Merge 3.16-rc5 into char-misc-next
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 /*
20 Module: rt2500pci
21 Abstract: rt2500pci device specific routines.
22 Supported chipsets: RT2560.
23 */
24
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
32
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2500pci.h"
37
38 /*
39 * Register access.
40 * All access to the CSR registers will go through the methods
41 * rt2x00mmio_register_read and rt2x00mmio_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
50 */
51 #define WAIT_FOR_BBP(__dev, __reg) \
52 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
55
56 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
57 const unsigned int word, const u8 value)
58 {
59 u32 reg;
60
61 mutex_lock(&rt2x00dev->csr_mutex);
62
63 /*
64 * Wait until the BBP becomes available, afterwards we
65 * can safely write the new data into the register.
66 */
67 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
68 reg = 0;
69 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
70 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
71 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
72 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
73
74 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
75 }
76
77 mutex_unlock(&rt2x00dev->csr_mutex);
78 }
79
80 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
81 const unsigned int word, u8 *value)
82 {
83 u32 reg;
84
85 mutex_lock(&rt2x00dev->csr_mutex);
86
87 /*
88 * Wait until the BBP becomes available, afterwards we
89 * can safely write the read request into the register.
90 * After the data has been written, we wait until hardware
91 * returns the correct value, if at any time the register
92 * doesn't become available in time, reg will be 0xffffffff
93 * which means we return 0xff to the caller.
94 */
95 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
96 reg = 0;
97 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
98 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
99 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
100
101 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
102
103 WAIT_FOR_BBP(rt2x00dev, &reg);
104 }
105
106 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
107
108 mutex_unlock(&rt2x00dev->csr_mutex);
109 }
110
111 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
112 const unsigned int word, const u32 value)
113 {
114 u32 reg;
115
116 mutex_lock(&rt2x00dev->csr_mutex);
117
118 /*
119 * Wait until the RF becomes available, afterwards we
120 * can safely write the new data into the register.
121 */
122 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
123 reg = 0;
124 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
125 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
126 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
127 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
128
129 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
130 rt2x00_rf_write(rt2x00dev, word, value);
131 }
132
133 mutex_unlock(&rt2x00dev->csr_mutex);
134 }
135
136 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
137 {
138 struct rt2x00_dev *rt2x00dev = eeprom->data;
139 u32 reg;
140
141 rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
142
143 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
144 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
145 eeprom->reg_data_clock =
146 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
147 eeprom->reg_chip_select =
148 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
149 }
150
151 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
152 {
153 struct rt2x00_dev *rt2x00dev = eeprom->data;
154 u32 reg = 0;
155
156 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
157 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
159 !!eeprom->reg_data_clock);
160 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
161 !!eeprom->reg_chip_select);
162
163 rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
164 }
165
166 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
167 static const struct rt2x00debug rt2500pci_rt2x00debug = {
168 .owner = THIS_MODULE,
169 .csr = {
170 .read = rt2x00mmio_register_read,
171 .write = rt2x00mmio_register_write,
172 .flags = RT2X00DEBUGFS_OFFSET,
173 .word_base = CSR_REG_BASE,
174 .word_size = sizeof(u32),
175 .word_count = CSR_REG_SIZE / sizeof(u32),
176 },
177 .eeprom = {
178 .read = rt2x00_eeprom_read,
179 .write = rt2x00_eeprom_write,
180 .word_base = EEPROM_BASE,
181 .word_size = sizeof(u16),
182 .word_count = EEPROM_SIZE / sizeof(u16),
183 },
184 .bbp = {
185 .read = rt2500pci_bbp_read,
186 .write = rt2500pci_bbp_write,
187 .word_base = BBP_BASE,
188 .word_size = sizeof(u8),
189 .word_count = BBP_SIZE / sizeof(u8),
190 },
191 .rf = {
192 .read = rt2x00_rf_read,
193 .write = rt2500pci_rf_write,
194 .word_base = RF_BASE,
195 .word_size = sizeof(u32),
196 .word_count = RF_SIZE / sizeof(u32),
197 },
198 };
199 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
200
201 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
202 {
203 u32 reg;
204
205 rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
206 return rt2x00_get_field32(reg, GPIOCSR_VAL0);
207 }
208
209 #ifdef CONFIG_RT2X00_LIB_LEDS
210 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
211 enum led_brightness brightness)
212 {
213 struct rt2x00_led *led =
214 container_of(led_cdev, struct rt2x00_led, led_dev);
215 unsigned int enabled = brightness != LED_OFF;
216 u32 reg;
217
218 rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
219
220 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
221 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
222 else if (led->type == LED_TYPE_ACTIVITY)
223 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
224
225 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
226 }
227
228 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
229 unsigned long *delay_on,
230 unsigned long *delay_off)
231 {
232 struct rt2x00_led *led =
233 container_of(led_cdev, struct rt2x00_led, led_dev);
234 u32 reg;
235
236 rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
237 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
238 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
239 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
240
241 return 0;
242 }
243
244 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
245 struct rt2x00_led *led,
246 enum led_type type)
247 {
248 led->rt2x00dev = rt2x00dev;
249 led->type = type;
250 led->led_dev.brightness_set = rt2500pci_brightness_set;
251 led->led_dev.blink_set = rt2500pci_blink_set;
252 led->flags = LED_INITIALIZED;
253 }
254 #endif /* CONFIG_RT2X00_LIB_LEDS */
255
256 /*
257 * Configuration handlers.
258 */
259 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
260 const unsigned int filter_flags)
261 {
262 u32 reg;
263
264 /*
265 * Start configuration steps.
266 * Note that the version error will always be dropped
267 * and broadcast frames will always be accepted since
268 * there is no filter for it at this time.
269 */
270 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
271 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
272 !(filter_flags & FIF_FCSFAIL));
273 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
274 !(filter_flags & FIF_PLCPFAIL));
275 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
276 !(filter_flags & FIF_CONTROL));
277 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
278 !(filter_flags & FIF_PROMISC_IN_BSS));
279 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
280 !(filter_flags & FIF_PROMISC_IN_BSS) &&
281 !rt2x00dev->intf_ap_count);
282 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
283 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
284 !(filter_flags & FIF_ALLMULTI));
285 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
286 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
287 }
288
289 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
290 struct rt2x00_intf *intf,
291 struct rt2x00intf_conf *conf,
292 const unsigned int flags)
293 {
294 struct data_queue *queue = rt2x00dev->bcn;
295 unsigned int bcn_preload;
296 u32 reg;
297
298 if (flags & CONFIG_UPDATE_TYPE) {
299 /*
300 * Enable beacon config
301 */
302 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
303 rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
304 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
305 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
306 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
307
308 /*
309 * Enable synchronisation.
310 */
311 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
312 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
313 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
314 }
315
316 if (flags & CONFIG_UPDATE_MAC)
317 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
318 conf->mac, sizeof(conf->mac));
319
320 if (flags & CONFIG_UPDATE_BSSID)
321 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
322 conf->bssid, sizeof(conf->bssid));
323 }
324
325 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
326 struct rt2x00lib_erp *erp,
327 u32 changed)
328 {
329 int preamble_mask;
330 u32 reg;
331
332 /*
333 * When short preamble is enabled, we should set bit 0x08
334 */
335 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
336 preamble_mask = erp->short_preamble << 3;
337
338 rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
339 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
340 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
341 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
342 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
343 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
344
345 rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
346 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
347 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
348 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
349 GET_DURATION(ACK_SIZE, 10));
350 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
351
352 rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
353 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
354 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
355 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
356 GET_DURATION(ACK_SIZE, 20));
357 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
358
359 rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
360 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
361 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
362 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
363 GET_DURATION(ACK_SIZE, 55));
364 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
365
366 rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
367 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
368 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
369 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
370 GET_DURATION(ACK_SIZE, 110));
371 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
372 }
373
374 if (changed & BSS_CHANGED_BASIC_RATES)
375 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
376
377 if (changed & BSS_CHANGED_ERP_SLOT) {
378 rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
379 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
380 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
381
382 rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
383 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
384 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
385 rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
386
387 rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
388 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
389 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
390 rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
391 }
392
393 if (changed & BSS_CHANGED_BEACON_INT) {
394 rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
395 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
396 erp->beacon_int * 16);
397 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
398 erp->beacon_int * 16);
399 rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
400 }
401
402 }
403
404 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
405 struct antenna_setup *ant)
406 {
407 u32 reg;
408 u8 r14;
409 u8 r2;
410
411 /*
412 * We should never come here because rt2x00lib is supposed
413 * to catch this and send us the correct antenna explicitely.
414 */
415 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
416 ant->tx == ANTENNA_SW_DIVERSITY);
417
418 rt2x00mmio_register_read(rt2x00dev, BBPCSR1, &reg);
419 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
420 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
421
422 /*
423 * Configure the TX antenna.
424 */
425 switch (ant->tx) {
426 case ANTENNA_A:
427 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
428 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
429 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
430 break;
431 case ANTENNA_B:
432 default:
433 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
434 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
435 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
436 break;
437 }
438
439 /*
440 * Configure the RX antenna.
441 */
442 switch (ant->rx) {
443 case ANTENNA_A:
444 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
445 break;
446 case ANTENNA_B:
447 default:
448 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
449 break;
450 }
451
452 /*
453 * RT2525E and RT5222 need to flip TX I/Q
454 */
455 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
456 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
457 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
458 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
459
460 /*
461 * RT2525E does not need RX I/Q Flip.
462 */
463 if (rt2x00_rf(rt2x00dev, RF2525E))
464 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
465 } else {
466 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
467 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
468 }
469
470 rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
471 rt2500pci_bbp_write(rt2x00dev, 14, r14);
472 rt2500pci_bbp_write(rt2x00dev, 2, r2);
473 }
474
475 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
476 struct rf_channel *rf, const int txpower)
477 {
478 u8 r70;
479
480 /*
481 * Set TXpower.
482 */
483 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
484
485 /*
486 * Switch on tuning bits.
487 * For RT2523 devices we do not need to update the R1 register.
488 */
489 if (!rt2x00_rf(rt2x00dev, RF2523))
490 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
491 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
492
493 /*
494 * For RT2525 we should first set the channel to half band higher.
495 */
496 if (rt2x00_rf(rt2x00dev, RF2525)) {
497 static const u32 vals[] = {
498 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
499 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
500 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
501 0x00080d2e, 0x00080d3a
502 };
503
504 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
505 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
506 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
507 if (rf->rf4)
508 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
509 }
510
511 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
512 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
513 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
514 if (rf->rf4)
515 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
516
517 /*
518 * Channel 14 requires the Japan filter bit to be set.
519 */
520 r70 = 0x46;
521 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
522 rt2500pci_bbp_write(rt2x00dev, 70, r70);
523
524 msleep(1);
525
526 /*
527 * Switch off tuning bits.
528 * For RT2523 devices we do not need to update the R1 register.
529 */
530 if (!rt2x00_rf(rt2x00dev, RF2523)) {
531 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
532 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
533 }
534
535 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
536 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
537
538 /*
539 * Clear false CRC during channel switch.
540 */
541 rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
542 }
543
544 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
545 const int txpower)
546 {
547 u32 rf3;
548
549 rt2x00_rf_read(rt2x00dev, 3, &rf3);
550 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
551 rt2500pci_rf_write(rt2x00dev, 3, rf3);
552 }
553
554 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
555 struct rt2x00lib_conf *libconf)
556 {
557 u32 reg;
558
559 rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
560 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
561 libconf->conf->long_frame_max_tx_count);
562 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
563 libconf->conf->short_frame_max_tx_count);
564 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
565 }
566
567 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
568 struct rt2x00lib_conf *libconf)
569 {
570 enum dev_state state =
571 (libconf->conf->flags & IEEE80211_CONF_PS) ?
572 STATE_SLEEP : STATE_AWAKE;
573 u32 reg;
574
575 if (state == STATE_SLEEP) {
576 rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
577 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
578 (rt2x00dev->beacon_int - 20) * 16);
579 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
580 libconf->conf->listen_interval - 1);
581
582 /* We must first disable autowake before it can be enabled */
583 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
584 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
585
586 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
587 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
588 } else {
589 rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
590 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
591 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
592 }
593
594 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
595 }
596
597 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
598 struct rt2x00lib_conf *libconf,
599 const unsigned int flags)
600 {
601 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
602 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
603 libconf->conf->power_level);
604 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
605 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
606 rt2500pci_config_txpower(rt2x00dev,
607 libconf->conf->power_level);
608 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
609 rt2500pci_config_retry_limit(rt2x00dev, libconf);
610 if (flags & IEEE80211_CONF_CHANGE_PS)
611 rt2500pci_config_ps(rt2x00dev, libconf);
612 }
613
614 /*
615 * Link tuning
616 */
617 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
618 struct link_qual *qual)
619 {
620 u32 reg;
621
622 /*
623 * Update FCS error count from register.
624 */
625 rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
626 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
627
628 /*
629 * Update False CCA count from register.
630 */
631 rt2x00mmio_register_read(rt2x00dev, CNT3, &reg);
632 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
633 }
634
635 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
636 struct link_qual *qual, u8 vgc_level)
637 {
638 if (qual->vgc_level_reg != vgc_level) {
639 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
640 qual->vgc_level = vgc_level;
641 qual->vgc_level_reg = vgc_level;
642 }
643 }
644
645 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
646 struct link_qual *qual)
647 {
648 rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
649 }
650
651 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
652 struct link_qual *qual, const u32 count)
653 {
654 /*
655 * To prevent collisions with MAC ASIC on chipsets
656 * up to version C the link tuning should halt after 20
657 * seconds while being associated.
658 */
659 if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
660 rt2x00dev->intf_associated && count > 20)
661 return;
662
663 /*
664 * Chipset versions C and lower should directly continue
665 * to the dynamic CCA tuning. Chipset version D and higher
666 * should go straight to dynamic CCA tuning when they
667 * are not associated.
668 */
669 if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
670 !rt2x00dev->intf_associated)
671 goto dynamic_cca_tune;
672
673 /*
674 * A too low RSSI will cause too much false CCA which will
675 * then corrupt the R17 tuning. To remidy this the tuning should
676 * be stopped (While making sure the R17 value will not exceed limits)
677 */
678 if (qual->rssi < -80 && count > 20) {
679 if (qual->vgc_level_reg >= 0x41)
680 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
681 return;
682 }
683
684 /*
685 * Special big-R17 for short distance
686 */
687 if (qual->rssi >= -58) {
688 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
689 return;
690 }
691
692 /*
693 * Special mid-R17 for middle distance
694 */
695 if (qual->rssi >= -74) {
696 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
697 return;
698 }
699
700 /*
701 * Leave short or middle distance condition, restore r17
702 * to the dynamic tuning range.
703 */
704 if (qual->vgc_level_reg >= 0x41) {
705 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
706 return;
707 }
708
709 dynamic_cca_tune:
710
711 /*
712 * R17 is inside the dynamic tuning range,
713 * start tuning the link based on the false cca counter.
714 */
715 if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
716 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
717 else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
718 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
719 }
720
721 /*
722 * Queue handlers.
723 */
724 static void rt2500pci_start_queue(struct data_queue *queue)
725 {
726 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
727 u32 reg;
728
729 switch (queue->qid) {
730 case QID_RX:
731 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
732 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
733 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
734 break;
735 case QID_BEACON:
736 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
737 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
738 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
739 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
740 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
741 break;
742 default:
743 break;
744 }
745 }
746
747 static void rt2500pci_kick_queue(struct data_queue *queue)
748 {
749 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
750 u32 reg;
751
752 switch (queue->qid) {
753 case QID_AC_VO:
754 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
755 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
756 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
757 break;
758 case QID_AC_VI:
759 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
760 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
761 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
762 break;
763 case QID_ATIM:
764 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
765 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
766 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
767 break;
768 default:
769 break;
770 }
771 }
772
773 static void rt2500pci_stop_queue(struct data_queue *queue)
774 {
775 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
776 u32 reg;
777
778 switch (queue->qid) {
779 case QID_AC_VO:
780 case QID_AC_VI:
781 case QID_ATIM:
782 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
783 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
784 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
785 break;
786 case QID_RX:
787 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
788 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
789 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
790 break;
791 case QID_BEACON:
792 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
793 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
794 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
795 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
796 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
797
798 /*
799 * Wait for possibly running tbtt tasklets.
800 */
801 tasklet_kill(&rt2x00dev->tbtt_tasklet);
802 break;
803 default:
804 break;
805 }
806 }
807
808 /*
809 * Initialization functions.
810 */
811 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
812 {
813 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
814 u32 word;
815
816 if (entry->queue->qid == QID_RX) {
817 rt2x00_desc_read(entry_priv->desc, 0, &word);
818
819 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
820 } else {
821 rt2x00_desc_read(entry_priv->desc, 0, &word);
822
823 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
824 rt2x00_get_field32(word, TXD_W0_VALID));
825 }
826 }
827
828 static void rt2500pci_clear_entry(struct queue_entry *entry)
829 {
830 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
831 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
832 u32 word;
833
834 if (entry->queue->qid == QID_RX) {
835 rt2x00_desc_read(entry_priv->desc, 1, &word);
836 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
837 rt2x00_desc_write(entry_priv->desc, 1, word);
838
839 rt2x00_desc_read(entry_priv->desc, 0, &word);
840 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
841 rt2x00_desc_write(entry_priv->desc, 0, word);
842 } else {
843 rt2x00_desc_read(entry_priv->desc, 0, &word);
844 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
845 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
846 rt2x00_desc_write(entry_priv->desc, 0, word);
847 }
848 }
849
850 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
851 {
852 struct queue_entry_priv_mmio *entry_priv;
853 u32 reg;
854
855 /*
856 * Initialize registers.
857 */
858 rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
859 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
860 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
861 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
862 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
863 rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
864
865 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
866 rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
867 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
868 entry_priv->desc_dma);
869 rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
870
871 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
872 rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
873 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
874 entry_priv->desc_dma);
875 rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
876
877 entry_priv = rt2x00dev->atim->entries[0].priv_data;
878 rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
879 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
880 entry_priv->desc_dma);
881 rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
882
883 entry_priv = rt2x00dev->bcn->entries[0].priv_data;
884 rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
885 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
886 entry_priv->desc_dma);
887 rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
888
889 rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
890 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
891 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
892 rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
893
894 entry_priv = rt2x00dev->rx->entries[0].priv_data;
895 rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
896 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
897 entry_priv->desc_dma);
898 rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
899
900 return 0;
901 }
902
903 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
904 {
905 u32 reg;
906
907 rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
908 rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
909 rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
910 rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
911
912 rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
913 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
914 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
915 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
916 rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
917
918 rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
919 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
920 rt2x00dev->rx->data_size / 128);
921 rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
922
923 /*
924 * Always use CWmin and CWmax set in descriptor.
925 */
926 rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
927 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
928 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
929
930 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
931 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
932 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
933 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
934 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
935 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
936 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
937 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
938 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
939 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
940
941 rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
942
943 rt2x00mmio_register_read(rt2x00dev, TXCSR8, &reg);
944 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
945 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
946 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
947 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
948 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
949 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
950 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
951 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
952 rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
953
954 rt2x00mmio_register_read(rt2x00dev, ARTCSR0, &reg);
955 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
956 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
957 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
958 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
959 rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
960
961 rt2x00mmio_register_read(rt2x00dev, ARTCSR1, &reg);
962 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
963 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
964 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
965 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
966 rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
967
968 rt2x00mmio_register_read(rt2x00dev, ARTCSR2, &reg);
969 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
970 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
971 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
972 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
973 rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
974
975 rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
976 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
977 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
978 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
979 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
980 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
981 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
982 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
983 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
984 rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
985
986 rt2x00mmio_register_read(rt2x00dev, PCICSR, &reg);
987 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
988 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
989 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
990 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
991 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
992 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
993 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
994 rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
995
996 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
997
998 rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
999 rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1000
1001 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1002 return -EBUSY;
1003
1004 rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
1005 rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
1006
1007 rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
1008 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1009 rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1010
1011 rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
1012 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1013 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1014 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1015 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1016 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1017 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1018 rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1019
1020 rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1021
1022 rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1023
1024 rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1025 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1026 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1027 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1028 rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1029
1030 rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1031 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1032 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1033 rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1034
1035 /*
1036 * We must clear the FCS and FIFO error count.
1037 * These registers are cleared on read,
1038 * so we may pass a useless variable to store the value.
1039 */
1040 rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
1041 rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
1042
1043 return 0;
1044 }
1045
1046 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1047 {
1048 unsigned int i;
1049 u8 value;
1050
1051 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1052 rt2500pci_bbp_read(rt2x00dev, 0, &value);
1053 if ((value != 0xff) && (value != 0x00))
1054 return 0;
1055 udelay(REGISTER_BUSY_DELAY);
1056 }
1057
1058 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1059 return -EACCES;
1060 }
1061
1062 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1063 {
1064 unsigned int i;
1065 u16 eeprom;
1066 u8 reg_id;
1067 u8 value;
1068
1069 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1070 return -EACCES;
1071
1072 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1073 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1074 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1075 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1076 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1077 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1078 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1079 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1080 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1081 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1082 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1083 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1084 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1085 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1086 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1087 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1088 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1089 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1090 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1091 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1092 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1093 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1094 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1095 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1096 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1097 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1098 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1099 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1100 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1101 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1102
1103 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1104 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1105
1106 if (eeprom != 0xffff && eeprom != 0x0000) {
1107 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1108 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1109 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1110 }
1111 }
1112
1113 return 0;
1114 }
1115
1116 /*
1117 * Device state switch handlers.
1118 */
1119 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1120 enum dev_state state)
1121 {
1122 int mask = (state == STATE_RADIO_IRQ_OFF);
1123 u32 reg;
1124 unsigned long flags;
1125
1126 /*
1127 * When interrupts are being enabled, the interrupt registers
1128 * should clear the register to assure a clean state.
1129 */
1130 if (state == STATE_RADIO_IRQ_ON) {
1131 rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1132 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1133 }
1134
1135 /*
1136 * Only toggle the interrupts bits we are going to use.
1137 * Non-checked interrupt bits are disabled by default.
1138 */
1139 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1140
1141 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1142 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1143 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1144 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1145 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1146 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1147 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1148
1149 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1150
1151 if (state == STATE_RADIO_IRQ_OFF) {
1152 /*
1153 * Ensure that all tasklets are finished.
1154 */
1155 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1156 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1157 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1158 }
1159 }
1160
1161 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1162 {
1163 /*
1164 * Initialize all registers.
1165 */
1166 if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1167 rt2500pci_init_registers(rt2x00dev) ||
1168 rt2500pci_init_bbp(rt2x00dev)))
1169 return -EIO;
1170
1171 return 0;
1172 }
1173
1174 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1175 {
1176 /*
1177 * Disable power
1178 */
1179 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1180 }
1181
1182 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1183 enum dev_state state)
1184 {
1185 u32 reg, reg2;
1186 unsigned int i;
1187 char put_to_sleep;
1188 char bbp_state;
1189 char rf_state;
1190
1191 put_to_sleep = (state != STATE_AWAKE);
1192
1193 rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1194 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1195 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1196 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1197 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1198 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1199
1200 /*
1201 * Device is not guaranteed to be in the requested state yet.
1202 * We must wait until the register indicates that the
1203 * device has entered the correct state.
1204 */
1205 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1206 rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1207 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1208 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1209 if (bbp_state == state && rf_state == state)
1210 return 0;
1211 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1212 msleep(10);
1213 }
1214
1215 return -EBUSY;
1216 }
1217
1218 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1219 enum dev_state state)
1220 {
1221 int retval = 0;
1222
1223 switch (state) {
1224 case STATE_RADIO_ON:
1225 retval = rt2500pci_enable_radio(rt2x00dev);
1226 break;
1227 case STATE_RADIO_OFF:
1228 rt2500pci_disable_radio(rt2x00dev);
1229 break;
1230 case STATE_RADIO_IRQ_ON:
1231 case STATE_RADIO_IRQ_OFF:
1232 rt2500pci_toggle_irq(rt2x00dev, state);
1233 break;
1234 case STATE_DEEP_SLEEP:
1235 case STATE_SLEEP:
1236 case STATE_STANDBY:
1237 case STATE_AWAKE:
1238 retval = rt2500pci_set_state(rt2x00dev, state);
1239 break;
1240 default:
1241 retval = -ENOTSUPP;
1242 break;
1243 }
1244
1245 if (unlikely(retval))
1246 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1247 state, retval);
1248
1249 return retval;
1250 }
1251
1252 /*
1253 * TX descriptor initialization
1254 */
1255 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1256 struct txentry_desc *txdesc)
1257 {
1258 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1259 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1260 __le32 *txd = entry_priv->desc;
1261 u32 word;
1262
1263 /*
1264 * Start writing the descriptor words.
1265 */
1266 rt2x00_desc_read(txd, 1, &word);
1267 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1268 rt2x00_desc_write(txd, 1, word);
1269
1270 rt2x00_desc_read(txd, 2, &word);
1271 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1272 rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1273 rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1274 rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1275 rt2x00_desc_write(txd, 2, word);
1276
1277 rt2x00_desc_read(txd, 3, &word);
1278 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1279 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1280 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1281 txdesc->u.plcp.length_low);
1282 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1283 txdesc->u.plcp.length_high);
1284 rt2x00_desc_write(txd, 3, word);
1285
1286 rt2x00_desc_read(txd, 10, &word);
1287 rt2x00_set_field32(&word, TXD_W10_RTS,
1288 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1289 rt2x00_desc_write(txd, 10, word);
1290
1291 /*
1292 * Writing TXD word 0 must the last to prevent a race condition with
1293 * the device, whereby the device may take hold of the TXD before we
1294 * finished updating it.
1295 */
1296 rt2x00_desc_read(txd, 0, &word);
1297 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1298 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1299 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1300 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1301 rt2x00_set_field32(&word, TXD_W0_ACK,
1302 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1303 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1304 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1305 rt2x00_set_field32(&word, TXD_W0_OFDM,
1306 (txdesc->rate_mode == RATE_MODE_OFDM));
1307 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1308 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1309 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1310 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1311 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1312 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1313 rt2x00_desc_write(txd, 0, word);
1314
1315 /*
1316 * Register descriptor details in skb frame descriptor.
1317 */
1318 skbdesc->desc = txd;
1319 skbdesc->desc_len = TXD_DESC_SIZE;
1320 }
1321
1322 /*
1323 * TX data initialization
1324 */
1325 static void rt2500pci_write_beacon(struct queue_entry *entry,
1326 struct txentry_desc *txdesc)
1327 {
1328 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1329 u32 reg;
1330
1331 /*
1332 * Disable beaconing while we are reloading the beacon data,
1333 * otherwise we might be sending out invalid data.
1334 */
1335 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1336 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1337 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1338
1339 if (rt2x00queue_map_txskb(entry)) {
1340 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1341 goto out;
1342 }
1343
1344 /*
1345 * Write the TX descriptor for the beacon.
1346 */
1347 rt2500pci_write_tx_desc(entry, txdesc);
1348
1349 /*
1350 * Dump beacon to userspace through debugfs.
1351 */
1352 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1353 out:
1354 /*
1355 * Enable beaconing again.
1356 */
1357 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1358 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1359 }
1360
1361 /*
1362 * RX control handlers
1363 */
1364 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1365 struct rxdone_entry_desc *rxdesc)
1366 {
1367 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1368 u32 word0;
1369 u32 word2;
1370
1371 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1372 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1373
1374 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1375 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1376 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1377 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1378
1379 /*
1380 * Obtain the status about this packet.
1381 * When frame was received with an OFDM bitrate,
1382 * the signal is the PLCP value. If it was received with
1383 * a CCK bitrate the signal is the rate in 100kbit/s.
1384 */
1385 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1386 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1387 entry->queue->rt2x00dev->rssi_offset;
1388 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1389
1390 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1391 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1392 else
1393 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1394 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1395 rxdesc->dev_flags |= RXDONE_MY_BSS;
1396 }
1397
1398 /*
1399 * Interrupt functions.
1400 */
1401 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1402 const enum data_queue_qid queue_idx)
1403 {
1404 struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1405 struct queue_entry_priv_mmio *entry_priv;
1406 struct queue_entry *entry;
1407 struct txdone_entry_desc txdesc;
1408 u32 word;
1409
1410 while (!rt2x00queue_empty(queue)) {
1411 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1412 entry_priv = entry->priv_data;
1413 rt2x00_desc_read(entry_priv->desc, 0, &word);
1414
1415 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1416 !rt2x00_get_field32(word, TXD_W0_VALID))
1417 break;
1418
1419 /*
1420 * Obtain the status about this packet.
1421 */
1422 txdesc.flags = 0;
1423 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1424 case 0: /* Success */
1425 case 1: /* Success with retry */
1426 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1427 break;
1428 case 2: /* Failure, excessive retries */
1429 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1430 /* Don't break, this is a failed frame! */
1431 default: /* Failure */
1432 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1433 }
1434 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1435
1436 rt2x00lib_txdone(entry, &txdesc);
1437 }
1438 }
1439
1440 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1441 struct rt2x00_field32 irq_field)
1442 {
1443 u32 reg;
1444
1445 /*
1446 * Enable a single interrupt. The interrupt mask register
1447 * access needs locking.
1448 */
1449 spin_lock_irq(&rt2x00dev->irqmask_lock);
1450
1451 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1452 rt2x00_set_field32(&reg, irq_field, 0);
1453 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1454
1455 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1456 }
1457
1458 static void rt2500pci_txstatus_tasklet(unsigned long data)
1459 {
1460 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1461 u32 reg;
1462
1463 /*
1464 * Handle all tx queues.
1465 */
1466 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1467 rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1468 rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1469
1470 /*
1471 * Enable all TXDONE interrupts again.
1472 */
1473 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1474 spin_lock_irq(&rt2x00dev->irqmask_lock);
1475
1476 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1477 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1478 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1479 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1480 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1481
1482 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1483 }
1484 }
1485
1486 static void rt2500pci_tbtt_tasklet(unsigned long data)
1487 {
1488 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1489 rt2x00lib_beacondone(rt2x00dev);
1490 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1491 rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1492 }
1493
1494 static void rt2500pci_rxdone_tasklet(unsigned long data)
1495 {
1496 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1497 if (rt2x00mmio_rxdone(rt2x00dev))
1498 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1499 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1500 rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1501 }
1502
1503 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1504 {
1505 struct rt2x00_dev *rt2x00dev = dev_instance;
1506 u32 reg, mask;
1507
1508 /*
1509 * Get the interrupt sources & saved to local variable.
1510 * Write register value back to clear pending interrupts.
1511 */
1512 rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1513 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1514
1515 if (!reg)
1516 return IRQ_NONE;
1517
1518 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1519 return IRQ_HANDLED;
1520
1521 mask = reg;
1522
1523 /*
1524 * Schedule tasklets for interrupt handling.
1525 */
1526 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1527 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1528
1529 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1530 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1531
1532 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1533 rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1534 rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1535 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1536 /*
1537 * Mask out all txdone interrupts.
1538 */
1539 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1540 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1541 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1542 }
1543
1544 /*
1545 * Disable all interrupts for which a tasklet was scheduled right now,
1546 * the tasklet will reenable the appropriate interrupts.
1547 */
1548 spin_lock(&rt2x00dev->irqmask_lock);
1549
1550 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1551 reg |= mask;
1552 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1553
1554 spin_unlock(&rt2x00dev->irqmask_lock);
1555
1556 return IRQ_HANDLED;
1557 }
1558
1559 /*
1560 * Device probe functions.
1561 */
1562 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1563 {
1564 struct eeprom_93cx6 eeprom;
1565 u32 reg;
1566 u16 word;
1567 u8 *mac;
1568
1569 rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1570
1571 eeprom.data = rt2x00dev;
1572 eeprom.register_read = rt2500pci_eepromregister_read;
1573 eeprom.register_write = rt2500pci_eepromregister_write;
1574 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1575 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1576 eeprom.reg_data_in = 0;
1577 eeprom.reg_data_out = 0;
1578 eeprom.reg_data_clock = 0;
1579 eeprom.reg_chip_select = 0;
1580
1581 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1582 EEPROM_SIZE / sizeof(u16));
1583
1584 /*
1585 * Start validation of the data that has been read.
1586 */
1587 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1588 if (!is_valid_ether_addr(mac)) {
1589 eth_random_addr(mac);
1590 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1591 }
1592
1593 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1594 if (word == 0xffff) {
1595 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1596 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1597 ANTENNA_SW_DIVERSITY);
1598 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1599 ANTENNA_SW_DIVERSITY);
1600 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1601 LED_MODE_DEFAULT);
1602 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1603 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1604 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1605 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1606 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1607 }
1608
1609 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1610 if (word == 0xffff) {
1611 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1612 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1613 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1614 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1615 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1616 }
1617
1618 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1619 if (word == 0xffff) {
1620 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1621 DEFAULT_RSSI_OFFSET);
1622 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1623 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1624 word);
1625 }
1626
1627 return 0;
1628 }
1629
1630 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1631 {
1632 u32 reg;
1633 u16 value;
1634 u16 eeprom;
1635
1636 /*
1637 * Read EEPROM word for configuration.
1638 */
1639 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1640
1641 /*
1642 * Identify RF chipset.
1643 */
1644 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1645 rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1646 rt2x00_set_chip(rt2x00dev, RT2560, value,
1647 rt2x00_get_field32(reg, CSR0_REVISION));
1648
1649 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1650 !rt2x00_rf(rt2x00dev, RF2523) &&
1651 !rt2x00_rf(rt2x00dev, RF2524) &&
1652 !rt2x00_rf(rt2x00dev, RF2525) &&
1653 !rt2x00_rf(rt2x00dev, RF2525E) &&
1654 !rt2x00_rf(rt2x00dev, RF5222)) {
1655 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1656 return -ENODEV;
1657 }
1658
1659 /*
1660 * Identify default antenna configuration.
1661 */
1662 rt2x00dev->default_ant.tx =
1663 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1664 rt2x00dev->default_ant.rx =
1665 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1666
1667 /*
1668 * Store led mode, for correct led behaviour.
1669 */
1670 #ifdef CONFIG_RT2X00_LIB_LEDS
1671 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1672
1673 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1674 if (value == LED_MODE_TXRX_ACTIVITY ||
1675 value == LED_MODE_DEFAULT ||
1676 value == LED_MODE_ASUS)
1677 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1678 LED_TYPE_ACTIVITY);
1679 #endif /* CONFIG_RT2X00_LIB_LEDS */
1680
1681 /*
1682 * Detect if this device has an hardware controlled radio.
1683 */
1684 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1685 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1686 /*
1687 * On this device RFKILL initialized during probe does not work.
1688 */
1689 __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1690 }
1691
1692 /*
1693 * Check if the BBP tuning should be enabled.
1694 */
1695 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1696 if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1697 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1698
1699 /*
1700 * Read the RSSI <-> dBm offset information.
1701 */
1702 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1703 rt2x00dev->rssi_offset =
1704 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1705
1706 return 0;
1707 }
1708
1709 /*
1710 * RF value list for RF2522
1711 * Supports: 2.4 GHz
1712 */
1713 static const struct rf_channel rf_vals_bg_2522[] = {
1714 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1715 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1716 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1717 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1718 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1719 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1720 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1721 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1722 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1723 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1724 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1725 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1726 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1727 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1728 };
1729
1730 /*
1731 * RF value list for RF2523
1732 * Supports: 2.4 GHz
1733 */
1734 static const struct rf_channel rf_vals_bg_2523[] = {
1735 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1736 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1737 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1738 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1739 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1740 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1741 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1742 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1743 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1744 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1745 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1746 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1747 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1748 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1749 };
1750
1751 /*
1752 * RF value list for RF2524
1753 * Supports: 2.4 GHz
1754 */
1755 static const struct rf_channel rf_vals_bg_2524[] = {
1756 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1757 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1758 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1759 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1760 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1761 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1762 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1763 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1764 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1765 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1766 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1767 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1768 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1769 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1770 };
1771
1772 /*
1773 * RF value list for RF2525
1774 * Supports: 2.4 GHz
1775 */
1776 static const struct rf_channel rf_vals_bg_2525[] = {
1777 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1778 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1779 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1780 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1781 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1782 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1783 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1784 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1785 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1786 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1787 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1788 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1789 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1790 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1791 };
1792
1793 /*
1794 * RF value list for RF2525e
1795 * Supports: 2.4 GHz
1796 */
1797 static const struct rf_channel rf_vals_bg_2525e[] = {
1798 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1799 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1800 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1801 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1802 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1803 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1804 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1805 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1806 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1807 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1808 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1809 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1810 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1811 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1812 };
1813
1814 /*
1815 * RF value list for RF5222
1816 * Supports: 2.4 GHz & 5.2 GHz
1817 */
1818 static const struct rf_channel rf_vals_5222[] = {
1819 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1820 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1821 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1822 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1823 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1824 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1825 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1826 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1827 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1828 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1829 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1830 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1831 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1832 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1833
1834 /* 802.11 UNI / HyperLan 2 */
1835 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1836 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1837 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1838 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1839 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1840 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1841 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1842 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1843
1844 /* 802.11 HyperLan 2 */
1845 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1846 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1847 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1848 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1849 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1850 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1851 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1852 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1853 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1854 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1855
1856 /* 802.11 UNII */
1857 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1858 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1859 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1860 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1861 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1862 };
1863
1864 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1865 {
1866 struct hw_mode_spec *spec = &rt2x00dev->spec;
1867 struct channel_info *info;
1868 char *tx_power;
1869 unsigned int i;
1870
1871 /*
1872 * Initialize all hw fields.
1873 */
1874 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1875 IEEE80211_HW_SIGNAL_DBM |
1876 IEEE80211_HW_SUPPORTS_PS |
1877 IEEE80211_HW_PS_NULLFUNC_STACK;
1878
1879 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1880 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1881 rt2x00_eeprom_addr(rt2x00dev,
1882 EEPROM_MAC_ADDR_0));
1883
1884 /*
1885 * Disable powersaving as default.
1886 */
1887 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1888
1889 /*
1890 * Initialize hw_mode information.
1891 */
1892 spec->supported_bands = SUPPORT_BAND_2GHZ;
1893 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1894
1895 if (rt2x00_rf(rt2x00dev, RF2522)) {
1896 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1897 spec->channels = rf_vals_bg_2522;
1898 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1899 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1900 spec->channels = rf_vals_bg_2523;
1901 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1902 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1903 spec->channels = rf_vals_bg_2524;
1904 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1905 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1906 spec->channels = rf_vals_bg_2525;
1907 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1908 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1909 spec->channels = rf_vals_bg_2525e;
1910 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1911 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1912 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1913 spec->channels = rf_vals_5222;
1914 }
1915
1916 /*
1917 * Create channel information array
1918 */
1919 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1920 if (!info)
1921 return -ENOMEM;
1922
1923 spec->channels_info = info;
1924
1925 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1926 for (i = 0; i < 14; i++) {
1927 info[i].max_power = MAX_TXPOWER;
1928 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1929 }
1930
1931 if (spec->num_channels > 14) {
1932 for (i = 14; i < spec->num_channels; i++) {
1933 info[i].max_power = MAX_TXPOWER;
1934 info[i].default_power1 = DEFAULT_TXPOWER;
1935 }
1936 }
1937
1938 return 0;
1939 }
1940
1941 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1942 {
1943 int retval;
1944 u32 reg;
1945
1946 /*
1947 * Allocate eeprom data.
1948 */
1949 retval = rt2500pci_validate_eeprom(rt2x00dev);
1950 if (retval)
1951 return retval;
1952
1953 retval = rt2500pci_init_eeprom(rt2x00dev);
1954 if (retval)
1955 return retval;
1956
1957 /*
1958 * Enable rfkill polling by setting GPIO direction of the
1959 * rfkill switch GPIO pin correctly.
1960 */
1961 rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1962 rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1963 rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1964
1965 /*
1966 * Initialize hw specifications.
1967 */
1968 retval = rt2500pci_probe_hw_mode(rt2x00dev);
1969 if (retval)
1970 return retval;
1971
1972 /*
1973 * This device requires the atim queue and DMA-mapped skbs.
1974 */
1975 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1976 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1977 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1978
1979 /*
1980 * Set the rssi offset.
1981 */
1982 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1983
1984 return 0;
1985 }
1986
1987 /*
1988 * IEEE80211 stack callback functions.
1989 */
1990 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1991 struct ieee80211_vif *vif)
1992 {
1993 struct rt2x00_dev *rt2x00dev = hw->priv;
1994 u64 tsf;
1995 u32 reg;
1996
1997 rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
1998 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1999 rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
2000 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
2001
2002 return tsf;
2003 }
2004
2005 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
2006 {
2007 struct rt2x00_dev *rt2x00dev = hw->priv;
2008 u32 reg;
2009
2010 rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
2011 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2012 }
2013
2014 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2015 .tx = rt2x00mac_tx,
2016 .start = rt2x00mac_start,
2017 .stop = rt2x00mac_stop,
2018 .add_interface = rt2x00mac_add_interface,
2019 .remove_interface = rt2x00mac_remove_interface,
2020 .config = rt2x00mac_config,
2021 .configure_filter = rt2x00mac_configure_filter,
2022 .sw_scan_start = rt2x00mac_sw_scan_start,
2023 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2024 .get_stats = rt2x00mac_get_stats,
2025 .bss_info_changed = rt2x00mac_bss_info_changed,
2026 .conf_tx = rt2x00mac_conf_tx,
2027 .get_tsf = rt2500pci_get_tsf,
2028 .tx_last_beacon = rt2500pci_tx_last_beacon,
2029 .rfkill_poll = rt2x00mac_rfkill_poll,
2030 .flush = rt2x00mac_flush,
2031 .set_antenna = rt2x00mac_set_antenna,
2032 .get_antenna = rt2x00mac_get_antenna,
2033 .get_ringparam = rt2x00mac_get_ringparam,
2034 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2035 };
2036
2037 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2038 .irq_handler = rt2500pci_interrupt,
2039 .txstatus_tasklet = rt2500pci_txstatus_tasklet,
2040 .tbtt_tasklet = rt2500pci_tbtt_tasklet,
2041 .rxdone_tasklet = rt2500pci_rxdone_tasklet,
2042 .probe_hw = rt2500pci_probe_hw,
2043 .initialize = rt2x00mmio_initialize,
2044 .uninitialize = rt2x00mmio_uninitialize,
2045 .get_entry_state = rt2500pci_get_entry_state,
2046 .clear_entry = rt2500pci_clear_entry,
2047 .set_device_state = rt2500pci_set_device_state,
2048 .rfkill_poll = rt2500pci_rfkill_poll,
2049 .link_stats = rt2500pci_link_stats,
2050 .reset_tuner = rt2500pci_reset_tuner,
2051 .link_tuner = rt2500pci_link_tuner,
2052 .start_queue = rt2500pci_start_queue,
2053 .kick_queue = rt2500pci_kick_queue,
2054 .stop_queue = rt2500pci_stop_queue,
2055 .flush_queue = rt2x00mmio_flush_queue,
2056 .write_tx_desc = rt2500pci_write_tx_desc,
2057 .write_beacon = rt2500pci_write_beacon,
2058 .fill_rxdone = rt2500pci_fill_rxdone,
2059 .config_filter = rt2500pci_config_filter,
2060 .config_intf = rt2500pci_config_intf,
2061 .config_erp = rt2500pci_config_erp,
2062 .config_ant = rt2500pci_config_ant,
2063 .config = rt2500pci_config,
2064 };
2065
2066 static void rt2500pci_queue_init(struct data_queue *queue)
2067 {
2068 switch (queue->qid) {
2069 case QID_RX:
2070 queue->limit = 32;
2071 queue->data_size = DATA_FRAME_SIZE;
2072 queue->desc_size = RXD_DESC_SIZE;
2073 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2074 break;
2075
2076 case QID_AC_VO:
2077 case QID_AC_VI:
2078 case QID_AC_BE:
2079 case QID_AC_BK:
2080 queue->limit = 32;
2081 queue->data_size = DATA_FRAME_SIZE;
2082 queue->desc_size = TXD_DESC_SIZE;
2083 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2084 break;
2085
2086 case QID_BEACON:
2087 queue->limit = 1;
2088 queue->data_size = MGMT_FRAME_SIZE;
2089 queue->desc_size = TXD_DESC_SIZE;
2090 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2091 break;
2092
2093 case QID_ATIM:
2094 queue->limit = 8;
2095 queue->data_size = DATA_FRAME_SIZE;
2096 queue->desc_size = TXD_DESC_SIZE;
2097 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2098 break;
2099
2100 default:
2101 BUG();
2102 break;
2103 }
2104 }
2105
2106 static const struct rt2x00_ops rt2500pci_ops = {
2107 .name = KBUILD_MODNAME,
2108 .max_ap_intf = 1,
2109 .eeprom_size = EEPROM_SIZE,
2110 .rf_size = RF_SIZE,
2111 .tx_queues = NUM_TX_QUEUES,
2112 .queue_init = rt2500pci_queue_init,
2113 .lib = &rt2500pci_rt2x00_ops,
2114 .hw = &rt2500pci_mac80211_ops,
2115 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2116 .debugfs = &rt2500pci_rt2x00debug,
2117 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2118 };
2119
2120 /*
2121 * RT2500pci module information.
2122 */
2123 static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
2124 { PCI_DEVICE(0x1814, 0x0201) },
2125 { 0, }
2126 };
2127
2128 MODULE_AUTHOR(DRV_PROJECT);
2129 MODULE_VERSION(DRV_VERSION);
2130 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2131 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2132 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2133 MODULE_LICENSE("GPL");
2134
2135 static int rt2500pci_probe(struct pci_dev *pci_dev,
2136 const struct pci_device_id *id)
2137 {
2138 return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2139 }
2140
2141 static struct pci_driver rt2500pci_driver = {
2142 .name = KBUILD_MODNAME,
2143 .id_table = rt2500pci_device_table,
2144 .probe = rt2500pci_probe,
2145 .remove = rt2x00pci_remove,
2146 .suspend = rt2x00pci_suspend,
2147 .resume = rt2x00pci_resume,
2148 };
2149
2150 module_pci_driver(rt2500pci_driver);
This page took 0.112585 seconds and 5 git commands to generate.