cfg80211 API for channels/bitrates, mac80211 and driver conversion
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34 * Link tuning handlers
35 */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39 return;
40
41 /*
42 * Reset link information.
43 * Both the currently active vgc level as well as
44 * the link tuner counter should be reset. Resetting
45 * the counter is important for devices where the
46 * device should only perform link tuning during the
47 * first minute after being enabled.
48 */
49 rt2x00dev->link.count = 0;
50 rt2x00dev->link.vgc_level = 0;
51
52 /*
53 * Reset the link tuner.
54 */
55 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60 /*
61 * Clear all (possibly) pre-existing quality statistics.
62 */
63 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65 /*
66 * The RX and TX percentage should start at 50%
67 * this will assure we will get at least get some
68 * decent value when the link tuner starts.
69 * The value will be dropped and overwritten with
70 * the correct (measured )value anyway during the
71 * first run of the link tuner.
72 */
73 rt2x00dev->link.qual.rx_percentage = 50;
74 rt2x00dev->link.qual.tx_percentage = 50;
75
76 rt2x00lib_reset_link_tuner(rt2x00dev);
77
78 queue_delayed_work(rt2x00dev->hw->workqueue,
79 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84 cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88 * Radio control handlers.
89 */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92 int status;
93
94 /*
95 * Don't enable the radio twice.
96 * And check if the hardware button has been disabled.
97 */
98 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100 return 0;
101
102 /*
103 * Initialize all data queues.
104 */
105 rt2x00queue_init_rx(rt2x00dev);
106 rt2x00queue_init_tx(rt2x00dev);
107
108 /*
109 * Enable radio.
110 */
111 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
112 STATE_RADIO_ON);
113 if (status)
114 return status;
115
116 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
117
118 /*
119 * Enable RX.
120 */
121 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
122
123 /*
124 * Start the TX queues.
125 */
126 ieee80211_start_queues(rt2x00dev->hw);
127
128 return 0;
129 }
130
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
132 {
133 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
134 return;
135
136 /*
137 * Stop all scheduled work.
138 */
139 if (work_pending(&rt2x00dev->intf_work))
140 cancel_work_sync(&rt2x00dev->intf_work);
141 if (work_pending(&rt2x00dev->filter_work))
142 cancel_work_sync(&rt2x00dev->filter_work);
143
144 /*
145 * Stop the TX queues.
146 */
147 ieee80211_stop_queues(rt2x00dev->hw);
148
149 /*
150 * Disable RX.
151 */
152 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
153
154 /*
155 * Disable radio.
156 */
157 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
158 }
159
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
161 {
162 /*
163 * When we are disabling the RX, we should also stop the link tuner.
164 */
165 if (state == STATE_RADIO_RX_OFF)
166 rt2x00lib_stop_link_tuner(rt2x00dev);
167
168 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
169
170 /*
171 * When we are enabling the RX, we should also start the link tuner.
172 */
173 if (state == STATE_RADIO_RX_ON &&
174 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175 rt2x00lib_start_link_tuner(rt2x00dev);
176 }
177
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
179 {
180 enum antenna rx = rt2x00dev->link.ant.active.rx;
181 enum antenna tx = rt2x00dev->link.ant.active.tx;
182 int sample_a =
183 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
184 int sample_b =
185 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
186
187 /*
188 * We are done sampling. Now we should evaluate the results.
189 */
190 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
191
192 /*
193 * During the last period we have sampled the RSSI
194 * from both antenna's. It now is time to determine
195 * which antenna demonstrated the best performance.
196 * When we are already on the antenna with the best
197 * performance, then there really is nothing for us
198 * left to do.
199 */
200 if (sample_a == sample_b)
201 return;
202
203 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205
206 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
210 }
211
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
213 {
214 enum antenna rx = rt2x00dev->link.ant.active.rx;
215 enum antenna tx = rt2x00dev->link.ant.active.tx;
216 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
218
219 /*
220 * Legacy driver indicates that we should swap antenna's
221 * when the difference in RSSI is greater that 5. This
222 * also should be done when the RSSI was actually better
223 * then the previous sample.
224 * When the difference exceeds the threshold we should
225 * sample the rssi from the other antenna to make a valid
226 * comparison between the 2 antennas.
227 */
228 if (abs(rssi_curr - rssi_old) < 5)
229 return;
230
231 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
232
233 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
235
236 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
240 }
241
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
243 {
244 /*
245 * Determine if software diversity is enabled for
246 * either the TX or RX antenna (or both).
247 * Always perform this check since within the link
248 * tuner interval the configuration might have changed.
249 */
250 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
252
253 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
259
260 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262 rt2x00dev->link.ant.flags = 0;
263 return;
264 }
265
266 /*
267 * If we have only sampled the data over the last period
268 * we should now harvest the data. Otherwise just evaluate
269 * the data. The latter should only be performed once
270 * every 2 seconds.
271 */
272 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274 else if (rt2x00dev->link.count & 1)
275 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
276 }
277
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
279 {
280 int avg_rssi = rssi;
281
282 /*
283 * Update global RSSI
284 */
285 if (link->qual.avg_rssi)
286 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287 link->qual.avg_rssi = avg_rssi;
288
289 /*
290 * Update antenna RSSI
291 */
292 if (link->ant.rssi_ant)
293 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294 link->ant.rssi_ant = rssi;
295 }
296
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
298 {
299 if (qual->rx_failed || qual->rx_success)
300 qual->rx_percentage =
301 (qual->rx_success * 100) /
302 (qual->rx_failed + qual->rx_success);
303 else
304 qual->rx_percentage = 50;
305
306 if (qual->tx_failed || qual->tx_success)
307 qual->tx_percentage =
308 (qual->tx_success * 100) /
309 (qual->tx_failed + qual->tx_success);
310 else
311 qual->tx_percentage = 50;
312
313 qual->rx_success = 0;
314 qual->rx_failed = 0;
315 qual->tx_success = 0;
316 qual->tx_failed = 0;
317 }
318
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
320 int rssi)
321 {
322 int rssi_percentage = 0;
323 int signal;
324
325 /*
326 * We need a positive value for the RSSI.
327 */
328 if (rssi < 0)
329 rssi += rt2x00dev->rssi_offset;
330
331 /*
332 * Calculate the different percentages,
333 * which will be used for the signal.
334 */
335 if (rt2x00dev->rssi_offset)
336 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
337
338 /*
339 * Add the individual percentages and use the WEIGHT
340 * defines to calculate the current link signal.
341 */
342 signal = ((WEIGHT_RSSI * rssi_percentage) +
343 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
345
346 return (signal > 100) ? 100 : signal;
347 }
348
349 static void rt2x00lib_link_tuner(struct work_struct *work)
350 {
351 struct rt2x00_dev *rt2x00dev =
352 container_of(work, struct rt2x00_dev, link.work.work);
353
354 /*
355 * When the radio is shutting down we should
356 * immediately cease all link tuning.
357 */
358 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
359 return;
360
361 /*
362 * Update statistics.
363 */
364 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366 rt2x00dev->link.qual.rx_failed;
367
368 /*
369 * Only perform the link tuning when Link tuning
370 * has been enabled (This could have been disabled from the EEPROM).
371 */
372 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
374
375 /*
376 * Precalculate a portion of the link signal which is
377 * in based on the tx/rx success/failure counters.
378 */
379 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
380
381 /*
382 * Evaluate antenna setup, make this the last step since this could
383 * possibly reset some statistics.
384 */
385 rt2x00lib_evaluate_antenna(rt2x00dev);
386
387 /*
388 * Increase tuner counter, and reschedule the next link tuner run.
389 */
390 rt2x00dev->link.count++;
391 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
392 LINK_TUNE_INTERVAL);
393 }
394
395 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
396 {
397 struct rt2x00_dev *rt2x00dev =
398 container_of(work, struct rt2x00_dev, filter_work);
399 unsigned int filter = rt2x00dev->packet_filter;
400
401 /*
402 * Since we had stored the filter inside rt2x00dev->packet_filter,
403 * we should now clear that field. Otherwise the driver will
404 * assume nothing has changed (*total_flags will be compared
405 * to rt2x00dev->packet_filter to determine if any action is required).
406 */
407 rt2x00dev->packet_filter = 0;
408
409 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
410 filter, &filter, 0, NULL);
411 }
412
413 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
414 struct ieee80211_vif *vif)
415 {
416 struct rt2x00_dev *rt2x00dev = data;
417 struct rt2x00_intf *intf = vif_to_intf(vif);
418 struct sk_buff *skb;
419 struct ieee80211_tx_control control;
420 struct ieee80211_bss_conf conf;
421 int delayed_flags;
422
423 /*
424 * Copy all data we need during this action under the protection
425 * of a spinlock. Otherwise race conditions might occur which results
426 * into an invalid configuration.
427 */
428 spin_lock(&intf->lock);
429
430 memcpy(&conf, &intf->conf, sizeof(conf));
431 delayed_flags = intf->delayed_flags;
432 intf->delayed_flags = 0;
433
434 spin_unlock(&intf->lock);
435
436 if (delayed_flags & DELAYED_UPDATE_BEACON) {
437 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
438 if (skb) {
439 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
440 &control);
441 dev_kfree_skb(skb);
442 }
443 }
444
445 if (delayed_flags & DELAYED_CONFIG_PREAMBLE)
446 rt2x00lib_config_preamble(rt2x00dev, intf,
447 intf->conf.use_short_preamble);
448 }
449
450 static void rt2x00lib_intf_scheduled(struct work_struct *work)
451 {
452 struct rt2x00_dev *rt2x00dev =
453 container_of(work, struct rt2x00_dev, intf_work);
454
455 /*
456 * Iterate over each interface and perform the
457 * requested configurations.
458 */
459 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
460 rt2x00lib_intf_scheduled_iter,
461 rt2x00dev);
462 }
463
464 /*
465 * Interrupt context handlers.
466 */
467 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
468 struct ieee80211_vif *vif)
469 {
470 struct rt2x00_intf *intf = vif_to_intf(vif);
471
472 if (vif->type != IEEE80211_IF_TYPE_AP &&
473 vif->type != IEEE80211_IF_TYPE_IBSS)
474 return;
475
476 spin_lock(&intf->lock);
477 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
478 spin_unlock(&intf->lock);
479 }
480
481 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
482 {
483 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
484 return;
485
486 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
487 rt2x00lib_beacondone_iter,
488 rt2x00dev);
489
490 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
491 }
492 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
493
494 void rt2x00lib_txdone(struct queue_entry *entry,
495 struct txdone_entry_desc *txdesc)
496 {
497 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
498 struct ieee80211_tx_status tx_status;
499 int success = !!(txdesc->status == TX_SUCCESS ||
500 txdesc->status == TX_SUCCESS_RETRY);
501 int fail = !!(txdesc->status == TX_FAIL_RETRY ||
502 txdesc->status == TX_FAIL_INVALID ||
503 txdesc->status == TX_FAIL_OTHER);
504
505 /*
506 * Update TX statistics.
507 */
508 rt2x00dev->link.qual.tx_success += success;
509 rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
510
511 /*
512 * Initialize TX status
513 */
514 tx_status.flags = 0;
515 tx_status.ack_signal = 0;
516 tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
517 tx_status.retry_count = txdesc->retry;
518 memcpy(&tx_status.control, txdesc->control, sizeof(txdesc->control));
519
520 if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
521 if (success)
522 tx_status.flags |= IEEE80211_TX_STATUS_ACK;
523 else
524 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
525 }
526
527 tx_status.queue_length = entry->queue->limit;
528 tx_status.queue_number = tx_status.control.queue;
529
530 if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
531 if (success)
532 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
533 else
534 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
535 }
536
537 /*
538 * Send the tx_status to mac80211 & debugfs.
539 * mac80211 will clean up the skb structure.
540 */
541 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
542 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
543 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, &tx_status);
544 entry->skb = NULL;
545 }
546 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
547
548 void rt2x00lib_rxdone(struct queue_entry *entry,
549 struct rxdone_entry_desc *rxdesc)
550 {
551 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
552 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
553 struct ieee80211_supported_band *sband;
554 struct ieee80211_rate *rate;
555 struct ieee80211_hdr *hdr;
556 unsigned int i;
557 int val = 0, idx = -1;
558 u16 fc;
559
560 /*
561 * Update RX statistics.
562 */
563 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
564 for (i = 0; i < sband->n_bitrates; i++) {
565 rate = &sband->bitrates[i];
566
567 /*
568 * When frame was received with an OFDM bitrate,
569 * the signal is the PLCP value. If it was received with
570 * a CCK bitrate the signal is the rate in 0.5kbit/s.
571 */
572 if (!rxdesc->ofdm)
573 val = DEVICE_GET_RATE_FIELD(rate->hw_value, RATE);
574 else
575 val = DEVICE_GET_RATE_FIELD(rate->hw_value, PLCP);
576
577 if (val == rxdesc->signal) {
578 idx = i;
579 break;
580 }
581 }
582
583 /*
584 * Only update link status if this is a beacon frame carrying our bssid.
585 */
586 hdr = (struct ieee80211_hdr*)entry->skb->data;
587 fc = le16_to_cpu(hdr->frame_control);
588 if (is_beacon(fc) && rxdesc->my_bss)
589 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
590
591 rt2x00dev->link.qual.rx_success++;
592
593 rx_status->rate_idx = idx;
594 rx_status->signal =
595 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
596 rx_status->ssi = rxdesc->rssi;
597 rx_status->flag = rxdesc->flags;
598 rx_status->antenna = rt2x00dev->link.ant.active.rx;
599
600 /*
601 * Send frame to mac80211 & debugfs.
602 * mac80211 will clean up the skb structure.
603 */
604 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
605 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
606 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
607 entry->skb = NULL;
608 }
609 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
610
611 /*
612 * TX descriptor initializer
613 */
614 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
615 struct sk_buff *skb,
616 struct ieee80211_tx_control *control)
617 {
618 struct txentry_desc txdesc;
619 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
620 struct ieee80211_hdr *ieee80211hdr = (struct ieee80211_hdr *)skb->data;
621 int tx_rate;
622 int bitrate;
623 int length;
624 int duration;
625 int residual;
626 u16 frame_control;
627 u16 seq_ctrl;
628
629 memset(&txdesc, 0, sizeof(txdesc));
630
631 txdesc.queue = skbdesc->entry->queue->qid;
632 txdesc.cw_min = skbdesc->entry->queue->cw_min;
633 txdesc.cw_max = skbdesc->entry->queue->cw_max;
634 txdesc.aifs = skbdesc->entry->queue->aifs;
635
636 /*
637 * Read required fields from ieee80211 header.
638 */
639 frame_control = le16_to_cpu(ieee80211hdr->frame_control);
640 seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
641
642 tx_rate = control->tx_rate->hw_value;
643
644 /*
645 * Check whether this frame is to be acked
646 */
647 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
648 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
649
650 /*
651 * Check if this is a RTS/CTS frame
652 */
653 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
654 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
655 if (is_rts_frame(frame_control)) {
656 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
657 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
658 } else
659 __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
660 if (control->rts_cts_rate)
661 tx_rate = control->rts_cts_rate->hw_value;
662 }
663
664 /*
665 * Check for OFDM
666 */
667 if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
668 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
669
670 /*
671 * Check if more fragments are pending
672 */
673 if (ieee80211_get_morefrag(ieee80211hdr)) {
674 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
675 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
676 }
677
678 /*
679 * Beacons and probe responses require the tsf timestamp
680 * to be inserted into the frame.
681 */
682 if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
683 is_probe_resp(frame_control))
684 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
685
686 /*
687 * Determine with what IFS priority this frame should be send.
688 * Set ifs to IFS_SIFS when the this is not the first fragment,
689 * or this fragment came after RTS/CTS.
690 */
691 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
692 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
693 txdesc.ifs = IFS_SIFS;
694 else
695 txdesc.ifs = IFS_BACKOFF;
696
697 /*
698 * PLCP setup
699 * Length calculation depends on OFDM/CCK rate.
700 */
701 txdesc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
702 txdesc.service = 0x04;
703
704 length = skb->len + FCS_LEN;
705 if (test_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags)) {
706 txdesc.length_high = (length >> 6) & 0x3f;
707 txdesc.length_low = length & 0x3f;
708 } else {
709 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
710
711 /*
712 * Convert length to microseconds.
713 */
714 residual = get_duration_res(length, bitrate);
715 duration = get_duration(length, bitrate);
716
717 if (residual != 0) {
718 duration++;
719
720 /*
721 * Check if we need to set the Length Extension
722 */
723 if (bitrate == 110 && residual <= 30)
724 txdesc.service |= 0x80;
725 }
726
727 txdesc.length_high = (duration >> 8) & 0xff;
728 txdesc.length_low = duration & 0xff;
729
730 /*
731 * When preamble is enabled we should set the
732 * preamble bit for the signal.
733 */
734 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
735 txdesc.signal |= 0x08;
736 }
737
738 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
739
740 /*
741 * Update queue entry.
742 */
743 skbdesc->entry->skb = skb;
744
745 /*
746 * The frame has been completely initialized and ready
747 * for sending to the device. The caller will push the
748 * frame to the device, but we are going to push the
749 * frame to debugfs here.
750 */
751 skbdesc->frame_type = DUMP_FRAME_TX;
752 rt2x00debug_dump_frame(rt2x00dev, skb);
753 }
754 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
755
756 /*
757 * Driver initialization handlers.
758 */
759 static void rt2x00lib_channel(struct ieee80211_channel *entry,
760 const int channel, const int tx_power,
761 const int value)
762 {
763 if (channel <= 14)
764 entry->center_freq = 2407 + (5 * channel);
765 else
766 entry->center_freq = 5000 + (5 * channel);
767 entry->hw_value = value;
768 entry->max_power = tx_power;
769 entry->max_antenna_gain = 0xff;
770 }
771
772 static void rt2x00lib_rate(struct ieee80211_rate *entry,
773 const int rate, const int mask,
774 const int plcp, const int flags)
775 {
776 entry->bitrate = rate;
777 entry->hw_value =
778 DEVICE_SET_RATE_FIELD(rate, RATE) |
779 DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
780 DEVICE_SET_RATE_FIELD(plcp, PLCP);
781 entry->flags = flags;
782 entry->hw_value_short = entry->hw_value;
783 if (entry->flags & IEEE80211_RATE_SHORT_PREAMBLE)
784 entry->hw_value_short |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
785 }
786
787 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
788 struct hw_mode_spec *spec)
789 {
790 struct ieee80211_hw *hw = rt2x00dev->hw;
791 struct ieee80211_supported_band *sbands;
792 struct ieee80211_channel *channels;
793 struct ieee80211_rate *rates;
794 unsigned int i;
795 unsigned char tx_power;
796
797 sbands = &rt2x00dev->bands[0];
798
799 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
800 if (!channels)
801 return -ENOMEM;
802
803 rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
804 if (!rates)
805 goto exit_free_channels;
806
807 /*
808 * Initialize Rate list.
809 */
810 rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
811 0x00, 0);
812 rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
813 0x01, IEEE80211_RATE_SHORT_PREAMBLE);
814 rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
815 0x02, IEEE80211_RATE_SHORT_PREAMBLE);
816 rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
817 0x03, IEEE80211_RATE_SHORT_PREAMBLE);
818
819 if (spec->num_rates > 4) {
820 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
821 0x0b, 0);
822 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
823 0x0f, 0);
824 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
825 0x0a, 0);
826 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
827 0x0e, 0);
828 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
829 0x09, 0);
830 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
831 0x0d, 0);
832 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
833 0x08, 0);
834 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
835 0x0c, 0);
836 }
837
838 /*
839 * Initialize Channel list.
840 */
841 for (i = 0; i < spec->num_channels; i++) {
842 if (spec->channels[i].channel <= 14)
843 tx_power = spec->tx_power_bg[i];
844 else if (spec->tx_power_a)
845 tx_power = spec->tx_power_a[i];
846 else
847 tx_power = spec->tx_power_default;
848
849 rt2x00lib_channel(&channels[i],
850 spec->channels[i].channel, tx_power, i);
851 }
852
853 /*
854 * Intitialize 802.11b
855 * Rates: CCK.
856 * Channels: 2.4 GHz
857 */
858 if (spec->num_modes > HWMODE_B) {
859 sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
860 sbands[IEEE80211_BAND_2GHZ].n_bitrates = 4;
861 sbands[IEEE80211_BAND_2GHZ].channels = channels;
862 sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
863 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
864 }
865
866 /*
867 * Intitialize 802.11g
868 * Rates: CCK, OFDM.
869 * Channels: 2.4 GHz
870 */
871 if (spec->num_modes > HWMODE_G) {
872 sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
873 sbands[IEEE80211_BAND_2GHZ].n_bitrates = spec->num_rates;
874 sbands[IEEE80211_BAND_2GHZ].channels = channels;
875 sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
876 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
877 }
878
879 /*
880 * Intitialize 802.11a
881 * Rates: OFDM.
882 * Channels: OFDM, UNII, HiperLAN2.
883 */
884 if (spec->num_modes > HWMODE_A) {
885 sbands[IEEE80211_BAND_5GHZ].n_channels = spec->num_channels - 14;
886 sbands[IEEE80211_BAND_5GHZ].n_bitrates = spec->num_rates - 4;
887 sbands[IEEE80211_BAND_5GHZ].channels = &channels[14];
888 sbands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
889 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
890 }
891
892 return 0;
893
894 exit_free_channels:
895 kfree(channels);
896 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
897 return -ENOMEM;
898 }
899
900 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
901 {
902 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
903 ieee80211_unregister_hw(rt2x00dev->hw);
904
905 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
906 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
907 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
908 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
909 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
910 }
911 }
912
913 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
914 {
915 struct hw_mode_spec *spec = &rt2x00dev->spec;
916 int status;
917
918 /*
919 * Initialize HW modes.
920 */
921 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
922 if (status)
923 return status;
924
925 /*
926 * Register HW.
927 */
928 status = ieee80211_register_hw(rt2x00dev->hw);
929 if (status) {
930 rt2x00lib_remove_hw(rt2x00dev);
931 return status;
932 }
933
934 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
935
936 return 0;
937 }
938
939 /*
940 * Initialization/uninitialization handlers.
941 */
942 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
943 {
944 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
945 return;
946
947 /*
948 * Unregister rfkill.
949 */
950 rt2x00rfkill_unregister(rt2x00dev);
951
952 /*
953 * Allow the HW to uninitialize.
954 */
955 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
956
957 /*
958 * Free allocated queue entries.
959 */
960 rt2x00queue_uninitialize(rt2x00dev);
961 }
962
963 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
964 {
965 int status;
966
967 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
968 return 0;
969
970 /*
971 * Allocate all queue entries.
972 */
973 status = rt2x00queue_initialize(rt2x00dev);
974 if (status)
975 return status;
976
977 /*
978 * Initialize the device.
979 */
980 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
981 if (status)
982 goto exit;
983
984 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
985
986 /*
987 * Register the rfkill handler.
988 */
989 status = rt2x00rfkill_register(rt2x00dev);
990 if (status)
991 goto exit;
992
993 return 0;
994
995 exit:
996 rt2x00lib_uninitialize(rt2x00dev);
997
998 return status;
999 }
1000
1001 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1002 {
1003 int retval;
1004
1005 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1006 return 0;
1007
1008 /*
1009 * If this is the first interface which is added,
1010 * we should load the firmware now.
1011 */
1012 retval = rt2x00lib_load_firmware(rt2x00dev);
1013 if (retval)
1014 return retval;
1015
1016 /*
1017 * Initialize the device.
1018 */
1019 retval = rt2x00lib_initialize(rt2x00dev);
1020 if (retval)
1021 return retval;
1022
1023 /*
1024 * Enable radio.
1025 */
1026 retval = rt2x00lib_enable_radio(rt2x00dev);
1027 if (retval) {
1028 rt2x00lib_uninitialize(rt2x00dev);
1029 return retval;
1030 }
1031
1032 rt2x00dev->intf_ap_count = 0;
1033 rt2x00dev->intf_sta_count = 0;
1034 rt2x00dev->intf_associated = 0;
1035
1036 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1037
1038 return 0;
1039 }
1040
1041 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1042 {
1043 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1044 return;
1045
1046 /*
1047 * Perhaps we can add something smarter here,
1048 * but for now just disabling the radio should do.
1049 */
1050 rt2x00lib_disable_radio(rt2x00dev);
1051
1052 rt2x00dev->intf_ap_count = 0;
1053 rt2x00dev->intf_sta_count = 0;
1054 rt2x00dev->intf_associated = 0;
1055
1056 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1057 }
1058
1059 /*
1060 * driver allocation handlers.
1061 */
1062 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1063 {
1064 int retval = -ENOMEM;
1065
1066 /*
1067 * Make room for rt2x00_intf inside the per-interface
1068 * structure ieee80211_vif.
1069 */
1070 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1071
1072 /*
1073 * Let the driver probe the device to detect the capabilities.
1074 */
1075 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1076 if (retval) {
1077 ERROR(rt2x00dev, "Failed to allocate device.\n");
1078 goto exit;
1079 }
1080
1081 /*
1082 * Initialize configuration work.
1083 */
1084 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1085 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1086 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1087
1088 /*
1089 * Allocate queue array.
1090 */
1091 retval = rt2x00queue_allocate(rt2x00dev);
1092 if (retval)
1093 goto exit;
1094
1095 /*
1096 * Initialize ieee80211 structure.
1097 */
1098 retval = rt2x00lib_probe_hw(rt2x00dev);
1099 if (retval) {
1100 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1101 goto exit;
1102 }
1103
1104 /*
1105 * Allocatie rfkill.
1106 */
1107 retval = rt2x00rfkill_allocate(rt2x00dev);
1108 if (retval)
1109 goto exit;
1110
1111 /*
1112 * Open the debugfs entry.
1113 */
1114 rt2x00debug_register(rt2x00dev);
1115
1116 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1117
1118 return 0;
1119
1120 exit:
1121 rt2x00lib_remove_dev(rt2x00dev);
1122
1123 return retval;
1124 }
1125 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1126
1127 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1128 {
1129 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1130
1131 /*
1132 * Disable radio.
1133 */
1134 rt2x00lib_disable_radio(rt2x00dev);
1135
1136 /*
1137 * Uninitialize device.
1138 */
1139 rt2x00lib_uninitialize(rt2x00dev);
1140
1141 /*
1142 * Close debugfs entry.
1143 */
1144 rt2x00debug_deregister(rt2x00dev);
1145
1146 /*
1147 * Free rfkill
1148 */
1149 rt2x00rfkill_free(rt2x00dev);
1150
1151 /*
1152 * Free ieee80211_hw memory.
1153 */
1154 rt2x00lib_remove_hw(rt2x00dev);
1155
1156 /*
1157 * Free firmware image.
1158 */
1159 rt2x00lib_free_firmware(rt2x00dev);
1160
1161 /*
1162 * Free queue structures.
1163 */
1164 rt2x00queue_free(rt2x00dev);
1165 }
1166 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1167
1168 /*
1169 * Device state handlers
1170 */
1171 #ifdef CONFIG_PM
1172 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1173 {
1174 int retval;
1175
1176 NOTICE(rt2x00dev, "Going to sleep.\n");
1177 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1178
1179 /*
1180 * Only continue if mac80211 has open interfaces.
1181 */
1182 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1183 goto exit;
1184 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1185
1186 /*
1187 * Disable radio and unitialize all items
1188 * that must be recreated on resume.
1189 */
1190 rt2x00lib_stop(rt2x00dev);
1191 rt2x00lib_uninitialize(rt2x00dev);
1192 rt2x00debug_deregister(rt2x00dev);
1193
1194 exit:
1195 /*
1196 * Set device mode to sleep for power management.
1197 */
1198 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1199 if (retval)
1200 return retval;
1201
1202 return 0;
1203 }
1204 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1205
1206 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1207 struct ieee80211_vif *vif)
1208 {
1209 struct rt2x00_dev *rt2x00dev = data;
1210 struct rt2x00_intf *intf = vif_to_intf(vif);
1211
1212 spin_lock(&intf->lock);
1213
1214 rt2x00lib_config_intf(rt2x00dev, intf,
1215 vif->type, intf->mac, intf->bssid);
1216
1217
1218 /*
1219 * Master or Ad-hoc mode require a new beacon update.
1220 */
1221 if (vif->type == IEEE80211_IF_TYPE_AP ||
1222 vif->type == IEEE80211_IF_TYPE_IBSS)
1223 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1224
1225 spin_unlock(&intf->lock);
1226 }
1227
1228 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1229 {
1230 int retval;
1231
1232 NOTICE(rt2x00dev, "Waking up.\n");
1233
1234 /*
1235 * Open the debugfs entry.
1236 */
1237 rt2x00debug_register(rt2x00dev);
1238
1239 /*
1240 * Only continue if mac80211 had open interfaces.
1241 */
1242 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1243 return 0;
1244
1245 /*
1246 * Reinitialize device and all active interfaces.
1247 */
1248 retval = rt2x00lib_start(rt2x00dev);
1249 if (retval)
1250 goto exit;
1251
1252 /*
1253 * Reconfigure device.
1254 */
1255 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1256 if (!rt2x00dev->hw->conf.radio_enabled)
1257 rt2x00lib_disable_radio(rt2x00dev);
1258
1259 /*
1260 * Iterator over each active interface to
1261 * reconfigure the hardware.
1262 */
1263 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1264 rt2x00lib_resume_intf, rt2x00dev);
1265
1266 /*
1267 * We are ready again to receive requests from mac80211.
1268 */
1269 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1270
1271 /*
1272 * It is possible that during that mac80211 has attempted
1273 * to send frames while we were suspending or resuming.
1274 * In that case we have disabled the TX queue and should
1275 * now enable it again
1276 */
1277 ieee80211_start_queues(rt2x00dev->hw);
1278
1279 /*
1280 * During interface iteration we might have changed the
1281 * delayed_flags, time to handles the event by calling
1282 * the work handler directly.
1283 */
1284 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1285
1286 return 0;
1287
1288 exit:
1289 rt2x00lib_disable_radio(rt2x00dev);
1290 rt2x00lib_uninitialize(rt2x00dev);
1291 rt2x00debug_deregister(rt2x00dev);
1292
1293 return retval;
1294 }
1295 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1296 #endif /* CONFIG_PM */
1297
1298 /*
1299 * rt2x00lib module information.
1300 */
1301 MODULE_AUTHOR(DRV_PROJECT);
1302 MODULE_VERSION(DRV_VERSION);
1303 MODULE_DESCRIPTION("rt2x00 library");
1304 MODULE_LICENSE("GPL");
This page took 0.158765 seconds and 5 git commands to generate.