p54spi: p54spi driver
[deliverable/linux.git] / drivers / net / wireless / p54 / p54common.c
1 /*
2 * Common code for mac80211 Prism54 drivers
3 *
4 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5 * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7 *
8 * Based on:
9 * - the islsm (softmac prism54) driver, which is:
10 * Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11 * - stlc45xx driver
12 * Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24
25 #include "p54.h"
26 #include "p54common.h"
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
32 MODULE_DESCRIPTION("Softmac Prism54 common code");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("prism54common");
35
36 static struct ieee80211_rate p54_bgrates[] = {
37 { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38 { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
39 { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
40 { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
41 { .bitrate = 60, .hw_value = 4, },
42 { .bitrate = 90, .hw_value = 5, },
43 { .bitrate = 120, .hw_value = 6, },
44 { .bitrate = 180, .hw_value = 7, },
45 { .bitrate = 240, .hw_value = 8, },
46 { .bitrate = 360, .hw_value = 9, },
47 { .bitrate = 480, .hw_value = 10, },
48 { .bitrate = 540, .hw_value = 11, },
49 };
50
51 static struct ieee80211_channel p54_bgchannels[] = {
52 { .center_freq = 2412, .hw_value = 1, },
53 { .center_freq = 2417, .hw_value = 2, },
54 { .center_freq = 2422, .hw_value = 3, },
55 { .center_freq = 2427, .hw_value = 4, },
56 { .center_freq = 2432, .hw_value = 5, },
57 { .center_freq = 2437, .hw_value = 6, },
58 { .center_freq = 2442, .hw_value = 7, },
59 { .center_freq = 2447, .hw_value = 8, },
60 { .center_freq = 2452, .hw_value = 9, },
61 { .center_freq = 2457, .hw_value = 10, },
62 { .center_freq = 2462, .hw_value = 11, },
63 { .center_freq = 2467, .hw_value = 12, },
64 { .center_freq = 2472, .hw_value = 13, },
65 { .center_freq = 2484, .hw_value = 14, },
66 };
67
68 static struct ieee80211_supported_band band_2GHz = {
69 .channels = p54_bgchannels,
70 .n_channels = ARRAY_SIZE(p54_bgchannels),
71 .bitrates = p54_bgrates,
72 .n_bitrates = ARRAY_SIZE(p54_bgrates),
73 };
74
75 static struct ieee80211_rate p54_arates[] = {
76 { .bitrate = 60, .hw_value = 4, },
77 { .bitrate = 90, .hw_value = 5, },
78 { .bitrate = 120, .hw_value = 6, },
79 { .bitrate = 180, .hw_value = 7, },
80 { .bitrate = 240, .hw_value = 8, },
81 { .bitrate = 360, .hw_value = 9, },
82 { .bitrate = 480, .hw_value = 10, },
83 { .bitrate = 540, .hw_value = 11, },
84 };
85
86 static struct ieee80211_channel p54_achannels[] = {
87 { .center_freq = 4920 },
88 { .center_freq = 4940 },
89 { .center_freq = 4960 },
90 { .center_freq = 4980 },
91 { .center_freq = 5040 },
92 { .center_freq = 5060 },
93 { .center_freq = 5080 },
94 { .center_freq = 5170 },
95 { .center_freq = 5180 },
96 { .center_freq = 5190 },
97 { .center_freq = 5200 },
98 { .center_freq = 5210 },
99 { .center_freq = 5220 },
100 { .center_freq = 5230 },
101 { .center_freq = 5240 },
102 { .center_freq = 5260 },
103 { .center_freq = 5280 },
104 { .center_freq = 5300 },
105 { .center_freq = 5320 },
106 { .center_freq = 5500 },
107 { .center_freq = 5520 },
108 { .center_freq = 5540 },
109 { .center_freq = 5560 },
110 { .center_freq = 5580 },
111 { .center_freq = 5600 },
112 { .center_freq = 5620 },
113 { .center_freq = 5640 },
114 { .center_freq = 5660 },
115 { .center_freq = 5680 },
116 { .center_freq = 5700 },
117 { .center_freq = 5745 },
118 { .center_freq = 5765 },
119 { .center_freq = 5785 },
120 { .center_freq = 5805 },
121 { .center_freq = 5825 },
122 };
123
124 static struct ieee80211_supported_band band_5GHz = {
125 .channels = p54_achannels,
126 .n_channels = ARRAY_SIZE(p54_achannels),
127 .bitrates = p54_arates,
128 .n_bitrates = ARRAY_SIZE(p54_arates),
129 };
130
131 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
132 {
133 struct p54_common *priv = dev->priv;
134 struct bootrec_exp_if *exp_if;
135 struct bootrec *bootrec;
136 u32 *data = (u32 *)fw->data;
137 u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
138 u8 *fw_version = NULL;
139 size_t len;
140 int i;
141 int maxlen;
142
143 if (priv->rx_start)
144 return 0;
145
146 while (data < end_data && *data)
147 data++;
148
149 while (data < end_data && !*data)
150 data++;
151
152 bootrec = (struct bootrec *) data;
153
154 while (bootrec->data <= end_data &&
155 (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
156 u32 code = le32_to_cpu(bootrec->code);
157 switch (code) {
158 case BR_CODE_COMPONENT_ID:
159 priv->fw_interface = be32_to_cpup((__be32 *)
160 bootrec->data);
161 switch (priv->fw_interface) {
162 case FW_LM86:
163 case FW_LM20:
164 case FW_LM87: {
165 char *iftype = (char *)bootrec->data;
166 printk(KERN_INFO "%s: p54 detected a LM%c%c "
167 "firmware\n",
168 wiphy_name(dev->wiphy),
169 iftype[2], iftype[3]);
170 break;
171 }
172 case FW_FMAC:
173 default:
174 printk(KERN_ERR "%s: unsupported firmware\n",
175 wiphy_name(dev->wiphy));
176 return -ENODEV;
177 }
178 break;
179 case BR_CODE_COMPONENT_VERSION:
180 /* 24 bytes should be enough for all firmwares */
181 if (strnlen((unsigned char*)bootrec->data, 24) < 24)
182 fw_version = (unsigned char*)bootrec->data;
183 break;
184 case BR_CODE_DESCR: {
185 struct bootrec_desc *desc =
186 (struct bootrec_desc *)bootrec->data;
187 priv->rx_start = le32_to_cpu(desc->rx_start);
188 /* FIXME add sanity checking */
189 priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
190 priv->headroom = desc->headroom;
191 priv->tailroom = desc->tailroom;
192 priv->privacy_caps = desc->privacy_caps;
193 priv->rx_keycache_size = desc->rx_keycache_size;
194 if (le32_to_cpu(bootrec->len) == 11)
195 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
196 else
197 priv->rx_mtu = (size_t)
198 0x620 - priv->tx_hdr_len;
199 maxlen = priv->tx_hdr_len + /* USB devices */
200 sizeof(struct p54_rx_data) +
201 4 + /* rx alignment */
202 IEEE80211_MAX_FRAG_THRESHOLD;
203 if (priv->rx_mtu > maxlen && PAGE_SIZE == 4096) {
204 printk(KERN_INFO "p54: rx_mtu reduced from %d "
205 "to %d\n", priv->rx_mtu,
206 maxlen);
207 priv->rx_mtu = maxlen;
208 }
209 break;
210 }
211 case BR_CODE_EXPOSED_IF:
212 exp_if = (struct bootrec_exp_if *) bootrec->data;
213 for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
214 if (exp_if[i].if_id == cpu_to_le16(0x1a))
215 priv->fw_var = le16_to_cpu(exp_if[i].variant);
216 break;
217 case BR_CODE_DEPENDENT_IF:
218 break;
219 case BR_CODE_END_OF_BRA:
220 case LEGACY_BR_CODE_END_OF_BRA:
221 end_data = NULL;
222 break;
223 default:
224 break;
225 }
226 bootrec = (struct bootrec *)&bootrec->data[len];
227 }
228
229 if (fw_version)
230 printk(KERN_INFO "%s: FW rev %s - Softmac protocol %x.%x\n",
231 wiphy_name(dev->wiphy), fw_version,
232 priv->fw_var >> 8, priv->fw_var & 0xff);
233
234 if (priv->fw_var < 0x500)
235 printk(KERN_INFO "%s: you are using an obsolete firmware. "
236 "visit http://wireless.kernel.org/en/users/Drivers/p54 "
237 "and grab one for \"kernel >= 2.6.28\"!\n",
238 wiphy_name(dev->wiphy));
239
240 if (priv->fw_var >= 0x300) {
241 /* Firmware supports QoS, use it! */
242 priv->tx_stats[P54_QUEUE_AC_VO].limit = 3;
243 priv->tx_stats[P54_QUEUE_AC_VI].limit = 4;
244 priv->tx_stats[P54_QUEUE_AC_BE].limit = 3;
245 priv->tx_stats[P54_QUEUE_AC_BK].limit = 2;
246 dev->queues = P54_QUEUE_AC_NUM;
247 }
248
249 if (!modparam_nohwcrypt)
250 printk(KERN_INFO "%s: cryptographic accelerator "
251 "WEP:%s, TKIP:%s, CCMP:%s\n",
252 wiphy_name(dev->wiphy),
253 (priv->privacy_caps & BR_DESC_PRIV_CAP_WEP) ? "YES" :
254 "no", (priv->privacy_caps & (BR_DESC_PRIV_CAP_TKIP |
255 BR_DESC_PRIV_CAP_MICHAEL)) ? "YES" : "no",
256 (priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP) ?
257 "YES" : "no");
258
259 return 0;
260 }
261 EXPORT_SYMBOL_GPL(p54_parse_firmware);
262
263 static int p54_convert_rev0(struct ieee80211_hw *dev,
264 struct pda_pa_curve_data *curve_data)
265 {
266 struct p54_common *priv = dev->priv;
267 struct p54_pa_curve_data_sample *dst;
268 struct pda_pa_curve_data_sample_rev0 *src;
269 size_t cd_len = sizeof(*curve_data) +
270 (curve_data->points_per_channel*sizeof(*dst) + 2) *
271 curve_data->channels;
272 unsigned int i, j;
273 void *source, *target;
274
275 priv->curve_data = kmalloc(sizeof(*priv->curve_data) + cd_len,
276 GFP_KERNEL);
277 if (!priv->curve_data)
278 return -ENOMEM;
279
280 priv->curve_data->entries = curve_data->channels;
281 priv->curve_data->entry_size = sizeof(__le16) +
282 sizeof(*dst) * curve_data->points_per_channel;
283 priv->curve_data->offset = offsetof(struct pda_pa_curve_data, data);
284 priv->curve_data->len = cd_len;
285 memcpy(priv->curve_data->data, curve_data, sizeof(*curve_data));
286 source = curve_data->data;
287 target = ((struct pda_pa_curve_data *) priv->curve_data->data)->data;
288 for (i = 0; i < curve_data->channels; i++) {
289 __le16 *freq = source;
290 source += sizeof(__le16);
291 *((__le16 *)target) = *freq;
292 target += sizeof(__le16);
293 for (j = 0; j < curve_data->points_per_channel; j++) {
294 dst = target;
295 src = source;
296
297 dst->rf_power = src->rf_power;
298 dst->pa_detector = src->pa_detector;
299 dst->data_64qam = src->pcv;
300 /* "invent" the points for the other modulations */
301 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
302 dst->data_16qam = SUB(src->pcv, 12);
303 dst->data_qpsk = SUB(dst->data_16qam, 12);
304 dst->data_bpsk = SUB(dst->data_qpsk, 12);
305 dst->data_barker = SUB(dst->data_bpsk, 14);
306 #undef SUB
307 target += sizeof(*dst);
308 source += sizeof(*src);
309 }
310 }
311
312 return 0;
313 }
314
315 static int p54_convert_rev1(struct ieee80211_hw *dev,
316 struct pda_pa_curve_data *curve_data)
317 {
318 struct p54_common *priv = dev->priv;
319 struct p54_pa_curve_data_sample *dst;
320 struct pda_pa_curve_data_sample_rev1 *src;
321 size_t cd_len = sizeof(*curve_data) +
322 (curve_data->points_per_channel*sizeof(*dst) + 2) *
323 curve_data->channels;
324 unsigned int i, j;
325 void *source, *target;
326
327 priv->curve_data = kzalloc(cd_len + sizeof(*priv->curve_data),
328 GFP_KERNEL);
329 if (!priv->curve_data)
330 return -ENOMEM;
331
332 priv->curve_data->entries = curve_data->channels;
333 priv->curve_data->entry_size = sizeof(__le16) +
334 sizeof(*dst) * curve_data->points_per_channel;
335 priv->curve_data->offset = offsetof(struct pda_pa_curve_data, data);
336 priv->curve_data->len = cd_len;
337 memcpy(priv->curve_data->data, curve_data, sizeof(*curve_data));
338 source = curve_data->data;
339 target = ((struct pda_pa_curve_data *) priv->curve_data->data)->data;
340 for (i = 0; i < curve_data->channels; i++) {
341 __le16 *freq = source;
342 source += sizeof(__le16);
343 *((__le16 *)target) = *freq;
344 target += sizeof(__le16);
345 for (j = 0; j < curve_data->points_per_channel; j++) {
346 memcpy(target, source, sizeof(*src));
347
348 target += sizeof(*dst);
349 source += sizeof(*src);
350 }
351 source++;
352 }
353
354 return 0;
355 }
356
357 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
358 "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
359 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
360
361 static void p54_parse_rssical(struct ieee80211_hw *dev, void *data, int len,
362 u16 type)
363 {
364 struct p54_common *priv = dev->priv;
365 int offset = (type == PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) ? 2 : 0;
366 int entry_size = sizeof(struct pda_rssi_cal_entry) + offset;
367 int num_entries = (type == PDR_RSSI_LINEAR_APPROXIMATION) ? 1 : 2;
368 int i;
369
370 if (len != (entry_size * num_entries)) {
371 printk(KERN_ERR "%s: unknown rssi calibration data packing "
372 " type:(%x) len:%d.\n",
373 wiphy_name(dev->wiphy), type, len);
374
375 print_hex_dump_bytes("rssical:", DUMP_PREFIX_NONE,
376 data, len);
377
378 printk(KERN_ERR "%s: please report this issue.\n",
379 wiphy_name(dev->wiphy));
380 return;
381 }
382
383 for (i = 0; i < num_entries; i++) {
384 struct pda_rssi_cal_entry *cal = data +
385 (offset + i * entry_size);
386 priv->rssical_db[i].mul = (s16) le16_to_cpu(cal->mul);
387 priv->rssical_db[i].add = (s16) le16_to_cpu(cal->add);
388 }
389 }
390
391 static void p54_parse_default_country(struct ieee80211_hw *dev,
392 void *data, int len)
393 {
394 struct pda_country *country;
395
396 if (len != sizeof(*country)) {
397 printk(KERN_ERR "%s: found possible invalid default country "
398 "eeprom entry. (entry size: %d)\n",
399 wiphy_name(dev->wiphy), len);
400
401 print_hex_dump_bytes("country:", DUMP_PREFIX_NONE,
402 data, len);
403
404 printk(KERN_ERR "%s: please report this issue.\n",
405 wiphy_name(dev->wiphy));
406 return;
407 }
408
409 country = (struct pda_country *) data;
410 if (country->flags == PDR_COUNTRY_CERT_CODE_PSEUDO)
411 regulatory_hint(dev->wiphy, country->alpha2);
412 else {
413 /* TODO:
414 * write a shared/common function that converts
415 * "Regulatory domain codes" (802.11-2007 14.8.2.2)
416 * into ISO/IEC 3166-1 alpha2 for regulatory_hint.
417 */
418 }
419 }
420
421 static int p54_convert_output_limits(struct ieee80211_hw *dev,
422 u8 *data, size_t len)
423 {
424 struct p54_common *priv = dev->priv;
425
426 if (len < 2)
427 return -EINVAL;
428
429 if (data[0] != 0) {
430 printk(KERN_ERR "%s: unknown output power db revision:%x\n",
431 wiphy_name(dev->wiphy), data[0]);
432 return -EINVAL;
433 }
434
435 if (2 + data[1] * sizeof(struct pda_channel_output_limit) > len)
436 return -EINVAL;
437
438 priv->output_limit = kmalloc(data[1] *
439 sizeof(struct pda_channel_output_limit) +
440 sizeof(*priv->output_limit), GFP_KERNEL);
441
442 if (!priv->output_limit)
443 return -ENOMEM;
444
445 priv->output_limit->offset = 0;
446 priv->output_limit->entries = data[1];
447 priv->output_limit->entry_size =
448 sizeof(struct pda_channel_output_limit);
449 priv->output_limit->len = priv->output_limit->entry_size *
450 priv->output_limit->entries +
451 priv->output_limit->offset;
452
453 memcpy(priv->output_limit->data, &data[2],
454 data[1] * sizeof(struct pda_channel_output_limit));
455
456 return 0;
457 }
458
459 static struct p54_cal_database *p54_convert_db(struct pda_custom_wrapper *src,
460 size_t total_len)
461 {
462 struct p54_cal_database *dst;
463 size_t payload_len, entries, entry_size, offset;
464
465 payload_len = le16_to_cpu(src->len);
466 entries = le16_to_cpu(src->entries);
467 entry_size = le16_to_cpu(src->entry_size);
468 offset = le16_to_cpu(src->offset);
469 if (((entries * entry_size + offset) != payload_len) ||
470 (payload_len + sizeof(*src) != total_len))
471 return NULL;
472
473 dst = kmalloc(sizeof(*dst) + payload_len, GFP_KERNEL);
474 if (!dst)
475 return NULL;
476
477 dst->entries = entries;
478 dst->entry_size = entry_size;
479 dst->offset = offset;
480 dst->len = payload_len;
481
482 memcpy(dst->data, src->data, payload_len);
483 return dst;
484 }
485
486 int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
487 {
488 struct p54_common *priv = dev->priv;
489 struct eeprom_pda_wrap *wrap = NULL;
490 struct pda_entry *entry;
491 unsigned int data_len, entry_len;
492 void *tmp;
493 int err;
494 u8 *end = (u8 *)eeprom + len;
495 u16 synth = 0;
496
497 wrap = (struct eeprom_pda_wrap *) eeprom;
498 entry = (void *)wrap->data + le16_to_cpu(wrap->len);
499
500 /* verify that at least the entry length/code fits */
501 while ((u8 *)entry <= end - sizeof(*entry)) {
502 entry_len = le16_to_cpu(entry->len);
503 data_len = ((entry_len - 1) << 1);
504
505 /* abort if entry exceeds whole structure */
506 if ((u8 *)entry + sizeof(*entry) + data_len > end)
507 break;
508
509 switch (le16_to_cpu(entry->code)) {
510 case PDR_MAC_ADDRESS:
511 if (data_len != ETH_ALEN)
512 break;
513 SET_IEEE80211_PERM_ADDR(dev, entry->data);
514 break;
515 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
516 if (priv->output_limit)
517 break;
518 err = p54_convert_output_limits(dev, entry->data,
519 data_len);
520 if (err)
521 goto err;
522 break;
523 case PDR_PRISM_PA_CAL_CURVE_DATA: {
524 struct pda_pa_curve_data *curve_data =
525 (struct pda_pa_curve_data *)entry->data;
526 if (data_len < sizeof(*curve_data)) {
527 err = -EINVAL;
528 goto err;
529 }
530
531 switch (curve_data->cal_method_rev) {
532 case 0:
533 err = p54_convert_rev0(dev, curve_data);
534 break;
535 case 1:
536 err = p54_convert_rev1(dev, curve_data);
537 break;
538 default:
539 printk(KERN_ERR "%s: unknown curve data "
540 "revision %d\n",
541 wiphy_name(dev->wiphy),
542 curve_data->cal_method_rev);
543 err = -ENODEV;
544 break;
545 }
546 if (err)
547 goto err;
548 }
549 break;
550 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
551 priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
552 if (!priv->iq_autocal) {
553 err = -ENOMEM;
554 goto err;
555 }
556
557 memcpy(priv->iq_autocal, entry->data, data_len);
558 priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
559 break;
560 case PDR_DEFAULT_COUNTRY:
561 p54_parse_default_country(dev, entry->data, data_len);
562 break;
563 case PDR_INTERFACE_LIST:
564 tmp = entry->data;
565 while ((u8 *)tmp < entry->data + data_len) {
566 struct bootrec_exp_if *exp_if = tmp;
567 if (le16_to_cpu(exp_if->if_id) == 0xf)
568 synth = le16_to_cpu(exp_if->variant);
569 tmp += sizeof(struct bootrec_exp_if);
570 }
571 break;
572 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
573 if (data_len < 2)
574 break;
575 priv->version = *(u8 *)(entry->data + 1);
576 break;
577 case PDR_RSSI_LINEAR_APPROXIMATION:
578 case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
579 case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
580 p54_parse_rssical(dev, entry->data, data_len,
581 le16_to_cpu(entry->code));
582 break;
583 case PDR_RSSI_LINEAR_APPROXIMATION_CUSTOM: {
584 __le16 *src = (void *) entry->data;
585 s16 *dst = (void *) &priv->rssical_db;
586 int i;
587
588 if (data_len != sizeof(priv->rssical_db)) {
589 err = -EINVAL;
590 goto err;
591 }
592 for (i = 0; i < sizeof(priv->rssical_db) /
593 sizeof(*src); i++)
594 *(dst++) = (s16) le16_to_cpu(*(src++));
595 }
596 break;
597 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS_CUSTOM: {
598 struct pda_custom_wrapper *pda = (void *) entry->data;
599 if (priv->output_limit || data_len < sizeof(*pda))
600 break;
601 priv->output_limit = p54_convert_db(pda, data_len);
602 }
603 break;
604 case PDR_PRISM_PA_CAL_CURVE_DATA_CUSTOM: {
605 struct pda_custom_wrapper *pda = (void *) entry->data;
606 if (priv->curve_data || data_len < sizeof(*pda))
607 break;
608 priv->curve_data = p54_convert_db(pda, data_len);
609 }
610 break;
611 case PDR_END:
612 /* make it overrun */
613 entry_len = len;
614 break;
615 case PDR_MANUFACTURING_PART_NUMBER:
616 case PDR_PDA_VERSION:
617 case PDR_NIC_SERIAL_NUMBER:
618 case PDR_REGULATORY_DOMAIN_LIST:
619 case PDR_TEMPERATURE_TYPE:
620 case PDR_PRISM_PCI_IDENTIFIER:
621 case PDR_COUNTRY_INFORMATION:
622 case PDR_OEM_NAME:
623 case PDR_PRODUCT_NAME:
624 case PDR_UTF8_OEM_NAME:
625 case PDR_UTF8_PRODUCT_NAME:
626 case PDR_COUNTRY_LIST:
627 case PDR_ANTENNA_GAIN:
628 case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
629 case PDR_REGULATORY_POWER_LIMITS:
630 case PDR_RADIATED_TRANSMISSION_CORRECTION:
631 case PDR_PRISM_TX_IQ_CALIBRATION:
632 case PDR_BASEBAND_REGISTERS:
633 case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
634 break;
635 default:
636 printk(KERN_INFO "%s: unknown eeprom code : 0x%x\n",
637 wiphy_name(dev->wiphy),
638 le16_to_cpu(entry->code));
639 break;
640 }
641
642 entry = (void *)entry + (entry_len + 1)*2;
643 }
644
645 if (!synth || !priv->iq_autocal || !priv->output_limit ||
646 !priv->curve_data) {
647 printk(KERN_ERR "%s: not all required entries found in eeprom!\n",
648 wiphy_name(dev->wiphy));
649 err = -EINVAL;
650 goto err;
651 }
652
653 priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
654 if (priv->rxhw == PDR_SYNTH_FRONTEND_XBOW)
655 p54_init_xbow_synth(dev);
656 if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
657 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
658 if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
659 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
660 if ((synth & PDR_SYNTH_RX_DIV_MASK) == PDR_SYNTH_RX_DIV_SUPPORTED)
661 priv->rx_diversity_mask = 3;
662 if ((synth & PDR_SYNTH_TX_DIV_MASK) == PDR_SYNTH_TX_DIV_SUPPORTED)
663 priv->tx_diversity_mask = 3;
664
665 if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
666 u8 perm_addr[ETH_ALEN];
667
668 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
669 wiphy_name(dev->wiphy));
670 random_ether_addr(perm_addr);
671 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
672 }
673
674 printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
675 wiphy_name(dev->wiphy),
676 dev->wiphy->perm_addr,
677 priv->version, p54_rf_chips[priv->rxhw]);
678
679 return 0;
680
681 err:
682 if (priv->iq_autocal) {
683 kfree(priv->iq_autocal);
684 priv->iq_autocal = NULL;
685 }
686
687 if (priv->output_limit) {
688 kfree(priv->output_limit);
689 priv->output_limit = NULL;
690 }
691
692 if (priv->curve_data) {
693 kfree(priv->curve_data);
694 priv->curve_data = NULL;
695 }
696
697 printk(KERN_ERR "%s: eeprom parse failed!\n",
698 wiphy_name(dev->wiphy));
699 return err;
700 }
701 EXPORT_SYMBOL_GPL(p54_parse_eeprom);
702
703 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
704 {
705 struct p54_common *priv = dev->priv;
706 int band = dev->conf.channel->band;
707
708 if (priv->rxhw != PDR_SYNTH_FRONTEND_LONGBOW)
709 return ((rssi * priv->rssical_db[band].mul) / 64 +
710 priv->rssical_db[band].add) / 4;
711 else
712 /*
713 * TODO: find the correct formula
714 */
715 return ((rssi * priv->rssical_db[band].mul) / 64 +
716 priv->rssical_db[band].add) / 4;
717 }
718
719 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
720 {
721 struct p54_common *priv = dev->priv;
722 struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
723 struct ieee80211_rx_status rx_status = {0};
724 u16 freq = le16_to_cpu(hdr->freq);
725 size_t header_len = sizeof(*hdr);
726 u32 tsf32;
727 u8 rate = hdr->rate & 0xf;
728
729 /*
730 * If the device is in a unspecified state we have to
731 * ignore all data frames. Else we could end up with a
732 * nasty crash.
733 */
734 if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
735 return 0;
736
737 if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
738 if (priv->filter_flags & FIF_FCSFAIL)
739 rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
740 else
741 return 0;
742 }
743
744 if (hdr->decrypt_status == P54_DECRYPT_OK)
745 rx_status.flag |= RX_FLAG_DECRYPTED;
746 if ((hdr->decrypt_status == P54_DECRYPT_FAIL_MICHAEL) ||
747 (hdr->decrypt_status == P54_DECRYPT_FAIL_TKIP))
748 rx_status.flag |= RX_FLAG_MMIC_ERROR;
749
750 rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
751 rx_status.noise = priv->noise;
752 /* XX correct? */
753 rx_status.qual = (100 * hdr->rssi) / 127;
754 if (hdr->rate & 0x10)
755 rx_status.flag |= RX_FLAG_SHORTPRE;
756 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
757 rx_status.rate_idx = (rate < 4) ? 0 : rate - 4;
758 else
759 rx_status.rate_idx = rate;
760
761 rx_status.freq = freq;
762 rx_status.band = dev->conf.channel->band;
763 rx_status.antenna = hdr->antenna;
764
765 tsf32 = le32_to_cpu(hdr->tsf32);
766 if (tsf32 < priv->tsf_low32)
767 priv->tsf_high32++;
768 rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
769 priv->tsf_low32 = tsf32;
770
771 rx_status.flag |= RX_FLAG_TSFT;
772
773 if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
774 header_len += hdr->align[0];
775
776 skb_pull(skb, header_len);
777 skb_trim(skb, le16_to_cpu(hdr->len));
778
779 ieee80211_rx_irqsafe(dev, skb, &rx_status);
780
781 queue_delayed_work(dev->workqueue, &priv->work,
782 msecs_to_jiffies(P54_STATISTICS_UPDATE));
783
784 return -1;
785 }
786
787 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
788 {
789 struct p54_common *priv = dev->priv;
790 int i;
791
792 if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
793 return ;
794
795 for (i = 0; i < dev->queues; i++)
796 if (priv->tx_stats[i + P54_QUEUE_DATA].len <
797 priv->tx_stats[i + P54_QUEUE_DATA].limit)
798 ieee80211_wake_queue(dev, i);
799 }
800
801 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
802 {
803 struct p54_common *priv = dev->priv;
804 struct ieee80211_tx_info *info;
805 struct p54_tx_info *range;
806 unsigned long flags;
807 u32 freed = 0, last_addr = priv->rx_start;
808
809 if (unlikely(!skb || !dev || !skb_queue_len(&priv->tx_queue)))
810 return;
811
812 /*
813 * don't try to free an already unlinked skb
814 */
815 if (unlikely((!skb->next) || (!skb->prev)))
816 return;
817
818 spin_lock_irqsave(&priv->tx_queue.lock, flags);
819 info = IEEE80211_SKB_CB(skb);
820 range = (void *)info->rate_driver_data;
821 if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
822 struct ieee80211_tx_info *ni;
823 struct p54_tx_info *mr;
824
825 ni = IEEE80211_SKB_CB(skb->prev);
826 mr = (struct p54_tx_info *)ni->rate_driver_data;
827 last_addr = mr->end_addr;
828 }
829 if (skb->next != (struct sk_buff *)&priv->tx_queue) {
830 struct ieee80211_tx_info *ni;
831 struct p54_tx_info *mr;
832
833 ni = IEEE80211_SKB_CB(skb->next);
834 mr = (struct p54_tx_info *)ni->rate_driver_data;
835 freed = mr->start_addr - last_addr;
836 } else
837 freed = priv->rx_end - last_addr;
838 __skb_unlink(skb, &priv->tx_queue);
839 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
840 dev_kfree_skb_any(skb);
841
842 if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
843 IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
844 p54_wake_free_queues(dev);
845 }
846 EXPORT_SYMBOL_GPL(p54_free_skb);
847
848 static struct sk_buff *p54_find_tx_entry(struct ieee80211_hw *dev,
849 __le32 req_id)
850 {
851 struct p54_common *priv = dev->priv;
852 struct sk_buff *entry = priv->tx_queue.next;
853 unsigned long flags;
854
855 spin_lock_irqsave(&priv->tx_queue.lock, flags);
856 while (entry != (struct sk_buff *)&priv->tx_queue) {
857 struct p54_hdr *hdr = (struct p54_hdr *) entry->data;
858
859 if (hdr->req_id == req_id) {
860 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
861 return entry;
862 }
863 entry = entry->next;
864 }
865 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
866 return NULL;
867 }
868
869 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
870 {
871 struct p54_common *priv = dev->priv;
872 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
873 struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
874 struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
875 u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
876 struct p54_tx_info *range = NULL;
877 u32 freed = 0;
878 u32 last_addr = priv->rx_start;
879 unsigned long flags;
880 int count, idx;
881
882 spin_lock_irqsave(&priv->tx_queue.lock, flags);
883 while (entry != (struct sk_buff *)&priv->tx_queue) {
884 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
885 struct p54_hdr *entry_hdr;
886 struct p54_tx_data *entry_data;
887 unsigned int pad = 0, frame_len;
888
889 range = (void *)info->rate_driver_data;
890 if (range->start_addr != addr) {
891 last_addr = range->end_addr;
892 entry = entry->next;
893 continue;
894 }
895
896 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
897 struct ieee80211_tx_info *ni;
898 struct p54_tx_info *mr;
899
900 ni = IEEE80211_SKB_CB(entry->next);
901 mr = (struct p54_tx_info *)ni->rate_driver_data;
902 freed = mr->start_addr - last_addr;
903 } else
904 freed = priv->rx_end - last_addr;
905
906 last_addr = range->end_addr;
907 __skb_unlink(entry, &priv->tx_queue);
908 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
909
910 frame_len = entry->len;
911 entry_hdr = (struct p54_hdr *) entry->data;
912 entry_data = (struct p54_tx_data *) entry_hdr->data;
913 priv->tx_stats[entry_data->hw_queue].len--;
914 priv->stats.dot11ACKFailureCount += payload->tries - 1;
915
916 /*
917 * Frames in P54_QUEUE_FWSCAN and P54_QUEUE_BEACON are
918 * generated by the driver. Therefore tx_status is bogus
919 * and we don't want to confuse the mac80211 stack.
920 */
921 if (unlikely(entry_data->hw_queue < P54_QUEUE_FWSCAN)) {
922 if (entry_data->hw_queue == P54_QUEUE_BEACON)
923 priv->cached_beacon = NULL;
924
925 kfree_skb(entry);
926 goto out;
927 }
928
929 /*
930 * Clear manually, ieee80211_tx_info_clear_status would
931 * clear the counts too and we need them.
932 */
933 memset(&info->status.ampdu_ack_len, 0,
934 sizeof(struct ieee80211_tx_info) -
935 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
936 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
937 status.ampdu_ack_len) != 23);
938
939 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
940 pad = entry_data->align[0];
941
942 /* walk through the rates array and adjust the counts */
943 count = payload->tries;
944 for (idx = 0; idx < 4; idx++) {
945 if (count >= info->status.rates[idx].count) {
946 count -= info->status.rates[idx].count;
947 } else if (count > 0) {
948 info->status.rates[idx].count = count;
949 count = 0;
950 } else {
951 info->status.rates[idx].idx = -1;
952 info->status.rates[idx].count = 0;
953 }
954 }
955
956 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
957 (!payload->status))
958 info->flags |= IEEE80211_TX_STAT_ACK;
959 if (payload->status & P54_TX_PSM_CANCELLED)
960 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
961 info->status.ack_signal = p54_rssi_to_dbm(dev,
962 (int)payload->ack_rssi);
963
964 /* Undo all changes to the frame. */
965 switch (entry_data->key_type) {
966 case P54_CRYPTO_TKIPMICHAEL: {
967 u8 *iv = (u8 *)(entry_data->align + pad +
968 entry_data->crypt_offset);
969
970 /* Restore the original TKIP IV. */
971 iv[2] = iv[0];
972 iv[0] = iv[1];
973 iv[1] = (iv[0] | 0x20) & 0x7f; /* WEPSeed - 8.3.2.2 */
974
975 frame_len -= 12; /* remove TKIP_MMIC + TKIP_ICV */
976 break;
977 }
978 case P54_CRYPTO_AESCCMP:
979 frame_len -= 8; /* remove CCMP_MIC */
980 break;
981 case P54_CRYPTO_WEP:
982 frame_len -= 4; /* remove WEP_ICV */
983 break;
984 }
985 skb_trim(entry, frame_len);
986 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
987 ieee80211_tx_status_irqsafe(dev, entry);
988 goto out;
989 }
990 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
991
992 out:
993 if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
994 IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
995 p54_wake_free_queues(dev);
996 }
997
998 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
999 struct sk_buff *skb)
1000 {
1001 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
1002 struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
1003 struct p54_common *priv = dev->priv;
1004
1005 if (!priv->eeprom)
1006 return ;
1007
1008 if (priv->fw_var >= 0x509) {
1009 memcpy(priv->eeprom, eeprom->v2.data,
1010 le16_to_cpu(eeprom->v2.len));
1011 } else {
1012 memcpy(priv->eeprom, eeprom->v1.data,
1013 le16_to_cpu(eeprom->v1.len));
1014 }
1015
1016 complete(&priv->eeprom_comp);
1017 }
1018
1019 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
1020 {
1021 struct p54_common *priv = dev->priv;
1022 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
1023 struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
1024 u32 tsf32;
1025
1026 if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
1027 return ;
1028
1029 tsf32 = le32_to_cpu(stats->tsf32);
1030 if (tsf32 < priv->tsf_low32)
1031 priv->tsf_high32++;
1032 priv->tsf_low32 = tsf32;
1033
1034 priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
1035 priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
1036 priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
1037
1038 priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
1039
1040 p54_free_skb(dev, p54_find_tx_entry(dev, hdr->req_id));
1041 }
1042
1043 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
1044 {
1045 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
1046 struct p54_trap *trap = (struct p54_trap *) hdr->data;
1047 u16 event = le16_to_cpu(trap->event);
1048 u16 freq = le16_to_cpu(trap->frequency);
1049
1050 switch (event) {
1051 case P54_TRAP_BEACON_TX:
1052 break;
1053 case P54_TRAP_RADAR:
1054 printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
1055 wiphy_name(dev->wiphy), freq);
1056 break;
1057 case P54_TRAP_NO_BEACON:
1058 break;
1059 case P54_TRAP_SCAN:
1060 break;
1061 case P54_TRAP_TBTT:
1062 break;
1063 case P54_TRAP_TIMER:
1064 break;
1065 default:
1066 printk(KERN_INFO "%s: received event:%x freq:%d\n",
1067 wiphy_name(dev->wiphy), event, freq);
1068 break;
1069 }
1070 }
1071
1072 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
1073 {
1074 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
1075
1076 switch (le16_to_cpu(hdr->type)) {
1077 case P54_CONTROL_TYPE_TXDONE:
1078 p54_rx_frame_sent(dev, skb);
1079 break;
1080 case P54_CONTROL_TYPE_TRAP:
1081 p54_rx_trap(dev, skb);
1082 break;
1083 case P54_CONTROL_TYPE_BBP:
1084 break;
1085 case P54_CONTROL_TYPE_STAT_READBACK:
1086 p54_rx_stats(dev, skb);
1087 break;
1088 case P54_CONTROL_TYPE_EEPROM_READBACK:
1089 p54_rx_eeprom_readback(dev, skb);
1090 break;
1091 default:
1092 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
1093 wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
1094 break;
1095 }
1096
1097 return 0;
1098 }
1099
1100 /* returns zero if skb can be reused */
1101 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
1102 {
1103 u16 type = le16_to_cpu(*((__le16 *)skb->data));
1104
1105 if (type & P54_HDR_FLAG_CONTROL)
1106 return p54_rx_control(dev, skb);
1107 else
1108 return p54_rx_data(dev, skb);
1109 }
1110 EXPORT_SYMBOL_GPL(p54_rx);
1111
1112 /*
1113 * So, the firmware is somewhat stupid and doesn't know what places in its
1114 * memory incoming data should go to. By poking around in the firmware, we
1115 * can find some unused memory to upload our packets to. However, data that we
1116 * want the card to TX needs to stay intact until the card has told us that
1117 * it is done with it. This function finds empty places we can upload to and
1118 * marks allocated areas as reserved if necessary. p54_rx_frame_sent or
1119 * p54_free_skb frees allocated areas.
1120 */
1121 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
1122 struct p54_hdr *data, u32 len)
1123 {
1124 struct p54_common *priv = dev->priv;
1125 struct sk_buff *entry = priv->tx_queue.next;
1126 struct sk_buff *target_skb = NULL;
1127 struct ieee80211_tx_info *info;
1128 struct p54_tx_info *range;
1129 u32 last_addr = priv->rx_start;
1130 u32 largest_hole = 0;
1131 u32 target_addr = priv->rx_start;
1132 unsigned long flags;
1133 unsigned int left;
1134 len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
1135
1136 if (!skb)
1137 return -EINVAL;
1138
1139 spin_lock_irqsave(&priv->tx_queue.lock, flags);
1140
1141 left = skb_queue_len(&priv->tx_queue);
1142 if (unlikely(left >= 28)) {
1143 /*
1144 * The tx_queue is nearly full!
1145 * We have throttle normal data traffic, because we must
1146 * have a few spare slots for control frames left.
1147 */
1148 ieee80211_stop_queues(dev);
1149 queue_delayed_work(dev->workqueue, &priv->work,
1150 msecs_to_jiffies(P54_TX_TIMEOUT));
1151
1152 if (unlikely(left == 32)) {
1153 /*
1154 * The tx_queue is now really full.
1155 *
1156 * TODO: check if the device has crashed and reset it.
1157 */
1158 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1159 return -ENOSPC;
1160 }
1161 }
1162
1163 while (left--) {
1164 u32 hole_size;
1165 info = IEEE80211_SKB_CB(entry);
1166 range = (void *)info->rate_driver_data;
1167 hole_size = range->start_addr - last_addr;
1168 if (!target_skb && hole_size >= len) {
1169 target_skb = entry->prev;
1170 hole_size -= len;
1171 target_addr = last_addr;
1172 }
1173 largest_hole = max(largest_hole, hole_size);
1174 last_addr = range->end_addr;
1175 entry = entry->next;
1176 }
1177 if (!target_skb && priv->rx_end - last_addr >= len) {
1178 target_skb = priv->tx_queue.prev;
1179 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
1180 if (!skb_queue_empty(&priv->tx_queue)) {
1181 info = IEEE80211_SKB_CB(target_skb);
1182 range = (void *)info->rate_driver_data;
1183 target_addr = range->end_addr;
1184 }
1185 } else
1186 largest_hole = max(largest_hole, priv->rx_end - last_addr);
1187
1188 if (!target_skb) {
1189 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1190 ieee80211_stop_queues(dev);
1191 return -ENOSPC;
1192 }
1193
1194 info = IEEE80211_SKB_CB(skb);
1195 range = (void *)info->rate_driver_data;
1196 range->start_addr = target_addr;
1197 range->end_addr = target_addr + len;
1198 __skb_queue_after(&priv->tx_queue, target_skb, skb);
1199 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1200
1201 if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
1202 48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
1203 ieee80211_stop_queues(dev);
1204
1205 data->req_id = cpu_to_le32(target_addr + priv->headroom);
1206 return 0;
1207 }
1208
1209 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev, u16 hdr_flags,
1210 u16 payload_len, u16 type, gfp_t memflags)
1211 {
1212 struct p54_common *priv = dev->priv;
1213 struct p54_hdr *hdr;
1214 struct sk_buff *skb;
1215 size_t frame_len = sizeof(*hdr) + payload_len;
1216
1217 if (frame_len > P54_MAX_CTRL_FRAME_LEN)
1218 return NULL;
1219
1220 skb = __dev_alloc_skb(priv->tx_hdr_len + frame_len, memflags);
1221 if (!skb)
1222 return NULL;
1223 skb_reserve(skb, priv->tx_hdr_len);
1224
1225 hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
1226 hdr->flags = cpu_to_le16(hdr_flags);
1227 hdr->len = cpu_to_le16(payload_len);
1228 hdr->type = cpu_to_le16(type);
1229 hdr->tries = hdr->rts_tries = 0;
1230
1231 if (p54_assign_address(dev, skb, hdr, frame_len)) {
1232 kfree_skb(skb);
1233 return NULL;
1234 }
1235 return skb;
1236 }
1237
1238 int p54_read_eeprom(struct ieee80211_hw *dev)
1239 {
1240 struct p54_common *priv = dev->priv;
1241 struct p54_eeprom_lm86 *eeprom_hdr;
1242 struct sk_buff *skb;
1243 size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
1244 int ret = -ENOMEM;
1245 void *eeprom = NULL;
1246
1247 maxblocksize = EEPROM_READBACK_LEN;
1248 if (priv->fw_var >= 0x509)
1249 maxblocksize -= 0xc;
1250 else
1251 maxblocksize -= 0x4;
1252
1253 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(*eeprom_hdr) +
1254 maxblocksize, P54_CONTROL_TYPE_EEPROM_READBACK,
1255 GFP_KERNEL);
1256 if (!skb)
1257 goto free;
1258 priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
1259 if (!priv->eeprom)
1260 goto free;
1261 eeprom = kzalloc(eeprom_size, GFP_KERNEL);
1262 if (!eeprom)
1263 goto free;
1264
1265 eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
1266 sizeof(*eeprom_hdr) + maxblocksize);
1267
1268 while (eeprom_size) {
1269 blocksize = min(eeprom_size, maxblocksize);
1270 if (priv->fw_var < 0x509) {
1271 eeprom_hdr->v1.offset = cpu_to_le16(offset);
1272 eeprom_hdr->v1.len = cpu_to_le16(blocksize);
1273 } else {
1274 eeprom_hdr->v2.offset = cpu_to_le32(offset);
1275 eeprom_hdr->v2.len = cpu_to_le16(blocksize);
1276 eeprom_hdr->v2.magic2 = 0xf;
1277 memcpy(eeprom_hdr->v2.magic, (const char *)"LOCK", 4);
1278 }
1279 priv->tx(dev, skb);
1280
1281 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
1282 printk(KERN_ERR "%s: device does not respond!\n",
1283 wiphy_name(dev->wiphy));
1284 ret = -EBUSY;
1285 goto free;
1286 }
1287
1288 memcpy(eeprom + offset, priv->eeprom, blocksize);
1289 offset += blocksize;
1290 eeprom_size -= blocksize;
1291 }
1292
1293 ret = p54_parse_eeprom(dev, eeprom, offset);
1294 free:
1295 kfree(priv->eeprom);
1296 priv->eeprom = NULL;
1297 p54_free_skb(dev, skb);
1298 kfree(eeprom);
1299
1300 return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(p54_read_eeprom);
1303
1304 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
1305 bool set)
1306 {
1307 struct p54_common *priv = dev->priv;
1308 struct sk_buff *skb;
1309 struct p54_tim *tim;
1310
1311 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*tim),
1312 P54_CONTROL_TYPE_TIM, GFP_ATOMIC);
1313 if (!skb)
1314 return -ENOMEM;
1315
1316 tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
1317 tim->count = 1;
1318 tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
1319 priv->tx(dev, skb);
1320 return 0;
1321 }
1322
1323 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
1324 {
1325 struct p54_common *priv = dev->priv;
1326 struct sk_buff *skb;
1327 struct p54_sta_unlock *sta;
1328
1329 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*sta),
1330 P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
1331 if (!skb)
1332 return -ENOMEM;
1333
1334 sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1335 memcpy(sta->addr, addr, ETH_ALEN);
1336 priv->tx(dev, skb);
1337 return 0;
1338 }
1339
1340 static void p54_sta_notify(struct ieee80211_hw *dev, struct ieee80211_vif *vif,
1341 enum sta_notify_cmd notify_cmd,
1342 struct ieee80211_sta *sta)
1343 {
1344 switch (notify_cmd) {
1345 case STA_NOTIFY_ADD:
1346 case STA_NOTIFY_REMOVE:
1347 /*
1348 * Notify the firmware that we don't want or we don't
1349 * need to buffer frames for this station anymore.
1350 */
1351
1352 p54_sta_unlock(dev, sta->addr);
1353 break;
1354 case STA_NOTIFY_AWAKE:
1355 /* update the firmware's filter table */
1356 p54_sta_unlock(dev, sta->addr);
1357 break;
1358 default:
1359 break;
1360 }
1361 }
1362
1363 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1364 {
1365 struct p54_common *priv = dev->priv;
1366 struct sk_buff *skb;
1367 struct p54_hdr *hdr;
1368 struct p54_txcancel *cancel;
1369
1370 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*cancel),
1371 P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1372 if (!skb)
1373 return -ENOMEM;
1374
1375 hdr = (void *)entry->data;
1376 cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1377 cancel->req_id = hdr->req_id;
1378 priv->tx(dev, skb);
1379 return 0;
1380 }
1381
1382 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1383 struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1384 u16 *flags, u16 *aid)
1385 {
1386 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1387 struct p54_common *priv = dev->priv;
1388 int ret = 1;
1389
1390 switch (priv->mode) {
1391 case NL80211_IFTYPE_MONITOR:
1392 /*
1393 * We have to set P54_HDR_FLAG_DATA_OUT_PROMISC for
1394 * every frame in promiscuous/monitor mode.
1395 * see STSW45x0C LMAC API - page 12.
1396 */
1397 *aid = 0;
1398 *flags = P54_HDR_FLAG_DATA_OUT_PROMISC;
1399 *queue += P54_QUEUE_DATA;
1400 break;
1401 case NL80211_IFTYPE_STATION:
1402 *aid = 1;
1403 if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1404 *queue = P54_QUEUE_MGMT;
1405 ret = 0;
1406 } else
1407 *queue += P54_QUEUE_DATA;
1408 break;
1409 case NL80211_IFTYPE_AP:
1410 case NL80211_IFTYPE_ADHOC:
1411 case NL80211_IFTYPE_MESH_POINT:
1412 if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1413 *aid = 0;
1414 *queue = P54_QUEUE_CAB;
1415 return 0;
1416 }
1417
1418 if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1419 if (ieee80211_is_probe_resp(hdr->frame_control)) {
1420 *aid = 0;
1421 *queue = P54_QUEUE_MGMT;
1422 *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1423 P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1424 return 0;
1425 } else if (ieee80211_is_beacon(hdr->frame_control)) {
1426 *aid = 0;
1427
1428 if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1429 /*
1430 * Injecting beacons on top of a AP is
1431 * not a good idea... nevertheless,
1432 * it should be doable.
1433 */
1434
1435 *queue += P54_QUEUE_DATA;
1436 return 1;
1437 }
1438
1439 *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1440 *queue = P54_QUEUE_BEACON;
1441 *extra_len = IEEE80211_MAX_TIM_LEN;
1442 return 0;
1443 } else {
1444 *queue = P54_QUEUE_MGMT;
1445 ret = 0;
1446 }
1447 } else
1448 *queue += P54_QUEUE_DATA;
1449
1450 if (info->control.sta)
1451 *aid = info->control.sta->aid;
1452 else
1453 *flags |= P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1454 break;
1455 }
1456 return ret;
1457 }
1458
1459 static u8 p54_convert_algo(enum ieee80211_key_alg alg)
1460 {
1461 switch (alg) {
1462 case ALG_WEP:
1463 return P54_CRYPTO_WEP;
1464 case ALG_TKIP:
1465 return P54_CRYPTO_TKIPMICHAEL;
1466 case ALG_CCMP:
1467 return P54_CRYPTO_AESCCMP;
1468 default:
1469 return 0;
1470 }
1471 }
1472
1473 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1474 {
1475 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1476 struct ieee80211_tx_queue_stats *current_queue;
1477 struct p54_common *priv = dev->priv;
1478 struct p54_hdr *hdr;
1479 struct p54_tx_data *txhdr;
1480 size_t padding, len, tim_len = 0;
1481 int i, j, ridx, ret;
1482 u16 hdr_flags = 0, aid = 0;
1483 u8 rate, queue, crypt_offset = 0;
1484 u8 cts_rate = 0x20;
1485 u8 rc_flags;
1486 u8 calculated_tries[4];
1487 u8 nrates = 0, nremaining = 8;
1488
1489 queue = skb_get_queue_mapping(skb);
1490
1491 ret = p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid);
1492 current_queue = &priv->tx_stats[queue];
1493 if (unlikely((current_queue->len > current_queue->limit) && ret))
1494 return NETDEV_TX_BUSY;
1495 current_queue->len++;
1496 current_queue->count++;
1497 if ((current_queue->len == current_queue->limit) && ret)
1498 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1499
1500 padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1501 len = skb->len;
1502
1503 if (info->control.hw_key) {
1504 crypt_offset = ieee80211_get_hdrlen_from_skb(skb);
1505 if (info->control.hw_key->alg == ALG_TKIP) {
1506 u8 *iv = (u8 *)(skb->data + crypt_offset);
1507 /*
1508 * The firmware excepts that the IV has to have
1509 * this special format
1510 */
1511 iv[1] = iv[0];
1512 iv[0] = iv[2];
1513 iv[2] = 0;
1514 }
1515 }
1516
1517 txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1518 hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1519
1520 if (padding)
1521 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1522 hdr->type = cpu_to_le16(aid);
1523 hdr->rts_tries = info->control.rates[0].count;
1524
1525 /*
1526 * we register the rates in perfect order, and
1527 * RTS/CTS won't happen on 5 GHz
1528 */
1529 cts_rate = info->control.rts_cts_rate_idx;
1530
1531 memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1532
1533 /* see how many rates got used */
1534 for (i = 0; i < 4; i++) {
1535 if (info->control.rates[i].idx < 0)
1536 break;
1537 nrates++;
1538 }
1539
1540 /* limit tries to 8/nrates per rate */
1541 for (i = 0; i < nrates; i++) {
1542 /*
1543 * The magic expression here is equivalent to 8/nrates for
1544 * all values that matter, but avoids division and jumps.
1545 * Note that nrates can only take the values 1 through 4.
1546 */
1547 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1548 info->control.rates[i].count);
1549 nremaining -= calculated_tries[i];
1550 }
1551
1552 /* if there are tries left, distribute from back to front */
1553 for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1554 int tmp = info->control.rates[i].count - calculated_tries[i];
1555
1556 if (tmp <= 0)
1557 continue;
1558 /* RC requested more tries at this rate */
1559
1560 tmp = min_t(int, tmp, nremaining);
1561 calculated_tries[i] += tmp;
1562 nremaining -= tmp;
1563 }
1564
1565 ridx = 0;
1566 for (i = 0; i < nrates && ridx < 8; i++) {
1567 /* we register the rates in perfect order */
1568 rate = info->control.rates[i].idx;
1569 if (info->band == IEEE80211_BAND_5GHZ)
1570 rate += 4;
1571
1572 /* store the count we actually calculated for TX status */
1573 info->control.rates[i].count = calculated_tries[i];
1574
1575 rc_flags = info->control.rates[i].flags;
1576 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1577 rate |= 0x10;
1578 cts_rate |= 0x10;
1579 }
1580 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1581 rate |= 0x40;
1582 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1583 rate |= 0x20;
1584 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1585 txhdr->rateset[ridx] = rate;
1586 ridx++;
1587 }
1588 }
1589
1590 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1591 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1592
1593 /* TODO: enable bursting */
1594 hdr->flags = cpu_to_le16(hdr_flags);
1595 hdr->tries = ridx;
1596 txhdr->rts_rate_idx = 0;
1597 if (info->control.hw_key) {
1598 txhdr->key_type = p54_convert_algo(info->control.hw_key->alg);
1599 txhdr->key_len = min((u8)16, info->control.hw_key->keylen);
1600 memcpy(txhdr->key, info->control.hw_key->key, txhdr->key_len);
1601 if (info->control.hw_key->alg == ALG_TKIP) {
1602 if (unlikely(skb_tailroom(skb) < 12))
1603 goto err;
1604 /* reserve space for the MIC key */
1605 len += 8;
1606 memcpy(skb_put(skb, 8), &(info->control.hw_key->key
1607 [NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]), 8);
1608 }
1609 /* reserve some space for ICV */
1610 len += info->control.hw_key->icv_len;
1611 memset(skb_put(skb, info->control.hw_key->icv_len), 0,
1612 info->control.hw_key->icv_len);
1613 } else {
1614 txhdr->key_type = 0;
1615 txhdr->key_len = 0;
1616 }
1617 txhdr->crypt_offset = crypt_offset;
1618 txhdr->hw_queue = queue;
1619 txhdr->backlog = current_queue->len;
1620 memset(txhdr->durations, 0, sizeof(txhdr->durations));
1621 txhdr->tx_antenna = ((info->antenna_sel_tx == 0) ?
1622 2 : info->antenna_sel_tx - 1) & priv->tx_diversity_mask;
1623 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1624 txhdr->longbow.cts_rate = cts_rate;
1625 txhdr->longbow.output_power = cpu_to_le16(priv->output_power);
1626 } else {
1627 txhdr->normal.output_power = priv->output_power;
1628 txhdr->normal.cts_rate = cts_rate;
1629 }
1630 if (padding)
1631 txhdr->align[0] = padding;
1632
1633 hdr->len = cpu_to_le16(len);
1634 /* modifies skb->cb and with it info, so must be last! */
1635 if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len)))
1636 goto err;
1637 priv->tx(dev, skb);
1638
1639 queue_delayed_work(dev->workqueue, &priv->work,
1640 msecs_to_jiffies(P54_TX_FRAME_LIFETIME));
1641
1642 return NETDEV_TX_OK;
1643
1644 err:
1645 skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1646 current_queue->len--;
1647 current_queue->count--;
1648 return NETDEV_TX_BUSY;
1649 }
1650
1651 static int p54_setup_mac(struct ieee80211_hw *dev)
1652 {
1653 struct p54_common *priv = dev->priv;
1654 struct sk_buff *skb;
1655 struct p54_setup_mac *setup;
1656 u16 mode;
1657
1658 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup),
1659 P54_CONTROL_TYPE_SETUP, GFP_ATOMIC);
1660 if (!skb)
1661 return -ENOMEM;
1662
1663 setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1664 if (dev->conf.radio_enabled) {
1665 switch (priv->mode) {
1666 case NL80211_IFTYPE_STATION:
1667 mode = P54_FILTER_TYPE_STATION;
1668 break;
1669 case NL80211_IFTYPE_AP:
1670 mode = P54_FILTER_TYPE_AP;
1671 break;
1672 case NL80211_IFTYPE_ADHOC:
1673 case NL80211_IFTYPE_MESH_POINT:
1674 mode = P54_FILTER_TYPE_IBSS;
1675 break;
1676 case NL80211_IFTYPE_MONITOR:
1677 mode = P54_FILTER_TYPE_PROMISCUOUS;
1678 break;
1679 default:
1680 mode = P54_FILTER_TYPE_NONE;
1681 break;
1682 }
1683
1684 /*
1685 * "TRANSPARENT and PROMISCUOUS are mutually exclusive"
1686 * STSW45X0C LMAC API - page 12
1687 */
1688 if (((priv->filter_flags & FIF_PROMISC_IN_BSS) ||
1689 (priv->filter_flags & FIF_OTHER_BSS)) &&
1690 (mode != P54_FILTER_TYPE_PROMISCUOUS))
1691 mode |= P54_FILTER_TYPE_TRANSPARENT;
1692 } else
1693 mode = P54_FILTER_TYPE_RX_DISABLED;
1694
1695 setup->mac_mode = cpu_to_le16(mode);
1696 memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1697 memcpy(setup->bssid, priv->bssid, ETH_ALEN);
1698 setup->rx_antenna = 2 & priv->rx_diversity_mask; /* automatic */
1699 setup->rx_align = 0;
1700 if (priv->fw_var < 0x500) {
1701 setup->v1.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1702 memset(setup->v1.rts_rates, 0, 8);
1703 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1704 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1705 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1706 setup->v1.wakeup_timer = cpu_to_le16(priv->wakeup_timer);
1707 setup->v1.unalloc0 = cpu_to_le16(0);
1708 } else {
1709 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1710 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1711 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1712 setup->v2.timer = cpu_to_le16(priv->wakeup_timer);
1713 setup->v2.truncate = cpu_to_le16(48896);
1714 setup->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1715 setup->v2.sbss_offset = 0;
1716 setup->v2.mcast_window = 0;
1717 setup->v2.rx_rssi_threshold = 0;
1718 setup->v2.rx_ed_threshold = 0;
1719 setup->v2.ref_clock = cpu_to_le32(644245094);
1720 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1721 setup->v2.osc_start_delay = cpu_to_le16(65535);
1722 }
1723 priv->tx(dev, skb);
1724 return 0;
1725 }
1726
1727 static int p54_scan(struct ieee80211_hw *dev, u16 mode, u16 dwell)
1728 {
1729 struct p54_common *priv = dev->priv;
1730 struct sk_buff *skb;
1731 struct p54_hdr *hdr;
1732 struct p54_scan_head *head;
1733 struct p54_iq_autocal_entry *iq_autocal;
1734 union p54_scan_body_union *body;
1735 struct p54_scan_tail_rate *rate;
1736 struct pda_rssi_cal_entry *rssi;
1737 unsigned int i;
1738 void *entry;
1739 int band = dev->conf.channel->band;
1740 __le16 freq = cpu_to_le16(dev->conf.channel->center_freq);
1741
1742 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*head) +
1743 2 + sizeof(*iq_autocal) + sizeof(*body) +
1744 sizeof(*rate) + 2 * sizeof(*rssi),
1745 P54_CONTROL_TYPE_SCAN, GFP_ATOMIC);
1746 if (!skb)
1747 return -ENOMEM;
1748
1749 head = (struct p54_scan_head *) skb_put(skb, sizeof(*head));
1750 memset(head->scan_params, 0, sizeof(head->scan_params));
1751 head->mode = cpu_to_le16(mode);
1752 head->dwell = cpu_to_le16(dwell);
1753 head->freq = freq;
1754
1755 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1756 __le16 *pa_power_points = (__le16 *) skb_put(skb, 2);
1757 *pa_power_points = cpu_to_le16(0x0c);
1758 }
1759
1760 iq_autocal = (void *) skb_put(skb, sizeof(*iq_autocal));
1761 for (i = 0; i < priv->iq_autocal_len; i++) {
1762 if (priv->iq_autocal[i].freq != freq)
1763 continue;
1764
1765 memcpy(iq_autocal, &priv->iq_autocal[i].params,
1766 sizeof(struct p54_iq_autocal_entry));
1767 break;
1768 }
1769 if (i == priv->iq_autocal_len)
1770 goto err;
1771
1772 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW)
1773 body = (void *) skb_put(skb, sizeof(body->longbow));
1774 else
1775 body = (void *) skb_put(skb, sizeof(body->normal));
1776
1777 for (i = 0; i < priv->output_limit->entries; i++) {
1778 __le16 *entry_freq = (void *) (priv->output_limit->data +
1779 priv->output_limit->entry_size * i);
1780
1781 if (*entry_freq != freq)
1782 continue;
1783
1784 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1785 memcpy(&body->longbow.power_limits,
1786 (void *) entry_freq + sizeof(__le16),
1787 priv->output_limit->entry_size);
1788 } else {
1789 struct pda_channel_output_limit *limits =
1790 (void *) entry_freq;
1791
1792 body->normal.val_barker = 0x38;
1793 body->normal.val_bpsk = body->normal.dup_bpsk =
1794 limits->val_bpsk;
1795 body->normal.val_qpsk = body->normal.dup_qpsk =
1796 limits->val_qpsk;
1797 body->normal.val_16qam = body->normal.dup_16qam =
1798 limits->val_16qam;
1799 body->normal.val_64qam = body->normal.dup_64qam =
1800 limits->val_64qam;
1801 }
1802 break;
1803 }
1804 if (i == priv->output_limit->entries)
1805 goto err;
1806
1807 entry = (void *)(priv->curve_data->data + priv->curve_data->offset);
1808 for (i = 0; i < priv->curve_data->entries; i++) {
1809 if (*((__le16 *)entry) != freq) {
1810 entry += priv->curve_data->entry_size;
1811 continue;
1812 }
1813
1814 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1815 memcpy(&body->longbow.curve_data,
1816 (void *) entry + sizeof(__le16),
1817 priv->curve_data->entry_size);
1818 } else {
1819 struct p54_scan_body *chan = &body->normal;
1820 struct pda_pa_curve_data *curve_data =
1821 (void *) priv->curve_data->data;
1822
1823 entry += sizeof(__le16);
1824 chan->pa_points_per_curve = 8;
1825 memset(chan->curve_data, 0, sizeof(*chan->curve_data));
1826 memcpy(chan->curve_data, entry,
1827 sizeof(struct p54_pa_curve_data_sample) *
1828 min((u8)8, curve_data->points_per_channel));
1829 }
1830 break;
1831 }
1832 if (i == priv->curve_data->entries)
1833 goto err;
1834
1835 if ((priv->fw_var >= 0x500) && (priv->fw_var < 0x509)) {
1836 rate = (void *) skb_put(skb, sizeof(*rate));
1837 rate->basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1838 for (i = 0; i < sizeof(rate->rts_rates); i++)
1839 rate->rts_rates[i] = i;
1840 }
1841
1842 rssi = (struct pda_rssi_cal_entry *) skb_put(skb, sizeof(*rssi));
1843 rssi->mul = cpu_to_le16(priv->rssical_db[band].mul);
1844 rssi->add = cpu_to_le16(priv->rssical_db[band].add);
1845 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1846 /* Longbow frontend needs ever more */
1847 rssi = (void *) skb_put(skb, sizeof(*rssi));
1848 rssi->mul = cpu_to_le16(priv->rssical_db[band].longbow_unkn);
1849 rssi->add = cpu_to_le16(priv->rssical_db[band].longbow_unk2);
1850 }
1851
1852 if (priv->fw_var >= 0x509) {
1853 rate = (void *) skb_put(skb, sizeof(*rate));
1854 rate->basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1855 for (i = 0; i < sizeof(rate->rts_rates); i++)
1856 rate->rts_rates[i] = i;
1857 }
1858
1859 hdr = (struct p54_hdr *) skb->data;
1860 hdr->len = cpu_to_le16(skb->len - sizeof(*hdr));
1861
1862 priv->tx(dev, skb);
1863 return 0;
1864
1865 err:
1866 printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1867 p54_free_skb(dev, skb);
1868 return -EINVAL;
1869 }
1870
1871 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1872 {
1873 struct p54_common *priv = dev->priv;
1874 struct sk_buff *skb;
1875 struct p54_led *led;
1876
1877 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led),
1878 P54_CONTROL_TYPE_LED, GFP_ATOMIC);
1879 if (!skb)
1880 return -ENOMEM;
1881
1882 led = (struct p54_led *)skb_put(skb, sizeof(*led));
1883 led->mode = cpu_to_le16(mode);
1884 led->led_permanent = cpu_to_le16(link);
1885 led->led_temporary = cpu_to_le16(act);
1886 led->duration = cpu_to_le16(1000);
1887 priv->tx(dev, skb);
1888 return 0;
1889 }
1890
1891 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop) \
1892 do { \
1893 queue.aifs = cpu_to_le16(ai_fs); \
1894 queue.cwmin = cpu_to_le16(cw_min); \
1895 queue.cwmax = cpu_to_le16(cw_max); \
1896 queue.txop = cpu_to_le16(_txop); \
1897 } while(0)
1898
1899 static int p54_set_edcf(struct ieee80211_hw *dev)
1900 {
1901 struct p54_common *priv = dev->priv;
1902 struct sk_buff *skb;
1903 struct p54_edcf *edcf;
1904
1905 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf),
1906 P54_CONTROL_TYPE_DCFINIT, GFP_ATOMIC);
1907 if (!skb)
1908 return -ENOMEM;
1909
1910 edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1911 if (priv->use_short_slot) {
1912 edcf->slottime = 9;
1913 edcf->sifs = 0x10;
1914 edcf->eofpad = 0x00;
1915 } else {
1916 edcf->slottime = 20;
1917 edcf->sifs = 0x0a;
1918 edcf->eofpad = 0x06;
1919 }
1920 /* (see prism54/isl_oid.h for further details) */
1921 edcf->frameburst = cpu_to_le16(0);
1922 edcf->round_trip_delay = cpu_to_le16(0);
1923 edcf->flags = 0;
1924 memset(edcf->mapping, 0, sizeof(edcf->mapping));
1925 memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1926 priv->tx(dev, skb);
1927 return 0;
1928 }
1929
1930 static int p54_set_ps(struct ieee80211_hw *dev)
1931 {
1932 struct p54_common *priv = dev->priv;
1933 struct sk_buff *skb;
1934 struct p54_psm *psm;
1935 u16 mode;
1936 int i;
1937
1938 if (dev->conf.flags & IEEE80211_CONF_PS)
1939 mode = P54_PSM | P54_PSM_DTIM | P54_PSM_MCBC;
1940 else
1941 mode = P54_PSM_CAM;
1942
1943 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*psm),
1944 P54_CONTROL_TYPE_PSM, GFP_ATOMIC);
1945 if (!skb)
1946 return -ENOMEM;
1947
1948 psm = (struct p54_psm *)skb_put(skb, sizeof(*psm));
1949 psm->mode = cpu_to_le16(mode);
1950 psm->aid = cpu_to_le16(priv->aid);
1951 for (i = 0; i < ARRAY_SIZE(psm->intervals); i++) {
1952 psm->intervals[i].interval =
1953 cpu_to_le16(dev->conf.listen_interval);
1954 psm->intervals[i].periods = cpu_to_le16(1);
1955 }
1956
1957 psm->beacon_rssi_skip_max = 60;
1958 psm->rssi_delta_threshold = 0;
1959 psm->nr = 0;
1960
1961 priv->tx(dev, skb);
1962
1963 return 0;
1964 }
1965
1966 static int p54_beacon_tim(struct sk_buff *skb)
1967 {
1968 /*
1969 * the good excuse for this mess is ... the firmware.
1970 * The dummy TIM MUST be at the end of the beacon frame,
1971 * because it'll be overwritten!
1972 */
1973
1974 struct ieee80211_mgmt *mgmt = (void *)skb->data;
1975 u8 *pos, *end;
1976
1977 if (skb->len <= sizeof(mgmt))
1978 return -EINVAL;
1979
1980 pos = (u8 *)mgmt->u.beacon.variable;
1981 end = skb->data + skb->len;
1982 while (pos < end) {
1983 if (pos + 2 + pos[1] > end)
1984 return -EINVAL;
1985
1986 if (pos[0] == WLAN_EID_TIM) {
1987 u8 dtim_len = pos[1];
1988 u8 dtim_period = pos[3];
1989 u8 *next = pos + 2 + dtim_len;
1990
1991 if (dtim_len < 3)
1992 return -EINVAL;
1993
1994 memmove(pos, next, end - next);
1995
1996 if (dtim_len > 3)
1997 skb_trim(skb, skb->len - (dtim_len - 3));
1998
1999 pos = end - (dtim_len + 2);
2000
2001 /* add the dummy at the end */
2002 pos[0] = WLAN_EID_TIM;
2003 pos[1] = 3;
2004 pos[2] = 0;
2005 pos[3] = dtim_period;
2006 pos[4] = 0;
2007 return 0;
2008 }
2009 pos += 2 + pos[1];
2010 }
2011 return 0;
2012 }
2013
2014 static int p54_beacon_update(struct ieee80211_hw *dev,
2015 struct ieee80211_vif *vif)
2016 {
2017 struct p54_common *priv = dev->priv;
2018 struct sk_buff *beacon;
2019 int ret;
2020
2021 if (priv->cached_beacon) {
2022 p54_tx_cancel(dev, priv->cached_beacon);
2023 /* wait for the last beacon the be freed */
2024 msleep(10);
2025 }
2026
2027 beacon = ieee80211_beacon_get(dev, vif);
2028 if (!beacon)
2029 return -ENOMEM;
2030 ret = p54_beacon_tim(beacon);
2031 if (ret)
2032 return ret;
2033 ret = p54_tx(dev, beacon);
2034 if (ret)
2035 return ret;
2036 priv->cached_beacon = beacon;
2037 priv->tsf_high32 = 0;
2038 priv->tsf_low32 = 0;
2039
2040 return 0;
2041 }
2042
2043 static int p54_start(struct ieee80211_hw *dev)
2044 {
2045 struct p54_common *priv = dev->priv;
2046 int err;
2047
2048 mutex_lock(&priv->conf_mutex);
2049 err = priv->open(dev);
2050 if (err)
2051 goto out;
2052 P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
2053 P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
2054 P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
2055 P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
2056 err = p54_set_edcf(dev);
2057 if (err)
2058 goto out;
2059
2060 memset(priv->bssid, ~0, ETH_ALEN);
2061 priv->mode = NL80211_IFTYPE_MONITOR;
2062 err = p54_setup_mac(dev);
2063 if (err) {
2064 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2065 goto out;
2066 }
2067
2068 queue_delayed_work(dev->workqueue, &priv->work, 0);
2069
2070 out:
2071 mutex_unlock(&priv->conf_mutex);
2072 return err;
2073 }
2074
2075 static void p54_stop(struct ieee80211_hw *dev)
2076 {
2077 struct p54_common *priv = dev->priv;
2078 struct sk_buff *skb;
2079
2080 mutex_lock(&priv->conf_mutex);
2081 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2082 cancel_delayed_work_sync(&priv->work);
2083 if (priv->cached_beacon)
2084 p54_tx_cancel(dev, priv->cached_beacon);
2085
2086 priv->stop(dev);
2087 while ((skb = skb_dequeue(&priv->tx_queue)))
2088 kfree_skb(skb);
2089 priv->cached_beacon = NULL;
2090 priv->tsf_high32 = priv->tsf_low32 = 0;
2091 mutex_unlock(&priv->conf_mutex);
2092 }
2093
2094 static int p54_add_interface(struct ieee80211_hw *dev,
2095 struct ieee80211_if_init_conf *conf)
2096 {
2097 struct p54_common *priv = dev->priv;
2098
2099 mutex_lock(&priv->conf_mutex);
2100 if (priv->mode != NL80211_IFTYPE_MONITOR) {
2101 mutex_unlock(&priv->conf_mutex);
2102 return -EOPNOTSUPP;
2103 }
2104
2105 switch (conf->type) {
2106 case NL80211_IFTYPE_STATION:
2107 case NL80211_IFTYPE_ADHOC:
2108 case NL80211_IFTYPE_AP:
2109 case NL80211_IFTYPE_MESH_POINT:
2110 priv->mode = conf->type;
2111 break;
2112 default:
2113 mutex_unlock(&priv->conf_mutex);
2114 return -EOPNOTSUPP;
2115 }
2116
2117 memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
2118 p54_setup_mac(dev);
2119 p54_set_leds(dev, 1, 0, 0);
2120 mutex_unlock(&priv->conf_mutex);
2121 return 0;
2122 }
2123
2124 static void p54_remove_interface(struct ieee80211_hw *dev,
2125 struct ieee80211_if_init_conf *conf)
2126 {
2127 struct p54_common *priv = dev->priv;
2128
2129 mutex_lock(&priv->conf_mutex);
2130 if (priv->cached_beacon)
2131 p54_tx_cancel(dev, priv->cached_beacon);
2132 priv->mode = NL80211_IFTYPE_MONITOR;
2133 memset(priv->mac_addr, 0, ETH_ALEN);
2134 memset(priv->bssid, 0, ETH_ALEN);
2135 p54_setup_mac(dev);
2136 mutex_unlock(&priv->conf_mutex);
2137 }
2138
2139 static int p54_config(struct ieee80211_hw *dev, u32 changed)
2140 {
2141 int ret = 0;
2142 struct p54_common *priv = dev->priv;
2143 struct ieee80211_conf *conf = &dev->conf;
2144
2145 mutex_lock(&priv->conf_mutex);
2146 if (changed & IEEE80211_CONF_CHANGE_POWER)
2147 priv->output_power = conf->power_level << 2;
2148 if (changed & IEEE80211_CONF_CHANGE_RADIO_ENABLED) {
2149 ret = p54_setup_mac(dev);
2150 if (ret)
2151 goto out;
2152 }
2153 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2154 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
2155 if (ret)
2156 goto out;
2157 }
2158 if (changed & IEEE80211_CONF_CHANGE_PS) {
2159 ret = p54_set_ps(dev);
2160 if (ret)
2161 goto out;
2162 }
2163
2164 out:
2165 mutex_unlock(&priv->conf_mutex);
2166 return ret;
2167 }
2168
2169 static int p54_config_interface(struct ieee80211_hw *dev,
2170 struct ieee80211_vif *vif,
2171 struct ieee80211_if_conf *conf)
2172 {
2173 struct p54_common *priv = dev->priv;
2174 int ret = 0;
2175
2176 mutex_lock(&priv->conf_mutex);
2177 if (conf->changed & IEEE80211_IFCC_BSSID) {
2178 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
2179 ret = p54_setup_mac(dev);
2180 if (ret)
2181 goto out;
2182 }
2183
2184 if (conf->changed & IEEE80211_IFCC_BEACON) {
2185 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
2186 if (ret)
2187 goto out;
2188 ret = p54_setup_mac(dev);
2189 if (ret)
2190 goto out;
2191 ret = p54_beacon_update(dev, vif);
2192 if (ret)
2193 goto out;
2194 ret = p54_set_edcf(dev);
2195 if (ret)
2196 goto out;
2197 }
2198
2199 ret = p54_set_leds(dev, 1, !is_multicast_ether_addr(priv->bssid), 0);
2200
2201 out:
2202 mutex_unlock(&priv->conf_mutex);
2203 return ret;
2204 }
2205
2206 static void p54_configure_filter(struct ieee80211_hw *dev,
2207 unsigned int changed_flags,
2208 unsigned int *total_flags,
2209 int mc_count, struct dev_mc_list *mclist)
2210 {
2211 struct p54_common *priv = dev->priv;
2212
2213 *total_flags &= FIF_PROMISC_IN_BSS |
2214 FIF_OTHER_BSS |
2215 (*total_flags & FIF_PROMISC_IN_BSS) ?
2216 FIF_FCSFAIL : 0;
2217
2218 priv->filter_flags = *total_flags;
2219
2220 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS))
2221 p54_setup_mac(dev);
2222 }
2223
2224 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
2225 const struct ieee80211_tx_queue_params *params)
2226 {
2227 struct p54_common *priv = dev->priv;
2228 int ret;
2229
2230 mutex_lock(&priv->conf_mutex);
2231 if ((params) && !(queue > 4)) {
2232 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
2233 params->cw_min, params->cw_max, params->txop);
2234 ret = p54_set_edcf(dev);
2235 } else
2236 ret = -EINVAL;
2237 mutex_unlock(&priv->conf_mutex);
2238 return ret;
2239 }
2240
2241 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
2242 {
2243 struct p54_common *priv = dev->priv;
2244 struct sk_buff *skb;
2245 struct p54_xbow_synth *xbow;
2246
2247 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow),
2248 P54_CONTROL_TYPE_XBOW_SYNTH_CFG, GFP_KERNEL);
2249 if (!skb)
2250 return -ENOMEM;
2251
2252 xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
2253 xbow->magic1 = cpu_to_le16(0x1);
2254 xbow->magic2 = cpu_to_le16(0x2);
2255 xbow->freq = cpu_to_le16(5390);
2256 memset(xbow->padding, 0, sizeof(xbow->padding));
2257 priv->tx(dev, skb);
2258 return 0;
2259 }
2260
2261 static void p54_work(struct work_struct *work)
2262 {
2263 struct p54_common *priv = container_of(work, struct p54_common,
2264 work.work);
2265 struct ieee80211_hw *dev = priv->hw;
2266 struct sk_buff *skb;
2267
2268 if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
2269 return ;
2270
2271 /*
2272 * TODO: walk through tx_queue and do the following tasks
2273 * 1. initiate bursts.
2274 * 2. cancel stuck frames / reset the device if necessary.
2275 */
2276
2277 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL,
2278 sizeof(struct p54_statistics),
2279 P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
2280 if (!skb)
2281 return ;
2282
2283 priv->tx(dev, skb);
2284 }
2285
2286 static int p54_get_stats(struct ieee80211_hw *dev,
2287 struct ieee80211_low_level_stats *stats)
2288 {
2289 struct p54_common *priv = dev->priv;
2290
2291 memcpy(stats, &priv->stats, sizeof(*stats));
2292 return 0;
2293 }
2294
2295 static int p54_get_tx_stats(struct ieee80211_hw *dev,
2296 struct ieee80211_tx_queue_stats *stats)
2297 {
2298 struct p54_common *priv = dev->priv;
2299
2300 memcpy(stats, &priv->tx_stats[P54_QUEUE_DATA],
2301 sizeof(stats[0]) * dev->queues);
2302 return 0;
2303 }
2304
2305 static void p54_bss_info_changed(struct ieee80211_hw *dev,
2306 struct ieee80211_vif *vif,
2307 struct ieee80211_bss_conf *info,
2308 u32 changed)
2309 {
2310 struct p54_common *priv = dev->priv;
2311
2312 if (changed & BSS_CHANGED_ERP_SLOT) {
2313 priv->use_short_slot = info->use_short_slot;
2314 p54_set_edcf(dev);
2315 }
2316 if (changed & BSS_CHANGED_BASIC_RATES) {
2317 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
2318 priv->basic_rate_mask = (info->basic_rates << 4);
2319 else
2320 priv->basic_rate_mask = info->basic_rates;
2321 p54_setup_mac(dev);
2322 if (priv->fw_var >= 0x500)
2323 p54_scan(dev, P54_SCAN_EXIT, 0);
2324 }
2325 if (changed & BSS_CHANGED_ASSOC) {
2326 if (info->assoc) {
2327 priv->aid = info->aid;
2328 priv->wakeup_timer = info->beacon_int *
2329 info->dtim_period * 5;
2330 p54_setup_mac(dev);
2331 }
2332 }
2333
2334 }
2335
2336 static int p54_set_key(struct ieee80211_hw *dev, enum set_key_cmd cmd,
2337 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
2338 struct ieee80211_key_conf *key)
2339 {
2340 struct p54_common *priv = dev->priv;
2341 struct sk_buff *skb;
2342 struct p54_keycache *rxkey;
2343 u8 algo = 0;
2344
2345 if (modparam_nohwcrypt)
2346 return -EOPNOTSUPP;
2347
2348 if (cmd == DISABLE_KEY)
2349 algo = 0;
2350 else {
2351 switch (key->alg) {
2352 case ALG_TKIP:
2353 if (!(priv->privacy_caps & (BR_DESC_PRIV_CAP_MICHAEL |
2354 BR_DESC_PRIV_CAP_TKIP)))
2355 return -EOPNOTSUPP;
2356 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2357 algo = P54_CRYPTO_TKIPMICHAEL;
2358 break;
2359 case ALG_WEP:
2360 if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP))
2361 return -EOPNOTSUPP;
2362 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2363 algo = P54_CRYPTO_WEP;
2364 break;
2365 case ALG_CCMP:
2366 if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP))
2367 return -EOPNOTSUPP;
2368 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2369 algo = P54_CRYPTO_AESCCMP;
2370 break;
2371 default:
2372 return -EOPNOTSUPP;
2373 }
2374 }
2375
2376 if (key->keyidx > priv->rx_keycache_size) {
2377 /*
2378 * The device supports the choosen algorithm, but the firmware
2379 * does not provide enough key slots to store all of them.
2380 * So, incoming frames have to be decoded by the mac80211 stack,
2381 * but we can still offload encryption for outgoing frames.
2382 */
2383
2384 return 0;
2385 }
2386
2387 mutex_lock(&priv->conf_mutex);
2388 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*rxkey),
2389 P54_CONTROL_TYPE_RX_KEYCACHE, GFP_ATOMIC);
2390 if (!skb) {
2391 mutex_unlock(&priv->conf_mutex);
2392 return -ENOMEM;
2393 }
2394
2395 /* TODO: some devices have 4 more free slots for rx keys */
2396 rxkey = (struct p54_keycache *)skb_put(skb, sizeof(*rxkey));
2397 rxkey->entry = key->keyidx;
2398 rxkey->key_id = key->keyidx;
2399 rxkey->key_type = algo;
2400 if (sta)
2401 memcpy(rxkey->mac, sta->addr, ETH_ALEN);
2402 else
2403 memset(rxkey->mac, ~0, ETH_ALEN);
2404 if (key->alg != ALG_TKIP) {
2405 rxkey->key_len = min((u8)16, key->keylen);
2406 memcpy(rxkey->key, key->key, rxkey->key_len);
2407 } else {
2408 rxkey->key_len = 24;
2409 memcpy(rxkey->key, key->key, 16);
2410 memcpy(&(rxkey->key[16]), &(key->key
2411 [NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]), 8);
2412 }
2413
2414 priv->tx(dev, skb);
2415 mutex_unlock(&priv->conf_mutex);
2416 return 0;
2417 }
2418
2419 static const struct ieee80211_ops p54_ops = {
2420 .tx = p54_tx,
2421 .start = p54_start,
2422 .stop = p54_stop,
2423 .add_interface = p54_add_interface,
2424 .remove_interface = p54_remove_interface,
2425 .set_tim = p54_set_tim,
2426 .sta_notify = p54_sta_notify,
2427 .set_key = p54_set_key,
2428 .config = p54_config,
2429 .config_interface = p54_config_interface,
2430 .bss_info_changed = p54_bss_info_changed,
2431 .configure_filter = p54_configure_filter,
2432 .conf_tx = p54_conf_tx,
2433 .get_stats = p54_get_stats,
2434 .get_tx_stats = p54_get_tx_stats
2435 };
2436
2437 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
2438 {
2439 struct ieee80211_hw *dev;
2440 struct p54_common *priv;
2441
2442 dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
2443 if (!dev)
2444 return NULL;
2445
2446 priv = dev->priv;
2447 priv->hw = dev;
2448 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2449 priv->basic_rate_mask = 0x15f;
2450 skb_queue_head_init(&priv->tx_queue);
2451 dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2452 IEEE80211_HW_SIGNAL_DBM |
2453 IEEE80211_HW_NOISE_DBM;
2454
2455 dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2456 BIT(NL80211_IFTYPE_ADHOC) |
2457 BIT(NL80211_IFTYPE_AP) |
2458 BIT(NL80211_IFTYPE_MESH_POINT);
2459
2460 dev->channel_change_time = 1000; /* TODO: find actual value */
2461 priv->tx_stats[P54_QUEUE_BEACON].limit = 1;
2462 priv->tx_stats[P54_QUEUE_FWSCAN].limit = 1;
2463 priv->tx_stats[P54_QUEUE_MGMT].limit = 3;
2464 priv->tx_stats[P54_QUEUE_CAB].limit = 3;
2465 priv->tx_stats[P54_QUEUE_DATA].limit = 5;
2466 dev->queues = 1;
2467 priv->noise = -94;
2468 /*
2469 * We support at most 8 tries no matter which rate they're at,
2470 * we cannot support max_rates * max_rate_tries as we set it
2471 * here, but setting it correctly to 4/2 or so would limit us
2472 * artificially if the RC algorithm wants just two rates, so
2473 * let's say 4/7, we'll redistribute it at TX time, see the
2474 * comments there.
2475 */
2476 dev->max_rates = 4;
2477 dev->max_rate_tries = 7;
2478 dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
2479 sizeof(struct p54_tx_data);
2480
2481 mutex_init(&priv->conf_mutex);
2482 init_completion(&priv->eeprom_comp);
2483 INIT_DELAYED_WORK(&priv->work, p54_work);
2484
2485 return dev;
2486 }
2487 EXPORT_SYMBOL_GPL(p54_init_common);
2488
2489 void p54_free_common(struct ieee80211_hw *dev)
2490 {
2491 struct p54_common *priv = dev->priv;
2492 kfree(priv->iq_autocal);
2493 kfree(priv->output_limit);
2494 kfree(priv->curve_data);
2495 }
2496 EXPORT_SYMBOL_GPL(p54_free_common);
2497
2498 static int __init p54_init(void)
2499 {
2500 return 0;
2501 }
2502
2503 static void __exit p54_exit(void)
2504 {
2505 }
2506
2507 module_init(p54_init);
2508 module_exit(p54_exit);
This page took 0.096059 seconds and 5 git commands to generate.