2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 #define WAIT_FOR_BBP(__dev, __reg) \
53 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57 static void rt2500pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
58 const unsigned int word
, const u8 value
)
62 mutex_lock(&rt2x00dev
->csr_mutex
);
65 * Wait until the BBP becomes available, afterwards we
66 * can safely write the new data into the register.
68 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
70 rt2x00_set_field32(®
, BBPCSR_VALUE
, value
);
71 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
72 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
73 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 1);
75 rt2x00pci_register_write(rt2x00dev
, BBPCSR
, reg
);
78 mutex_unlock(&rt2x00dev
->csr_mutex
);
81 static void rt2500pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
82 const unsigned int word
, u8
*value
)
86 mutex_lock(&rt2x00dev
->csr_mutex
);
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
96 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
98 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
99 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
100 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 0);
102 rt2x00pci_register_write(rt2x00dev
, BBPCSR
, reg
);
104 WAIT_FOR_BBP(rt2x00dev
, ®
);
107 *value
= rt2x00_get_field32(reg
, BBPCSR_VALUE
);
109 mutex_unlock(&rt2x00dev
->csr_mutex
);
112 static void rt2500pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
113 const unsigned int word
, const u32 value
)
117 mutex_lock(&rt2x00dev
->csr_mutex
);
120 * Wait until the RF becomes available, afterwards we
121 * can safely write the new data into the register.
123 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
125 rt2x00_set_field32(®
, RFCSR_VALUE
, value
);
126 rt2x00_set_field32(®
, RFCSR_NUMBER_OF_BITS
, 20);
127 rt2x00_set_field32(®
, RFCSR_IF_SELECT
, 0);
128 rt2x00_set_field32(®
, RFCSR_BUSY
, 1);
130 rt2x00pci_register_write(rt2x00dev
, RFCSR
, reg
);
131 rt2x00_rf_write(rt2x00dev
, word
, value
);
134 mutex_unlock(&rt2x00dev
->csr_mutex
);
137 static void rt2500pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
139 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
142 rt2x00pci_register_read(rt2x00dev
, CSR21
, ®
);
144 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_IN
);
145 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_OUT
);
146 eeprom
->reg_data_clock
=
147 !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_CLOCK
);
148 eeprom
->reg_chip_select
=
149 !!rt2x00_get_field32(reg
, CSR21_EEPROM_CHIP_SELECT
);
152 static void rt2500pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
154 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
157 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_IN
, !!eeprom
->reg_data_in
);
158 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_OUT
, !!eeprom
->reg_data_out
);
159 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_CLOCK
,
160 !!eeprom
->reg_data_clock
);
161 rt2x00_set_field32(®
, CSR21_EEPROM_CHIP_SELECT
,
162 !!eeprom
->reg_chip_select
);
164 rt2x00pci_register_write(rt2x00dev
, CSR21
, reg
);
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2500pci_rt2x00debug
= {
169 .owner
= THIS_MODULE
,
171 .read
= rt2x00pci_register_read
,
172 .write
= rt2x00pci_register_write
,
173 .flags
= RT2X00DEBUGFS_OFFSET
,
174 .word_base
= CSR_REG_BASE
,
175 .word_size
= sizeof(u32
),
176 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
179 .read
= rt2x00_eeprom_read
,
180 .write
= rt2x00_eeprom_write
,
181 .word_base
= EEPROM_BASE
,
182 .word_size
= sizeof(u16
),
183 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
186 .read
= rt2500pci_bbp_read
,
187 .write
= rt2500pci_bbp_write
,
188 .word_base
= BBP_BASE
,
189 .word_size
= sizeof(u8
),
190 .word_count
= BBP_SIZE
/ sizeof(u8
),
193 .read
= rt2x00_rf_read
,
194 .write
= rt2500pci_rf_write
,
195 .word_base
= RF_BASE
,
196 .word_size
= sizeof(u32
),
197 .word_count
= RF_SIZE
/ sizeof(u32
),
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202 static int rt2500pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
206 rt2x00pci_register_read(rt2x00dev
, GPIOCSR
, ®
);
207 return rt2x00_get_field32(reg
, GPIOCSR_BIT0
);
210 #ifdef CONFIG_RT2X00_LIB_LEDS
211 static void rt2500pci_brightness_set(struct led_classdev
*led_cdev
,
212 enum led_brightness brightness
)
214 struct rt2x00_led
*led
=
215 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
216 unsigned int enabled
= brightness
!= LED_OFF
;
219 rt2x00pci_register_read(led
->rt2x00dev
, LEDCSR
, ®
);
221 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
222 rt2x00_set_field32(®
, LEDCSR_LINK
, enabled
);
223 else if (led
->type
== LED_TYPE_ACTIVITY
)
224 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, enabled
);
226 rt2x00pci_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
229 static int rt2500pci_blink_set(struct led_classdev
*led_cdev
,
230 unsigned long *delay_on
,
231 unsigned long *delay_off
)
233 struct rt2x00_led
*led
=
234 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
237 rt2x00pci_register_read(led
->rt2x00dev
, LEDCSR
, ®
);
238 rt2x00_set_field32(®
, LEDCSR_ON_PERIOD
, *delay_on
);
239 rt2x00_set_field32(®
, LEDCSR_OFF_PERIOD
, *delay_off
);
240 rt2x00pci_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
245 static void rt2500pci_init_led(struct rt2x00_dev
*rt2x00dev
,
246 struct rt2x00_led
*led
,
249 led
->rt2x00dev
= rt2x00dev
;
251 led
->led_dev
.brightness_set
= rt2500pci_brightness_set
;
252 led
->led_dev
.blink_set
= rt2500pci_blink_set
;
253 led
->flags
= LED_INITIALIZED
;
255 #endif /* CONFIG_RT2X00_LIB_LEDS */
258 * Configuration handlers.
260 static void rt2500pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
261 const unsigned int filter_flags
)
266 * Start configuration steps.
267 * Note that the version error will always be dropped
268 * and broadcast frames will always be accepted since
269 * there is no filter for it at this time.
271 rt2x00pci_register_read(rt2x00dev
, RXCSR0
, ®
);
272 rt2x00_set_field32(®
, RXCSR0_DROP_CRC
,
273 !(filter_flags
& FIF_FCSFAIL
));
274 rt2x00_set_field32(®
, RXCSR0_DROP_PHYSICAL
,
275 !(filter_flags
& FIF_PLCPFAIL
));
276 rt2x00_set_field32(®
, RXCSR0_DROP_CONTROL
,
277 !(filter_flags
& FIF_CONTROL
));
278 rt2x00_set_field32(®
, RXCSR0_DROP_NOT_TO_ME
,
279 !(filter_flags
& FIF_PROMISC_IN_BSS
));
280 rt2x00_set_field32(®
, RXCSR0_DROP_TODS
,
281 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
282 !rt2x00dev
->intf_ap_count
);
283 rt2x00_set_field32(®
, RXCSR0_DROP_VERSION_ERROR
, 1);
284 rt2x00_set_field32(®
, RXCSR0_DROP_MCAST
,
285 !(filter_flags
& FIF_ALLMULTI
));
286 rt2x00_set_field32(®
, RXCSR0_DROP_BCAST
, 0);
287 rt2x00pci_register_write(rt2x00dev
, RXCSR0
, reg
);
290 static void rt2500pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
291 struct rt2x00_intf
*intf
,
292 struct rt2x00intf_conf
*conf
,
293 const unsigned int flags
)
295 struct data_queue
*queue
= rt2x00queue_get_queue(rt2x00dev
, QID_BEACON
);
296 unsigned int bcn_preload
;
299 if (flags
& CONFIG_UPDATE_TYPE
) {
301 * Enable beacon config
303 bcn_preload
= PREAMBLE
+ GET_DURATION(IEEE80211_HEADER
, 20);
304 rt2x00pci_register_read(rt2x00dev
, BCNCSR1
, ®
);
305 rt2x00_set_field32(®
, BCNCSR1_PRELOAD
, bcn_preload
);
306 rt2x00_set_field32(®
, BCNCSR1_BEACON_CWMIN
, queue
->cw_min
);
307 rt2x00pci_register_write(rt2x00dev
, BCNCSR1
, reg
);
310 * Enable synchronisation.
312 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
313 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
314 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, conf
->sync
);
315 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
316 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
319 if (flags
& CONFIG_UPDATE_MAC
)
320 rt2x00pci_register_multiwrite(rt2x00dev
, CSR3
,
321 conf
->mac
, sizeof(conf
->mac
));
323 if (flags
& CONFIG_UPDATE_BSSID
)
324 rt2x00pci_register_multiwrite(rt2x00dev
, CSR5
,
325 conf
->bssid
, sizeof(conf
->bssid
));
328 static void rt2500pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
329 struct rt2x00lib_erp
*erp
)
335 * When short preamble is enabled, we should set bit 0x08
337 preamble_mask
= erp
->short_preamble
<< 3;
339 rt2x00pci_register_read(rt2x00dev
, TXCSR1
, ®
);
340 rt2x00_set_field32(®
, TXCSR1_ACK_TIMEOUT
, 0x162);
341 rt2x00_set_field32(®
, TXCSR1_ACK_CONSUME_TIME
, 0xa2);
342 rt2x00_set_field32(®
, TXCSR1_TSF_OFFSET
, IEEE80211_HEADER
);
343 rt2x00_set_field32(®
, TXCSR1_AUTORESPONDER
, 1);
344 rt2x00pci_register_write(rt2x00dev
, TXCSR1
, reg
);
346 rt2x00pci_register_read(rt2x00dev
, ARCSR2
, ®
);
347 rt2x00_set_field32(®
, ARCSR2_SIGNAL
, 0x00);
348 rt2x00_set_field32(®
, ARCSR2_SERVICE
, 0x04);
349 rt2x00_set_field32(®
, ARCSR2_LENGTH
, GET_DURATION(ACK_SIZE
, 10));
350 rt2x00pci_register_write(rt2x00dev
, ARCSR2
, reg
);
352 rt2x00pci_register_read(rt2x00dev
, ARCSR3
, ®
);
353 rt2x00_set_field32(®
, ARCSR3_SIGNAL
, 0x01 | preamble_mask
);
354 rt2x00_set_field32(®
, ARCSR3_SERVICE
, 0x04);
355 rt2x00_set_field32(®
, ARCSR2_LENGTH
, GET_DURATION(ACK_SIZE
, 20));
356 rt2x00pci_register_write(rt2x00dev
, ARCSR3
, reg
);
358 rt2x00pci_register_read(rt2x00dev
, ARCSR4
, ®
);
359 rt2x00_set_field32(®
, ARCSR4_SIGNAL
, 0x02 | preamble_mask
);
360 rt2x00_set_field32(®
, ARCSR4_SERVICE
, 0x04);
361 rt2x00_set_field32(®
, ARCSR2_LENGTH
, GET_DURATION(ACK_SIZE
, 55));
362 rt2x00pci_register_write(rt2x00dev
, ARCSR4
, reg
);
364 rt2x00pci_register_read(rt2x00dev
, ARCSR5
, ®
);
365 rt2x00_set_field32(®
, ARCSR5_SIGNAL
, 0x03 | preamble_mask
);
366 rt2x00_set_field32(®
, ARCSR5_SERVICE
, 0x84);
367 rt2x00_set_field32(®
, ARCSR2_LENGTH
, GET_DURATION(ACK_SIZE
, 110));
368 rt2x00pci_register_write(rt2x00dev
, ARCSR5
, reg
);
370 rt2x00pci_register_write(rt2x00dev
, ARCSR1
, erp
->basic_rates
);
372 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
373 rt2x00_set_field32(®
, CSR11_SLOT_TIME
, erp
->slot_time
);
374 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
376 rt2x00pci_register_read(rt2x00dev
, CSR12
, ®
);
377 rt2x00_set_field32(®
, CSR12_BEACON_INTERVAL
, erp
->beacon_int
* 16);
378 rt2x00_set_field32(®
, CSR12_CFP_MAX_DURATION
, erp
->beacon_int
* 16);
379 rt2x00pci_register_write(rt2x00dev
, CSR12
, reg
);
381 rt2x00pci_register_read(rt2x00dev
, CSR18
, ®
);
382 rt2x00_set_field32(®
, CSR18_SIFS
, erp
->sifs
);
383 rt2x00_set_field32(®
, CSR18_PIFS
, erp
->pifs
);
384 rt2x00pci_register_write(rt2x00dev
, CSR18
, reg
);
386 rt2x00pci_register_read(rt2x00dev
, CSR19
, ®
);
387 rt2x00_set_field32(®
, CSR19_DIFS
, erp
->difs
);
388 rt2x00_set_field32(®
, CSR19_EIFS
, erp
->eifs
);
389 rt2x00pci_register_write(rt2x00dev
, CSR19
, reg
);
392 static void rt2500pci_config_ant(struct rt2x00_dev
*rt2x00dev
,
393 struct antenna_setup
*ant
)
400 * We should never come here because rt2x00lib is supposed
401 * to catch this and send us the correct antenna explicitely.
403 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
404 ant
->tx
== ANTENNA_SW_DIVERSITY
);
406 rt2x00pci_register_read(rt2x00dev
, BBPCSR1
, ®
);
407 rt2500pci_bbp_read(rt2x00dev
, 14, &r14
);
408 rt2500pci_bbp_read(rt2x00dev
, 2, &r2
);
411 * Configure the TX antenna.
415 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
416 rt2x00_set_field32(®
, BBPCSR1_CCK
, 0);
417 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 0);
421 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
422 rt2x00_set_field32(®
, BBPCSR1_CCK
, 2);
423 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 2);
428 * Configure the RX antenna.
432 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
436 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
441 * RT2525E and RT5222 need to flip TX I/Q
443 if (rt2x00_rf(rt2x00dev
, RF2525E
) || rt2x00_rf(rt2x00dev
, RF5222
)) {
444 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
445 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 1);
446 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 1);
449 * RT2525E does not need RX I/Q Flip.
451 if (rt2x00_rf(rt2x00dev
, RF2525E
))
452 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
454 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 0);
455 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 0);
458 rt2x00pci_register_write(rt2x00dev
, BBPCSR1
, reg
);
459 rt2500pci_bbp_write(rt2x00dev
, 14, r14
);
460 rt2500pci_bbp_write(rt2x00dev
, 2, r2
);
463 static void rt2500pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
464 struct rf_channel
*rf
, const int txpower
)
471 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
474 * Switch on tuning bits.
475 * For RT2523 devices we do not need to update the R1 register.
477 if (!rt2x00_rf(rt2x00dev
, RF2523
))
478 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 1);
479 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 1);
482 * For RT2525 we should first set the channel to half band higher.
484 if (rt2x00_rf(rt2x00dev
, RF2525
)) {
485 static const u32 vals
[] = {
486 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
487 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
488 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
489 0x00080d2e, 0x00080d3a
492 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
493 rt2500pci_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
494 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
496 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
499 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
500 rt2500pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
501 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
503 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
506 * Channel 14 requires the Japan filter bit to be set.
509 rt2x00_set_field8(&r70
, BBP_R70_JAPAN_FILTER
, rf
->channel
== 14);
510 rt2500pci_bbp_write(rt2x00dev
, 70, r70
);
515 * Switch off tuning bits.
516 * For RT2523 devices we do not need to update the R1 register.
518 if (!rt2x00_rf(rt2x00dev
, RF2523
)) {
519 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 0);
520 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
523 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 0);
524 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
527 * Clear false CRC during channel switch.
529 rt2x00pci_register_read(rt2x00dev
, CNT0
, &rf
->rf1
);
532 static void rt2500pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
537 rt2x00_rf_read(rt2x00dev
, 3, &rf3
);
538 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
539 rt2500pci_rf_write(rt2x00dev
, 3, rf3
);
542 static void rt2500pci_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
543 struct rt2x00lib_conf
*libconf
)
547 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
548 rt2x00_set_field32(®
, CSR11_LONG_RETRY
,
549 libconf
->conf
->long_frame_max_tx_count
);
550 rt2x00_set_field32(®
, CSR11_SHORT_RETRY
,
551 libconf
->conf
->short_frame_max_tx_count
);
552 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
555 static void rt2500pci_config_ps(struct rt2x00_dev
*rt2x00dev
,
556 struct rt2x00lib_conf
*libconf
)
558 enum dev_state state
=
559 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
560 STATE_SLEEP
: STATE_AWAKE
;
563 if (state
== STATE_SLEEP
) {
564 rt2x00pci_register_read(rt2x00dev
, CSR20
, ®
);
565 rt2x00_set_field32(®
, CSR20_DELAY_AFTER_TBCN
,
566 (rt2x00dev
->beacon_int
- 20) * 16);
567 rt2x00_set_field32(®
, CSR20_TBCN_BEFORE_WAKEUP
,
568 libconf
->conf
->listen_interval
- 1);
570 /* We must first disable autowake before it can be enabled */
571 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
572 rt2x00pci_register_write(rt2x00dev
, CSR20
, reg
);
574 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 1);
575 rt2x00pci_register_write(rt2x00dev
, CSR20
, reg
);
578 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
581 static void rt2500pci_config(struct rt2x00_dev
*rt2x00dev
,
582 struct rt2x00lib_conf
*libconf
,
583 const unsigned int flags
)
585 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
586 rt2500pci_config_channel(rt2x00dev
, &libconf
->rf
,
587 libconf
->conf
->power_level
);
588 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
589 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
590 rt2500pci_config_txpower(rt2x00dev
,
591 libconf
->conf
->power_level
);
592 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
593 rt2500pci_config_retry_limit(rt2x00dev
, libconf
);
594 if (flags
& IEEE80211_CONF_CHANGE_PS
)
595 rt2500pci_config_ps(rt2x00dev
, libconf
);
601 static void rt2500pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
602 struct link_qual
*qual
)
607 * Update FCS error count from register.
609 rt2x00pci_register_read(rt2x00dev
, CNT0
, ®
);
610 qual
->rx_failed
= rt2x00_get_field32(reg
, CNT0_FCS_ERROR
);
613 * Update False CCA count from register.
615 rt2x00pci_register_read(rt2x00dev
, CNT3
, ®
);
616 qual
->false_cca
= rt2x00_get_field32(reg
, CNT3_FALSE_CCA
);
619 static inline void rt2500pci_set_vgc(struct rt2x00_dev
*rt2x00dev
,
620 struct link_qual
*qual
, u8 vgc_level
)
622 if (qual
->vgc_level_reg
!= vgc_level
) {
623 rt2500pci_bbp_write(rt2x00dev
, 17, vgc_level
);
624 qual
->vgc_level_reg
= vgc_level
;
628 static void rt2500pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
629 struct link_qual
*qual
)
631 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x48);
634 static void rt2500pci_link_tuner(struct rt2x00_dev
*rt2x00dev
,
635 struct link_qual
*qual
, const u32 count
)
638 * To prevent collisions with MAC ASIC on chipsets
639 * up to version C the link tuning should halt after 20
640 * seconds while being associated.
642 if (rt2x00_rev(rt2x00dev
) < RT2560_VERSION_D
&&
643 rt2x00dev
->intf_associated
&& count
> 20)
647 * Chipset versions C and lower should directly continue
648 * to the dynamic CCA tuning. Chipset version D and higher
649 * should go straight to dynamic CCA tuning when they
650 * are not associated.
652 if (rt2x00_rev(rt2x00dev
) < RT2560_VERSION_D
||
653 !rt2x00dev
->intf_associated
)
654 goto dynamic_cca_tune
;
657 * A too low RSSI will cause too much false CCA which will
658 * then corrupt the R17 tuning. To remidy this the tuning should
659 * be stopped (While making sure the R17 value will not exceed limits)
661 if (qual
->rssi
< -80 && count
> 20) {
662 if (qual
->vgc_level_reg
>= 0x41)
663 rt2500pci_set_vgc(rt2x00dev
, qual
, qual
->vgc_level
);
668 * Special big-R17 for short distance
670 if (qual
->rssi
>= -58) {
671 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x50);
676 * Special mid-R17 for middle distance
678 if (qual
->rssi
>= -74) {
679 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x41);
684 * Leave short or middle distance condition, restore r17
685 * to the dynamic tuning range.
687 if (qual
->vgc_level_reg
>= 0x41) {
688 rt2500pci_set_vgc(rt2x00dev
, qual
, qual
->vgc_level
);
695 * R17 is inside the dynamic tuning range,
696 * start tuning the link based on the false cca counter.
698 if (qual
->false_cca
> 512 && qual
->vgc_level_reg
< 0x40) {
699 rt2500pci_set_vgc(rt2x00dev
, qual
, ++qual
->vgc_level_reg
);
700 qual
->vgc_level
= qual
->vgc_level_reg
;
701 } else if (qual
->false_cca
< 100 && qual
->vgc_level_reg
> 0x32) {
702 rt2500pci_set_vgc(rt2x00dev
, qual
, --qual
->vgc_level_reg
);
703 qual
->vgc_level
= qual
->vgc_level_reg
;
708 * Initialization functions.
710 static bool rt2500pci_get_entry_state(struct queue_entry
*entry
)
712 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
715 if (entry
->queue
->qid
== QID_RX
) {
716 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
718 return rt2x00_get_field32(word
, RXD_W0_OWNER_NIC
);
720 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
722 return (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
723 rt2x00_get_field32(word
, TXD_W0_VALID
));
727 static void rt2500pci_clear_entry(struct queue_entry
*entry
)
729 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
730 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
733 if (entry
->queue
->qid
== QID_RX
) {
734 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
735 rt2x00_set_field32(&word
, RXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
736 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
738 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
739 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
740 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
742 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
743 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
744 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
745 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
749 static int rt2500pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
751 struct queue_entry_priv_pci
*entry_priv
;
755 * Initialize registers.
757 rt2x00pci_register_read(rt2x00dev
, TXCSR2
, ®
);
758 rt2x00_set_field32(®
, TXCSR2_TXD_SIZE
, rt2x00dev
->tx
[0].desc_size
);
759 rt2x00_set_field32(®
, TXCSR2_NUM_TXD
, rt2x00dev
->tx
[1].limit
);
760 rt2x00_set_field32(®
, TXCSR2_NUM_ATIM
, rt2x00dev
->bcn
[1].limit
);
761 rt2x00_set_field32(®
, TXCSR2_NUM_PRIO
, rt2x00dev
->tx
[0].limit
);
762 rt2x00pci_register_write(rt2x00dev
, TXCSR2
, reg
);
764 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
765 rt2x00pci_register_read(rt2x00dev
, TXCSR3
, ®
);
766 rt2x00_set_field32(®
, TXCSR3_TX_RING_REGISTER
,
767 entry_priv
->desc_dma
);
768 rt2x00pci_register_write(rt2x00dev
, TXCSR3
, reg
);
770 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
771 rt2x00pci_register_read(rt2x00dev
, TXCSR5
, ®
);
772 rt2x00_set_field32(®
, TXCSR5_PRIO_RING_REGISTER
,
773 entry_priv
->desc_dma
);
774 rt2x00pci_register_write(rt2x00dev
, TXCSR5
, reg
);
776 entry_priv
= rt2x00dev
->bcn
[1].entries
[0].priv_data
;
777 rt2x00pci_register_read(rt2x00dev
, TXCSR4
, ®
);
778 rt2x00_set_field32(®
, TXCSR4_ATIM_RING_REGISTER
,
779 entry_priv
->desc_dma
);
780 rt2x00pci_register_write(rt2x00dev
, TXCSR4
, reg
);
782 entry_priv
= rt2x00dev
->bcn
[0].entries
[0].priv_data
;
783 rt2x00pci_register_read(rt2x00dev
, TXCSR6
, ®
);
784 rt2x00_set_field32(®
, TXCSR6_BEACON_RING_REGISTER
,
785 entry_priv
->desc_dma
);
786 rt2x00pci_register_write(rt2x00dev
, TXCSR6
, reg
);
788 rt2x00pci_register_read(rt2x00dev
, RXCSR1
, ®
);
789 rt2x00_set_field32(®
, RXCSR1_RXD_SIZE
, rt2x00dev
->rx
->desc_size
);
790 rt2x00_set_field32(®
, RXCSR1_NUM_RXD
, rt2x00dev
->rx
->limit
);
791 rt2x00pci_register_write(rt2x00dev
, RXCSR1
, reg
);
793 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
794 rt2x00pci_register_read(rt2x00dev
, RXCSR2
, ®
);
795 rt2x00_set_field32(®
, RXCSR2_RX_RING_REGISTER
,
796 entry_priv
->desc_dma
);
797 rt2x00pci_register_write(rt2x00dev
, RXCSR2
, reg
);
802 static int rt2500pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
806 rt2x00pci_register_write(rt2x00dev
, PSCSR0
, 0x00020002);
807 rt2x00pci_register_write(rt2x00dev
, PSCSR1
, 0x00000002);
808 rt2x00pci_register_write(rt2x00dev
, PSCSR2
, 0x00020002);
809 rt2x00pci_register_write(rt2x00dev
, PSCSR3
, 0x00000002);
811 rt2x00pci_register_read(rt2x00dev
, TIMECSR
, ®
);
812 rt2x00_set_field32(®
, TIMECSR_US_COUNT
, 33);
813 rt2x00_set_field32(®
, TIMECSR_US_64_COUNT
, 63);
814 rt2x00_set_field32(®
, TIMECSR_BEACON_EXPECT
, 0);
815 rt2x00pci_register_write(rt2x00dev
, TIMECSR
, reg
);
817 rt2x00pci_register_read(rt2x00dev
, CSR9
, ®
);
818 rt2x00_set_field32(®
, CSR9_MAX_FRAME_UNIT
,
819 rt2x00dev
->rx
->data_size
/ 128);
820 rt2x00pci_register_write(rt2x00dev
, CSR9
, reg
);
823 * Always use CWmin and CWmax set in descriptor.
825 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
826 rt2x00_set_field32(®
, CSR11_CW_SELECT
, 0);
827 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
829 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
830 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
831 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, 0);
832 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
833 rt2x00_set_field32(®
, CSR14_TCFP
, 0);
834 rt2x00_set_field32(®
, CSR14_TATIMW
, 0);
835 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
836 rt2x00_set_field32(®
, CSR14_CFP_COUNT_PRELOAD
, 0);
837 rt2x00_set_field32(®
, CSR14_TBCM_PRELOAD
, 0);
838 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
840 rt2x00pci_register_write(rt2x00dev
, CNT3
, 0);
842 rt2x00pci_register_read(rt2x00dev
, TXCSR8
, ®
);
843 rt2x00_set_field32(®
, TXCSR8_BBP_ID0
, 10);
844 rt2x00_set_field32(®
, TXCSR8_BBP_ID0_VALID
, 1);
845 rt2x00_set_field32(®
, TXCSR8_BBP_ID1
, 11);
846 rt2x00_set_field32(®
, TXCSR8_BBP_ID1_VALID
, 1);
847 rt2x00_set_field32(®
, TXCSR8_BBP_ID2
, 13);
848 rt2x00_set_field32(®
, TXCSR8_BBP_ID2_VALID
, 1);
849 rt2x00_set_field32(®
, TXCSR8_BBP_ID3
, 12);
850 rt2x00_set_field32(®
, TXCSR8_BBP_ID3_VALID
, 1);
851 rt2x00pci_register_write(rt2x00dev
, TXCSR8
, reg
);
853 rt2x00pci_register_read(rt2x00dev
, ARTCSR0
, ®
);
854 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_1MBS
, 112);
855 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_2MBS
, 56);
856 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_5_5MBS
, 20);
857 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_11MBS
, 10);
858 rt2x00pci_register_write(rt2x00dev
, ARTCSR0
, reg
);
860 rt2x00pci_register_read(rt2x00dev
, ARTCSR1
, ®
);
861 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_6MBS
, 45);
862 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_9MBS
, 37);
863 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_12MBS
, 33);
864 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_18MBS
, 29);
865 rt2x00pci_register_write(rt2x00dev
, ARTCSR1
, reg
);
867 rt2x00pci_register_read(rt2x00dev
, ARTCSR2
, ®
);
868 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_24MBS
, 29);
869 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_36MBS
, 25);
870 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_48MBS
, 25);
871 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_54MBS
, 25);
872 rt2x00pci_register_write(rt2x00dev
, ARTCSR2
, reg
);
874 rt2x00pci_register_read(rt2x00dev
, RXCSR3
, ®
);
875 rt2x00_set_field32(®
, RXCSR3_BBP_ID0
, 47); /* CCK Signal */
876 rt2x00_set_field32(®
, RXCSR3_BBP_ID0_VALID
, 1);
877 rt2x00_set_field32(®
, RXCSR3_BBP_ID1
, 51); /* Rssi */
878 rt2x00_set_field32(®
, RXCSR3_BBP_ID1_VALID
, 1);
879 rt2x00_set_field32(®
, RXCSR3_BBP_ID2
, 42); /* OFDM Rate */
880 rt2x00_set_field32(®
, RXCSR3_BBP_ID2_VALID
, 1);
881 rt2x00_set_field32(®
, RXCSR3_BBP_ID3
, 51); /* RSSI */
882 rt2x00_set_field32(®
, RXCSR3_BBP_ID3_VALID
, 1);
883 rt2x00pci_register_write(rt2x00dev
, RXCSR3
, reg
);
885 rt2x00pci_register_read(rt2x00dev
, PCICSR
, ®
);
886 rt2x00_set_field32(®
, PCICSR_BIG_ENDIAN
, 0);
887 rt2x00_set_field32(®
, PCICSR_RX_TRESHOLD
, 0);
888 rt2x00_set_field32(®
, PCICSR_TX_TRESHOLD
, 3);
889 rt2x00_set_field32(®
, PCICSR_BURST_LENTH
, 1);
890 rt2x00_set_field32(®
, PCICSR_ENABLE_CLK
, 1);
891 rt2x00_set_field32(®
, PCICSR_READ_MULTIPLE
, 1);
892 rt2x00_set_field32(®
, PCICSR_WRITE_INVALID
, 1);
893 rt2x00pci_register_write(rt2x00dev
, PCICSR
, reg
);
895 rt2x00pci_register_write(rt2x00dev
, PWRCSR0
, 0x3f3b3100);
897 rt2x00pci_register_write(rt2x00dev
, GPIOCSR
, 0x0000ff00);
898 rt2x00pci_register_write(rt2x00dev
, TESTCSR
, 0x000000f0);
900 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
903 rt2x00pci_register_write(rt2x00dev
, MACCSR0
, 0x00213223);
904 rt2x00pci_register_write(rt2x00dev
, MACCSR1
, 0x00235518);
906 rt2x00pci_register_read(rt2x00dev
, MACCSR2
, ®
);
907 rt2x00_set_field32(®
, MACCSR2_DELAY
, 64);
908 rt2x00pci_register_write(rt2x00dev
, MACCSR2
, reg
);
910 rt2x00pci_register_read(rt2x00dev
, RALINKCSR
, ®
);
911 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA0
, 17);
912 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID0
, 26);
913 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID0
, 1);
914 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA1
, 0);
915 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID1
, 26);
916 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID1
, 1);
917 rt2x00pci_register_write(rt2x00dev
, RALINKCSR
, reg
);
919 rt2x00pci_register_write(rt2x00dev
, BBPCSR1
, 0x82188200);
921 rt2x00pci_register_write(rt2x00dev
, TXACKCSR0
, 0x00000020);
923 rt2x00pci_register_read(rt2x00dev
, CSR1
, ®
);
924 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 1);
925 rt2x00_set_field32(®
, CSR1_BBP_RESET
, 0);
926 rt2x00_set_field32(®
, CSR1_HOST_READY
, 0);
927 rt2x00pci_register_write(rt2x00dev
, CSR1
, reg
);
929 rt2x00pci_register_read(rt2x00dev
, CSR1
, ®
);
930 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 0);
931 rt2x00_set_field32(®
, CSR1_HOST_READY
, 1);
932 rt2x00pci_register_write(rt2x00dev
, CSR1
, reg
);
935 * We must clear the FCS and FIFO error count.
936 * These registers are cleared on read,
937 * so we may pass a useless variable to store the value.
939 rt2x00pci_register_read(rt2x00dev
, CNT0
, ®
);
940 rt2x00pci_register_read(rt2x00dev
, CNT4
, ®
);
945 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
950 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
951 rt2500pci_bbp_read(rt2x00dev
, 0, &value
);
952 if ((value
!= 0xff) && (value
!= 0x00))
954 udelay(REGISTER_BUSY_DELAY
);
957 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
961 static int rt2500pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
968 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev
)))
971 rt2500pci_bbp_write(rt2x00dev
, 3, 0x02);
972 rt2500pci_bbp_write(rt2x00dev
, 4, 0x19);
973 rt2500pci_bbp_write(rt2x00dev
, 14, 0x1c);
974 rt2500pci_bbp_write(rt2x00dev
, 15, 0x30);
975 rt2500pci_bbp_write(rt2x00dev
, 16, 0xac);
976 rt2500pci_bbp_write(rt2x00dev
, 18, 0x18);
977 rt2500pci_bbp_write(rt2x00dev
, 19, 0xff);
978 rt2500pci_bbp_write(rt2x00dev
, 20, 0x1e);
979 rt2500pci_bbp_write(rt2x00dev
, 21, 0x08);
980 rt2500pci_bbp_write(rt2x00dev
, 22, 0x08);
981 rt2500pci_bbp_write(rt2x00dev
, 23, 0x08);
982 rt2500pci_bbp_write(rt2x00dev
, 24, 0x70);
983 rt2500pci_bbp_write(rt2x00dev
, 25, 0x40);
984 rt2500pci_bbp_write(rt2x00dev
, 26, 0x08);
985 rt2500pci_bbp_write(rt2x00dev
, 27, 0x23);
986 rt2500pci_bbp_write(rt2x00dev
, 30, 0x10);
987 rt2500pci_bbp_write(rt2x00dev
, 31, 0x2b);
988 rt2500pci_bbp_write(rt2x00dev
, 32, 0xb9);
989 rt2500pci_bbp_write(rt2x00dev
, 34, 0x12);
990 rt2500pci_bbp_write(rt2x00dev
, 35, 0x50);
991 rt2500pci_bbp_write(rt2x00dev
, 39, 0xc4);
992 rt2500pci_bbp_write(rt2x00dev
, 40, 0x02);
993 rt2500pci_bbp_write(rt2x00dev
, 41, 0x60);
994 rt2500pci_bbp_write(rt2x00dev
, 53, 0x10);
995 rt2500pci_bbp_write(rt2x00dev
, 54, 0x18);
996 rt2500pci_bbp_write(rt2x00dev
, 56, 0x08);
997 rt2500pci_bbp_write(rt2x00dev
, 57, 0x10);
998 rt2500pci_bbp_write(rt2x00dev
, 58, 0x08);
999 rt2500pci_bbp_write(rt2x00dev
, 61, 0x6d);
1000 rt2500pci_bbp_write(rt2x00dev
, 62, 0x10);
1002 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1003 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1005 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1006 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1007 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1008 rt2500pci_bbp_write(rt2x00dev
, reg_id
, value
);
1016 * Device state switch handlers.
1018 static void rt2500pci_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
1019 enum dev_state state
)
1023 rt2x00pci_register_read(rt2x00dev
, RXCSR0
, ®
);
1024 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
,
1025 (state
== STATE_RADIO_RX_OFF
) ||
1026 (state
== STATE_RADIO_RX_OFF_LINK
));
1027 rt2x00pci_register_write(rt2x00dev
, RXCSR0
, reg
);
1030 static void rt2500pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1031 enum dev_state state
)
1033 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1037 * When interrupts are being enabled, the interrupt registers
1038 * should clear the register to assure a clean state.
1040 if (state
== STATE_RADIO_IRQ_ON
) {
1041 rt2x00pci_register_read(rt2x00dev
, CSR7
, ®
);
1042 rt2x00pci_register_write(rt2x00dev
, CSR7
, reg
);
1046 * Only toggle the interrupts bits we are going to use.
1047 * Non-checked interrupt bits are disabled by default.
1049 rt2x00pci_register_read(rt2x00dev
, CSR8
, ®
);
1050 rt2x00_set_field32(®
, CSR8_TBCN_EXPIRE
, mask
);
1051 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, mask
);
1052 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, mask
);
1053 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, mask
);
1054 rt2x00_set_field32(®
, CSR8_RXDONE
, mask
);
1055 rt2x00pci_register_write(rt2x00dev
, CSR8
, reg
);
1058 static int rt2500pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1061 * Initialize all registers.
1063 if (unlikely(rt2500pci_init_queues(rt2x00dev
) ||
1064 rt2500pci_init_registers(rt2x00dev
) ||
1065 rt2500pci_init_bbp(rt2x00dev
)))
1071 static void rt2500pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1076 rt2x00pci_register_write(rt2x00dev
, PWRCSR0
, 0);
1079 static int rt2500pci_set_state(struct rt2x00_dev
*rt2x00dev
,
1080 enum dev_state state
)
1088 put_to_sleep
= (state
!= STATE_AWAKE
);
1090 rt2x00pci_register_read(rt2x00dev
, PWRCSR1
, ®
);
1091 rt2x00_set_field32(®
, PWRCSR1_SET_STATE
, 1);
1092 rt2x00_set_field32(®
, PWRCSR1_BBP_DESIRE_STATE
, state
);
1093 rt2x00_set_field32(®
, PWRCSR1_RF_DESIRE_STATE
, state
);
1094 rt2x00_set_field32(®
, PWRCSR1_PUT_TO_SLEEP
, put_to_sleep
);
1095 rt2x00pci_register_write(rt2x00dev
, PWRCSR1
, reg
);
1098 * Device is not guaranteed to be in the requested state yet.
1099 * We must wait until the register indicates that the
1100 * device has entered the correct state.
1102 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1103 rt2x00pci_register_read(rt2x00dev
, PWRCSR1
, ®
);
1104 bbp_state
= rt2x00_get_field32(reg
, PWRCSR1_BBP_CURR_STATE
);
1105 rf_state
= rt2x00_get_field32(reg
, PWRCSR1_RF_CURR_STATE
);
1106 if (bbp_state
== state
&& rf_state
== state
)
1114 static int rt2500pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1115 enum dev_state state
)
1120 case STATE_RADIO_ON
:
1121 retval
= rt2500pci_enable_radio(rt2x00dev
);
1123 case STATE_RADIO_OFF
:
1124 rt2500pci_disable_radio(rt2x00dev
);
1126 case STATE_RADIO_RX_ON
:
1127 case STATE_RADIO_RX_ON_LINK
:
1128 case STATE_RADIO_RX_OFF
:
1129 case STATE_RADIO_RX_OFF_LINK
:
1130 rt2500pci_toggle_rx(rt2x00dev
, state
);
1132 case STATE_RADIO_IRQ_ON
:
1133 case STATE_RADIO_IRQ_OFF
:
1134 rt2500pci_toggle_irq(rt2x00dev
, state
);
1136 case STATE_DEEP_SLEEP
:
1140 retval
= rt2500pci_set_state(rt2x00dev
, state
);
1147 if (unlikely(retval
))
1148 ERROR(rt2x00dev
, "Device failed to enter state %d (%d).\n",
1155 * TX descriptor initialization
1157 static void rt2500pci_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1158 struct sk_buff
*skb
,
1159 struct txentry_desc
*txdesc
)
1161 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(skb
);
1162 struct queue_entry_priv_pci
*entry_priv
= skbdesc
->entry
->priv_data
;
1163 __le32
*txd
= skbdesc
->desc
;
1167 * Start writing the descriptor words.
1169 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
1170 rt2x00_set_field32(&word
, TXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
1171 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
1173 rt2x00_desc_read(txd
, 2, &word
);
1174 rt2x00_set_field32(&word
, TXD_W2_IV_OFFSET
, IEEE80211_HEADER
);
1175 rt2x00_set_field32(&word
, TXD_W2_AIFS
, txdesc
->aifs
);
1176 rt2x00_set_field32(&word
, TXD_W2_CWMIN
, txdesc
->cw_min
);
1177 rt2x00_set_field32(&word
, TXD_W2_CWMAX
, txdesc
->cw_max
);
1178 rt2x00_desc_write(txd
, 2, word
);
1180 rt2x00_desc_read(txd
, 3, &word
);
1181 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL
, txdesc
->signal
);
1182 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE
, txdesc
->service
);
1183 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW
, txdesc
->length_low
);
1184 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH
, txdesc
->length_high
);
1185 rt2x00_desc_write(txd
, 3, word
);
1187 rt2x00_desc_read(txd
, 10, &word
);
1188 rt2x00_set_field32(&word
, TXD_W10_RTS
,
1189 test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
));
1190 rt2x00_desc_write(txd
, 10, word
);
1192 rt2x00_desc_read(txd
, 0, &word
);
1193 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1194 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1195 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1196 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1197 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1198 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1199 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1200 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1201 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1202 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1203 rt2x00_set_field32(&word
, TXD_W0_CIPHER_OWNER
, 1);
1204 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->ifs
);
1205 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1206 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1207 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, skb
->len
);
1208 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, CIPHER_NONE
);
1209 rt2x00_desc_write(txd
, 0, word
);
1213 * TX data initialization
1215 static void rt2500pci_write_beacon(struct queue_entry
*entry
)
1217 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1218 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1219 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1224 * Disable beaconing while we are reloading the beacon data,
1225 * otherwise we might be sending out invalid data.
1227 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
1228 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
1229 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
1232 * Replace rt2x00lib allocated descriptor with the
1233 * pointer to the _real_ hardware descriptor.
1234 * After that, map the beacon to DMA and update the
1237 memcpy(entry_priv
->desc
, skbdesc
->desc
, skbdesc
->desc_len
);
1238 skbdesc
->desc
= entry_priv
->desc
;
1240 rt2x00queue_map_txskb(rt2x00dev
, entry
->skb
);
1242 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
1243 rt2x00_set_field32(&word
, TXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
1244 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
1247 static void rt2500pci_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1248 const enum data_queue_qid queue
)
1252 if (queue
== QID_BEACON
) {
1253 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
1254 if (!rt2x00_get_field32(reg
, CSR14_BEACON_GEN
)) {
1255 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
1256 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
1257 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
1258 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
1263 rt2x00pci_register_read(rt2x00dev
, TXCSR0
, ®
);
1264 rt2x00_set_field32(®
, TXCSR0_KICK_PRIO
, (queue
== QID_AC_BE
));
1265 rt2x00_set_field32(®
, TXCSR0_KICK_TX
, (queue
== QID_AC_BK
));
1266 rt2x00_set_field32(®
, TXCSR0_KICK_ATIM
, (queue
== QID_ATIM
));
1267 rt2x00pci_register_write(rt2x00dev
, TXCSR0
, reg
);
1270 static void rt2500pci_kill_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1271 const enum data_queue_qid qid
)
1275 if (qid
== QID_BEACON
) {
1276 rt2x00pci_register_write(rt2x00dev
, CSR14
, 0);
1278 rt2x00pci_register_read(rt2x00dev
, TXCSR0
, ®
);
1279 rt2x00_set_field32(®
, TXCSR0_ABORT
, 1);
1280 rt2x00pci_register_write(rt2x00dev
, TXCSR0
, reg
);
1285 * RX control handlers
1287 static void rt2500pci_fill_rxdone(struct queue_entry
*entry
,
1288 struct rxdone_entry_desc
*rxdesc
)
1290 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1294 rt2x00_desc_read(entry_priv
->desc
, 0, &word0
);
1295 rt2x00_desc_read(entry_priv
->desc
, 2, &word2
);
1297 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1298 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1299 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1300 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1303 * Obtain the status about this packet.
1304 * When frame was received with an OFDM bitrate,
1305 * the signal is the PLCP value. If it was received with
1306 * a CCK bitrate the signal is the rate in 100kbit/s.
1308 rxdesc
->signal
= rt2x00_get_field32(word2
, RXD_W2_SIGNAL
);
1309 rxdesc
->rssi
= rt2x00_get_field32(word2
, RXD_W2_RSSI
) -
1310 entry
->queue
->rt2x00dev
->rssi_offset
;
1311 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1313 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1314 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1316 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1317 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1318 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1322 * Interrupt functions.
1324 static void rt2500pci_txdone(struct rt2x00_dev
*rt2x00dev
,
1325 const enum data_queue_qid queue_idx
)
1327 struct data_queue
*queue
= rt2x00queue_get_queue(rt2x00dev
, queue_idx
);
1328 struct queue_entry_priv_pci
*entry_priv
;
1329 struct queue_entry
*entry
;
1330 struct txdone_entry_desc txdesc
;
1333 while (!rt2x00queue_empty(queue
)) {
1334 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
1335 entry_priv
= entry
->priv_data
;
1336 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1338 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1339 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1343 * Obtain the status about this packet.
1346 switch (rt2x00_get_field32(word
, TXD_W0_RESULT
)) {
1347 case 0: /* Success */
1348 case 1: /* Success with retry */
1349 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
1351 case 2: /* Failure, excessive retries */
1352 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
1353 /* Don't break, this is a failed frame! */
1354 default: /* Failure */
1355 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
1357 txdesc
.retry
= rt2x00_get_field32(word
, TXD_W0_RETRY_COUNT
);
1359 rt2x00lib_txdone(entry
, &txdesc
);
1363 static irqreturn_t
rt2500pci_interrupt(int irq
, void *dev_instance
)
1365 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1369 * Get the interrupt sources & saved to local variable.
1370 * Write register value back to clear pending interrupts.
1372 rt2x00pci_register_read(rt2x00dev
, CSR7
, ®
);
1373 rt2x00pci_register_write(rt2x00dev
, CSR7
, reg
);
1378 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1382 * Handle interrupts, walk through all bits
1383 * and run the tasks, the bits are checked in order of
1388 * 1 - Beacon timer expired interrupt.
1390 if (rt2x00_get_field32(reg
, CSR7_TBCN_EXPIRE
))
1391 rt2x00lib_beacondone(rt2x00dev
);
1394 * 2 - Rx ring done interrupt.
1396 if (rt2x00_get_field32(reg
, CSR7_RXDONE
))
1397 rt2x00pci_rxdone(rt2x00dev
);
1400 * 3 - Atim ring transmit done interrupt.
1402 if (rt2x00_get_field32(reg
, CSR7_TXDONE_ATIMRING
))
1403 rt2500pci_txdone(rt2x00dev
, QID_ATIM
);
1406 * 4 - Priority ring transmit done interrupt.
1408 if (rt2x00_get_field32(reg
, CSR7_TXDONE_PRIORING
))
1409 rt2500pci_txdone(rt2x00dev
, QID_AC_BE
);
1412 * 5 - Tx ring transmit done interrupt.
1414 if (rt2x00_get_field32(reg
, CSR7_TXDONE_TXRING
))
1415 rt2500pci_txdone(rt2x00dev
, QID_AC_BK
);
1421 * Device probe functions.
1423 static int rt2500pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1425 struct eeprom_93cx6 eeprom
;
1430 rt2x00pci_register_read(rt2x00dev
, CSR21
, ®
);
1432 eeprom
.data
= rt2x00dev
;
1433 eeprom
.register_read
= rt2500pci_eepromregister_read
;
1434 eeprom
.register_write
= rt2500pci_eepromregister_write
;
1435 eeprom
.width
= rt2x00_get_field32(reg
, CSR21_TYPE_93C46
) ?
1436 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1437 eeprom
.reg_data_in
= 0;
1438 eeprom
.reg_data_out
= 0;
1439 eeprom
.reg_data_clock
= 0;
1440 eeprom
.reg_chip_select
= 0;
1442 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1443 EEPROM_SIZE
/ sizeof(u16
));
1446 * Start validation of the data that has been read.
1448 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1449 if (!is_valid_ether_addr(mac
)) {
1450 random_ether_addr(mac
);
1451 EEPROM(rt2x00dev
, "MAC: %pM\n", mac
);
1454 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1455 if (word
== 0xffff) {
1456 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1457 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1458 ANTENNA_SW_DIVERSITY
);
1459 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1460 ANTENNA_SW_DIVERSITY
);
1461 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1463 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1464 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1465 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1466 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1467 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1470 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1471 if (word
== 0xffff) {
1472 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1473 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1474 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1475 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1476 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1479 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &word
);
1480 if (word
== 0xffff) {
1481 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1482 DEFAULT_RSSI_OFFSET
);
1483 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1484 EEPROM(rt2x00dev
, "Calibrate offset: 0x%04x\n", word
);
1490 static int rt2500pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1497 * Read EEPROM word for configuration.
1499 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1502 * Identify RF chipset.
1504 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1505 rt2x00pci_register_read(rt2x00dev
, CSR0
, ®
);
1506 rt2x00_set_chip(rt2x00dev
, RT2560
, value
,
1507 rt2x00_get_field32(reg
, CSR0_REVISION
));
1509 if (!rt2x00_rf(rt2x00dev
, RF2522
) &&
1510 !rt2x00_rf(rt2x00dev
, RF2523
) &&
1511 !rt2x00_rf(rt2x00dev
, RF2524
) &&
1512 !rt2x00_rf(rt2x00dev
, RF2525
) &&
1513 !rt2x00_rf(rt2x00dev
, RF2525E
) &&
1514 !rt2x00_rf(rt2x00dev
, RF5222
)) {
1515 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1520 * Identify default antenna configuration.
1522 rt2x00dev
->default_ant
.tx
=
1523 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1524 rt2x00dev
->default_ant
.rx
=
1525 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1528 * Store led mode, for correct led behaviour.
1530 #ifdef CONFIG_RT2X00_LIB_LEDS
1531 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1533 rt2500pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1534 if (value
== LED_MODE_TXRX_ACTIVITY
||
1535 value
== LED_MODE_DEFAULT
||
1536 value
== LED_MODE_ASUS
)
1537 rt2500pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1539 #endif /* CONFIG_RT2X00_LIB_LEDS */
1542 * Detect if this device has an hardware controlled radio.
1544 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1545 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
1548 * Check if the BBP tuning should be enabled.
1550 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1552 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_DYN_BBP_TUNE
))
1553 __set_bit(CONFIG_DISABLE_LINK_TUNING
, &rt2x00dev
->flags
);
1556 * Read the RSSI <-> dBm offset information.
1558 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &eeprom
);
1559 rt2x00dev
->rssi_offset
=
1560 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1566 * RF value list for RF2522
1569 static const struct rf_channel rf_vals_bg_2522
[] = {
1570 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1571 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1572 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1573 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1574 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1575 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1576 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1577 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1578 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1579 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1580 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1581 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1582 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1583 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1587 * RF value list for RF2523
1590 static const struct rf_channel rf_vals_bg_2523
[] = {
1591 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1592 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1593 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1594 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1595 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1596 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1597 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1598 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1599 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1600 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1601 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1602 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1603 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1604 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1608 * RF value list for RF2524
1611 static const struct rf_channel rf_vals_bg_2524
[] = {
1612 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1613 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1614 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1615 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1616 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1617 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1618 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1619 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1620 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1621 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1622 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1623 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1624 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1625 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1629 * RF value list for RF2525
1632 static const struct rf_channel rf_vals_bg_2525
[] = {
1633 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1634 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1635 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1636 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1637 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1638 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1639 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1640 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1641 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1642 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1643 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1644 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1645 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1646 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1650 * RF value list for RF2525e
1653 static const struct rf_channel rf_vals_bg_2525e
[] = {
1654 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1655 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1656 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1657 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1658 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1659 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1660 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1661 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1662 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1663 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1664 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1665 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1666 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1667 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1671 * RF value list for RF5222
1672 * Supports: 2.4 GHz & 5.2 GHz
1674 static const struct rf_channel rf_vals_5222
[] = {
1675 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1676 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1677 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1678 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1679 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1680 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1681 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1682 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1683 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1684 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1685 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1686 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1687 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1688 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1690 /* 802.11 UNI / HyperLan 2 */
1691 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1692 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1693 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1694 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1695 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1696 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1697 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1698 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1700 /* 802.11 HyperLan 2 */
1701 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1702 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1703 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1704 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1705 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1706 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1707 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1708 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1709 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1710 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1713 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1714 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1715 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1716 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1717 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1720 static int rt2500pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1722 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1723 struct channel_info
*info
;
1728 * Initialize all hw fields.
1730 rt2x00dev
->hw
->flags
= IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
1731 IEEE80211_HW_SIGNAL_DBM
|
1732 IEEE80211_HW_SUPPORTS_PS
|
1733 IEEE80211_HW_PS_NULLFUNC_STACK
;
1735 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1736 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1737 rt2x00_eeprom_addr(rt2x00dev
,
1738 EEPROM_MAC_ADDR_0
));
1741 * Initialize hw_mode information.
1743 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1744 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
1746 if (rt2x00_rf(rt2x00dev
, RF2522
)) {
1747 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1748 spec
->channels
= rf_vals_bg_2522
;
1749 } else if (rt2x00_rf(rt2x00dev
, RF2523
)) {
1750 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1751 spec
->channels
= rf_vals_bg_2523
;
1752 } else if (rt2x00_rf(rt2x00dev
, RF2524
)) {
1753 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1754 spec
->channels
= rf_vals_bg_2524
;
1755 } else if (rt2x00_rf(rt2x00dev
, RF2525
)) {
1756 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1757 spec
->channels
= rf_vals_bg_2525
;
1758 } else if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
1759 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1760 spec
->channels
= rf_vals_bg_2525e
;
1761 } else if (rt2x00_rf(rt2x00dev
, RF5222
)) {
1762 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
1763 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1764 spec
->channels
= rf_vals_5222
;
1768 * Create channel information array
1770 info
= kzalloc(spec
->num_channels
* sizeof(*info
), GFP_KERNEL
);
1774 spec
->channels_info
= info
;
1776 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1777 for (i
= 0; i
< 14; i
++)
1778 info
[i
].tx_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
1780 if (spec
->num_channels
> 14) {
1781 for (i
= 14; i
< spec
->num_channels
; i
++)
1782 info
[i
].tx_power1
= DEFAULT_TXPOWER
;
1788 static int rt2500pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1793 * Allocate eeprom data.
1795 retval
= rt2500pci_validate_eeprom(rt2x00dev
);
1799 retval
= rt2500pci_init_eeprom(rt2x00dev
);
1804 * Initialize hw specifications.
1806 retval
= rt2500pci_probe_hw_mode(rt2x00dev
);
1811 * This device requires the atim queue and DMA-mapped skbs.
1813 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE
, &rt2x00dev
->flags
);
1814 __set_bit(DRIVER_REQUIRE_DMA
, &rt2x00dev
->flags
);
1817 * Set the rssi offset.
1819 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1825 * IEEE80211 stack callback functions.
1827 static u64
rt2500pci_get_tsf(struct ieee80211_hw
*hw
)
1829 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1833 rt2x00pci_register_read(rt2x00dev
, CSR17
, ®
);
1834 tsf
= (u64
) rt2x00_get_field32(reg
, CSR17_HIGH_TSFTIMER
) << 32;
1835 rt2x00pci_register_read(rt2x00dev
, CSR16
, ®
);
1836 tsf
|= rt2x00_get_field32(reg
, CSR16_LOW_TSFTIMER
);
1841 static int rt2500pci_tx_last_beacon(struct ieee80211_hw
*hw
)
1843 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1846 rt2x00pci_register_read(rt2x00dev
, CSR15
, ®
);
1847 return rt2x00_get_field32(reg
, CSR15_BEACON_SENT
);
1850 static const struct ieee80211_ops rt2500pci_mac80211_ops
= {
1852 .start
= rt2x00mac_start
,
1853 .stop
= rt2x00mac_stop
,
1854 .add_interface
= rt2x00mac_add_interface
,
1855 .remove_interface
= rt2x00mac_remove_interface
,
1856 .config
= rt2x00mac_config
,
1857 .configure_filter
= rt2x00mac_configure_filter
,
1858 .set_tim
= rt2x00mac_set_tim
,
1859 .get_stats
= rt2x00mac_get_stats
,
1860 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1861 .conf_tx
= rt2x00mac_conf_tx
,
1862 .get_tsf
= rt2500pci_get_tsf
,
1863 .tx_last_beacon
= rt2500pci_tx_last_beacon
,
1864 .rfkill_poll
= rt2x00mac_rfkill_poll
,
1867 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops
= {
1868 .irq_handler
= rt2500pci_interrupt
,
1869 .probe_hw
= rt2500pci_probe_hw
,
1870 .initialize
= rt2x00pci_initialize
,
1871 .uninitialize
= rt2x00pci_uninitialize
,
1872 .get_entry_state
= rt2500pci_get_entry_state
,
1873 .clear_entry
= rt2500pci_clear_entry
,
1874 .set_device_state
= rt2500pci_set_device_state
,
1875 .rfkill_poll
= rt2500pci_rfkill_poll
,
1876 .link_stats
= rt2500pci_link_stats
,
1877 .reset_tuner
= rt2500pci_reset_tuner
,
1878 .link_tuner
= rt2500pci_link_tuner
,
1879 .write_tx_desc
= rt2500pci_write_tx_desc
,
1880 .write_tx_data
= rt2x00pci_write_tx_data
,
1881 .write_beacon
= rt2500pci_write_beacon
,
1882 .kick_tx_queue
= rt2500pci_kick_tx_queue
,
1883 .kill_tx_queue
= rt2500pci_kill_tx_queue
,
1884 .fill_rxdone
= rt2500pci_fill_rxdone
,
1885 .config_filter
= rt2500pci_config_filter
,
1886 .config_intf
= rt2500pci_config_intf
,
1887 .config_erp
= rt2500pci_config_erp
,
1888 .config_ant
= rt2500pci_config_ant
,
1889 .config
= rt2500pci_config
,
1892 static const struct data_queue_desc rt2500pci_queue_rx
= {
1893 .entry_num
= RX_ENTRIES
,
1894 .data_size
= DATA_FRAME_SIZE
,
1895 .desc_size
= RXD_DESC_SIZE
,
1896 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1899 static const struct data_queue_desc rt2500pci_queue_tx
= {
1900 .entry_num
= TX_ENTRIES
,
1901 .data_size
= DATA_FRAME_SIZE
,
1902 .desc_size
= TXD_DESC_SIZE
,
1903 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1906 static const struct data_queue_desc rt2500pci_queue_bcn
= {
1907 .entry_num
= BEACON_ENTRIES
,
1908 .data_size
= MGMT_FRAME_SIZE
,
1909 .desc_size
= TXD_DESC_SIZE
,
1910 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1913 static const struct data_queue_desc rt2500pci_queue_atim
= {
1914 .entry_num
= ATIM_ENTRIES
,
1915 .data_size
= DATA_FRAME_SIZE
,
1916 .desc_size
= TXD_DESC_SIZE
,
1917 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1920 static const struct rt2x00_ops rt2500pci_ops
= {
1921 .name
= KBUILD_MODNAME
,
1924 .eeprom_size
= EEPROM_SIZE
,
1926 .tx_queues
= NUM_TX_QUEUES
,
1927 .extra_tx_headroom
= 0,
1928 .rx
= &rt2500pci_queue_rx
,
1929 .tx
= &rt2500pci_queue_tx
,
1930 .bcn
= &rt2500pci_queue_bcn
,
1931 .atim
= &rt2500pci_queue_atim
,
1932 .lib
= &rt2500pci_rt2x00_ops
,
1933 .hw
= &rt2500pci_mac80211_ops
,
1934 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1935 .debugfs
= &rt2500pci_rt2x00debug
,
1936 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1940 * RT2500pci module information.
1942 static struct pci_device_id rt2500pci_device_table
[] = {
1943 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops
) },
1947 MODULE_AUTHOR(DRV_PROJECT
);
1948 MODULE_VERSION(DRV_VERSION
);
1949 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1950 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1951 MODULE_DEVICE_TABLE(pci
, rt2500pci_device_table
);
1952 MODULE_LICENSE("GPL");
1954 static struct pci_driver rt2500pci_driver
= {
1955 .name
= KBUILD_MODNAME
,
1956 .id_table
= rt2500pci_device_table
,
1957 .probe
= rt2x00pci_probe
,
1958 .remove
= __devexit_p(rt2x00pci_remove
),
1959 .suspend
= rt2x00pci_suspend
,
1960 .resume
= rt2x00pci_resume
,
1963 static int __init
rt2500pci_init(void)
1965 return pci_register_driver(&rt2500pci_driver
);
1968 static void __exit
rt2500pci_exit(void)
1970 pci_unregister_driver(&rt2500pci_driver
);
1973 module_init(rt2500pci_init
);
1974 module_exit(rt2500pci_exit
);