rt2x00: Fix queue related oops in case of deselected mac80211 multi-queue feature.
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33 * Link tuning handlers
34 */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38 return;
39
40 /*
41 * Reset link information.
42 * Both the currently active vgc level as well as
43 * the link tuner counter should be reset. Resetting
44 * the counter is important for devices where the
45 * device should only perform link tuning during the
46 * first minute after being enabled.
47 */
48 rt2x00dev->link.count = 0;
49 rt2x00dev->link.vgc_level = 0;
50
51 /*
52 * Reset the link tuner.
53 */
54 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59 /*
60 * Clear all (possibly) pre-existing quality statistics.
61 */
62 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64 /*
65 * The RX and TX percentage should start at 50%
66 * this will assure we will get at least get some
67 * decent value when the link tuner starts.
68 * The value will be dropped and overwritten with
69 * the correct (measured )value anyway during the
70 * first run of the link tuner.
71 */
72 rt2x00dev->link.qual.rx_percentage = 50;
73 rt2x00dev->link.qual.tx_percentage = 50;
74
75 rt2x00lib_reset_link_tuner(rt2x00dev);
76
77 queue_delayed_work(rt2x00dev->hw->workqueue,
78 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83 cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87 * Radio control handlers.
88 */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91 int status;
92
93 /*
94 * Don't enable the radio twice.
95 * And check if the hardware button has been disabled.
96 */
97 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99 return 0;
100
101 /*
102 * Initialize all data queues.
103 */
104 rt2x00queue_init_rx(rt2x00dev);
105 rt2x00queue_init_tx(rt2x00dev);
106
107 /*
108 * Enable radio.
109 */
110 status =
111 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112 if (status)
113 return status;
114
115 rt2x00leds_led_radio(rt2x00dev, true);
116 rt2x00led_led_activity(rt2x00dev, true);
117
118 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
119
120 /*
121 * Enable RX.
122 */
123 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124
125 /*
126 * Start the TX queues.
127 */
128 ieee80211_start_queues(rt2x00dev->hw);
129
130 return 0;
131 }
132
133 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
134 {
135 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
136 return;
137
138 /*
139 * Stop all scheduled work.
140 */
141 if (work_pending(&rt2x00dev->intf_work))
142 cancel_work_sync(&rt2x00dev->intf_work);
143 if (work_pending(&rt2x00dev->filter_work))
144 cancel_work_sync(&rt2x00dev->filter_work);
145
146 /*
147 * Stop the TX queues.
148 */
149 ieee80211_stop_queues(rt2x00dev->hw);
150
151 /*
152 * Disable RX.
153 */
154 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
155
156 /*
157 * Disable radio.
158 */
159 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
160 rt2x00led_led_activity(rt2x00dev, false);
161 rt2x00leds_led_radio(rt2x00dev, false);
162 }
163
164 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
165 {
166 /*
167 * When we are disabling the RX, we should also stop the link tuner.
168 */
169 if (state == STATE_RADIO_RX_OFF)
170 rt2x00lib_stop_link_tuner(rt2x00dev);
171
172 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
173
174 /*
175 * When we are enabling the RX, we should also start the link tuner.
176 */
177 if (state == STATE_RADIO_RX_ON &&
178 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
179 rt2x00lib_start_link_tuner(rt2x00dev);
180 }
181
182 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
183 {
184 enum antenna rx = rt2x00dev->link.ant.active.rx;
185 enum antenna tx = rt2x00dev->link.ant.active.tx;
186 int sample_a =
187 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
188 int sample_b =
189 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
190
191 /*
192 * We are done sampling. Now we should evaluate the results.
193 */
194 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
195
196 /*
197 * During the last period we have sampled the RSSI
198 * from both antenna's. It now is time to determine
199 * which antenna demonstrated the best performance.
200 * When we are already on the antenna with the best
201 * performance, then there really is nothing for us
202 * left to do.
203 */
204 if (sample_a == sample_b)
205 return;
206
207 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
208 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
209
210 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
211 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
212
213 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
214 }
215
216 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
217 {
218 enum antenna rx = rt2x00dev->link.ant.active.rx;
219 enum antenna tx = rt2x00dev->link.ant.active.tx;
220 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
221 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
222
223 /*
224 * Legacy driver indicates that we should swap antenna's
225 * when the difference in RSSI is greater that 5. This
226 * also should be done when the RSSI was actually better
227 * then the previous sample.
228 * When the difference exceeds the threshold we should
229 * sample the rssi from the other antenna to make a valid
230 * comparison between the 2 antennas.
231 */
232 if (abs(rssi_curr - rssi_old) < 5)
233 return;
234
235 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
236
237 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
238 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
239
240 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
241 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
242
243 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
244 }
245
246 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
247 {
248 /*
249 * Determine if software diversity is enabled for
250 * either the TX or RX antenna (or both).
251 * Always perform this check since within the link
252 * tuner interval the configuration might have changed.
253 */
254 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
255 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
256
257 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
258 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
259 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
260 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
261 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
262 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
263
264 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
265 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
266 rt2x00dev->link.ant.flags = 0;
267 return;
268 }
269
270 /*
271 * If we have only sampled the data over the last period
272 * we should now harvest the data. Otherwise just evaluate
273 * the data. The latter should only be performed once
274 * every 2 seconds.
275 */
276 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
277 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
278 else if (rt2x00dev->link.count & 1)
279 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
280 }
281
282 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
283 {
284 int avg_rssi = rssi;
285
286 /*
287 * Update global RSSI
288 */
289 if (link->qual.avg_rssi)
290 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
291 link->qual.avg_rssi = avg_rssi;
292
293 /*
294 * Update antenna RSSI
295 */
296 if (link->ant.rssi_ant)
297 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
298 link->ant.rssi_ant = rssi;
299 }
300
301 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
302 {
303 if (qual->rx_failed || qual->rx_success)
304 qual->rx_percentage =
305 (qual->rx_success * 100) /
306 (qual->rx_failed + qual->rx_success);
307 else
308 qual->rx_percentage = 50;
309
310 if (qual->tx_failed || qual->tx_success)
311 qual->tx_percentage =
312 (qual->tx_success * 100) /
313 (qual->tx_failed + qual->tx_success);
314 else
315 qual->tx_percentage = 50;
316
317 qual->rx_success = 0;
318 qual->rx_failed = 0;
319 qual->tx_success = 0;
320 qual->tx_failed = 0;
321 }
322
323 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
324 int rssi)
325 {
326 int rssi_percentage = 0;
327 int signal;
328
329 /*
330 * We need a positive value for the RSSI.
331 */
332 if (rssi < 0)
333 rssi += rt2x00dev->rssi_offset;
334
335 /*
336 * Calculate the different percentages,
337 * which will be used for the signal.
338 */
339 if (rt2x00dev->rssi_offset)
340 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
341
342 /*
343 * Add the individual percentages and use the WEIGHT
344 * defines to calculate the current link signal.
345 */
346 signal = ((WEIGHT_RSSI * rssi_percentage) +
347 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
348 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
349
350 return (signal > 100) ? 100 : signal;
351 }
352
353 static void rt2x00lib_link_tuner(struct work_struct *work)
354 {
355 struct rt2x00_dev *rt2x00dev =
356 container_of(work, struct rt2x00_dev, link.work.work);
357
358 /*
359 * When the radio is shutting down we should
360 * immediately cease all link tuning.
361 */
362 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
363 return;
364
365 /*
366 * Update statistics.
367 */
368 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
369 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
370 rt2x00dev->link.qual.rx_failed;
371
372 /*
373 * Only perform the link tuning when Link tuning
374 * has been enabled (This could have been disabled from the EEPROM).
375 */
376 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
377 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
378
379 /*
380 * Precalculate a portion of the link signal which is
381 * in based on the tx/rx success/failure counters.
382 */
383 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
384
385 /*
386 * Send a signal to the led to update the led signal strength.
387 */
388 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
389
390 /*
391 * Evaluate antenna setup, make this the last step since this could
392 * possibly reset some statistics.
393 */
394 rt2x00lib_evaluate_antenna(rt2x00dev);
395
396 /*
397 * Increase tuner counter, and reschedule the next link tuner run.
398 */
399 rt2x00dev->link.count++;
400 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
401 LINK_TUNE_INTERVAL);
402 }
403
404 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
405 {
406 struct rt2x00_dev *rt2x00dev =
407 container_of(work, struct rt2x00_dev, filter_work);
408
409 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
410 }
411
412 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
413 struct ieee80211_vif *vif)
414 {
415 struct rt2x00_dev *rt2x00dev = data;
416 struct rt2x00_intf *intf = vif_to_intf(vif);
417 struct sk_buff *skb;
418 struct ieee80211_tx_control control;
419 struct ieee80211_bss_conf conf;
420 int delayed_flags;
421
422 /*
423 * Copy all data we need during this action under the protection
424 * of a spinlock. Otherwise race conditions might occur which results
425 * into an invalid configuration.
426 */
427 spin_lock(&intf->lock);
428
429 memcpy(&conf, &intf->conf, sizeof(conf));
430 delayed_flags = intf->delayed_flags;
431 intf->delayed_flags = 0;
432
433 spin_unlock(&intf->lock);
434
435 if (delayed_flags & DELAYED_UPDATE_BEACON) {
436 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
437 if (skb && rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw,
438 skb, &control))
439 dev_kfree_skb(skb);
440 }
441
442 if (delayed_flags & DELAYED_CONFIG_ERP)
443 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
444
445 if (delayed_flags & DELAYED_LED_ASSOC)
446 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
447 }
448
449 static void rt2x00lib_intf_scheduled(struct work_struct *work)
450 {
451 struct rt2x00_dev *rt2x00dev =
452 container_of(work, struct rt2x00_dev, intf_work);
453
454 /*
455 * Iterate over each interface and perform the
456 * requested configurations.
457 */
458 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
459 rt2x00lib_intf_scheduled_iter,
460 rt2x00dev);
461 }
462
463 /*
464 * Interrupt context handlers.
465 */
466 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
467 struct ieee80211_vif *vif)
468 {
469 struct rt2x00_intf *intf = vif_to_intf(vif);
470
471 if (vif->type != IEEE80211_IF_TYPE_AP &&
472 vif->type != IEEE80211_IF_TYPE_IBSS)
473 return;
474
475 spin_lock(&intf->lock);
476 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
477 spin_unlock(&intf->lock);
478 }
479
480 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
481 {
482 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
483 return;
484
485 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
486 rt2x00lib_beacondone_iter,
487 rt2x00dev);
488
489 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
490 }
491 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
492
493 void rt2x00lib_txdone(struct queue_entry *entry,
494 struct txdone_entry_desc *txdesc)
495 {
496 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
497 struct skb_frame_desc *skbdesc;
498 struct ieee80211_tx_status tx_status;
499
500 /*
501 * Update TX statistics.
502 */
503 rt2x00dev->link.qual.tx_success +=
504 test_bit(TXDONE_SUCCESS, &txdesc->flags);
505 rt2x00dev->link.qual.tx_failed +=
506 txdesc->retry + !!test_bit(TXDONE_FAILURE, &txdesc->flags);
507
508 /*
509 * Initialize TX status
510 */
511 tx_status.flags = 0;
512 tx_status.ack_signal = 0;
513 tx_status.excessive_retries =
514 test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
515 tx_status.retry_count = txdesc->retry;
516 memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
517
518 if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
519 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
520 tx_status.flags |= IEEE80211_TX_STATUS_ACK;
521 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
522 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
523 }
524
525 if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
526 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
527 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
528 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
529 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
530 }
531
532 /*
533 * Send the tx_status to debugfs. Only send the status report
534 * to mac80211 when the frame originated from there. If this was
535 * a extra frame coming through a mac80211 library call (RTS/CTS)
536 * then we should not send the status report back.
537 * If send to mac80211, mac80211 will clean up the skb structure,
538 * otherwise we have to do it ourself.
539 */
540 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
541
542 skbdesc = get_skb_frame_desc(entry->skb);
543 if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
544 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
545 entry->skb, &tx_status);
546 else
547 dev_kfree_skb_irq(entry->skb);
548 entry->skb = NULL;
549 }
550 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
551
552 void rt2x00lib_rxdone(struct queue_entry *entry,
553 struct rxdone_entry_desc *rxdesc)
554 {
555 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
556 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
557 struct ieee80211_supported_band *sband;
558 struct ieee80211_hdr *hdr;
559 const struct rt2x00_rate *rate;
560 unsigned int i;
561 int idx = -1;
562 u16 fc;
563
564 /*
565 * Update RX statistics.
566 */
567 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
568 for (i = 0; i < sband->n_bitrates; i++) {
569 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
570
571 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
572 (rate->plcp == rxdesc->signal)) ||
573 (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
574 (rate->bitrate == rxdesc->signal))) {
575 idx = i;
576 break;
577 }
578 }
579
580 if (idx < 0) {
581 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
582 "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
583 !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
584 idx = 0;
585 }
586
587 /*
588 * Only update link status if this is a beacon frame carrying our bssid.
589 */
590 hdr = (struct ieee80211_hdr *)entry->skb->data;
591 fc = le16_to_cpu(hdr->frame_control);
592 if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
593 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
594
595 rt2x00dev->link.qual.rx_success++;
596
597 rx_status->rate_idx = idx;
598 rx_status->qual =
599 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
600 rx_status->signal = rxdesc->rssi;
601 rx_status->flag = rxdesc->flags;
602 rx_status->antenna = rt2x00dev->link.ant.active.rx;
603
604 /*
605 * Send frame to mac80211 & debugfs.
606 * mac80211 will clean up the skb structure.
607 */
608 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
609 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
610 entry->skb = NULL;
611 }
612 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
613
614 /*
615 * TX descriptor initializer
616 */
617 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
618 struct sk_buff *skb,
619 struct ieee80211_tx_control *control)
620 {
621 struct txentry_desc txdesc;
622 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
623 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
624 const struct rt2x00_rate *rate;
625 int tx_rate;
626 int length;
627 int duration;
628 int residual;
629 u16 frame_control;
630 u16 seq_ctrl;
631
632 memset(&txdesc, 0, sizeof(txdesc));
633
634 txdesc.queue = skbdesc->entry->queue->qid;
635 txdesc.cw_min = skbdesc->entry->queue->cw_min;
636 txdesc.cw_max = skbdesc->entry->queue->cw_max;
637 txdesc.aifs = skbdesc->entry->queue->aifs;
638
639 /*
640 * Read required fields from ieee80211 header.
641 */
642 frame_control = le16_to_cpu(hdr->frame_control);
643 seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
644
645 tx_rate = control->tx_rate->hw_value;
646
647 /*
648 * Check whether this frame is to be acked
649 */
650 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
651 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
652
653 /*
654 * Check if this is a RTS/CTS frame
655 */
656 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
657 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
658 if (is_rts_frame(frame_control)) {
659 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
660 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
661 } else
662 __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
663 if (control->rts_cts_rate)
664 tx_rate = control->rts_cts_rate->hw_value;
665 }
666
667 /*
668 * Determine retry information.
669 */
670 txdesc.retry_limit = control->retry_limit;
671 if (control->flags & IEEE80211_TXCTL_LONG_RETRY_LIMIT)
672 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc.flags);
673
674 /*
675 * Check if more fragments are pending
676 */
677 if (ieee80211_get_morefrag(hdr)) {
678 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
679 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
680 }
681
682 /*
683 * Beacons and probe responses require the tsf timestamp
684 * to be inserted into the frame.
685 */
686 if (txdesc.queue == QID_BEACON || is_probe_resp(frame_control))
687 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
688
689 /*
690 * Determine with what IFS priority this frame should be send.
691 * Set ifs to IFS_SIFS when the this is not the first fragment,
692 * or this fragment came after RTS/CTS.
693 */
694 if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags)) {
695 txdesc.ifs = IFS_SIFS;
696 } else if (control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT) {
697 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc.flags);
698 txdesc.ifs = IFS_BACKOFF;
699 } else {
700 txdesc.ifs = IFS_SIFS;
701 }
702
703 /*
704 * PLCP setup
705 * Length calculation depends on OFDM/CCK rate.
706 */
707 rate = rt2x00_get_rate(tx_rate);
708 txdesc.signal = rate->plcp;
709 txdesc.service = 0x04;
710
711 length = skbdesc->data_len + FCS_LEN;
712 if (rate->flags & DEV_RATE_OFDM) {
713 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
714
715 txdesc.length_high = (length >> 6) & 0x3f;
716 txdesc.length_low = length & 0x3f;
717 } else {
718 /*
719 * Convert length to microseconds.
720 */
721 residual = get_duration_res(length, rate->bitrate);
722 duration = get_duration(length, rate->bitrate);
723
724 if (residual != 0) {
725 duration++;
726
727 /*
728 * Check if we need to set the Length Extension
729 */
730 if (rate->bitrate == 110 && residual <= 30)
731 txdesc.service |= 0x80;
732 }
733
734 txdesc.length_high = (duration >> 8) & 0xff;
735 txdesc.length_low = duration & 0xff;
736
737 /*
738 * When preamble is enabled we should set the
739 * preamble bit for the signal.
740 */
741 if (rt2x00_get_rate_preamble(tx_rate))
742 txdesc.signal |= 0x08;
743 }
744
745 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc);
746
747 /*
748 * Update queue entry.
749 */
750 skbdesc->entry->skb = skb;
751
752 /*
753 * The frame has been completely initialized and ready
754 * for sending to the device. The caller will push the
755 * frame to the device, but we are going to push the
756 * frame to debugfs here.
757 */
758 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, skb);
759 }
760 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
761
762 /*
763 * Driver initialization handlers.
764 */
765 const struct rt2x00_rate rt2x00_supported_rates[12] = {
766 {
767 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
768 .bitrate = 10,
769 .ratemask = BIT(0),
770 .plcp = 0x00,
771 },
772 {
773 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
774 .bitrate = 20,
775 .ratemask = BIT(1),
776 .plcp = 0x01,
777 },
778 {
779 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
780 .bitrate = 55,
781 .ratemask = BIT(2),
782 .plcp = 0x02,
783 },
784 {
785 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
786 .bitrate = 110,
787 .ratemask = BIT(3),
788 .plcp = 0x03,
789 },
790 {
791 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
792 .bitrate = 60,
793 .ratemask = BIT(4),
794 .plcp = 0x0b,
795 },
796 {
797 .flags = DEV_RATE_OFDM,
798 .bitrate = 90,
799 .ratemask = BIT(5),
800 .plcp = 0x0f,
801 },
802 {
803 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
804 .bitrate = 120,
805 .ratemask = BIT(6),
806 .plcp = 0x0a,
807 },
808 {
809 .flags = DEV_RATE_OFDM,
810 .bitrate = 180,
811 .ratemask = BIT(7),
812 .plcp = 0x0e,
813 },
814 {
815 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
816 .bitrate = 240,
817 .ratemask = BIT(8),
818 .plcp = 0x09,
819 },
820 {
821 .flags = DEV_RATE_OFDM,
822 .bitrate = 360,
823 .ratemask = BIT(9),
824 .plcp = 0x0d,
825 },
826 {
827 .flags = DEV_RATE_OFDM,
828 .bitrate = 480,
829 .ratemask = BIT(10),
830 .plcp = 0x08,
831 },
832 {
833 .flags = DEV_RATE_OFDM,
834 .bitrate = 540,
835 .ratemask = BIT(11),
836 .plcp = 0x0c,
837 },
838 };
839
840 static void rt2x00lib_channel(struct ieee80211_channel *entry,
841 const int channel, const int tx_power,
842 const int value)
843 {
844 entry->center_freq = ieee80211_channel_to_frequency(channel);
845 entry->hw_value = value;
846 entry->max_power = tx_power;
847 entry->max_antenna_gain = 0xff;
848 }
849
850 static void rt2x00lib_rate(struct ieee80211_rate *entry,
851 const u16 index, const struct rt2x00_rate *rate)
852 {
853 entry->flags = 0;
854 entry->bitrate = rate->bitrate;
855 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
856 entry->hw_value_short = entry->hw_value;
857
858 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
859 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
860 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
861 }
862 }
863
864 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
865 struct hw_mode_spec *spec)
866 {
867 struct ieee80211_hw *hw = rt2x00dev->hw;
868 struct ieee80211_channel *channels;
869 struct ieee80211_rate *rates;
870 unsigned int num_rates;
871 unsigned int i;
872 unsigned char tx_power;
873
874 num_rates = 0;
875 if (spec->supported_rates & SUPPORT_RATE_CCK)
876 num_rates += 4;
877 if (spec->supported_rates & SUPPORT_RATE_OFDM)
878 num_rates += 8;
879
880 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
881 if (!channels)
882 return -ENOMEM;
883
884 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
885 if (!rates)
886 goto exit_free_channels;
887
888 /*
889 * Initialize Rate list.
890 */
891 for (i = 0; i < num_rates; i++)
892 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
893
894 /*
895 * Initialize Channel list.
896 */
897 for (i = 0; i < spec->num_channels; i++) {
898 if (spec->channels[i].channel <= 14) {
899 if (spec->tx_power_bg)
900 tx_power = spec->tx_power_bg[i];
901 else
902 tx_power = spec->tx_power_default;
903 } else {
904 if (spec->tx_power_a)
905 tx_power = spec->tx_power_a[i];
906 else
907 tx_power = spec->tx_power_default;
908 }
909
910 rt2x00lib_channel(&channels[i],
911 spec->channels[i].channel, tx_power, i);
912 }
913
914 /*
915 * Intitialize 802.11b, 802.11g
916 * Rates: CCK, OFDM.
917 * Channels: 2.4 GHz
918 */
919 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
920 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
921 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
922 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
923 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
924 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
925 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
926 }
927
928 /*
929 * Intitialize 802.11a
930 * Rates: OFDM.
931 * Channels: OFDM, UNII, HiperLAN2.
932 */
933 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
934 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
935 spec->num_channels - 14;
936 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
937 num_rates - 4;
938 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
939 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
940 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
941 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
942 }
943
944 return 0;
945
946 exit_free_channels:
947 kfree(channels);
948 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
949 return -ENOMEM;
950 }
951
952 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
953 {
954 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
955 ieee80211_unregister_hw(rt2x00dev->hw);
956
957 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
958 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
959 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
960 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
961 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
962 }
963 }
964
965 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
966 {
967 struct hw_mode_spec *spec = &rt2x00dev->spec;
968 int status;
969
970 /*
971 * Initialize HW modes.
972 */
973 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
974 if (status)
975 return status;
976
977 /*
978 * Initialize HW fields.
979 */
980 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
981
982 /*
983 * Register HW.
984 */
985 status = ieee80211_register_hw(rt2x00dev->hw);
986 if (status) {
987 rt2x00lib_remove_hw(rt2x00dev);
988 return status;
989 }
990
991 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
992
993 return 0;
994 }
995
996 /*
997 * Initialization/uninitialization handlers.
998 */
999 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1000 {
1001 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1002 return;
1003
1004 /*
1005 * Unregister extra components.
1006 */
1007 rt2x00rfkill_unregister(rt2x00dev);
1008
1009 /*
1010 * Allow the HW to uninitialize.
1011 */
1012 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1013
1014 /*
1015 * Free allocated queue entries.
1016 */
1017 rt2x00queue_uninitialize(rt2x00dev);
1018 }
1019
1020 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1021 {
1022 int status;
1023
1024 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1025 return 0;
1026
1027 /*
1028 * Allocate all queue entries.
1029 */
1030 status = rt2x00queue_initialize(rt2x00dev);
1031 if (status)
1032 return status;
1033
1034 /*
1035 * Initialize the device.
1036 */
1037 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1038 if (status) {
1039 rt2x00queue_uninitialize(rt2x00dev);
1040 return status;
1041 }
1042
1043 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1044
1045 /*
1046 * Register the extra components.
1047 */
1048 rt2x00rfkill_register(rt2x00dev);
1049
1050 return 0;
1051 }
1052
1053 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1054 {
1055 int retval;
1056
1057 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1058 return 0;
1059
1060 /*
1061 * If this is the first interface which is added,
1062 * we should load the firmware now.
1063 */
1064 retval = rt2x00lib_load_firmware(rt2x00dev);
1065 if (retval)
1066 return retval;
1067
1068 /*
1069 * Initialize the device.
1070 */
1071 retval = rt2x00lib_initialize(rt2x00dev);
1072 if (retval)
1073 return retval;
1074
1075 /*
1076 * Enable radio.
1077 */
1078 retval = rt2x00lib_enable_radio(rt2x00dev);
1079 if (retval) {
1080 rt2x00lib_uninitialize(rt2x00dev);
1081 return retval;
1082 }
1083
1084 rt2x00dev->intf_ap_count = 0;
1085 rt2x00dev->intf_sta_count = 0;
1086 rt2x00dev->intf_associated = 0;
1087
1088 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1089
1090 return 0;
1091 }
1092
1093 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1094 {
1095 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1096 return;
1097
1098 /*
1099 * Perhaps we can add something smarter here,
1100 * but for now just disabling the radio should do.
1101 */
1102 rt2x00lib_disable_radio(rt2x00dev);
1103
1104 rt2x00dev->intf_ap_count = 0;
1105 rt2x00dev->intf_sta_count = 0;
1106 rt2x00dev->intf_associated = 0;
1107
1108 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1109 }
1110
1111 /*
1112 * driver allocation handlers.
1113 */
1114 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1115 {
1116 int retval = -ENOMEM;
1117
1118 /*
1119 * Make room for rt2x00_intf inside the per-interface
1120 * structure ieee80211_vif.
1121 */
1122 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1123
1124 /*
1125 * Let the driver probe the device to detect the capabilities.
1126 */
1127 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1128 if (retval) {
1129 ERROR(rt2x00dev, "Failed to allocate device.\n");
1130 goto exit;
1131 }
1132
1133 /*
1134 * Initialize configuration work.
1135 */
1136 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1137 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1138 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1139
1140 /*
1141 * Allocate queue array.
1142 */
1143 retval = rt2x00queue_allocate(rt2x00dev);
1144 if (retval)
1145 goto exit;
1146
1147 /*
1148 * Initialize ieee80211 structure.
1149 */
1150 retval = rt2x00lib_probe_hw(rt2x00dev);
1151 if (retval) {
1152 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1153 goto exit;
1154 }
1155
1156 /*
1157 * Register extra components.
1158 */
1159 rt2x00leds_register(rt2x00dev);
1160 rt2x00rfkill_allocate(rt2x00dev);
1161 rt2x00debug_register(rt2x00dev);
1162
1163 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1164
1165 return 0;
1166
1167 exit:
1168 rt2x00lib_remove_dev(rt2x00dev);
1169
1170 return retval;
1171 }
1172 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1173
1174 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1175 {
1176 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1177
1178 /*
1179 * Disable radio.
1180 */
1181 rt2x00lib_disable_radio(rt2x00dev);
1182
1183 /*
1184 * Uninitialize device.
1185 */
1186 rt2x00lib_uninitialize(rt2x00dev);
1187
1188 /*
1189 * Free extra components
1190 */
1191 rt2x00debug_deregister(rt2x00dev);
1192 rt2x00rfkill_free(rt2x00dev);
1193 rt2x00leds_unregister(rt2x00dev);
1194
1195 /*
1196 * Free ieee80211_hw memory.
1197 */
1198 rt2x00lib_remove_hw(rt2x00dev);
1199
1200 /*
1201 * Free firmware image.
1202 */
1203 rt2x00lib_free_firmware(rt2x00dev);
1204
1205 /*
1206 * Free queue structures.
1207 */
1208 rt2x00queue_free(rt2x00dev);
1209 }
1210 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1211
1212 /*
1213 * Device state handlers
1214 */
1215 #ifdef CONFIG_PM
1216 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1217 {
1218 int retval;
1219
1220 NOTICE(rt2x00dev, "Going to sleep.\n");
1221 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1222
1223 /*
1224 * Only continue if mac80211 has open interfaces.
1225 */
1226 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1227 goto exit;
1228 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1229
1230 /*
1231 * Disable radio.
1232 */
1233 rt2x00lib_stop(rt2x00dev);
1234 rt2x00lib_uninitialize(rt2x00dev);
1235
1236 /*
1237 * Suspend/disable extra components.
1238 */
1239 rt2x00leds_suspend(rt2x00dev);
1240 rt2x00rfkill_suspend(rt2x00dev);
1241 rt2x00debug_deregister(rt2x00dev);
1242
1243 exit:
1244 /*
1245 * Set device mode to sleep for power management,
1246 * on some hardware this call seems to consistently fail.
1247 * From the specifications it is hard to tell why it fails,
1248 * and if this is a "bad thing".
1249 * Overall it is safe to just ignore the failure and
1250 * continue suspending. The only downside is that the
1251 * device will not be in optimal power save mode, but with
1252 * the radio and the other components already disabled the
1253 * device is as good as disabled.
1254 */
1255 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1256 if (retval)
1257 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1258 "continue suspending.\n");
1259
1260 return 0;
1261 }
1262 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1263
1264 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1265 struct ieee80211_vif *vif)
1266 {
1267 struct rt2x00_dev *rt2x00dev = data;
1268 struct rt2x00_intf *intf = vif_to_intf(vif);
1269
1270 spin_lock(&intf->lock);
1271
1272 rt2x00lib_config_intf(rt2x00dev, intf,
1273 vif->type, intf->mac, intf->bssid);
1274
1275
1276 /*
1277 * Master or Ad-hoc mode require a new beacon update.
1278 */
1279 if (vif->type == IEEE80211_IF_TYPE_AP ||
1280 vif->type == IEEE80211_IF_TYPE_IBSS)
1281 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1282
1283 spin_unlock(&intf->lock);
1284 }
1285
1286 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1287 {
1288 int retval;
1289
1290 NOTICE(rt2x00dev, "Waking up.\n");
1291
1292 /*
1293 * Restore/enable extra components.
1294 */
1295 rt2x00debug_register(rt2x00dev);
1296 rt2x00rfkill_resume(rt2x00dev);
1297 rt2x00leds_resume(rt2x00dev);
1298
1299 /*
1300 * Only continue if mac80211 had open interfaces.
1301 */
1302 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1303 return 0;
1304
1305 /*
1306 * Reinitialize device and all active interfaces.
1307 */
1308 retval = rt2x00lib_start(rt2x00dev);
1309 if (retval)
1310 goto exit;
1311
1312 /*
1313 * Reconfigure device.
1314 */
1315 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1316 if (!rt2x00dev->hw->conf.radio_enabled)
1317 rt2x00lib_disable_radio(rt2x00dev);
1318
1319 /*
1320 * Iterator over each active interface to
1321 * reconfigure the hardware.
1322 */
1323 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1324 rt2x00lib_resume_intf, rt2x00dev);
1325
1326 /*
1327 * We are ready again to receive requests from mac80211.
1328 */
1329 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1330
1331 /*
1332 * It is possible that during that mac80211 has attempted
1333 * to send frames while we were suspending or resuming.
1334 * In that case we have disabled the TX queue and should
1335 * now enable it again
1336 */
1337 ieee80211_start_queues(rt2x00dev->hw);
1338
1339 /*
1340 * During interface iteration we might have changed the
1341 * delayed_flags, time to handles the event by calling
1342 * the work handler directly.
1343 */
1344 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1345
1346 return 0;
1347
1348 exit:
1349 rt2x00lib_disable_radio(rt2x00dev);
1350 rt2x00lib_uninitialize(rt2x00dev);
1351 rt2x00debug_deregister(rt2x00dev);
1352
1353 return retval;
1354 }
1355 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1356 #endif /* CONFIG_PM */
1357
1358 /*
1359 * rt2x00lib module information.
1360 */
1361 MODULE_AUTHOR(DRV_PROJECT);
1362 MODULE_VERSION(DRV_VERSION);
1363 MODULE_DESCRIPTION("rt2x00 library");
1364 MODULE_LICENSE("GPL");
This page took 0.065781 seconds and 5 git commands to generate.