENABLE_RX_BROADCAST);
1839
1840 if (allmulti) {
1841 cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_ALL_MULTICAST);
1842 } else if (mc_count) {
1843 int i;
1844
1845 cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_MULTICAST);
1846 cmd->numaddr = cpu_to_le16(mc_count);
1847 for (i = 0; i < mc_count && mclist; i++) {
1848 if (mclist->da_addrlen != ETH_ALEN) {
1849 kfree(cmd);
1850 return NULL;
1851 }
1852 memcpy(cmd->addr[i], mclist->da_addr, ETH_ALEN);
1853 mclist = mclist->next;
1854 }
1855 }
1856
1857 return &cmd->header;
1858 }
1859
1860 /*
1861 * CMD_GET_STAT.
1862 */
1863 struct mwl8k_cmd_get_stat {
1864 struct mwl8k_cmd_pkt header;
1865 __le32 stats[64];
1866 } __attribute__((packed));
1867
1868 #define MWL8K_STAT_ACK_FAILURE 9
1869 #define MWL8K_STAT_RTS_FAILURE 12
1870 #define MWL8K_STAT_FCS_ERROR 24
1871 #define MWL8K_STAT_RTS_SUCCESS 11
1872
1873 static int mwl8k_cmd_get_stat(struct ieee80211_hw *hw,
1874 struct ieee80211_low_level_stats *stats)
1875 {
1876 struct mwl8k_cmd_get_stat *cmd;
1877 int rc;
1878
1879 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1880 if (cmd == NULL)
1881 return -ENOMEM;
1882
1883 cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_STAT);
1884 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1885
1886 rc = mwl8k_post_cmd(hw, &cmd->header);
1887 if (!rc) {
1888 stats->dot11ACKFailureCount =
1889 le32_to_cpu(cmd->stats[MWL8K_STAT_ACK_FAILURE]);
1890 stats->dot11RTSFailureCount =
1891 le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_FAILURE]);
1892 stats->dot11FCSErrorCount =
1893 le32_to_cpu(cmd->stats[MWL8K_STAT_FCS_ERROR]);
1894 stats->dot11RTSSuccessCount =
1895 le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_SUCCESS]);
1896 }
1897 kfree(cmd);
1898
1899 return rc;
1900 }
1901
1902 /*
1903 * CMD_RADIO_CONTROL.
1904 */
1905 struct mwl8k_cmd_radio_control {
1906 struct mwl8k_cmd_pkt header;
1907 __le16 action;
1908 __le16 control;
1909 __le16 radio_on;
1910 } __attribute__((packed));
1911
1912 static int
1913 mwl8k_cmd_radio_control(struct ieee80211_hw *hw, bool enable, bool force)
1914 {
1915 struct mwl8k_priv *priv = hw->priv;
1916 struct mwl8k_cmd_radio_control *cmd;
1917 int rc;
1918
1919 if (enable == priv->radio_on && !force)
1920 return 0;
1921
1922 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1923 if (cmd == NULL)
1924 return -ENOMEM;
1925
1926 cmd->header.code = cpu_to_le16(MWL8K_CMD_RADIO_CONTROL);
1927 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1928 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
1929 cmd->control = cpu_to_le16(priv->radio_short_preamble ? 3 : 1);
1930 cmd->radio_on = cpu_to_le16(enable ? 0x0001 : 0x0000);
1931
1932 rc = mwl8k_post_cmd(hw, &cmd->header);
1933 kfree(cmd);
1934
1935 if (!rc)
1936 priv->radio_on = enable;
1937
1938 return rc;
1939 }
1940
1941 static int mwl8k_cmd_radio_disable(struct ieee80211_hw *hw)
1942 {
1943 return mwl8k_cmd_radio_control(hw, 0, 0);
1944 }
1945
1946 static int mwl8k_cmd_radio_enable(struct ieee80211_hw *hw)
1947 {
1948 return mwl8k_cmd_radio_control(hw, 1, 0);
1949 }
1950
1951 static int
1952 mwl8k_set_radio_preamble(struct ieee80211_hw *hw, bool short_preamble)
1953 {
1954 struct mwl8k_priv *priv = hw->priv;
1955
1956 priv->radio_short_preamble = short_preamble;
1957
1958 return mwl8k_cmd_radio_control(hw, 1, 1);
1959 }
1960
1961 /*
1962 * CMD_RF_TX_POWER.
1963 */
1964 #define MWL8K_TX_POWER_LEVEL_TOTAL 8
1965
1966 struct mwl8k_cmd_rf_tx_power {
1967 struct mwl8k_cmd_pkt header;
1968 __le16 action;
1969 __le16 support_level;
1970 __le16 current_level;
1971 __le16 reserved;
1972 __le16 power_level_list[MWL8K_TX_POWER_LEVEL_TOTAL];
1973 } __attribute__((packed));
1974
1975 static int mwl8k_cmd_rf_tx_power(struct ieee80211_hw *hw, int dBm)
1976 {
1977 struct mwl8k_cmd_rf_tx_power *cmd;
1978 int rc;
1979
1980 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1981 if (cmd == NULL)
1982 return -ENOMEM;
1983
1984 cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_TX_POWER);
1985 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1986 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
1987 cmd->support_level = cpu_to_le16(dBm);
1988
1989 rc = mwl8k_post_cmd(hw, &cmd->header);
1990 kfree(cmd);
1991
1992 return rc;
1993 }
1994
1995 /*
1996 * CMD_RF_ANTENNA.
1997 */
1998 struct mwl8k_cmd_rf_antenna {
1999 struct mwl8k_cmd_pkt header;
2000 __le16 antenna;
2001 __le16 mode;
2002 } __attribute__((packed));
2003
2004 #define MWL8K_RF_ANTENNA_RX 1
2005 #define MWL8K_RF_ANTENNA_TX 2
2006
2007 static int
2008 mwl8k_cmd_rf_antenna(struct ieee80211_hw *hw, int antenna, int mask)
2009 {
2010 struct mwl8k_cmd_rf_antenna *cmd;
2011 int rc;
2012
2013 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2014 if (cmd == NULL)
2015 return -ENOMEM;
2016
2017 cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_ANTENNA);
2018 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2019 cmd->antenna = cpu_to_le16(antenna);
2020 cmd->mode = cpu_to_le16(mask);
2021
2022 rc = mwl8k_post_cmd(hw, &cmd->header);
2023 kfree(cmd);
2024
2025 return rc;
2026 }
2027
2028 /*
2029 * CMD_SET_PRE_SCAN.
2030 */
2031 struct mwl8k_cmd_set_pre_scan {
2032 struct mwl8k_cmd_pkt header;
2033 } __attribute__((packed));
2034
2035 static int mwl8k_cmd_set_pre_scan(struct ieee80211_hw *hw)
2036 {
2037 struct mwl8k_cmd_set_pre_scan *cmd;
2038 int rc;
2039
2040 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2041 if (cmd == NULL)
2042 return -ENOMEM;
2043
2044 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_PRE_SCAN);
2045 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2046
2047 rc = mwl8k_post_cmd(hw, &cmd->header);
2048 kfree(cmd);
2049
2050 return rc;
2051 }
2052
2053 /*
2054 * CMD_SET_POST_SCAN.
2055 */
2056 struct mwl8k_cmd_set_post_scan {
2057 struct mwl8k_cmd_pkt header;
2058 __le32 isibss;
2059 __u8 bssid[ETH_ALEN];
2060 } __attribute__((packed));
2061
2062 static int
2063 mwl8k_cmd_set_post_scan(struct ieee80211_hw *hw, const __u8 *mac)
2064 {
2065 struct mwl8k_cmd_set_post_scan *cmd;
2066 int rc;
2067
2068 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2069 if (cmd == NULL)
2070 return -ENOMEM;
2071
2072 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_POST_SCAN);
2073 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2074 cmd->isibss = 0;
2075 memcpy(cmd->bssid, mac, ETH_ALEN);
2076
2077 rc = mwl8k_post_cmd(hw, &cmd->header);
2078 kfree(cmd);
2079
2080 return rc;
2081 }
2082
2083 /*
2084 * CMD_SET_RF_CHANNEL.
2085 */
2086 struct mwl8k_cmd_set_rf_channel {
2087 struct mwl8k_cmd_pkt header;
2088 __le16 action;
2089 __u8 current_channel;
2090 __le32 channel_flags;
2091 } __attribute__((packed));
2092
2093 static int mwl8k_cmd_set_rf_channel(struct ieee80211_hw *hw,
2094 struct ieee80211_conf *conf)
2095 {
2096 struct ieee80211_channel *channel = conf->channel;
2097 struct mwl8k_cmd_set_rf_channel *cmd;
2098 int rc;
2099
2100 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2101 if (cmd == NULL)
2102 return -ENOMEM;
2103
2104 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RF_CHANNEL);
2105 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2106 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
2107 cmd->current_channel = channel->hw_value;
2108
2109 if (channel->band == IEEE80211_BAND_2GHZ)
2110 cmd->channel_flags |= cpu_to_le32(0x00000001);
2111
2112 if (conf->channel_type == NL80211_CHAN_NO_HT ||
2113 conf->channel_type == NL80211_CHAN_HT20)
2114 cmd->channel_flags |= cpu_to_le32(0x00000080);
2115 else if (conf->channel_type == NL80211_CHAN_HT40MINUS)
2116 cmd->channel_flags |= cpu_to_le32(0x000001900);
2117 else if (conf->channel_type == NL80211_CHAN_HT40PLUS)
2118 cmd->channel_flags |= cpu_to_le32(0x000000900);
2119
2120 rc = mwl8k_post_cmd(hw, &cmd->header);
2121 kfree(cmd);
2122
2123 return rc;
2124 }
2125
2126 /*
2127 * CMD_SET_AID.
2128 */
2129 #define MWL8K_FRAME_PROT_DISABLED 0x00
2130 #define MWL8K_FRAME_PROT_11G 0x07
2131 #define MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY 0x02
2132 #define MWL8K_FRAME_PROT_11N_HT_ALL 0x06
2133
2134 struct mwl8k_cmd_update_set_aid {
2135 struct mwl8k_cmd_pkt header;
2136 __le16 aid;
2137
2138 /* AP's MAC address (BSSID) */
2139 __u8 bssid[ETH_ALEN];
2140 __le16 protection_mode;
2141 __u8 supp_rates[14];
2142 } __attribute__((packed));
2143
2144 static void legacy_rate_mask_to_array(u8 *rates, u32 mask)
2145 {
2146 int i;
2147 int j;
2148
2149 /*
2150 * Clear nonstandard rates 4 and 13.
2151 */
2152 mask &= 0x1fef;
2153
2154 for (i = 0, j = 0; i < 14; i++) {
2155 if (mask & (1 << i))
2156 rates[j++] = mwl8k_rates[i].hw_value;
2157 }
2158 }
2159
2160 static int
2161 mwl8k_cmd_set_aid(struct ieee80211_hw *hw,
2162 struct ieee80211_vif *vif, u32 legacy_rate_mask)
2163 {
2164 struct mwl8k_cmd_update_set_aid *cmd;
2165 u16 prot_mode;
2166 int rc;
2167
2168 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2169 if (cmd == NULL)
2170 return -ENOMEM;
2171
2172 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_AID);
2173 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2174 cmd->aid = cpu_to_le16(vif->bss_conf.aid);
2175 memcpy(cmd->bssid, vif->bss_conf.bssid, ETH_ALEN);
2176
2177 if (vif->bss_conf.use_cts_prot) {
2178 prot_mode = MWL8K_FRAME_PROT_11G;
2179 } else {
2180 switch (vif->bss_conf.ht_operation_mode &
2181 IEEE80211_HT_OP_MODE_PROTECTION) {
2182 case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
2183 prot_mode = MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY;
2184 break;
2185 case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
2186 prot_mode = MWL8K_FRAME_PROT_11N_HT_ALL;
2187 break;
2188 default:
2189 prot_mode = MWL8K_FRAME_PROT_DISABLED;
2190 break;
2191 }
2192 }
2193 cmd->protection_mode = cpu_to_le16(prot_mode);
2194
2195 legacy_rate_mask_to_array(cmd->supp_rates, legacy_rate_mask);
2196
2197 rc = mwl8k_post_cmd(hw, &cmd->header);
2198 kfree(cmd);
2199
2200 return rc;
2201 }
2202
2203 /*
2204 * CMD_SET_RATE.
2205 */
2206 struct mwl8k_cmd_set_rate {
2207 struct mwl8k_cmd_pkt header;
2208 __u8 legacy_rates[14];
2209
2210 /* Bitmap for supported MCS codes. */
2211 __u8 mcs_set[16];
2212 __u8 reserved[16];
2213 } __attribute__((packed));
2214
2215 static int
2216 mwl8k_cmd_set_rate(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2217 u32 legacy_rate_mask, u8 *mcs_rates)
2218 {
2219 struct mwl8k_cmd_set_rate *cmd;
2220 int rc;
2221
2222 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2223 if (cmd == NULL)
2224 return -ENOMEM;
2225
2226 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATE);
2227 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2228 legacy_rate_mask_to_array(cmd->legacy_rates, legacy_rate_mask);
2229 memcpy(cmd->mcs_set, mcs_rates, 16);
2230
2231 rc = mwl8k_post_cmd(hw, &cmd->header);
2232 kfree(cmd);
2233
2234 return rc;
2235 }
2236
2237 /*
2238 * CMD_FINALIZE_JOIN.
2239 */
2240 #define MWL8K_FJ_BEACON_MAXLEN 128
2241
2242 struct mwl8k_cmd_finalize_join {
2243 struct mwl8k_cmd_pkt header;
2244 __le32 sleep_interval; /* Number of beacon periods to sleep */
2245 __u8 beacon_data[MWL8K_FJ_BEACON_MAXLEN];
2246 } __attribute__((packed));
2247
2248 static int mwl8k_cmd_finalize_join(struct ieee80211_hw *hw, void *frame,
2249 int framelen, int dtim)
2250 {
2251 struct mwl8k_cmd_finalize_join *cmd;
2252 struct ieee80211_mgmt *payload = frame;
2253 int payload_len;
2254 int rc;
2255
2256 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2257 if (cmd == NULL)
2258 return -ENOMEM;
2259
2260 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_FINALIZE_JOIN);
2261 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2262 cmd->sleep_interval = cpu_to_le32(dtim ? dtim : 1);
2263
2264 payload_len = framelen - ieee80211_hdrlen(payload->frame_control);
2265 if (payload_len < 0)
2266 payload_len = 0;
2267 else if (payload_len > MWL8K_FJ_BEACON_MAXLEN)
2268 payload_len = MWL8K_FJ_BEACON_MAXLEN;
2269
2270 memcpy(cmd->beacon_data, &payload->u.beacon, payload_len);
2271
2272 rc = mwl8k_post_cmd(hw, &cmd->header);
2273 kfree(cmd);
2274
2275 return rc;
2276 }
2277
2278 /*
2279 * CMD_SET_RTS_THRESHOLD.
2280 */
2281 struct mwl8k_cmd_set_rts_threshold {
2282 struct mwl8k_cmd_pkt header;
2283 __le16 action;
2284 __le16 threshold;
2285 } __attribute__((packed));
2286
2287 static int
2288 mwl8k_cmd_set_rts_threshold(struct ieee80211_hw *hw, int rts_thresh)
2289 {
2290 struct mwl8k_cmd_set_rts_threshold *cmd;
2291 int rc;
2292
2293 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2294 if (cmd == NULL)
2295 return -ENOMEM;
2296
2297 cmd->header.code = cpu_to_le16(MWL8K_CMD_RTS_THRESHOLD);
2298 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2299 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
2300 cmd->threshold = cpu_to_le16(rts_thresh);
2301
2302 rc = mwl8k_post_cmd(hw, &cmd->header);
2303 kfree(cmd);
2304
2305 return rc;
2306 }
2307
2308 /*
2309 * CMD_SET_SLOT.
2310 */
2311 struct mwl8k_cmd_set_slot {
2312 struct mwl8k_cmd_pkt header;
2313 __le16 action;
2314 __u8 short_slot;
2315 } __attribute__((packed));
2316
2317 static int mwl8k_cmd_set_slot(struct ieee80211_hw *hw, bool short_slot_time)
2318 {
2319 struct mwl8k_cmd_set_slot *cmd;
2320 int rc;
2321
2322 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2323 if (cmd == NULL)
2324 return -ENOMEM;
2325
2326 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_SLOT);
2327 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2328 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
2329 cmd->short_slot = short_slot_time;
2330
2331 rc = mwl8k_post_cmd(hw, &cmd->header);
2332 kfree(cmd);
2333
2334 return rc;
2335 }
2336
2337 /*
2338 * CMD_SET_EDCA_PARAMS.
2339 */
2340 struct mwl8k_cmd_set_edca_params {
2341 struct mwl8k_cmd_pkt header;
2342
2343 /* See MWL8K_SET_EDCA_XXX below */
2344 __le16 action;
2345
2346 /* TX opportunity in units of 32 us */
2347 __le16 txop;
2348
2349 union {
2350 struct {
2351 /* Log exponent of max contention period: 0...15 */
2352 __le32 log_cw_max;
2353
2354 /* Log exponent of min contention period: 0...15 */
2355 __le32 log_cw_min;
2356
2357 /* Adaptive interframe spacing in units of 32us */
2358 __u8 aifs;
2359
2360 /* TX queue to configure */
2361 __u8 txq;
2362 } ap;
2363 struct {
2364 /* Log exponent of max contention period: 0...15 */
2365 __u8 log_cw_max;
2366
2367 /* Log exponent of min contention period: 0...15 */
2368 __u8 log_cw_min;
2369
2370 /* Adaptive interframe spacing in units of 32us */
2371 __u8 aifs;
2372
2373 /* TX queue to configure */
2374 __u8 txq;
2375 } sta;
2376 };
2377 } __attribute__((packed));
2378
2379 #define MWL8K_SET_EDCA_CW 0x01
2380 #define MWL8K_SET_EDCA_TXOP 0x02
2381 #define MWL8K_SET_EDCA_AIFS 0x04
2382
2383 #define MWL8K_SET_EDCA_ALL (MWL8K_SET_EDCA_CW | \
2384 MWL8K_SET_EDCA_TXOP | \
2385 MWL8K_SET_EDCA_AIFS)
2386
2387 static int
2388 mwl8k_cmd_set_edca_params(struct ieee80211_hw *hw, __u8 qnum,
2389 __u16 cw_min, __u16 cw_max,
2390 __u8 aifs, __u16 txop)
2391 {
2392 struct mwl8k_priv *priv = hw->priv;
2393 struct mwl8k_cmd_set_edca_params *cmd;
2394 int rc;
2395
2396 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2397 if (cmd == NULL)
2398 return -ENOMEM;
2399
2400 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_EDCA_PARAMS);
2401 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2402 cmd->action = cpu_to_le16(MWL8K_SET_EDCA_ALL);
2403 cmd->txop = cpu_to_le16(txop);
2404 if (priv->ap_fw) {
2405 cmd->ap.log_cw_max = cpu_to_le32(ilog2(cw_max + 1));
2406 cmd->ap.log_cw_min = cpu_to_le32(ilog2(cw_min + 1));
2407 cmd->ap.aifs = aifs;
2408 cmd->ap.txq = qnum;
2409 } else {
2410 cmd->sta.log_cw_max = (u8)ilog2(cw_max + 1);
2411 cmd->sta.log_cw_min = (u8)ilog2(cw_min + 1);
2412 cmd->sta.aifs = aifs;
2413 cmd->sta.txq = qnum;
2414 }
2415
2416 rc = mwl8k_post_cmd(hw, &cmd->header);
2417 kfree(cmd);
2418
2419 return rc;
2420 }
2421
2422 /*
2423 * CMD_SET_WMM_MODE.
2424 */
2425 struct mwl8k_cmd_set_wmm_mode {
2426 struct mwl8k_cmd_pkt header;
2427 __le16 action;
2428 } __attribute__((packed));
2429
2430 static int mwl8k_cmd_set_wmm_mode(struct ieee80211_hw *hw, bool enable)
2431 {
2432 struct mwl8k_priv *priv = hw->priv;
2433 struct mwl8k_cmd_set_wmm_mode *cmd;
2434 int rc;
2435
2436 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2437 if (cmd == NULL)
2438 return -ENOMEM;
2439
2440 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_WMM_MODE);
2441 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2442 cmd->action = cpu_to_le16(!!enable);
2443
2444 rc = mwl8k_post_cmd(hw, &cmd->header);
2445 kfree(cmd);
2446
2447 if (!rc)
2448 priv->wmm_enabled = enable;
2449
2450 return rc;
2451 }
2452
2453 /*
2454 * CMD_MIMO_CONFIG.
2455 */
2456 struct mwl8k_cmd_mimo_config {
2457 struct mwl8k_cmd_pkt header;
2458 __le32 action;
2459 __u8 rx_antenna_map;
2460 __u8 tx_antenna_map;
2461 } __attribute__((packed));
2462
2463 static int mwl8k_cmd_mimo_config(struct ieee80211_hw *hw, __u8 rx, __u8 tx)
2464 {
2465 struct mwl8k_cmd_mimo_config *cmd;
2466 int rc;
2467
2468 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2469 if (cmd == NULL)
2470 return -ENOMEM;
2471
2472 cmd->header.code = cpu_to_le16(MWL8K_CMD_MIMO_CONFIG);
2473 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2474 cmd->action = cpu_to_le32((u32)MWL8K_CMD_SET);
2475 cmd->rx_antenna_map = rx;
2476 cmd->tx_antenna_map = tx;
2477
2478 rc = mwl8k_post_cmd(hw, &cmd->header);
2479 kfree(cmd);
2480
2481 return rc;
2482 }
2483
2484 /*
2485 * CMD_USE_FIXED_RATE.
2486 */
2487 #define MWL8K_RATE_TABLE_SIZE 8
2488 #define MWL8K_UCAST_RATE 0
2489 #define MWL8K_USE_AUTO_RATE 0x0002
2490
2491 struct mwl8k_rate_entry {
2492 /* Set to 1 if HT rate, 0 if legacy. */
2493 __le32 is_ht_rate;
2494
2495 /* Set to 1 to use retry_count field. */
2496 __le32 enable_retry;
2497
2498 /* Specified legacy rate or MCS. */
2499 __le32 rate;
2500
2501 /* Number of allowed retries. */
2502 __le32 retry_count;
2503 } __attribute__((packed));
2504
2505 struct mwl8k_rate_table {
2506 /* 1 to allow specified rate and below */
2507 __le32 allow_rate_drop;
2508 __le32 num_rates;
2509 struct mwl8k_rate_entry rate_entry[MWL8K_RATE_TABLE_SIZE];
2510 } __attribute__((packed));
2511
2512 struct mwl8k_cmd_use_fixed_rate {
2513 struct mwl8k_cmd_pkt header;
2514 __le32 action;
2515 struct mwl8k_rate_table rate_table;
2516
2517 /* Unicast, Broadcast or Multicast */
2518 __le32 rate_type;
2519 __le32 reserved1;
2520 __le32 reserved2;
2521 } __attribute__((packed));
2522
2523 static int mwl8k_cmd_use_fixed_rate(struct ieee80211_hw *hw,
2524 u32 action, u32 rate_type, struct mwl8k_rate_table *rate_table)
2525 {
2526 struct mwl8k_cmd_use_fixed_rate *cmd;
2527 int count;
2528 int rc;
2529
2530 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2531 if (cmd == NULL)
2532 return -ENOMEM;
2533
2534 cmd->header.code = cpu_to_le16(MWL8K_CMD_USE_FIXED_RATE);
2535 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2536
2537 cmd->action = cpu_to_le32(action);
2538 cmd->rate_type = cpu_to_le32(rate_type);
2539
2540 if (rate_table != NULL) {
2541 /*
2542 * Copy over each field manually so that endian
2543 * conversion can be done.
2544 */
2545 cmd->rate_table.allow_rate_drop =
2546 cpu_to_le32(rate_table->allow_rate_drop);
2547 cmd->rate_table.num_rates =
2548 cpu_to_le32(rate_table->num_rates);
2549
2550 for (count = 0; count < rate_table->num_rates; count++) {
2551 struct mwl8k_rate_entry *dst =
2552 &cmd->rate_table.rate_entry[count];
2553 struct mwl8k_rate_entry *src =
2554 &rate_table->rate_entry[count];
2555
2556 dst->is_ht_rate = cpu_to_le32(src->is_ht_rate);
2557 dst->enable_retry = cpu_to_le32(src->enable_retry);
2558 dst->rate = cpu_to_le32(src->rate);
2559 dst->retry_count = cpu_to_le32(src->retry_count);
2560 }
2561 }
2562
2563 rc = mwl8k_post_cmd(hw, &cmd->header);
2564 kfree(cmd);
2565
2566 return rc;
2567 }
2568
2569 /*
2570 * CMD_ENABLE_SNIFFER.
2571 */
2572 struct mwl8k_cmd_enable_sniffer {
2573 struct mwl8k_cmd_pkt header;
2574 __le32 action;
2575 } __attribute__((packed));
2576
2577 static int mwl8k_cmd_enable_sniffer(struct ieee80211_hw *hw, bool enable)
2578 {
2579 struct mwl8k_cmd_enable_sniffer *cmd;
2580 int rc;
2581
2582 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2583 if (cmd == NULL)
2584 return -ENOMEM;
2585
2586 cmd->header.code = cpu_to_le16(MWL8K_CMD_ENABLE_SNIFFER);
2587 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2588 cmd->action = cpu_to_le32(!!enable);
2589
2590 rc = mwl8k_post_cmd(hw, &cmd->header);
2591 kfree(cmd);
2592
2593 return rc;
2594 }
2595
2596 /*
2597 * CMD_SET_MAC_ADDR.
2598 */
2599 struct mwl8k_cmd_set_mac_addr {
2600 struct mwl8k_cmd_pkt header;
2601 union {
2602 struct {
2603 __le16 mac_type;
2604 __u8 mac_addr[ETH_ALEN];
2605 } mbss;
2606 __u8 mac_addr[ETH_ALEN];
2607 };
2608 } __attribute__((packed));
2609
2610 static int mwl8k_cmd_set_mac_addr(struct ieee80211_hw *hw, u8 *mac)
2611 {
2612 struct mwl8k_priv *priv = hw->priv;
2613 struct mwl8k_cmd_set_mac_addr *cmd;
2614 int rc;
2615
2616 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2617 if (cmd == NULL)
2618 return -ENOMEM;
2619
2620 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_MAC_ADDR);
2621 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2622 if (priv->ap_fw) {
2623 cmd->mbss.mac_type = 0;
2624 memcpy(cmd->mbss.mac_addr, mac, ETH_ALEN);
2625 } else {
2626 memcpy(cmd->mac_addr, mac, ETH_ALEN);
2627 }
2628
2629 rc = mwl8k_post_cmd(hw, &cmd->header);
2630 kfree(cmd);
2631
2632 return rc;
2633 }
2634
2635 /*
2636 * CMD_SET_RATEADAPT_MODE.
2637 */
2638 struct mwl8k_cmd_set_rate_adapt_mode {
2639 struct mwl8k_cmd_pkt header;
2640 __le16 action;
2641 __le16 mode;
2642 } __attribute__((packed));
2643
2644 static int mwl8k_cmd_set_rateadapt_mode(struct ieee80211_hw *hw, __u16 mode)
2645 {
2646 struct mwl8k_cmd_set_rate_adapt_mode *cmd;
2647 int rc;
2648
2649 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2650 if (cmd == NULL)
2651 return -ENOMEM;
2652
2653 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATEADAPT_MODE);
2654 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2655 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
2656 cmd->mode = cpu_to_le16(mode);
2657
2658 rc = mwl8k_post_cmd(hw, &cmd->header);
2659 kfree(cmd);
2660
2661 return rc;
2662 }
2663
2664 /*
2665 * CMD_UPDATE_STADB.
2666 */
2667 struct ewc_ht_info {
2668 __le16 control1;
2669 __le16 control2;
2670 __le16 control3;
2671 } __attribute__((packed));
2672
2673 struct peer_capability_info {
2674 /* Peer type - AP vs. STA. */
2675 __u8 peer_type;
2676
2677 /* Basic 802.11 capabilities from assoc resp. */
2678 __le16 basic_caps;
2679
2680 /* Set if peer supports 802.11n high throughput (HT). */
2681 __u8 ht_support;
2682
2683 /* Valid if HT is supported. */
2684 __le16 ht_caps;
2685 __u8 extended_ht_caps;
2686 struct ewc_ht_info ewc_info;
2687
2688 /* Legacy rate table. Intersection of our rates and peer rates. */
2689 __u8 legacy_rates[12];
2690
2691 /* HT rate table. Intersection of our rates and peer rates. */
2692 __u8 ht_rates[16];
2693 __u8 pad[16];
2694
2695 /* If set, interoperability mode, no proprietary extensions. */
2696 __u8 interop;
2697 __u8 pad2;
2698 __u8 station_id;
2699 __le16 amsdu_enabled;
2700 } __attribute__((packed));
2701
2702 struct mwl8k_cmd_update_stadb {
2703 struct mwl8k_cmd_pkt header;
2704
2705 /* See STADB_ACTION_TYPE */
2706 __le32 action;
2707
2708 /* Peer MAC address */
2709 __u8 peer_addr[ETH_ALEN];
2710
2711 __le32 reserved;
2712
2713 /* Peer info - valid during add/update. */
2714 struct peer_capability_info peer_info;
2715 } __attribute__((packed));
2716
2717 #define MWL8K_STA_DB_MODIFY_ENTRY 1
2718 #define MWL8K_STA_DB_DEL_ENTRY 2
2719
2720 /* Peer Entry flags - used to define the type of the peer node */
2721 #define MWL8K_PEER_TYPE_ACCESSPOINT 2
2722
2723 static int mwl8k_cmd_update_stadb_add(struct ieee80211_hw *hw,
2724 struct ieee80211_vif *vif,
2725 struct ieee80211_sta *sta)
2726 {
2727 struct mwl8k_cmd_update_stadb *cmd;
2728 struct peer_capability_info *p;
2729 int rc;
2730
2731 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2732 if (cmd == NULL)
2733 return -ENOMEM;
2734
2735 cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB);
2736 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2737 cmd->action = cpu_to_le32(MWL8K_STA_DB_MODIFY_ENTRY);
2738 memcpy(cmd->peer_addr, sta->addr, ETH_ALEN);
2739
2740 p = &cmd->peer_info;
2741 p->peer_type = MWL8K_PEER_TYPE_ACCESSPOINT;
2742 p->basic_caps = cpu_to_le16(vif->bss_conf.assoc_capability);
2743 p->ht_support = sta->ht_cap.ht_supported;
2744 p->ht_caps = sta->ht_cap.cap;
2745 p->extended_ht_caps = (sta->ht_cap.ampdu_factor & 3) |
2746 ((sta->ht_cap.ampdu_density & 7) << 2);
2747 legacy_rate_mask_to_array(p->legacy_rates,
2748 sta->supp_rates[IEEE80211_BAND_2GHZ]);
2749 memcpy(p->ht_rates, sta->ht_cap.mcs.rx_mask, 16);
2750 p->interop = 1;
2751 p->amsdu_enabled = 0;
2752
2753 rc = mwl8k_post_cmd(hw, &cmd->header);
2754 kfree(cmd);
2755
2756 return rc ? rc : p->station_id;
2757 }
2758
2759 static int mwl8k_cmd_update_stadb_del(struct ieee80211_hw *hw,
2760 struct ieee80211_vif *vif, u8 *addr)
2761 {
2762 struct mwl8k_cmd_update_stadb *cmd;
2763 int rc;
2764
2765 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2766 if (cmd == NULL)
2767 return -ENOMEM;
2768
2769 cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB);
2770 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2771 cmd->action = cpu_to_le32(MWL8K_STA_DB_DEL_ENTRY);
2772 memcpy(cmd->peer_addr, addr, ETH_ALEN);
2773
2774 rc = mwl8k_post_cmd(hw, &cmd->header);
2775 kfree(cmd);
2776
2777 return rc;
2778 }
2779
2780
2781 /*
2782 * Interrupt handling.
2783 */
2784 static irqreturn_t mwl8k_interrupt(int irq, void *dev_id)
2785 {
2786 struct ieee80211_hw *hw = dev_id;
2787 struct mwl8k_priv *priv = hw->priv;
2788 u32 status;
2789
2790 status = ioread32(priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
2791 iowrite32(~status, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
2792
2793 if (!status)
2794 return IRQ_NONE;
2795
2796 if (status & MWL8K_A2H_INT_TX_DONE)
2797 tasklet_schedule(&priv->tx_reclaim_task);
2798
2799 if (status & MWL8K_A2H_INT_RX_READY) {
2800 while (rxq_process(hw, 0, 1))
2801 rxq_refill(hw, 0, 1);
2802 }
2803
2804 if (status & MWL8K_A2H_INT_OPC_DONE) {
2805 if (priv->hostcmd_wait != NULL)
2806 complete(priv->hostcmd_wait);
2807 }
2808
2809 if (status & MWL8K_A2H_INT_QUEUE_EMPTY) {
2810 if (!mutex_is_locked(&priv->fw_mutex) &&
2811 priv->radio_on && priv->pending_tx_pkts)
2812 mwl8k_tx_start(priv);
2813 }
2814
2815 return IRQ_HANDLED;
2816 }
2817
2818
2819 /*
2820 * Core driver operations.
2821 */
2822 static int mwl8k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2823 {
2824 struct mwl8k_priv *priv = hw->priv;
2825 int index = skb_get_queue_mapping(skb);
2826 int rc;
2827
2828 if (priv->current_channel == NULL) {
2829 printk(KERN_DEBUG "%s: dropped TX frame since radio "
2830 "disabled\n", wiphy_name(hw->wiphy));
2831 dev_kfree_skb(skb);
2832 return NETDEV_TX_OK;
2833 }
2834
2835 rc = mwl8k_txq_xmit(hw, index, skb);
2836
2837 return rc;
2838 }
2839
2840 static int mwl8k_start(struct ieee80211_hw *hw)
2841 {
2842 struct mwl8k_priv *priv = hw->priv;
2843 int rc;
2844
2845 rc = request_irq(priv->pdev->irq, mwl8k_interrupt,
2846 IRQF_SHARED, MWL8K_NAME, hw);
2847 if (rc) {
2848 printk(KERN_ERR "%s: failed to register IRQ handler\n",
2849 wiphy_name(hw->wiphy));
2850 return -EIO;
2851 }
2852
2853 /* Enable tx reclaim tasklet */
2854 tasklet_enable(&priv->tx_reclaim_task);
2855
2856 /* Enable interrupts */
2857 iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
2858
2859 rc = mwl8k_fw_lock(hw);
2860 if (!rc) {
2861 rc = mwl8k_cmd_radio_enable(hw);
2862
2863 if (!priv->ap_fw) {
2864 if (!rc)
2865 rc = mwl8k_cmd_enable_sniffer(hw, 0);
2866
2867 if (!rc)
2868 rc = mwl8k_cmd_set_pre_scan(hw);
2869
2870 if (!rc)
2871 rc = mwl8k_cmd_set_post_scan(hw,
2872 "\x00\x00\x00\x00\x00\x00");
2873 }
2874
2875 if (!rc)
2876 rc = mwl8k_cmd_set_rateadapt_mode(hw, 0);
2877
2878 if (!rc)
2879 rc = mwl8k_cmd_set_wmm_mode(hw, 0);
2880
2881 mwl8k_fw_unlock(hw);
2882 }
2883
2884 if (rc) {
2885 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
2886 free_irq(priv->pdev->irq, hw);
2887 tasklet_disable(&priv->tx_reclaim_task);
2888 }
2889
2890 return rc;
2891 }
2892
2893 static void mwl8k_stop(struct ieee80211_hw *hw)
2894 {
2895 struct mwl8k_priv *priv = hw->priv;
2896 int i;
2897
2898 mwl8k_cmd_radio_disable(hw);
2899
2900 ieee80211_stop_queues(hw);
2901
2902 /* Disable interrupts */
2903 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
2904 free_irq(priv->pdev->irq, hw);
2905
2906 /* Stop finalize join worker */
2907 cancel_work_sync(&priv->finalize_join_worker);
2908 if (priv->beacon_skb != NULL)
2909 dev_kfree_skb(priv->beacon_skb);
2910
2911 /* Stop tx reclaim tasklet */
2912 tasklet_disable(&priv->tx_reclaim_task);
2913
2914 /* Return all skbs to mac80211 */
2915 for (i = 0; i < MWL8K_TX_QUEUES; i++)
2916 mwl8k_txq_reclaim(hw, i, 1);
2917 }
2918
2919 static int mwl8k_add_interface(struct ieee80211_hw *hw,
2920 struct ieee80211_vif *vif)
2921 {
2922 struct mwl8k_priv *priv = hw->priv;
2923 struct mwl8k_vif *mwl8k_vif;
2924
2925 /*
2926 * We only support one active interface at a time.
2927 */
2928 if (priv->vif != NULL)
2929 return -EBUSY;
2930
2931 /*
2932 * We only support managed interfaces for now.
2933 */
2934 if (vif->type != NL80211_IFTYPE_STATION)
2935 return -EINVAL;
2936
2937 /*
2938 * Reject interface creation if sniffer mode is active, as
2939 * STA operation is mutually exclusive with hardware sniffer
2940 * mode.
2941 */
2942 if (priv->sniffer_enabled) {
2943 printk(KERN_INFO "%s: unable to create STA "
2944 "interface due to sniffer mode being enabled\n",
2945 wiphy_name(hw->wiphy));
2946 return -EINVAL;
2947 }
2948
2949 /* Set the mac address. */
2950 mwl8k_cmd_set_mac_addr(hw, vif->addr);
2951
2952 /* Clean out driver private area */
2953 mwl8k_vif = MWL8K_VIF(vif);
2954 memset(mwl8k_vif, 0, sizeof(*mwl8k_vif));
2955
2956 /* Set Initial sequence number to zero */
2957 mwl8k_vif->seqno = 0;
2958
2959 priv->vif = vif;
2960 priv->current_channel = NULL;
2961
2962 return 0;
2963 }
2964
2965 static void mwl8k_remove_interface(struct ieee80211_hw *hw,
2966 struct ieee80211_vif *vif)
2967 {
2968 struct mwl8k_priv *priv = hw->priv;
2969
2970 mwl8k_cmd_set_mac_addr(hw, "\x00\x00\x00\x00\x00\x00");
2971
2972 priv->vif = NULL;
2973 }
2974
2975 static int mwl8k_config(struct ieee80211_hw *hw, u32 changed)
2976 {
2977 struct ieee80211_conf *conf = &hw->conf;
2978 struct mwl8k_priv *priv = hw->priv;
2979 int rc;
2980
2981 if (conf->flags & IEEE80211_CONF_IDLE) {
2982 mwl8k_cmd_radio_disable(hw);
2983 priv->current_channel = NULL;
2984 return 0;
2985 }
2986
2987 rc = mwl8k_fw_lock(hw);
2988 if (rc)
2989 return rc;
2990
2991 rc = mwl8k_cmd_radio_enable(hw);
2992 if (rc)
2993 goto out;
2994
2995 rc = mwl8k_cmd_set_rf_channel(hw, conf);
2996 if (rc)
2997 goto out;
2998
2999 priv->current_channel = conf->channel;
3000
3001 if (conf->power_level > 18)
3002 conf->power_level = 18;
3003 rc = mwl8k_cmd_rf_tx_power(hw, conf->power_level);
3004 if (rc)
3005 goto out;
3006
3007 if (priv->ap_fw) {
3008 rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_RX, 0x7);
3009 if (!rc)
3010 rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_TX, 0x7);
3011 } else {
3012 rc = mwl8k_cmd_mimo_config(hw, 0x7, 0x7);
3013 }
3014
3015 out:
3016 mwl8k_fw_unlock(hw);
3017
3018 return rc;
3019 }
3020
3021 static void mwl8k_bss_info_changed(struct ieee80211_hw *hw,
3022 struct ieee80211_vif *vif,
3023 struct ieee80211_bss_conf *info,
3024 u32 changed)
3025 {
3026 struct mwl8k_priv *priv = hw->priv;
3027 u32 ap_legacy_rates;
3028 u8 ap_mcs_rates[16];
3029 int rc;
3030
3031 if (mwl8k_fw_lock(hw))
3032 return;
3033
3034 /*
3035 * No need to capture a beacon if we're no longer associated.
3036 */
3037 if ((changed & BSS_CHANGED_ASSOC) && !vif->bss_conf.assoc)
3038 priv->capture_beacon = false;
3039
3040 /*
3041 * Get the AP's legacy and MCS rates.
3042 */
3043 ap_legacy_rates = 0;
3044 if (vif->bss_conf.assoc) {
3045 struct ieee80211_sta *ap;
3046 rcu_read_lock();
3047
3048 ap = ieee80211_find_sta(vif, vif->bss_conf.bssid);
3049 if (ap == NULL) {
3050 rcu_read_unlock();
3051 goto out;
3052 }
3053
3054 ap_legacy_rates = ap->supp_rates[IEEE80211_BAND_2GHZ];
3055 memcpy(ap_mcs_rates, ap->ht_cap.mcs.rx_mask, 16);
3056
3057 rcu_read_unlock();
3058 }
3059
3060 if ((changed & BSS_CHANGED_ASSOC) && vif->bss_conf.assoc) {
3061 rc = mwl8k_cmd_set_rate(hw, vif, ap_legacy_rates, ap_mcs_rates);
3062 if (rc)
3063 goto out;
3064
3065 rc = mwl8k_cmd_use_fixed_rate(hw, MWL8K_USE_AUTO_RATE,
3066 MWL8K_UCAST_RATE, NULL);
3067 if (rc)
3068 goto out;
3069 }
3070
3071 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
3072 rc = mwl8k_set_radio_preamble(hw,
3073 vif->bss_conf.use_short_preamble);
3074 if (rc)
3075 goto out;
3076 }
3077
3078 if (changed & BSS_CHANGED_ERP_SLOT) {
3079 rc = mwl8k_cmd_set_slot(hw, vif->bss_conf.use_short_slot);
3080 if (rc)
3081 goto out;
3082 }
3083
3084 if (((changed & BSS_CHANGED_ASSOC) && vif->bss_conf.assoc) ||
3085 (changed & (BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_HT))) {
3086 rc = mwl8k_cmd_set_aid(hw, vif, ap_legacy_rates);
3087 if (rc)
3088 goto out;
3089 }
3090
3091 if (vif->bss_conf.assoc &&
3092 (changed & (BSS_CHANGED_ASSOC | BSS_CHANGED_BEACON_INT))) {
3093 /*
3094 * Finalize the join. Tell rx handler to process
3095 * next beacon from our BSSID.
3096 */
3097 memcpy(priv->capture_bssid, vif->bss_conf.bssid, ETH_ALEN);
3098 priv->capture_beacon = true;
3099 }
3100
3101 out:
3102 mwl8k_fw_unlock(hw);
3103 }
3104
3105 static u64 mwl8k_prepare_multicast(struct ieee80211_hw *hw,
3106 int mc_count, struct dev_addr_list *mclist)
3107 {
3108 struct mwl8k_cmd_pkt *cmd;
3109
3110 /*
3111 * Synthesize and return a command packet that programs the
3112 * hardware multicast address filter. At this point we don't
3113 * know whether FIF_ALLMULTI is being requested, but if it is,
3114 * we'll end up throwing this packet away and creating a new
3115 * one in mwl8k_configure_filter().
3116 */
3117 cmd = __mwl8k_cmd_mac_multicast_adr(hw, 0, mc_count, mclist);
3118
3119 return (unsigned long)cmd;
3120 }
3121
3122 static int
3123 mwl8k_configure_filter_sniffer(struct ieee80211_hw *hw,
3124 unsigned int changed_flags,
3125 unsigned int *total_flags)
3126 {
3127 struct mwl8k_priv *priv = hw->priv;
3128
3129 /*
3130 * Hardware sniffer mode is mutually exclusive with STA
3131 * operation, so refuse to enable sniffer mode if a STA
3132 * interface is active.
3133 */
3134 if (priv->vif != NULL) {
3135 if (net_ratelimit())
3136 printk(KERN_INFO "%s: not enabling sniffer "
3137 "mode because STA interface is active\n",
3138 wiphy_name(hw->wiphy));
3139 return 0;
3140 }
3141
3142 if (!priv->sniffer_enabled) {
3143 if (mwl8k_cmd_enable_sniffer(hw, 1))
3144 return 0;
3145 priv->sniffer_enabled = true;
3146 }
3147
3148 *total_flags &= FIF_PROMISC_IN_BSS | FIF_ALLMULTI |
3149 FIF_BCN_PRBRESP_PROMISC | FIF_CONTROL |
3150 FIF_OTHER_BSS;
3151
3152 return 1;
3153 }
3154
3155 static void mwl8k_configure_filter(struct ieee80211_hw *hw,
3156 unsigned int changed_flags,
3157 unsigned int *total_flags,
3158 u64 multicast)
3159 {
3160 struct mwl8k_priv *priv = hw->priv;
3161 struct mwl8k_cmd_pkt *cmd = (void *)(unsigned long)multicast;
3162
3163 /*
3164 * AP firmware doesn't allow fine-grained control over
3165 * the receive filter.
3166 */
3167 if (priv->ap_fw) {
3168 *total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC;
3169 kfree(cmd);
3170 return;
3171 }
3172
3173 /*
3174 * Enable hardware sniffer mode if FIF_CONTROL or
3175 * FIF_OTHER_BSS is requested.
3176 */
3177 if (*total_flags & (FIF_CONTROL | FIF_OTHER_BSS) &&
3178 mwl8k_configure_filter_sniffer(hw, changed_flags, total_flags)) {
3179 kfree(cmd);
3180 return;
3181 }
3182
3183 /* Clear unsupported feature flags */
3184 *total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC;
3185
3186 if (mwl8k_fw_lock(hw)) {
3187 kfree(cmd);
3188 return;
3189 }
3190
3191 if (priv->sniffer_enabled) {
3192 mwl8k_cmd_enable_sniffer(hw, 0);
3193 priv->sniffer_enabled = false;
3194 }
3195
3196 if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
3197 if (*total_flags & FIF_BCN_PRBRESP_PROMISC) {
3198 /*
3199 * Disable the BSS filter.
3200 */
3201 mwl8k_cmd_set_pre_scan(hw);
3202 } else {
3203 const u8 *bssid;
3204
3205 /*
3206 * Enable the BSS filter.
3207 *
3208 * If there is an active STA interface, use that
3209 * interface's BSSID, otherwise use a dummy one
3210 * (where the OUI part needs to be nonzero for
3211 * the BSSID to be accepted by POST_SCAN).
3212 */
3213 bssid = "\x01\x00\x00\x00\x00\x00";
3214 if (priv->vif != NULL)
3215 bssid = priv->vif->bss_conf.bssid;
3216
3217 mwl8k_cmd_set_post_scan(hw, bssid);
3218 }
3219 }
3220
3221 /*
3222 * If FIF_ALLMULTI is being requested, throw away the command
3223 * packet that ->prepare_multicast() built and replace it with
3224 * a command packet that enables reception of all multicast
3225 * packets.
3226 */
3227 if (*total_flags & FIF_ALLMULTI) {
3228 kfree(cmd);
3229 cmd = __mwl8k_cmd_mac_multicast_adr(hw, 1, 0, NULL);
3230 }
3231
3232 if (cmd != NULL) {
3233 mwl8k_post_cmd(hw, cmd);
3234 kfree(cmd);
3235 }
3236
3237 mwl8k_fw_unlock(hw);
3238 }
3239
3240 static int mwl8k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
3241 {
3242 return mwl8k_cmd_set_rts_threshold(hw, value);
3243 }
3244
3245 struct mwl8k_sta_notify_item
3246 {
3247 struct list_head list;
3248 struct ieee80211_vif *vif;
3249 enum sta_notify_cmd cmd;
3250 struct ieee80211_sta sta;
3251 };
3252
3253 static void mwl8k_sta_notify_worker(struct work_struct *work)
3254 {
3255 struct mwl8k_priv *priv =
3256 container_of(work, struct mwl8k_priv, sta_notify_worker);
3257 struct ieee80211_hw *hw = priv->hw;
3258
3259 spin_lock_bh(&priv->sta_notify_list_lock);
3260 while (!list_empty(&priv->sta_notify_list)) {
3261 struct mwl8k_sta_notify_item *s;
3262
3263 s = list_entry(priv->sta_notify_list.next,
3264 struct mwl8k_sta_notify_item, list);
3265 list_del(&s->list);
3266
3267 spin_unlock_bh(&priv->sta_notify_list_lock);
3268
3269 if (s->cmd == STA_NOTIFY_ADD) {
3270 int rc;
3271
3272 rc = mwl8k_cmd_update_stadb_add(hw, s->vif, &s->sta);
3273 if (rc >= 0) {
3274 struct ieee80211_sta *sta;
3275
3276 rcu_read_lock();
3277 sta = ieee80211_find_sta(s->vif, s->sta.addr);
3278 if (sta != NULL)
3279 MWL8K_STA(sta)->peer_id = rc;
3280 rcu_read_unlock();
3281 }
3282 } else {
3283 mwl8k_cmd_update_stadb_del(hw, s->vif, s->sta.addr);
3284 }
3285
3286 kfree(s);
3287
3288 spin_lock_bh(&priv->sta_notify_list_lock);
3289 }
3290 spin_unlock_bh(&priv->sta_notify_list_lock);
3291 }
3292
3293 static void
3294 mwl8k_sta_notify(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
3295 enum sta_notify_cmd cmd, struct ieee80211_sta *sta)
3296 {
3297 struct mwl8k_priv *priv = hw->priv;
3298 struct mwl8k_sta_notify_item *s;
3299
3300 if (cmd != STA_NOTIFY_ADD && cmd != STA_NOTIFY_REMOVE)
3301 return;
3302
3303 s = kmalloc(sizeof(*s), GFP_ATOMIC);
3304 if (s != NULL) {
3305 s->vif = vif;
3306 s->cmd = cmd;
3307 s->sta = *sta;
3308
3309 spin_lock(&priv->sta_notify_list_lock);
3310 list_add_tail(&s->list, &priv->sta_notify_list);
3311 spin_unlock(&priv->sta_notify_list_lock);
3312
3313 ieee80211_queue_work(hw, &priv->sta_notify_worker);
3314 }
3315 }
3316
3317 static int mwl8k_conf_tx(struct ieee80211_hw *hw, u16 queue,
3318 const struct ieee80211_tx_queue_params *params)
3319 {
3320 struct mwl8k_priv *priv = hw->priv;
3321 int rc;
3322
3323 rc = mwl8k_fw_lock(hw);
3324 if (!rc) {
3325 if (!priv->wmm_enabled)
3326 rc = mwl8k_cmd_set_wmm_mode(hw, 1);
3327
3328 if (!rc)
3329 rc = mwl8k_cmd_set_edca_params(hw, queue,
3330 params->cw_min,
3331 params->cw_max,
3332 params->aifs,
3333 params->txop);
3334
3335 mwl8k_fw_unlock(hw);
3336 }
3337
3338 return rc;
3339 }
3340
3341 static int mwl8k_get_tx_stats(struct ieee80211_hw *hw,
3342 struct ieee80211_tx_queue_stats *stats)
3343 {
3344 struct mwl8k_priv *priv = hw->priv;
3345 struct mwl8k_tx_queue *txq;
3346 int index;
3347
3348 spin_lock_bh(&priv->tx_lock);
3349 for (index = 0; index < MWL8K_TX_QUEUES; index++) {
3350 txq = priv->txq + index;
3351 memcpy(&stats[index], &txq->stats,
3352 sizeof(struct ieee80211_tx_queue_stats));
3353 }
3354 spin_unlock_bh(&priv->tx_lock);
3355
3356 return 0;
3357 }
3358
3359 static int mwl8k_get_stats(struct ieee80211_hw *hw,
3360 struct ieee80211_low_level_stats *stats)
3361 {
3362 return mwl8k_cmd_get_stat(hw, stats);
3363 }
3364
3365 static int
3366 mwl8k_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
3367 enum ieee80211_ampdu_mlme_action action,
3368 struct ieee80211_sta *sta, u16 tid, u16 *ssn)
3369 {
3370 switch (action) {
3371 case IEEE80211_AMPDU_RX_START:
3372 case IEEE80211_AMPDU_RX_STOP:
3373 if (!(hw->flags & IEEE80211_HW_AMPDU_AGGREGATION))
3374 return -ENOTSUPP;
3375 return 0;
3376 default:
3377 return -ENOTSUPP;
3378 }
3379 }
3380
3381 static const struct ieee80211_ops mwl8k_ops = {
3382 .tx = mwl8k_tx,
3383 .start = mwl8k_start,
3384 .stop = mwl8k_stop,
3385 .add_interface = mwl8k_add_interface,
3386 .remove_interface = mwl8k_remove_interface,
3387 .config = mwl8k_config,
3388 .bss_info_changed = mwl8k_bss_info_changed,
3389 .prepare_multicast = mwl8k_prepare_multicast,
3390 .configure_filter = mwl8k_configure_filter,
3391 .set_rts_threshold = mwl8k_set_rts_threshold,
3392 .sta_notify = mwl8k_sta_notify,
3393 .conf_tx = mwl8k_conf_tx,
3394 .get_tx_stats = mwl8k_get_tx_stats,
3395 .get_stats = mwl8k_get_stats,
3396 .ampdu_action = mwl8k_ampdu_action,
3397 };
3398
3399 static void mwl8k_tx_reclaim_handler(unsigned long data)
3400 {
3401 int i;
3402 struct ieee80211_hw *hw = (struct ieee80211_hw *) data;
3403 struct mwl8k_priv *priv = hw->priv;
3404
3405 spin_lock_bh(&priv->tx_lock);
3406 for (i = 0; i < MWL8K_TX_QUEUES; i++)
3407 mwl8k_txq_reclaim(hw, i, 0);
3408
3409 if (priv->tx_wait != NULL && !priv->pending_tx_pkts) {
3410 complete(priv->tx_wait);
3411 priv->tx_wait = NULL;
3412 }
3413 spin_unlock_bh(&priv->tx_lock);
3414 }
3415
3416 static void mwl8k_finalize_join_worker(struct work_struct *work)
3417 {
3418 struct mwl8k_priv *priv =
3419 container_of(work, struct mwl8k_priv, finalize_join_worker);
3420 struct sk_buff *skb = priv->beacon_skb;
3421
3422 mwl8k_cmd_finalize_join(priv->hw, skb->data, skb->len,
3423 priv->vif->bss_conf.dtim_period);
3424 dev_kfree_skb(skb);
3425
3426 priv->beacon_skb = NULL;
3427 }
3428
3429 enum {
3430 MWL8363 = 0,
3431 MWL8687,
3432 MWL8366,
3433 };
3434
3435 static struct mwl8k_device_info mwl8k_info_tbl[] __devinitdata = {
3436 [MWL8363] = {
3437 .part_name = "88w8363",
3438 .helper_image = "mwl8k/helper_8363.fw",
3439 .fw_image = "mwl8k/fmimage_8363.fw",
3440 },
3441 [MWL8687] = {
3442 .part_name = "88w8687",
3443 .helper_image = "mwl8k/helper_8687.fw",
3444 .fw_image = "mwl8k/fmimage_8687.fw",
3445 },
3446 [MWL8366] = {
3447 .part_name = "88w8366",
3448 .helper_image = "mwl8k/helper_8366.fw",
3449 .fw_image = "mwl8k/fmimage_8366.fw",
3450 .ap_rxd_ops = &rxd_8366_ap_ops,
3451 },
3452 };
3453
3454 static DEFINE_PCI_DEVICE_TABLE(mwl8k_pci_id_table) = {
3455 { PCI_VDEVICE(MARVELL, 0x2a0c), .driver_data = MWL8363, },
3456 { PCI_VDEVICE(MARVELL, 0x2a24), .driver_data = MWL8363, },
3457 { PCI_VDEVICE(MARVELL, 0x2a2b), .driver_data = MWL8687, },
3458 { PCI_VDEVICE(MARVELL, 0x2a30), .driver_data = MWL8687, },
3459 { PCI_VDEVICE(MARVELL, 0x2a40), .driver_data = MWL8366, },
3460 { },
3461 };
3462 MODULE_DEVICE_TABLE(pci, mwl8k_pci_id_table);
3463
3464 static int __devinit mwl8k_probe(struct pci_dev *pdev,
3465 const struct pci_device_id *id)
3466 {
3467 static int printed_version = 0;
3468 struct ieee80211_hw *hw;
3469 struct mwl8k_priv *priv;
3470 int rc;
3471 int i;
3472
3473 if (!printed_version) {
3474 printk(KERN_INFO "%s version %s\n", MWL8K_DESC, MWL8K_VERSION);
3475 printed_version = 1;
3476 }
3477
3478
3479 rc = pci_enable_device(pdev);
3480 if (rc) {
3481 printk(KERN_ERR "%s: Cannot enable new PCI device\n",
3482 MWL8K_NAME);
3483 return rc;
3484 }
3485
3486 rc = pci_request_regions(pdev, MWL8K_NAME);
3487 if (rc) {
3488 printk(KERN_ERR "%s: Cannot obtain PCI resources\n",
3489 MWL8K_NAME);
3490 goto err_disable_device;
3491 }
3492
3493 pci_set_master(pdev);
3494
3495
3496 hw = ieee80211_alloc_hw(sizeof(*priv), &mwl8k_ops);
3497 if (hw == NULL) {
3498 printk(KERN_ERR "%s: ieee80211 alloc failed\n", MWL8K_NAME);
3499 rc = -ENOMEM;
3500 goto err_free_reg;
3501 }
3502
3503 SET_IEEE80211_DEV(hw, &pdev->dev);
3504 pci_set_drvdata(pdev, hw);
3505
3506 priv = hw->priv;
3507 priv->hw = hw;
3508 priv->pdev = pdev;
3509 priv->device_info = &mwl8k_info_tbl[id->driver_data];
3510
3511
3512 priv->sram = pci_iomap(pdev, 0, 0x10000);
3513 if (priv->sram == NULL) {
3514 printk(KERN_ERR "%s: Cannot map device SRAM\n",
3515 wiphy_name(hw->wiphy));
3516 goto err_iounmap;
3517 }
3518
3519 /*
3520 * If BAR0 is a 32 bit BAR, the register BAR will be BAR1.
3521 * If BAR0 is a 64 bit BAR, the register BAR will be BAR2.
3522 */
3523 priv->regs = pci_iomap(pdev, 1, 0x10000);
3524 if (priv->regs == NULL) {
3525 priv->regs = pci_iomap(pdev, 2, 0x10000);
3526 if (priv->regs == NULL) {
3527 printk(KERN_ERR "%s: Cannot map device registers\n",
3528 wiphy_name(hw->wiphy));
3529 goto err_iounmap;
3530 }
3531 }
3532
3533
3534 /* Reset firmware and hardware */
3535 mwl8k_hw_reset(priv);
3536
3537 /* Ask userland hotplug daemon for the device firmware */
3538 rc = mwl8k_request_firmware(priv);
3539 if (rc) {
3540 printk(KERN_ERR "%s: Firmware files not found\n",
3541 wiphy_name(hw->wiphy));
3542 goto err_stop_firmware;
3543 }
3544
3545 /* Load firmware into hardware */
3546 rc = mwl8k_load_firmware(hw);
3547 if (rc) {
3548 printk(KERN_ERR "%s: Cannot start firmware\n",
3549 wiphy_name(hw->wiphy));
3550 goto err_stop_firmware;
3551 }
3552
3553 /* Reclaim memory once firmware is successfully loaded */
3554 mwl8k_release_firmware(priv);
3555
3556
3557 if (priv->ap_fw) {
3558 priv->rxd_ops = priv->device_info->ap_rxd_ops;
3559 if (priv->rxd_ops == NULL) {
3560 printk(KERN_ERR "%s: Driver does not have AP "
3561 "firmware image support for this hardware\n",
3562 wiphy_name(hw->wiphy));
3563 goto err_stop_firmware;
3564 }
3565 } else {
3566 priv->rxd_ops = &rxd_sta_ops;
3567 }
3568
3569 priv->sniffer_enabled = false;
3570 priv->wmm_enabled = false;
3571 priv->pending_tx_pkts = 0;
3572
3573
3574 memcpy(priv->channels, mwl8k_channels, sizeof(mwl8k_channels));
3575 priv->band.band = IEEE80211_BAND_2GHZ;
3576 priv->band.channels = priv->channels;
3577 priv->band.n_channels = ARRAY_SIZE(mwl8k_channels);
3578 priv->band.bitrates = priv->rates;
3579 priv->band.n_bitrates = ARRAY_SIZE(mwl8k_rates);
3580 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band;
3581
3582 BUILD_BUG_ON(sizeof(priv->rates) != sizeof(mwl8k_rates));
3583 memcpy(priv->rates, mwl8k_rates, sizeof(mwl8k_rates));
3584
3585 /*
3586 * Extra headroom is the size of the required DMA header
3587 * minus the size of the smallest 802.11 frame (CTS frame).
3588 */
3589 hw->extra_tx_headroom =
3590 sizeof(struct mwl8k_dma_data) - sizeof(struct ieee80211_cts);
3591
3592 hw->channel_change_time = 10;
3593
3594 hw->queues = MWL8K_TX_QUEUES;
3595
3596 /* Set rssi and noise values to dBm */
3597 hw->flags |= IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_NOISE_DBM;
3598 hw->vif_data_size = sizeof(struct mwl8k_vif);
3599 hw->sta_data_size = sizeof(struct mwl8k_sta);
3600 priv->vif = NULL;
3601
3602 /* Set default radio state and preamble */
3603 priv->radio_on = 0;
3604 priv->radio_short_preamble = 0;
3605
3606 /* Station database handling */
3607 INIT_WORK(&priv->sta_notify_worker, mwl8k_sta_notify_worker);
3608 spin_lock_init(&priv->sta_notify_list_lock);
3609 INIT_LIST_HEAD(&priv->sta_notify_list);
3610
3611 /* Finalize join worker */
3612 INIT_WORK(&priv->finalize_join_worker, mwl8k_finalize_join_worker);
3613
3614 /* TX reclaim tasklet */
3615 tasklet_init(&priv->tx_reclaim_task,
3616 mwl8k_tx_reclaim_handler, (unsigned long)hw);
3617 tasklet_disable(&priv->tx_reclaim_task);
3618
3619 /* Power management cookie */
3620 priv->cookie = pci_alloc_consistent(priv->pdev, 4, &priv->cookie_dma);
3621 if (priv->cookie == NULL)
3622 goto err_stop_firmware;
3623
3624 rc = mwl8k_rxq_init(hw, 0);
3625 if (rc)
3626 goto err_free_cookie;
3627 rxq_refill(hw, 0, INT_MAX);
3628
3629 mutex_init(&priv->fw_mutex);
3630 priv->fw_mutex_owner = NULL;
3631 priv->fw_mutex_depth = 0;
3632 priv->hostcmd_wait = NULL;
3633
3634 spin_lock_init(&priv->tx_lock);
3635
3636 priv->tx_wait = NULL;
3637
3638 for (i = 0; i < MWL8K_TX_QUEUES; i++) {
3639 rc = mwl8k_txq_init(hw, i);
3640 if (rc)
3641 goto err_free_queues;
3642 }
3643
3644 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
3645 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
3646 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL);
3647 iowrite32(0xffffffff, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK);
3648
3649 rc = request_irq(priv->pdev->irq, mwl8k_interrupt,
3650 IRQF_SHARED, MWL8K_NAME, hw);
3651 if (rc) {
3652 printk(KERN_ERR "%s: failed to register IRQ handler\n",
3653 wiphy_name(hw->wiphy));
3654 goto err_free_queues;
3655 }
3656
3657 /*
3658 * Temporarily enable interrupts. Initial firmware host
3659 * commands use interrupts and avoid polling. Disable
3660 * interrupts when done.
3661 */
3662 iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
3663
3664 /* Get config data, mac addrs etc */
3665 if (priv->ap_fw) {
3666 rc = mwl8k_cmd_get_hw_spec_ap(hw);
3667 if (!rc)
3668 rc = mwl8k_cmd_set_hw_spec(hw);
3669 } else {
3670 rc = mwl8k_cmd_get_hw_spec_sta(hw);
3671
3672 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
3673 }
3674 if (rc) {
3675 printk(KERN_ERR "%s: Cannot initialise firmware\n",
3676 wiphy_name(hw->wiphy));
3677 goto err_free_irq;
3678 }
3679
3680 /* Turn radio off */
3681 rc = mwl8k_cmd_radio_disable(hw);
3682 if (rc) {
3683 printk(KERN_ERR "%s: Cannot disable\n", wiphy_name(hw->wiphy));
3684 goto err_free_irq;
3685 }
3686
3687 /* Clear MAC address */
3688 rc = mwl8k_cmd_set_mac_addr(hw, "\x00\x00\x00\x00\x00\x00");
3689 if (rc) {
3690 printk(KERN_ERR "%s: Cannot clear MAC address\n",
3691 wiphy_name(hw->wiphy));
3692 goto err_free_irq;
3693 }
3694
3695 /* Disable interrupts */
3696 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
3697 free_irq(priv->pdev->irq, hw);
3698
3699 rc = ieee80211_register_hw(hw);
3700 if (rc) {
3701 printk(KERN_ERR "%s: Cannot register device\n",
3702 wiphy_name(hw->wiphy));
3703 goto err_free_queues;
3704 }
3705
3706 printk(KERN_INFO "%s: %s v%d, %pM, %s firmware %u.%u.%u.%u\n",
3707 wiphy_name(hw->wiphy), priv->device_info->part_name,
3708 priv->hw_rev, hw->wiphy->perm_addr,
3709 priv->ap_fw ? "AP" : "STA",
3710 (priv->fw_rev >> 24) & 0xff, (priv->fw_rev >> 16) & 0xff,
3711 (priv->fw_rev >> 8) & 0xff, priv->fw_rev & 0xff);
3712
3713 return 0;
3714
3715 err_free_irq:
3716 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
3717 free_irq(priv->pdev->irq, hw);
3718
3719 err_free_queues:
3720 for (i = 0; i < MWL8K_TX_QUEUES; i++)
3721 mwl8k_txq_deinit(hw, i);
3722 mwl8k_rxq_deinit(hw, 0);
3723
3724 err_free_cookie:
3725 if (priv->cookie != NULL)
3726 pci_free_consistent(priv->pdev, 4,
3727 priv->cookie, priv->cookie_dma);
3728
3729 err_stop_firmware:
3730 mwl8k_hw_reset(priv);
3731 mwl8k_release_firmware(priv);
3732
3733 err_iounmap:
3734 if (priv->regs != NULL)
3735 pci_iounmap(pdev, priv->regs);
3736
3737 if (priv->sram != NULL)
3738 pci_iounmap(pdev, priv->sram);
3739
3740 pci_set_drvdata(pdev, NULL);
3741 ieee80211_free_hw(hw);
3742
3743 err_free_reg:
3744 pci_release_regions(pdev);
3745
3746 err_disable_device:
3747 pci_disable_device(pdev);
3748
3749 return rc;
3750 }
3751
3752 static void __devexit mwl8k_shutdown(struct pci_dev *pdev)
3753 {
3754 printk(KERN_ERR "===>%s(%u)\n", __func__, __LINE__);
3755 }
3756
3757 static void __devexit mwl8k_remove(struct pci_dev *pdev)
3758 {
3759 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
3760 struct mwl8k_priv *priv;
3761 int i;
3762
3763 if (hw == NULL)
3764 return;
3765 priv = hw->priv;
3766
3767 ieee80211_stop_queues(hw);
3768
3769 ieee80211_unregister_hw(hw);
3770
3771 /* Remove tx reclaim tasklet */
3772 tasklet_kill(&priv->tx_reclaim_task);
3773
3774 /* Stop hardware */
3775 mwl8k_hw_reset(priv);
3776
3777 /* Return all skbs to mac80211 */
3778 for (i = 0; i < MWL8K_TX_QUEUES; i++)
3779 mwl8k_txq_reclaim(hw, i, 1);
3780
3781 for (i = 0; i < MWL8K_TX_QUEUES; i++)
3782 mwl8k_txq_deinit(hw, i);
3783
3784 mwl8k_rxq_deinit(hw, 0);
3785
3786 pci_free_consistent(priv->pdev, 4, priv->cookie, priv->cookie_dma);
3787
3788 pci_iounmap(pdev, priv->regs);
3789 pci_iounmap(pdev, priv->sram);
3790 pci_set_drvdata(pdev, NULL);
3791 ieee80211_free_hw(hw);
3792 pci_release_regions(pdev);
3793 pci_disable_device(pdev);
3794 }
3795
3796 static struct pci_driver mwl8k_driver = {
3797 .name = MWL8K_NAME,
3798 .id_table = mwl8k_pci_id_table,
3799 .probe = mwl8k_probe,
3800 .remove = __devexit_p(mwl8k_remove),
3801 .shutdown = __devexit_p(mwl8k_shutdown),
3802 };
3803
3804 static int __init mwl8k_init(void)
3805 {
3806 return pci_register_driver(&mwl8k_driver);
3807 }
3808
3809 static void __exit mwl8k_exit(void)
3810 {
3811 pci_unregister_driver(&mwl8k_driver);
3812 }
3813
3814 module_init(mwl8k_init);
3815 module_exit(mwl8k_exit);
3816
3817 MODULE_DESCRIPTION(MWL8K_DESC);
3818 MODULE_VERSION(MWL8K_VERSION);
3819 MODULE_AUTHOR("Lennert Buytenhek <buytenh@marvell.com>");
3820 MODULE_LICENSE("GPL");
This page took 0.114013 seconds and 5 git commands to generate.