Merge branch 'for-rmk' of git://git.marvell.com/orion into devel-stable
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33 * Radio control handlers.
34 */
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
36 {
37 int status;
38
39 /*
40 * Don't enable the radio twice.
41 * And check if the hardware button has been disabled.
42 */
43 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
44 return 0;
45
46 /*
47 * Initialize all data queues.
48 */
49 rt2x00queue_init_queues(rt2x00dev);
50
51 /*
52 * Enable radio.
53 */
54 status =
55 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
56 if (status)
57 return status;
58
59 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
60
61 rt2x00leds_led_radio(rt2x00dev, true);
62 rt2x00led_led_activity(rt2x00dev, true);
63
64 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
65
66 /*
67 * Enable RX.
68 */
69 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
70
71 /*
72 * Start the TX queues.
73 */
74 ieee80211_wake_queues(rt2x00dev->hw);
75
76 return 0;
77 }
78
79 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
80 {
81 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
82 return;
83
84 /*
85 * Stop the TX queues in mac80211.
86 */
87 ieee80211_stop_queues(rt2x00dev->hw);
88 rt2x00queue_stop_queues(rt2x00dev);
89
90 /*
91 * Disable RX.
92 */
93 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
94
95 /*
96 * Disable radio.
97 */
98 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
99 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
100 rt2x00led_led_activity(rt2x00dev, false);
101 rt2x00leds_led_radio(rt2x00dev, false);
102 }
103
104 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
105 {
106 /*
107 * When we are disabling the RX, we should also stop the link tuner.
108 */
109 if (state == STATE_RADIO_RX_OFF)
110 rt2x00link_stop_tuner(rt2x00dev);
111
112 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
113
114 /*
115 * When we are enabling the RX, we should also start the link tuner.
116 */
117 if (state == STATE_RADIO_RX_ON)
118 rt2x00link_start_tuner(rt2x00dev);
119 }
120
121 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
122 struct ieee80211_vif *vif)
123 {
124 struct rt2x00_dev *rt2x00dev = data;
125 struct rt2x00_intf *intf = vif_to_intf(vif);
126 int delayed_flags;
127
128 /*
129 * Copy all data we need during this action under the protection
130 * of a spinlock. Otherwise race conditions might occur which results
131 * into an invalid configuration.
132 */
133 spin_lock(&intf->lock);
134
135 delayed_flags = intf->delayed_flags;
136 intf->delayed_flags = 0;
137
138 spin_unlock(&intf->lock);
139
140 /*
141 * It is possible the radio was disabled while the work had been
142 * scheduled. If that happens we should return here immediately,
143 * note that in the spinlock protected area above the delayed_flags
144 * have been cleared correctly.
145 */
146 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
147 return;
148
149 if (delayed_flags & DELAYED_UPDATE_BEACON)
150 rt2x00queue_update_beacon(rt2x00dev, vif, true);
151 }
152
153 static void rt2x00lib_intf_scheduled(struct work_struct *work)
154 {
155 struct rt2x00_dev *rt2x00dev =
156 container_of(work, struct rt2x00_dev, intf_work);
157
158 /*
159 * Iterate over each interface and perform the
160 * requested configurations.
161 */
162 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
163 rt2x00lib_intf_scheduled_iter,
164 rt2x00dev);
165 }
166
167 /*
168 * Interrupt context handlers.
169 */
170 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
171 struct ieee80211_vif *vif)
172 {
173 struct rt2x00_intf *intf = vif_to_intf(vif);
174
175 if (vif->type != NL80211_IFTYPE_AP &&
176 vif->type != NL80211_IFTYPE_ADHOC &&
177 vif->type != NL80211_IFTYPE_MESH_POINT &&
178 vif->type != NL80211_IFTYPE_WDS)
179 return;
180
181 spin_lock(&intf->lock);
182 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
183 spin_unlock(&intf->lock);
184 }
185
186 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
187 {
188 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
189 return;
190
191 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
192 rt2x00lib_beacondone_iter,
193 rt2x00dev);
194
195 ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
196 }
197 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
198
199 void rt2x00lib_txdone(struct queue_entry *entry,
200 struct txdone_entry_desc *txdesc)
201 {
202 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
203 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
204 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
205 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
206 unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
207 u8 rate_idx, rate_flags, retry_rates;
208 u8 skbdesc_flags = skbdesc->flags;
209 unsigned int i;
210 bool success;
211
212 /*
213 * Unmap the skb.
214 */
215 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
216
217 /*
218 * Remove L2 padding which was added during
219 */
220 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
221 rt2x00queue_remove_l2pad(entry->skb, header_length);
222
223 /*
224 * If the IV/EIV data was stripped from the frame before it was
225 * passed to the hardware, we should now reinsert it again because
226 * mac80211 will expect the the same data to be present it the
227 * frame as it was passed to us.
228 */
229 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
230 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
231
232 /*
233 * Send frame to debugfs immediately, after this call is completed
234 * we are going to overwrite the skb->cb array.
235 */
236 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
237
238 /*
239 * Determine if the frame has been successfully transmitted.
240 */
241 success =
242 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
243 test_bit(TXDONE_UNKNOWN, &txdesc->flags) ||
244 test_bit(TXDONE_FALLBACK, &txdesc->flags);
245
246 /*
247 * Update TX statistics.
248 */
249 rt2x00dev->link.qual.tx_success += success;
250 rt2x00dev->link.qual.tx_failed += !success;
251
252 rate_idx = skbdesc->tx_rate_idx;
253 rate_flags = skbdesc->tx_rate_flags;
254 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
255 (txdesc->retry + 1) : 1;
256
257 /*
258 * Initialize TX status
259 */
260 memset(&tx_info->status, 0, sizeof(tx_info->status));
261 tx_info->status.ack_signal = 0;
262
263 /*
264 * Frame was send with retries, hardware tried
265 * different rates to send out the frame, at each
266 * retry it lowered the rate 1 step.
267 */
268 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
269 tx_info->status.rates[i].idx = rate_idx - i;
270 tx_info->status.rates[i].flags = rate_flags;
271 tx_info->status.rates[i].count = 1;
272 }
273 if (i < (IEEE80211_TX_MAX_RATES - 1))
274 tx_info->status.rates[i].idx = -1; /* terminate */
275
276 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
277 if (success)
278 tx_info->flags |= IEEE80211_TX_STAT_ACK;
279 else
280 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
281 }
282
283 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
284 if (success)
285 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
286 else
287 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
288 }
289
290 /*
291 * Only send the status report to mac80211 when it's a frame
292 * that originated in mac80211. If this was a extra frame coming
293 * through a mac80211 library call (RTS/CTS) then we should not
294 * send the status report back.
295 */
296 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211))
297 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
298 else
299 dev_kfree_skb_irq(entry->skb);
300
301 /*
302 * Make this entry available for reuse.
303 */
304 entry->skb = NULL;
305 entry->flags = 0;
306
307 rt2x00dev->ops->lib->clear_entry(entry);
308
309 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
310 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
311
312 /*
313 * If the data queue was below the threshold before the txdone
314 * handler we must make sure the packet queue in the mac80211 stack
315 * is reenabled when the txdone handler has finished.
316 */
317 if (!rt2x00queue_threshold(entry->queue))
318 ieee80211_wake_queue(rt2x00dev->hw, qid);
319 }
320 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
321
322 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
323 struct rxdone_entry_desc *rxdesc)
324 {
325 struct ieee80211_supported_band *sband;
326 const struct rt2x00_rate *rate;
327 unsigned int i;
328 int signal;
329 int type;
330
331 /*
332 * For non-HT rates the MCS value needs to contain the
333 * actually used rate modulation (CCK or OFDM).
334 */
335 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
336 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
337 else
338 signal = rxdesc->signal;
339
340 type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
341
342 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
343 for (i = 0; i < sband->n_bitrates; i++) {
344 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
345
346 if (((type == RXDONE_SIGNAL_PLCP) &&
347 (rate->plcp == signal)) ||
348 ((type == RXDONE_SIGNAL_BITRATE) &&
349 (rate->bitrate == signal)) ||
350 ((type == RXDONE_SIGNAL_MCS) &&
351 (rate->mcs == signal))) {
352 return i;
353 }
354 }
355
356 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
357 "signal=0x%.4x, type=%d.\n", signal, type);
358 return 0;
359 }
360
361 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
362 struct queue_entry *entry)
363 {
364 struct rxdone_entry_desc rxdesc;
365 struct sk_buff *skb;
366 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
367 unsigned int header_length;
368 int rate_idx;
369 /*
370 * Allocate a new sk_buffer. If no new buffer available, drop the
371 * received frame and reuse the existing buffer.
372 */
373 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
374 if (!skb)
375 return;
376
377 /*
378 * Unmap the skb.
379 */
380 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
381
382 /*
383 * Extract the RXD details.
384 */
385 memset(&rxdesc, 0, sizeof(rxdesc));
386 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
387
388 /* Trim buffer to correct size */
389 skb_trim(entry->skb, rxdesc.size);
390
391 /*
392 * The data behind the ieee80211 header must be
393 * aligned on a 4 byte boundary.
394 */
395 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
396
397 /*
398 * Hardware might have stripped the IV/EIV/ICV data,
399 * in that case it is possible that the data was
400 * provided seperately (through hardware descriptor)
401 * in which case we should reinsert the data into the frame.
402 */
403 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
404 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
405 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
406 &rxdesc);
407 else if (rxdesc.dev_flags & RXDONE_L2PAD)
408 rt2x00queue_remove_l2pad(entry->skb, header_length);
409 else
410 rt2x00queue_align_payload(entry->skb, header_length);
411
412 /*
413 * Check if the frame was received using HT. In that case,
414 * the rate is the MCS index and should be passed to mac80211
415 * directly. Otherwise we need to translate the signal to
416 * the correct bitrate index.
417 */
418 if (rxdesc.rate_mode == RATE_MODE_CCK ||
419 rxdesc.rate_mode == RATE_MODE_OFDM) {
420 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
421 } else {
422 rxdesc.flags |= RX_FLAG_HT;
423 rate_idx = rxdesc.signal;
424 }
425
426 /*
427 * Update extra components
428 */
429 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
430 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
431
432 rx_status->mactime = rxdesc.timestamp;
433 rx_status->rate_idx = rate_idx;
434 rx_status->signal = rxdesc.rssi;
435 rx_status->noise = rxdesc.noise;
436 rx_status->flag = rxdesc.flags;
437 rx_status->antenna = rt2x00dev->link.ant.active.rx;
438
439 /*
440 * Send frame to mac80211 & debugfs.
441 * mac80211 will clean up the skb structure.
442 */
443 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
444 memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
445 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
446
447 /*
448 * Replace the skb with the freshly allocated one.
449 */
450 entry->skb = skb;
451 entry->flags = 0;
452
453 rt2x00dev->ops->lib->clear_entry(entry);
454
455 rt2x00queue_index_inc(entry->queue, Q_INDEX);
456 }
457 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
458
459 /*
460 * Driver initialization handlers.
461 */
462 const struct rt2x00_rate rt2x00_supported_rates[12] = {
463 {
464 .flags = DEV_RATE_CCK,
465 .bitrate = 10,
466 .ratemask = BIT(0),
467 .plcp = 0x00,
468 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
469 },
470 {
471 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
472 .bitrate = 20,
473 .ratemask = BIT(1),
474 .plcp = 0x01,
475 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
476 },
477 {
478 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
479 .bitrate = 55,
480 .ratemask = BIT(2),
481 .plcp = 0x02,
482 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
483 },
484 {
485 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
486 .bitrate = 110,
487 .ratemask = BIT(3),
488 .plcp = 0x03,
489 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
490 },
491 {
492 .flags = DEV_RATE_OFDM,
493 .bitrate = 60,
494 .ratemask = BIT(4),
495 .plcp = 0x0b,
496 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
497 },
498 {
499 .flags = DEV_RATE_OFDM,
500 .bitrate = 90,
501 .ratemask = BIT(5),
502 .plcp = 0x0f,
503 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
504 },
505 {
506 .flags = DEV_RATE_OFDM,
507 .bitrate = 120,
508 .ratemask = BIT(6),
509 .plcp = 0x0a,
510 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
511 },
512 {
513 .flags = DEV_RATE_OFDM,
514 .bitrate = 180,
515 .ratemask = BIT(7),
516 .plcp = 0x0e,
517 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
518 },
519 {
520 .flags = DEV_RATE_OFDM,
521 .bitrate = 240,
522 .ratemask = BIT(8),
523 .plcp = 0x09,
524 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
525 },
526 {
527 .flags = DEV_RATE_OFDM,
528 .bitrate = 360,
529 .ratemask = BIT(9),
530 .plcp = 0x0d,
531 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
532 },
533 {
534 .flags = DEV_RATE_OFDM,
535 .bitrate = 480,
536 .ratemask = BIT(10),
537 .plcp = 0x08,
538 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
539 },
540 {
541 .flags = DEV_RATE_OFDM,
542 .bitrate = 540,
543 .ratemask = BIT(11),
544 .plcp = 0x0c,
545 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
546 },
547 };
548
549 static void rt2x00lib_channel(struct ieee80211_channel *entry,
550 const int channel, const int tx_power,
551 const int value)
552 {
553 entry->center_freq = ieee80211_channel_to_frequency(channel);
554 entry->hw_value = value;
555 entry->max_power = tx_power;
556 entry->max_antenna_gain = 0xff;
557 }
558
559 static void rt2x00lib_rate(struct ieee80211_rate *entry,
560 const u16 index, const struct rt2x00_rate *rate)
561 {
562 entry->flags = 0;
563 entry->bitrate = rate->bitrate;
564 entry->hw_value =index;
565 entry->hw_value_short = index;
566
567 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
568 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
569 }
570
571 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
572 struct hw_mode_spec *spec)
573 {
574 struct ieee80211_hw *hw = rt2x00dev->hw;
575 struct ieee80211_channel *channels;
576 struct ieee80211_rate *rates;
577 unsigned int num_rates;
578 unsigned int i;
579
580 num_rates = 0;
581 if (spec->supported_rates & SUPPORT_RATE_CCK)
582 num_rates += 4;
583 if (spec->supported_rates & SUPPORT_RATE_OFDM)
584 num_rates += 8;
585
586 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
587 if (!channels)
588 return -ENOMEM;
589
590 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
591 if (!rates)
592 goto exit_free_channels;
593
594 /*
595 * Initialize Rate list.
596 */
597 for (i = 0; i < num_rates; i++)
598 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
599
600 /*
601 * Initialize Channel list.
602 */
603 for (i = 0; i < spec->num_channels; i++) {
604 rt2x00lib_channel(&channels[i],
605 spec->channels[i].channel,
606 spec->channels_info[i].tx_power1, i);
607 }
608
609 /*
610 * Intitialize 802.11b, 802.11g
611 * Rates: CCK, OFDM.
612 * Channels: 2.4 GHz
613 */
614 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
615 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
616 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
617 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
618 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
619 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
620 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
621 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
622 &spec->ht, sizeof(spec->ht));
623 }
624
625 /*
626 * Intitialize 802.11a
627 * Rates: OFDM.
628 * Channels: OFDM, UNII, HiperLAN2.
629 */
630 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
631 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
632 spec->num_channels - 14;
633 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
634 num_rates - 4;
635 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
636 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
637 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
638 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
639 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
640 &spec->ht, sizeof(spec->ht));
641 }
642
643 return 0;
644
645 exit_free_channels:
646 kfree(channels);
647 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
648 return -ENOMEM;
649 }
650
651 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
652 {
653 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
654 ieee80211_unregister_hw(rt2x00dev->hw);
655
656 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
657 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
658 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
659 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
660 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
661 }
662
663 kfree(rt2x00dev->spec.channels_info);
664 }
665
666 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
667 {
668 struct hw_mode_spec *spec = &rt2x00dev->spec;
669 int status;
670
671 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
672 return 0;
673
674 /*
675 * Initialize HW modes.
676 */
677 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
678 if (status)
679 return status;
680
681 /*
682 * Initialize HW fields.
683 */
684 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
685
686 /*
687 * Initialize extra TX headroom required.
688 */
689 rt2x00dev->hw->extra_tx_headroom =
690 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
691 rt2x00dev->ops->extra_tx_headroom);
692
693 /*
694 * Take TX headroom required for alignment into account.
695 */
696 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
697 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
698 else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
699 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
700
701 /*
702 * Register HW.
703 */
704 status = ieee80211_register_hw(rt2x00dev->hw);
705 if (status)
706 return status;
707
708 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
709
710 return 0;
711 }
712
713 /*
714 * Initialization/uninitialization handlers.
715 */
716 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
717 {
718 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
719 return;
720
721 /*
722 * Unregister extra components.
723 */
724 rt2x00rfkill_unregister(rt2x00dev);
725
726 /*
727 * Allow the HW to uninitialize.
728 */
729 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
730
731 /*
732 * Free allocated queue entries.
733 */
734 rt2x00queue_uninitialize(rt2x00dev);
735 }
736
737 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
738 {
739 int status;
740
741 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
742 return 0;
743
744 /*
745 * Allocate all queue entries.
746 */
747 status = rt2x00queue_initialize(rt2x00dev);
748 if (status)
749 return status;
750
751 /*
752 * Initialize the device.
753 */
754 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
755 if (status) {
756 rt2x00queue_uninitialize(rt2x00dev);
757 return status;
758 }
759
760 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
761
762 /*
763 * Register the extra components.
764 */
765 rt2x00rfkill_register(rt2x00dev);
766
767 return 0;
768 }
769
770 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
771 {
772 int retval;
773
774 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
775 return 0;
776
777 /*
778 * If this is the first interface which is added,
779 * we should load the firmware now.
780 */
781 retval = rt2x00lib_load_firmware(rt2x00dev);
782 if (retval)
783 return retval;
784
785 /*
786 * Initialize the device.
787 */
788 retval = rt2x00lib_initialize(rt2x00dev);
789 if (retval)
790 return retval;
791
792 rt2x00dev->intf_ap_count = 0;
793 rt2x00dev->intf_sta_count = 0;
794 rt2x00dev->intf_associated = 0;
795
796 /* Enable the radio */
797 retval = rt2x00lib_enable_radio(rt2x00dev);
798 if (retval) {
799 rt2x00queue_uninitialize(rt2x00dev);
800 return retval;
801 }
802
803 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
804
805 return 0;
806 }
807
808 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
809 {
810 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
811 return;
812
813 /*
814 * Perhaps we can add something smarter here,
815 * but for now just disabling the radio should do.
816 */
817 rt2x00lib_disable_radio(rt2x00dev);
818
819 rt2x00dev->intf_ap_count = 0;
820 rt2x00dev->intf_sta_count = 0;
821 rt2x00dev->intf_associated = 0;
822 }
823
824 /*
825 * driver allocation handlers.
826 */
827 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
828 {
829 int retval = -ENOMEM;
830
831 mutex_init(&rt2x00dev->csr_mutex);
832
833 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
834
835 /*
836 * Make room for rt2x00_intf inside the per-interface
837 * structure ieee80211_vif.
838 */
839 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
840
841 /*
842 * Determine which operating modes are supported, all modes
843 * which require beaconing, depend on the availability of
844 * beacon entries.
845 */
846 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
847 if (rt2x00dev->ops->bcn->entry_num > 0)
848 rt2x00dev->hw->wiphy->interface_modes |=
849 BIT(NL80211_IFTYPE_ADHOC) |
850 BIT(NL80211_IFTYPE_AP) |
851 BIT(NL80211_IFTYPE_MESH_POINT) |
852 BIT(NL80211_IFTYPE_WDS);
853
854 /*
855 * Let the driver probe the device to detect the capabilities.
856 */
857 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
858 if (retval) {
859 ERROR(rt2x00dev, "Failed to allocate device.\n");
860 goto exit;
861 }
862
863 /*
864 * Initialize configuration work.
865 */
866 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
867
868 /*
869 * Allocate queue array.
870 */
871 retval = rt2x00queue_allocate(rt2x00dev);
872 if (retval)
873 goto exit;
874
875 /*
876 * Initialize ieee80211 structure.
877 */
878 retval = rt2x00lib_probe_hw(rt2x00dev);
879 if (retval) {
880 ERROR(rt2x00dev, "Failed to initialize hw.\n");
881 goto exit;
882 }
883
884 /*
885 * Register extra components.
886 */
887 rt2x00link_register(rt2x00dev);
888 rt2x00leds_register(rt2x00dev);
889 rt2x00debug_register(rt2x00dev);
890
891 return 0;
892
893 exit:
894 rt2x00lib_remove_dev(rt2x00dev);
895
896 return retval;
897 }
898 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
899
900 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
901 {
902 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
903
904 /*
905 * Disable radio.
906 */
907 rt2x00lib_disable_radio(rt2x00dev);
908
909 /*
910 * Stop all work.
911 */
912 cancel_work_sync(&rt2x00dev->intf_work);
913
914 /*
915 * Uninitialize device.
916 */
917 rt2x00lib_uninitialize(rt2x00dev);
918
919 /*
920 * Free extra components
921 */
922 rt2x00debug_deregister(rt2x00dev);
923 rt2x00leds_unregister(rt2x00dev);
924
925 /*
926 * Free ieee80211_hw memory.
927 */
928 rt2x00lib_remove_hw(rt2x00dev);
929
930 /*
931 * Free firmware image.
932 */
933 rt2x00lib_free_firmware(rt2x00dev);
934
935 /*
936 * Free queue structures.
937 */
938 rt2x00queue_free(rt2x00dev);
939 }
940 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
941
942 /*
943 * Device state handlers
944 */
945 #ifdef CONFIG_PM
946 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
947 {
948 NOTICE(rt2x00dev, "Going to sleep.\n");
949
950 /*
951 * Prevent mac80211 from accessing driver while suspended.
952 */
953 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
954 return 0;
955
956 /*
957 * Cleanup as much as possible.
958 */
959 rt2x00lib_uninitialize(rt2x00dev);
960
961 /*
962 * Suspend/disable extra components.
963 */
964 rt2x00leds_suspend(rt2x00dev);
965 rt2x00debug_deregister(rt2x00dev);
966
967 /*
968 * Set device mode to sleep for power management,
969 * on some hardware this call seems to consistently fail.
970 * From the specifications it is hard to tell why it fails,
971 * and if this is a "bad thing".
972 * Overall it is safe to just ignore the failure and
973 * continue suspending. The only downside is that the
974 * device will not be in optimal power save mode, but with
975 * the radio and the other components already disabled the
976 * device is as good as disabled.
977 */
978 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
979 WARNING(rt2x00dev, "Device failed to enter sleep state, "
980 "continue suspending.\n");
981
982 return 0;
983 }
984 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
985
986 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
987 {
988 NOTICE(rt2x00dev, "Waking up.\n");
989
990 /*
991 * Restore/enable extra components.
992 */
993 rt2x00debug_register(rt2x00dev);
994 rt2x00leds_resume(rt2x00dev);
995
996 /*
997 * We are ready again to receive requests from mac80211.
998 */
999 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1000
1001 return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1004 #endif /* CONFIG_PM */
1005
1006 /*
1007 * rt2x00lib module information.
1008 */
1009 MODULE_AUTHOR(DRV_PROJECT);
1010 MODULE_VERSION(DRV_VERSION);
1011 MODULE_DESCRIPTION("rt2x00 library");
1012 MODULE_LICENSE("GPL");
This page took 0.069437 seconds and 5 git commands to generate.