ar9170: cleanup of bss_info_changed and beacon config
[deliverable/linux.git] / drivers / net / wireless / wavelan.c
1 /*
2 * WaveLAN ISA driver
3 *
4 * Jean II - HPLB '96
5 *
6 * Reorganisation and extension of the driver.
7 * Original copyright follows (also see the end of this file).
8 * See wavelan.p.h for details.
9 *
10 *
11 *
12 * AT&T GIS (nee NCR) WaveLAN card:
13 * An Ethernet-like radio transceiver
14 * controlled by an Intel 82586 coprocessor.
15 */
16
17 #include "wavelan.p.h" /* Private header */
18
19 /************************* MISC SUBROUTINES **************************/
20 /*
21 * Subroutines which won't fit in one of the following category
22 * (WaveLAN modem or i82586)
23 */
24
25 /*------------------------------------------------------------------*/
26 /*
27 * Translate irq number to PSA irq parameter
28 */
29 static u8 wv_irq_to_psa(int irq)
30 {
31 if (irq < 0 || irq >= ARRAY_SIZE(irqvals))
32 return 0;
33
34 return irqvals[irq];
35 }
36
37 /*------------------------------------------------------------------*/
38 /*
39 * Translate PSA irq parameter to irq number
40 */
41 static int __init wv_psa_to_irq(u8 irqval)
42 {
43 int i;
44
45 for (i = 0; i < ARRAY_SIZE(irqvals); i++)
46 if (irqvals[i] == irqval)
47 return i;
48
49 return -1;
50 }
51
52 /********************* HOST ADAPTER SUBROUTINES *********************/
53 /*
54 * Useful subroutines to manage the WaveLAN ISA interface
55 *
56 * One major difference with the PCMCIA hardware (except the port mapping)
57 * is that we have to keep the state of the Host Control Register
58 * because of the interrupt enable & bus size flags.
59 */
60
61 /*------------------------------------------------------------------*/
62 /*
63 * Read from card's Host Adaptor Status Register.
64 */
65 static inline u16 hasr_read(unsigned long ioaddr)
66 {
67 return (inw(HASR(ioaddr)));
68 } /* hasr_read */
69
70 /*------------------------------------------------------------------*/
71 /*
72 * Write to card's Host Adapter Command Register.
73 */
74 static inline void hacr_write(unsigned long ioaddr, u16 hacr)
75 {
76 outw(hacr, HACR(ioaddr));
77 } /* hacr_write */
78
79 /*------------------------------------------------------------------*/
80 /*
81 * Write to card's Host Adapter Command Register. Include a delay for
82 * those times when it is needed.
83 */
84 static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
85 {
86 hacr_write(ioaddr, hacr);
87 /* delay might only be needed sometimes */
88 mdelay(1);
89 } /* hacr_write_slow */
90
91 /*------------------------------------------------------------------*/
92 /*
93 * Set the channel attention bit.
94 */
95 static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
96 {
97 hacr_write(ioaddr, hacr | HACR_CA);
98 } /* set_chan_attn */
99
100 /*------------------------------------------------------------------*/
101 /*
102 * Reset, and then set host adaptor into default mode.
103 */
104 static inline void wv_hacr_reset(unsigned long ioaddr)
105 {
106 hacr_write_slow(ioaddr, HACR_RESET);
107 hacr_write(ioaddr, HACR_DEFAULT);
108 } /* wv_hacr_reset */
109
110 /*------------------------------------------------------------------*/
111 /*
112 * Set the I/O transfer over the ISA bus to 8-bit mode
113 */
114 static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
115 {
116 hacr &= ~HACR_16BITS;
117 hacr_write(ioaddr, hacr);
118 } /* wv_16_off */
119
120 /*------------------------------------------------------------------*/
121 /*
122 * Set the I/O transfer over the ISA bus to 8-bit mode
123 */
124 static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
125 {
126 hacr |= HACR_16BITS;
127 hacr_write(ioaddr, hacr);
128 } /* wv_16_on */
129
130 /*------------------------------------------------------------------*/
131 /*
132 * Disable interrupts on the WaveLAN hardware.
133 * (called by wv_82586_stop())
134 */
135 static inline void wv_ints_off(struct net_device * dev)
136 {
137 net_local *lp = netdev_priv(dev);
138 unsigned long ioaddr = dev->base_addr;
139
140 lp->hacr &= ~HACR_INTRON;
141 hacr_write(ioaddr, lp->hacr);
142 } /* wv_ints_off */
143
144 /*------------------------------------------------------------------*/
145 /*
146 * Enable interrupts on the WaveLAN hardware.
147 * (called by wv_hw_reset())
148 */
149 static inline void wv_ints_on(struct net_device * dev)
150 {
151 net_local *lp = netdev_priv(dev);
152 unsigned long ioaddr = dev->base_addr;
153
154 lp->hacr |= HACR_INTRON;
155 hacr_write(ioaddr, lp->hacr);
156 } /* wv_ints_on */
157
158 /******************* MODEM MANAGEMENT SUBROUTINES *******************/
159 /*
160 * Useful subroutines to manage the modem of the WaveLAN
161 */
162
163 /*------------------------------------------------------------------*/
164 /*
165 * Read the Parameter Storage Area from the WaveLAN card's memory
166 */
167 /*
168 * Read bytes from the PSA.
169 */
170 static void psa_read(unsigned long ioaddr, u16 hacr, int o, /* offset in PSA */
171 u8 * b, /* buffer to fill */
172 int n)
173 { /* size to read */
174 wv_16_off(ioaddr, hacr);
175
176 while (n-- > 0) {
177 outw(o, PIOR2(ioaddr));
178 o++;
179 *b++ = inb(PIOP2(ioaddr));
180 }
181
182 wv_16_on(ioaddr, hacr);
183 } /* psa_read */
184
185 /*------------------------------------------------------------------*/
186 /*
187 * Write the Parameter Storage Area to the WaveLAN card's memory.
188 */
189 static void psa_write(unsigned long ioaddr, u16 hacr, int o, /* Offset in PSA */
190 u8 * b, /* Buffer in memory */
191 int n)
192 { /* Length of buffer */
193 int count = 0;
194
195 wv_16_off(ioaddr, hacr);
196
197 while (n-- > 0) {
198 outw(o, PIOR2(ioaddr));
199 o++;
200
201 outb(*b, PIOP2(ioaddr));
202 b++;
203
204 /* Wait for the memory to finish its write cycle */
205 count = 0;
206 while ((count++ < 100) &&
207 (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
208 }
209
210 wv_16_on(ioaddr, hacr);
211 } /* psa_write */
212
213 #ifdef SET_PSA_CRC
214 /*------------------------------------------------------------------*/
215 /*
216 * Calculate the PSA CRC
217 * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
218 * NOTE: By specifying a length including the CRC position the
219 * returned value should be zero. (i.e. a correct checksum in the PSA)
220 *
221 * The Windows drivers don't use the CRC, but the AP and the PtP tool
222 * depend on it.
223 */
224 static u16 psa_crc(u8 * psa, /* The PSA */
225 int size)
226 { /* Number of short for CRC */
227 int byte_cnt; /* Loop on the PSA */
228 u16 crc_bytes = 0; /* Data in the PSA */
229 int bit_cnt; /* Loop on the bits of the short */
230
231 for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
232 crc_bytes ^= psa[byte_cnt]; /* Its an xor */
233
234 for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
235 if (crc_bytes & 0x0001)
236 crc_bytes = (crc_bytes >> 1) ^ 0xA001;
237 else
238 crc_bytes >>= 1;
239 }
240 }
241
242 return crc_bytes;
243 } /* psa_crc */
244 #endif /* SET_PSA_CRC */
245
246 /*------------------------------------------------------------------*/
247 /*
248 * update the checksum field in the Wavelan's PSA
249 */
250 static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
251 {
252 #ifdef SET_PSA_CRC
253 psa_t psa;
254 u16 crc;
255
256 /* read the parameter storage area */
257 psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
258
259 /* update the checksum */
260 crc = psa_crc((unsigned char *) &psa,
261 sizeof(psa) - sizeof(psa.psa_crc[0]) -
262 sizeof(psa.psa_crc[1])
263 - sizeof(psa.psa_crc_status));
264
265 psa.psa_crc[0] = crc & 0xFF;
266 psa.psa_crc[1] = (crc & 0xFF00) >> 8;
267
268 /* Write it ! */
269 psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
270 (unsigned char *) &psa.psa_crc, 2);
271
272 #ifdef DEBUG_IOCTL_INFO
273 printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
274 dev->name, psa.psa_crc[0], psa.psa_crc[1]);
275
276 /* Check again (luxury !) */
277 crc = psa_crc((unsigned char *) &psa,
278 sizeof(psa) - sizeof(psa.psa_crc_status));
279
280 if (crc != 0)
281 printk(KERN_WARNING
282 "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
283 dev->name);
284 #endif /* DEBUG_IOCTL_INFO */
285 #endif /* SET_PSA_CRC */
286 } /* update_psa_checksum */
287
288 /*------------------------------------------------------------------*/
289 /*
290 * Write 1 byte to the MMC.
291 */
292 static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
293 {
294 int count = 0;
295
296 /* Wait for MMC to go idle */
297 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
298 udelay(10);
299
300 outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
301 }
302
303 /*------------------------------------------------------------------*/
304 /*
305 * Routine to write bytes to the Modem Management Controller.
306 * We start at the end because it is the way it should be!
307 */
308 static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
309 {
310 o += n;
311 b += n;
312
313 while (n-- > 0)
314 mmc_out(ioaddr, --o, *(--b));
315 } /* mmc_write */
316
317 /*------------------------------------------------------------------*/
318 /*
319 * Read a byte from the MMC.
320 * Optimised version for 1 byte, avoid using memory.
321 */
322 static u8 mmc_in(unsigned long ioaddr, u16 o)
323 {
324 int count = 0;
325
326 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
327 udelay(10);
328 outw(o << 1, MMCR(ioaddr));
329
330 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
331 udelay(10);
332 return (u8) (inw(MMCR(ioaddr)) >> 8);
333 }
334
335 /*------------------------------------------------------------------*/
336 /*
337 * Routine to read bytes from the Modem Management Controller.
338 * The implementation is complicated by a lack of address lines,
339 * which prevents decoding of the low-order bit.
340 * (code has just been moved in the above function)
341 * We start at the end because it is the way it should be!
342 */
343 static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
344 {
345 o += n;
346 b += n;
347
348 while (n-- > 0)
349 *(--b) = mmc_in(ioaddr, --o);
350 } /* mmc_read */
351
352 /*------------------------------------------------------------------*/
353 /*
354 * Get the type of encryption available.
355 */
356 static inline int mmc_encr(unsigned long ioaddr)
357 { /* I/O port of the card */
358 int temp;
359
360 temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
361 if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
362 return 0;
363 else
364 return temp;
365 }
366
367 /*------------------------------------------------------------------*/
368 /*
369 * Wait for the frequency EEPROM to complete a command.
370 * I hope this one will be optimally inlined.
371 */
372 static inline void fee_wait(unsigned long ioaddr, /* I/O port of the card */
373 int delay, /* Base delay to wait for */
374 int number)
375 { /* Number of time to wait */
376 int count = 0; /* Wait only a limited time */
377
378 while ((count++ < number) &&
379 (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
380 MMR_FEE_STATUS_BUSY)) udelay(delay);
381 }
382
383 /*------------------------------------------------------------------*/
384 /*
385 * Read bytes from the Frequency EEPROM (frequency select cards).
386 */
387 static void fee_read(unsigned long ioaddr, /* I/O port of the card */
388 u16 o, /* destination offset */
389 u16 * b, /* data buffer */
390 int n)
391 { /* number of registers */
392 b += n; /* Position at the end of the area */
393
394 /* Write the address */
395 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
396
397 /* Loop on all buffer */
398 while (n-- > 0) {
399 /* Write the read command */
400 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
401 MMW_FEE_CTRL_READ);
402
403 /* Wait until EEPROM is ready (should be quick). */
404 fee_wait(ioaddr, 10, 100);
405
406 /* Read the value. */
407 *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
408 mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
409 }
410 }
411
412
413 /*------------------------------------------------------------------*/
414 /*
415 * Write bytes from the Frequency EEPROM (frequency select cards).
416 * This is a bit complicated, because the frequency EEPROM has to
417 * be unprotected and the write enabled.
418 * Jean II
419 */
420 static void fee_write(unsigned long ioaddr, /* I/O port of the card */
421 u16 o, /* destination offset */
422 u16 * b, /* data buffer */
423 int n)
424 { /* number of registers */
425 b += n; /* Position at the end of the area. */
426
427 #ifdef EEPROM_IS_PROTECTED /* disabled */
428 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
429 /* Ask to read the protected register */
430 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
431
432 fee_wait(ioaddr, 10, 100);
433
434 /* Read the protected register. */
435 printk("Protected 2: %02X-%02X\n",
436 mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
437 mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
438 #endif /* DOESNT_SEEM_TO_WORK */
439
440 /* Enable protected register. */
441 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
442 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
443
444 fee_wait(ioaddr, 10, 100);
445
446 /* Unprotect area. */
447 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
448 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
449 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
450 /* or use: */
451 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
452 #endif /* DOESNT_SEEM_TO_WORK */
453
454 fee_wait(ioaddr, 10, 100);
455 #endif /* EEPROM_IS_PROTECTED */
456
457 /* Write enable. */
458 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
459 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
460
461 fee_wait(ioaddr, 10, 100);
462
463 /* Write the EEPROM address. */
464 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
465
466 /* Loop on all buffer */
467 while (n-- > 0) {
468 /* Write the value. */
469 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
470 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
471
472 /* Write the write command. */
473 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
474 MMW_FEE_CTRL_WRITE);
475
476 /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
477 mdelay(10);
478 fee_wait(ioaddr, 10, 100);
479 }
480
481 /* Write disable. */
482 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
483 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
484
485 fee_wait(ioaddr, 10, 100);
486
487 #ifdef EEPROM_IS_PROTECTED /* disabled */
488 /* Reprotect EEPROM. */
489 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
490 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
491
492 fee_wait(ioaddr, 10, 100);
493 #endif /* EEPROM_IS_PROTECTED */
494 }
495
496 /************************ I82586 SUBROUTINES *************************/
497 /*
498 * Useful subroutines to manage the Ethernet controller
499 */
500
501 /*------------------------------------------------------------------*/
502 /*
503 * Read bytes from the on-board RAM.
504 * Why does inlining this function make it fail?
505 */
506 static /*inline */ void obram_read(unsigned long ioaddr,
507 u16 o, u8 * b, int n)
508 {
509 outw(o, PIOR1(ioaddr));
510 insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
511 }
512
513 /*------------------------------------------------------------------*/
514 /*
515 * Write bytes to the on-board RAM.
516 */
517 static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
518 {
519 outw(o, PIOR1(ioaddr));
520 outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
521 }
522
523 /*------------------------------------------------------------------*/
524 /*
525 * Acknowledge the reading of the status issued by the i82586.
526 */
527 static void wv_ack(struct net_device * dev)
528 {
529 net_local *lp = netdev_priv(dev);
530 unsigned long ioaddr = dev->base_addr;
531 u16 scb_cs;
532 int i;
533
534 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
535 (unsigned char *) &scb_cs, sizeof(scb_cs));
536 scb_cs &= SCB_ST_INT;
537
538 if (scb_cs == 0)
539 return;
540
541 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
542 (unsigned char *) &scb_cs, sizeof(scb_cs));
543
544 set_chan_attn(ioaddr, lp->hacr);
545
546 for (i = 1000; i > 0; i--) {
547 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
548 (unsigned char *) &scb_cs, sizeof(scb_cs));
549 if (scb_cs == 0)
550 break;
551
552 udelay(10);
553 }
554 udelay(100);
555
556 #ifdef DEBUG_CONFIG_ERROR
557 if (i <= 0)
558 printk(KERN_INFO
559 "%s: wv_ack(): board not accepting command.\n",
560 dev->name);
561 #endif
562 }
563
564 /*------------------------------------------------------------------*/
565 /*
566 * Set channel attention bit and busy wait until command has
567 * completed, then acknowledge completion of the command.
568 */
569 static int wv_synchronous_cmd(struct net_device * dev, const char *str)
570 {
571 net_local *lp = netdev_priv(dev);
572 unsigned long ioaddr = dev->base_addr;
573 u16 scb_cmd;
574 ach_t cb;
575 int i;
576
577 scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
578 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
579 (unsigned char *) &scb_cmd, sizeof(scb_cmd));
580
581 set_chan_attn(ioaddr, lp->hacr);
582
583 for (i = 1000; i > 0; i--) {
584 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
585 sizeof(cb));
586 if (cb.ac_status & AC_SFLD_C)
587 break;
588
589 udelay(10);
590 }
591 udelay(100);
592
593 if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
594 #ifdef DEBUG_CONFIG_ERROR
595 printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
596 dev->name, str, cb.ac_status);
597 #endif
598 #ifdef DEBUG_I82586_SHOW
599 wv_scb_show(ioaddr);
600 #endif
601 return -1;
602 }
603
604 /* Ack the status */
605 wv_ack(dev);
606
607 return 0;
608 }
609
610 /*------------------------------------------------------------------*/
611 /*
612 * Configuration commands completion interrupt.
613 * Check if done, and if OK.
614 */
615 static int
616 wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
617 {
618 unsigned short mcs_addr;
619 unsigned short status;
620 int ret;
621
622 #ifdef DEBUG_INTERRUPT_TRACE
623 printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
624 #endif
625
626 mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
627 + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
628
629 /* Read the status of the last command (set mc list). */
630 obram_read(ioaddr, acoff(mcs_addr, ac_status),
631 (unsigned char *) &status, sizeof(status));
632
633 /* If not completed -> exit */
634 if ((status & AC_SFLD_C) == 0)
635 ret = 0; /* Not ready to be scrapped */
636 else {
637 #ifdef DEBUG_CONFIG_ERROR
638 unsigned short cfg_addr;
639 unsigned short ias_addr;
640
641 /* Check mc_config command */
642 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
643 printk(KERN_INFO
644 "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
645 dev->name, status);
646
647 /* check ia-config command */
648 ias_addr = mcs_addr - sizeof(ac_ias_t);
649 obram_read(ioaddr, acoff(ias_addr, ac_status),
650 (unsigned char *) &status, sizeof(status));
651 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
652 printk(KERN_INFO
653 "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
654 dev->name, status);
655
656 /* Check config command. */
657 cfg_addr = ias_addr - sizeof(ac_cfg_t);
658 obram_read(ioaddr, acoff(cfg_addr, ac_status),
659 (unsigned char *) &status, sizeof(status));
660 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
661 printk(KERN_INFO
662 "%s: wv_config_complete(): configure failed; status = 0x%x\n",
663 dev->name, status);
664 #endif /* DEBUG_CONFIG_ERROR */
665
666 ret = 1; /* Ready to be scrapped */
667 }
668
669 #ifdef DEBUG_INTERRUPT_TRACE
670 printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
671 ret);
672 #endif
673 return ret;
674 }
675
676 /*------------------------------------------------------------------*/
677 /*
678 * Command completion interrupt.
679 * Reclaim as many freed tx buffers as we can.
680 * (called in wavelan_interrupt()).
681 * Note : the spinlock is already grabbed for us.
682 */
683 static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
684 {
685 int nreaped = 0;
686
687 #ifdef DEBUG_INTERRUPT_TRACE
688 printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
689 #endif
690
691 /* Loop on all the transmit buffers */
692 while (lp->tx_first_in_use != I82586NULL) {
693 unsigned short tx_status;
694
695 /* Read the first transmit buffer */
696 obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
697 (unsigned char *) &tx_status,
698 sizeof(tx_status));
699
700 /* If not completed -> exit */
701 if ((tx_status & AC_SFLD_C) == 0)
702 break;
703
704 /* Hack for reconfiguration */
705 if (tx_status == 0xFFFF)
706 if (!wv_config_complete(dev, ioaddr, lp))
707 break; /* Not completed */
708
709 /* We now remove this buffer */
710 nreaped++;
711 --lp->tx_n_in_use;
712
713 /*
714 if (lp->tx_n_in_use > 0)
715 printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
716 */
717
718 /* Was it the last one? */
719 if (lp->tx_n_in_use <= 0)
720 lp->tx_first_in_use = I82586NULL;
721 else {
722 /* Next one in the chain */
723 lp->tx_first_in_use += TXBLOCKZ;
724 if (lp->tx_first_in_use >=
725 OFFSET_CU +
726 NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
727 NTXBLOCKS * TXBLOCKZ;
728 }
729
730 /* Hack for reconfiguration */
731 if (tx_status == 0xFFFF)
732 continue;
733
734 /* Now, check status of the finished command */
735 if (tx_status & AC_SFLD_OK) {
736 int ncollisions;
737
738 dev->stats.tx_packets++;
739 ncollisions = tx_status & AC_SFLD_MAXCOL;
740 dev->stats.collisions += ncollisions;
741 #ifdef DEBUG_TX_INFO
742 if (ncollisions > 0)
743 printk(KERN_DEBUG
744 "%s: wv_complete(): tx completed after %d collisions.\n",
745 dev->name, ncollisions);
746 #endif
747 } else {
748 dev->stats.tx_errors++;
749 if (tx_status & AC_SFLD_S10) {
750 dev->stats.tx_carrier_errors++;
751 #ifdef DEBUG_TX_FAIL
752 printk(KERN_DEBUG
753 "%s: wv_complete(): tx error: no CS.\n",
754 dev->name);
755 #endif
756 }
757 if (tx_status & AC_SFLD_S9) {
758 dev->stats.tx_carrier_errors++;
759 #ifdef DEBUG_TX_FAIL
760 printk(KERN_DEBUG
761 "%s: wv_complete(): tx error: lost CTS.\n",
762 dev->name);
763 #endif
764 }
765 if (tx_status & AC_SFLD_S8) {
766 dev->stats.tx_fifo_errors++;
767 #ifdef DEBUG_TX_FAIL
768 printk(KERN_DEBUG
769 "%s: wv_complete(): tx error: slow DMA.\n",
770 dev->name);
771 #endif
772 }
773 if (tx_status & AC_SFLD_S6) {
774 dev->stats.tx_heartbeat_errors++;
775 #ifdef DEBUG_TX_FAIL
776 printk(KERN_DEBUG
777 "%s: wv_complete(): tx error: heart beat.\n",
778 dev->name);
779 #endif
780 }
781 if (tx_status & AC_SFLD_S5) {
782 dev->stats.tx_aborted_errors++;
783 #ifdef DEBUG_TX_FAIL
784 printk(KERN_DEBUG
785 "%s: wv_complete(): tx error: too many collisions.\n",
786 dev->name);
787 #endif
788 }
789 }
790
791 #ifdef DEBUG_TX_INFO
792 printk(KERN_DEBUG
793 "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
794 dev->name, tx_status);
795 #endif
796 }
797
798 #ifdef DEBUG_INTERRUPT_INFO
799 if (nreaped > 1)
800 printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
801 dev->name, nreaped);
802 #endif
803
804 /*
805 * Inform upper layers.
806 */
807 if (lp->tx_n_in_use < NTXBLOCKS - 1) {
808 netif_wake_queue(dev);
809 }
810 #ifdef DEBUG_INTERRUPT_TRACE
811 printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
812 #endif
813 return nreaped;
814 }
815
816 /*------------------------------------------------------------------*/
817 /*
818 * Reconfigure the i82586, or at least ask for it.
819 * Because wv_82586_config uses a transmission buffer, we must do it
820 * when we are sure that there is one left, so we do it now
821 * or in wavelan_packet_xmit() (I can't find any better place,
822 * wavelan_interrupt is not an option), so you may experience
823 * delays sometimes.
824 */
825 static void wv_82586_reconfig(struct net_device * dev)
826 {
827 net_local *lp = netdev_priv(dev);
828 unsigned long flags;
829
830 /* Arm the flag, will be cleard in wv_82586_config() */
831 lp->reconfig_82586 = 1;
832
833 /* Check if we can do it now ! */
834 if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
835 spin_lock_irqsave(&lp->spinlock, flags);
836 /* May fail */
837 wv_82586_config(dev);
838 spin_unlock_irqrestore(&lp->spinlock, flags);
839 }
840 else {
841 #ifdef DEBUG_CONFIG_INFO
842 printk(KERN_DEBUG
843 "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
844 dev->name, dev->state);
845 #endif
846 }
847 }
848
849 /********************* DEBUG & INFO SUBROUTINES *********************/
850 /*
851 * This routine is used in the code to show information for debugging.
852 * Most of the time, it dumps the contents of hardware structures.
853 */
854
855 #ifdef DEBUG_PSA_SHOW
856 /*------------------------------------------------------------------*/
857 /*
858 * Print the formatted contents of the Parameter Storage Area.
859 */
860 static void wv_psa_show(psa_t * p)
861 {
862 printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
863 printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
864 p->psa_io_base_addr_1,
865 p->psa_io_base_addr_2,
866 p->psa_io_base_addr_3, p->psa_io_base_addr_4);
867 printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
868 p->psa_rem_boot_addr_1,
869 p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
870 printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
871 printk("psa_int_req_no: %d\n", p->psa_int_req_no);
872 #ifdef DEBUG_SHOW_UNUSED
873 printk(KERN_DEBUG "psa_unused0[]: %pM\n", p->psa_unused0);
874 #endif /* DEBUG_SHOW_UNUSED */
875 printk(KERN_DEBUG "psa_univ_mac_addr[]: %pM\n", p->psa_univ_mac_addr);
876 printk(KERN_DEBUG "psa_local_mac_addr[]: %pM\n", p->psa_local_mac_addr);
877 printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
878 p->psa_univ_local_sel);
879 printk("psa_comp_number: %d, ", p->psa_comp_number);
880 printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
881 printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
882 p->psa_feature_select);
883 printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
884 printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
885 printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
886 printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
887 p->psa_nwid[1]);
888 printk("psa_nwid_select: %d\n", p->psa_nwid_select);
889 printk(KERN_DEBUG "psa_encryption_select: %d, ",
890 p->psa_encryption_select);
891 printk
892 ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
893 p->psa_encryption_key[0], p->psa_encryption_key[1],
894 p->psa_encryption_key[2], p->psa_encryption_key[3],
895 p->psa_encryption_key[4], p->psa_encryption_key[5],
896 p->psa_encryption_key[6], p->psa_encryption_key[7]);
897 printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
898 printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
899 p->psa_call_code[0]);
900 printk
901 ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
902 p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
903 p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
904 p->psa_call_code[6], p->psa_call_code[7]);
905 #ifdef DEBUG_SHOW_UNUSED
906 printk(KERN_DEBUG "psa_reserved[]: %02X:%02X\n",
907 p->psa_reserved[0],
908 p->psa_reserved[1]);
909 #endif /* DEBUG_SHOW_UNUSED */
910 printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
911 printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
912 printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
913 } /* wv_psa_show */
914 #endif /* DEBUG_PSA_SHOW */
915
916 #ifdef DEBUG_MMC_SHOW
917 /*------------------------------------------------------------------*/
918 /*
919 * Print the formatted status of the Modem Management Controller.
920 * This function needs to be completed.
921 */
922 static void wv_mmc_show(struct net_device * dev)
923 {
924 unsigned long ioaddr = dev->base_addr;
925 net_local *lp = netdev_priv(dev);
926 mmr_t m;
927
928 /* Basic check */
929 if (hasr_read(ioaddr) & HASR_NO_CLK) {
930 printk(KERN_WARNING
931 "%s: wv_mmc_show: modem not connected\n",
932 dev->name);
933 return;
934 }
935
936 /* Read the mmc */
937 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
938 mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
939 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
940
941 /* Don't forget to update statistics */
942 lp->wstats.discard.nwid +=
943 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
944
945 printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
946 #ifdef DEBUG_SHOW_UNUSED
947 printk(KERN_DEBUG
948 "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
949 m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
950 m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
951 m.mmr_unused0[6], m.mmr_unused0[7]);
952 #endif /* DEBUG_SHOW_UNUSED */
953 printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
954 m.mmr_des_avail, m.mmr_des_status);
955 #ifdef DEBUG_SHOW_UNUSED
956 printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
957 m.mmr_unused1[0],
958 m.mmr_unused1[1],
959 m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
960 #endif /* DEBUG_SHOW_UNUSED */
961 printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
962 m.mmr_dce_status,
963 (m.
964 mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
965 "energy detected," : "",
966 (m.
967 mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
968 "loop test indicated," : "",
969 (m.
970 mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
971 "transmitter on," : "",
972 (m.
973 mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
974 "jabber timer expired," : "");
975 printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
976 #ifdef DEBUG_SHOW_UNUSED
977 printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
978 m.mmr_unused2[0], m.mmr_unused2[1]);
979 #endif /* DEBUG_SHOW_UNUSED */
980 printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
981 (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
982 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
983 printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
984 m.mmr_thr_pre_set & MMR_THR_PRE_SET,
985 (m.
986 mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
987 "below");
988 printk(KERN_DEBUG "signal_lvl: %d [%s], ",
989 m.mmr_signal_lvl & MMR_SIGNAL_LVL,
990 (m.
991 mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
992 "no new msg");
993 printk("silence_lvl: %d [%s], ",
994 m.mmr_silence_lvl & MMR_SILENCE_LVL,
995 (m.
996 mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
997 "no new update");
998 printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
999 (m.
1000 mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
1001 "Antenna 0");
1002 #ifdef DEBUG_SHOW_UNUSED
1003 printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
1004 #endif /* DEBUG_SHOW_UNUSED */
1005 } /* wv_mmc_show */
1006 #endif /* DEBUG_MMC_SHOW */
1007
1008 #ifdef DEBUG_I82586_SHOW
1009 /*------------------------------------------------------------------*/
1010 /*
1011 * Print the last block of the i82586 memory.
1012 */
1013 static void wv_scb_show(unsigned long ioaddr)
1014 {
1015 scb_t scb;
1016
1017 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
1018 sizeof(scb));
1019
1020 printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
1021
1022 printk(KERN_DEBUG "status: ");
1023 printk("stat 0x%x[%s%s%s%s] ",
1024 (scb.
1025 scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
1026 SCB_ST_RNR)) >> 12,
1027 (scb.
1028 scb_status & SCB_ST_CX) ? "command completion interrupt," :
1029 "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
1030 (scb.
1031 scb_status & SCB_ST_CNA) ? "command unit not active," : "",
1032 (scb.
1033 scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
1034 "");
1035 printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
1036 ((scb.scb_status & SCB_ST_CUS) ==
1037 SCB_ST_CUS_IDLE) ? "idle" : "",
1038 ((scb.scb_status & SCB_ST_CUS) ==
1039 SCB_ST_CUS_SUSP) ? "suspended" : "",
1040 ((scb.scb_status & SCB_ST_CUS) ==
1041 SCB_ST_CUS_ACTV) ? "active" : "");
1042 printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
1043 ((scb.scb_status & SCB_ST_RUS) ==
1044 SCB_ST_RUS_IDLE) ? "idle" : "",
1045 ((scb.scb_status & SCB_ST_RUS) ==
1046 SCB_ST_RUS_SUSP) ? "suspended" : "",
1047 ((scb.scb_status & SCB_ST_RUS) ==
1048 SCB_ST_RUS_NRES) ? "no resources" : "",
1049 ((scb.scb_status & SCB_ST_RUS) ==
1050 SCB_ST_RUS_RDY) ? "ready" : "");
1051
1052 printk(KERN_DEBUG "command: ");
1053 printk("ack 0x%x[%s%s%s%s] ",
1054 (scb.
1055 scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
1056 SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
1057 (scb.
1058 scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
1059 (scb.
1060 scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
1061 (scb.
1062 scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
1063 (scb.
1064 scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
1065 printk("cuc 0x%x[%s%s%s%s%s] ",
1066 (scb.scb_command & SCB_CMD_CUC) >> 8,
1067 ((scb.scb_command & SCB_CMD_CUC) ==
1068 SCB_CMD_CUC_NOP) ? "nop" : "",
1069 ((scb.scb_command & SCB_CMD_CUC) ==
1070 SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
1071 ((scb.scb_command & SCB_CMD_CUC) ==
1072 SCB_CMD_CUC_RES) ? "resume execution" : "",
1073 ((scb.scb_command & SCB_CMD_CUC) ==
1074 SCB_CMD_CUC_SUS) ? "suspend execution" : "",
1075 ((scb.scb_command & SCB_CMD_CUC) ==
1076 SCB_CMD_CUC_ABT) ? "abort execution" : "");
1077 printk("ruc 0x%x[%s%s%s%s%s]\n",
1078 (scb.scb_command & SCB_CMD_RUC) >> 4,
1079 ((scb.scb_command & SCB_CMD_RUC) ==
1080 SCB_CMD_RUC_NOP) ? "nop" : "",
1081 ((scb.scb_command & SCB_CMD_RUC) ==
1082 SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
1083 ((scb.scb_command & SCB_CMD_RUC) ==
1084 SCB_CMD_RUC_RES) ? "resume reception" : "",
1085 ((scb.scb_command & SCB_CMD_RUC) ==
1086 SCB_CMD_RUC_SUS) ? "suspend reception" : "",
1087 ((scb.scb_command & SCB_CMD_RUC) ==
1088 SCB_CMD_RUC_ABT) ? "abort reception" : "");
1089
1090 printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
1091 printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
1092
1093 printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
1094 printk("alnerrs %d ", scb.scb_alnerrs);
1095 printk("rscerrs %d ", scb.scb_rscerrs);
1096 printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
1097 }
1098
1099 /*------------------------------------------------------------------*/
1100 /*
1101 * Print the formatted status of the i82586's receive unit.
1102 */
1103 static void wv_ru_show(struct net_device * dev)
1104 {
1105 printk(KERN_DEBUG
1106 "##### WaveLAN i82586 receiver unit status: #####\n");
1107 printk(KERN_DEBUG "ru:");
1108 /*
1109 * Not implemented yet
1110 */
1111 printk("\n");
1112 } /* wv_ru_show */
1113
1114 /*------------------------------------------------------------------*/
1115 /*
1116 * Display info about one control block of the i82586 memory.
1117 */
1118 static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
1119 {
1120 unsigned long ioaddr;
1121 ac_tx_t actx;
1122
1123 ioaddr = dev->base_addr;
1124
1125 printk("%d: 0x%x:", i, p);
1126
1127 obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
1128 printk(" status=0x%x,", actx.tx_h.ac_status);
1129 printk(" command=0x%x,", actx.tx_h.ac_command);
1130
1131 /*
1132 {
1133 tbd_t tbd;
1134
1135 obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
1136 printk(" tbd_status=0x%x,", tbd.tbd_status);
1137 }
1138 */
1139
1140 printk("|");
1141 }
1142
1143 /*------------------------------------------------------------------*/
1144 /*
1145 * Print status of the command unit of the i82586.
1146 */
1147 static void wv_cu_show(struct net_device * dev)
1148 {
1149 net_local *lp = netdev_priv(dev);
1150 unsigned int i;
1151 u16 p;
1152
1153 printk(KERN_DEBUG
1154 "##### WaveLAN i82586 command unit status: #####\n");
1155
1156 printk(KERN_DEBUG);
1157 for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
1158 wv_cu_show_one(dev, lp, i, p);
1159
1160 p += TXBLOCKZ;
1161 if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
1162 p -= NTXBLOCKS * TXBLOCKZ;
1163 }
1164 printk("\n");
1165 }
1166 #endif /* DEBUG_I82586_SHOW */
1167
1168 #ifdef DEBUG_DEVICE_SHOW
1169 /*------------------------------------------------------------------*/
1170 /*
1171 * Print the formatted status of the WaveLAN PCMCIA device driver.
1172 */
1173 static void wv_dev_show(struct net_device * dev)
1174 {
1175 printk(KERN_DEBUG "dev:");
1176 printk(" state=%lX,", dev->state);
1177 printk(" trans_start=%ld,", dev->trans_start);
1178 printk(" flags=0x%x,", dev->flags);
1179 printk("\n");
1180 } /* wv_dev_show */
1181
1182 /*------------------------------------------------------------------*/
1183 /*
1184 * Print the formatted status of the WaveLAN PCMCIA device driver's
1185 * private information.
1186 */
1187 static void wv_local_show(struct net_device * dev)
1188 {
1189 net_local *lp;
1190
1191 lp = netdev_priv(dev);
1192
1193 printk(KERN_DEBUG "local:");
1194 printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
1195 printk(" hacr=0x%x,", lp->hacr);
1196 printk(" rx_head=0x%x,", lp->rx_head);
1197 printk(" rx_last=0x%x,", lp->rx_last);
1198 printk(" tx_first_free=0x%x,", lp->tx_first_free);
1199 printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
1200 printk("\n");
1201 } /* wv_local_show */
1202 #endif /* DEBUG_DEVICE_SHOW */
1203
1204 #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
1205 /*------------------------------------------------------------------*/
1206 /*
1207 * Dump packet header (and content if necessary) on the screen
1208 */
1209 static inline void wv_packet_info(u8 * p, /* Packet to dump */
1210 int length, /* Length of the packet */
1211 char *msg1, /* Name of the device */
1212 char *msg2)
1213 { /* Name of the function */
1214 int i;
1215 int maxi;
1216
1217 printk(KERN_DEBUG
1218 "%s: %s(): dest %pM, length %d\n",
1219 msg1, msg2, p, length);
1220 printk(KERN_DEBUG
1221 "%s: %s(): src %pM, type 0x%02X%02X\n",
1222 msg1, msg2, &p[6], p[12], p[13]);
1223
1224 #ifdef DEBUG_PACKET_DUMP
1225
1226 printk(KERN_DEBUG "data=\"");
1227
1228 if ((maxi = length) > DEBUG_PACKET_DUMP)
1229 maxi = DEBUG_PACKET_DUMP;
1230 for (i = 14; i < maxi; i++)
1231 if (p[i] >= ' ' && p[i] <= '~')
1232 printk(" %c", p[i]);
1233 else
1234 printk("%02X", p[i]);
1235 if (maxi < length)
1236 printk("..");
1237 printk("\"\n");
1238 printk(KERN_DEBUG "\n");
1239 #endif /* DEBUG_PACKET_DUMP */
1240 }
1241 #endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
1242
1243 /*------------------------------------------------------------------*/
1244 /*
1245 * This is the information which is displayed by the driver at startup.
1246 * There are lots of flags for configuring it to your liking.
1247 */
1248 static void wv_init_info(struct net_device * dev)
1249 {
1250 short ioaddr = dev->base_addr;
1251 net_local *lp = netdev_priv(dev);
1252 psa_t psa;
1253
1254 /* Read the parameter storage area */
1255 psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
1256
1257 #ifdef DEBUG_PSA_SHOW
1258 wv_psa_show(&psa);
1259 #endif
1260 #ifdef DEBUG_MMC_SHOW
1261 wv_mmc_show(dev);
1262 #endif
1263 #ifdef DEBUG_I82586_SHOW
1264 wv_cu_show(dev);
1265 #endif
1266
1267 #ifdef DEBUG_BASIC_SHOW
1268 /* Now, let's go for the basic stuff. */
1269 printk(KERN_NOTICE "%s: WaveLAN at %#x, %pM, IRQ %d",
1270 dev->name, ioaddr, dev->dev_addr, dev->irq);
1271
1272 /* Print current network ID. */
1273 if (psa.psa_nwid_select)
1274 printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
1275 psa.psa_nwid[1]);
1276 else
1277 printk(", nwid off");
1278
1279 /* If 2.00 card */
1280 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1281 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1282 unsigned short freq;
1283
1284 /* Ask the EEPROM to read the frequency from the first area. */
1285 fee_read(ioaddr, 0x00, &freq, 1);
1286
1287 /* Print frequency */
1288 printk(", 2.00, %ld", (freq >> 6) + 2400L);
1289
1290 /* Hack! */
1291 if (freq & 0x20)
1292 printk(".5");
1293 } else {
1294 printk(", PC");
1295 switch (psa.psa_comp_number) {
1296 case PSA_COMP_PC_AT_915:
1297 case PSA_COMP_PC_AT_2400:
1298 printk("-AT");
1299 break;
1300 case PSA_COMP_PC_MC_915:
1301 case PSA_COMP_PC_MC_2400:
1302 printk("-MC");
1303 break;
1304 case PSA_COMP_PCMCIA_915:
1305 printk("MCIA");
1306 break;
1307 default:
1308 printk("?");
1309 }
1310 printk(", ");
1311 switch (psa.psa_subband) {
1312 case PSA_SUBBAND_915:
1313 printk("915");
1314 break;
1315 case PSA_SUBBAND_2425:
1316 printk("2425");
1317 break;
1318 case PSA_SUBBAND_2460:
1319 printk("2460");
1320 break;
1321 case PSA_SUBBAND_2484:
1322 printk("2484");
1323 break;
1324 case PSA_SUBBAND_2430_5:
1325 printk("2430.5");
1326 break;
1327 default:
1328 printk("?");
1329 }
1330 }
1331
1332 printk(" MHz\n");
1333 #endif /* DEBUG_BASIC_SHOW */
1334
1335 #ifdef DEBUG_VERSION_SHOW
1336 /* Print version information */
1337 printk(KERN_NOTICE "%s", version);
1338 #endif
1339 } /* wv_init_info */
1340
1341 /********************* IOCTL, STATS & RECONFIG *********************/
1342 /*
1343 * We found here routines that are called by Linux on different
1344 * occasions after the configuration and not for transmitting data
1345 * These may be called when the user use ifconfig, /proc/net/dev
1346 * or wireless extensions
1347 */
1348
1349
1350 /*------------------------------------------------------------------*/
1351 /*
1352 * Set or clear the multicast filter for this adaptor.
1353 * num_addrs == -1 Promiscuous mode, receive all packets
1354 * num_addrs == 0 Normal mode, clear multicast list
1355 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1356 * and do best-effort filtering.
1357 */
1358 static void wavelan_set_multicast_list(struct net_device * dev)
1359 {
1360 net_local *lp = netdev_priv(dev);
1361
1362 #ifdef DEBUG_IOCTL_TRACE
1363 printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
1364 dev->name);
1365 #endif
1366
1367 #ifdef DEBUG_IOCTL_INFO
1368 printk(KERN_DEBUG
1369 "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
1370 dev->name, dev->flags, dev->mc_count);
1371 #endif
1372
1373 /* Are we asking for promiscuous mode,
1374 * or all multicast addresses (we don't have that!)
1375 * or too many multicast addresses for the hardware filter? */
1376 if ((dev->flags & IFF_PROMISC) ||
1377 (dev->flags & IFF_ALLMULTI) ||
1378 (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
1379 /*
1380 * Enable promiscuous mode: receive all packets.
1381 */
1382 if (!lp->promiscuous) {
1383 lp->promiscuous = 1;
1384 lp->mc_count = 0;
1385
1386 wv_82586_reconfig(dev);
1387 }
1388 } else
1389 /* Are there multicast addresses to send? */
1390 if (dev->mc_list != (struct dev_mc_list *) NULL) {
1391 /*
1392 * Disable promiscuous mode, but receive all packets
1393 * in multicast list
1394 */
1395 #ifdef MULTICAST_AVOID
1396 if (lp->promiscuous || (dev->mc_count != lp->mc_count))
1397 #endif
1398 {
1399 lp->promiscuous = 0;
1400 lp->mc_count = dev->mc_count;
1401
1402 wv_82586_reconfig(dev);
1403 }
1404 } else {
1405 /*
1406 * Switch to normal mode: disable promiscuous mode and
1407 * clear the multicast list.
1408 */
1409 if (lp->promiscuous || lp->mc_count == 0) {
1410 lp->promiscuous = 0;
1411 lp->mc_count = 0;
1412
1413 wv_82586_reconfig(dev);
1414 }
1415 }
1416 #ifdef DEBUG_IOCTL_TRACE
1417 printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
1418 dev->name);
1419 #endif
1420 }
1421
1422 /*------------------------------------------------------------------*/
1423 /*
1424 * This function doesn't exist.
1425 * (Note : it was a nice way to test the reconfigure stuff...)
1426 */
1427 #ifdef SET_MAC_ADDRESS
1428 static int wavelan_set_mac_address(struct net_device * dev, void *addr)
1429 {
1430 struct sockaddr *mac = addr;
1431
1432 /* Copy the address. */
1433 memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
1434
1435 /* Reconfigure the beast. */
1436 wv_82586_reconfig(dev);
1437
1438 return 0;
1439 }
1440 #endif /* SET_MAC_ADDRESS */
1441
1442
1443 /*------------------------------------------------------------------*/
1444 /*
1445 * Frequency setting (for hardware capable of it)
1446 * It's a bit complicated and you don't really want to look into it.
1447 * (called in wavelan_ioctl)
1448 */
1449 static int wv_set_frequency(unsigned long ioaddr, /* I/O port of the card */
1450 iw_freq * frequency)
1451 {
1452 const int BAND_NUM = 10; /* Number of bands */
1453 long freq = 0L; /* offset to 2.4 GHz in .5 MHz */
1454 #ifdef DEBUG_IOCTL_INFO
1455 int i;
1456 #endif
1457
1458 /* Setting by frequency */
1459 /* Theoretically, you may set any frequency between
1460 * the two limits with a 0.5 MHz precision. In practice,
1461 * I don't want you to have trouble with local regulations.
1462 */
1463 if ((frequency->e == 1) &&
1464 (frequency->m >= (int) 2.412e8)
1465 && (frequency->m <= (int) 2.487e8)) {
1466 freq = ((frequency->m / 10000) - 24000L) / 5;
1467 }
1468
1469 /* Setting by channel (same as wfreqsel) */
1470 /* Warning: each channel is 22 MHz wide, so some of the channels
1471 * will interfere. */
1472 if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
1473 /* Get frequency offset. */
1474 freq = channel_bands[frequency->m] >> 1;
1475 }
1476
1477 /* Verify that the frequency is allowed. */
1478 if (freq != 0L) {
1479 u16 table[10]; /* Authorized frequency table */
1480
1481 /* Read the frequency table. */
1482 fee_read(ioaddr, 0x71, table, 10);
1483
1484 #ifdef DEBUG_IOCTL_INFO
1485 printk(KERN_DEBUG "Frequency table: ");
1486 for (i = 0; i < 10; i++) {
1487 printk(" %04X", table[i]);
1488 }
1489 printk("\n");
1490 #endif
1491
1492 /* Look in the table to see whether the frequency is allowed. */
1493 if (!(table[9 - ((freq - 24) / 16)] &
1494 (1 << ((freq - 24) % 16)))) return -EINVAL; /* not allowed */
1495 } else
1496 return -EINVAL;
1497
1498 /* if we get a usable frequency */
1499 if (freq != 0L) {
1500 unsigned short area[16];
1501 unsigned short dac[2];
1502 unsigned short area_verify[16];
1503 unsigned short dac_verify[2];
1504 /* Corresponding gain (in the power adjust value table)
1505 * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
1506 * and WCIN062D.DOC, page 6.2.9. */
1507 unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
1508 int power_band = 0; /* Selected band */
1509 unsigned short power_adjust; /* Correct value */
1510
1511 /* Search for the gain. */
1512 power_band = 0;
1513 while ((freq > power_limit[power_band]) &&
1514 (power_limit[++power_band] != 0));
1515
1516 /* Read the first area. */
1517 fee_read(ioaddr, 0x00, area, 16);
1518
1519 /* Read the DAC. */
1520 fee_read(ioaddr, 0x60, dac, 2);
1521
1522 /* Read the new power adjust value. */
1523 fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
1524 1);
1525 if (power_band & 0x1)
1526 power_adjust >>= 8;
1527 else
1528 power_adjust &= 0xFF;
1529
1530 #ifdef DEBUG_IOCTL_INFO
1531 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1532 for (i = 0; i < 16; i++) {
1533 printk(" %04X", area[i]);
1534 }
1535 printk("\n");
1536
1537 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1538 dac[0], dac[1]);
1539 #endif
1540
1541 /* Frequency offset (for info only) */
1542 area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
1543
1544 /* Receiver Principle main divider coefficient */
1545 area[3] = (freq >> 1) + 2400L - 352L;
1546 area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1547
1548 /* Transmitter Main divider coefficient */
1549 area[13] = (freq >> 1) + 2400L;
1550 area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1551
1552 /* Other parts of the area are flags, bit streams or unused. */
1553
1554 /* Set the value in the DAC. */
1555 dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
1556 dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
1557
1558 /* Write the first area. */
1559 fee_write(ioaddr, 0x00, area, 16);
1560
1561 /* Write the DAC. */
1562 fee_write(ioaddr, 0x60, dac, 2);
1563
1564 /* We now should verify here that the writing of the EEPROM went OK. */
1565
1566 /* Reread the first area. */
1567 fee_read(ioaddr, 0x00, area_verify, 16);
1568
1569 /* Reread the DAC. */
1570 fee_read(ioaddr, 0x60, dac_verify, 2);
1571
1572 /* Compare. */
1573 if (memcmp(area, area_verify, 16 * 2) ||
1574 memcmp(dac, dac_verify, 2 * 2)) {
1575 #ifdef DEBUG_IOCTL_ERROR
1576 printk(KERN_INFO
1577 "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
1578 #endif
1579 return -EOPNOTSUPP;
1580 }
1581
1582 /* We must download the frequency parameters to the
1583 * synthesizers (from the EEPROM - area 1)
1584 * Note: as the EEPROM is automatically decremented, we set the end
1585 * if the area... */
1586 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
1587 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1588 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1589
1590 /* Wait until the download is finished. */
1591 fee_wait(ioaddr, 100, 100);
1592
1593 /* We must now download the power adjust value (gain) to
1594 * the synthesizers (from the EEPROM - area 7 - DAC). */
1595 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
1596 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1597 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1598
1599 /* Wait for the download to finish. */
1600 fee_wait(ioaddr, 100, 100);
1601
1602 #ifdef DEBUG_IOCTL_INFO
1603 /* Verification of what we have done */
1604
1605 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1606 for (i = 0; i < 16; i++) {
1607 printk(" %04X", area_verify[i]);
1608 }
1609 printk("\n");
1610
1611 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1612 dac_verify[0], dac_verify[1]);
1613 #endif
1614
1615 return 0;
1616 } else
1617 return -EINVAL; /* Bah, never get there... */
1618 }
1619
1620 /*------------------------------------------------------------------*/
1621 /*
1622 * Give the list of available frequencies.
1623 */
1624 static int wv_frequency_list(unsigned long ioaddr, /* I/O port of the card */
1625 iw_freq * list, /* List of frequencies to fill */
1626 int max)
1627 { /* Maximum number of frequencies */
1628 u16 table[10]; /* Authorized frequency table */
1629 long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */
1630 int i; /* index in the table */
1631 int c = 0; /* Channel number */
1632
1633 /* Read the frequency table. */
1634 fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
1635
1636 /* Check all frequencies. */
1637 i = 0;
1638 for (freq = 0; freq < 150; freq++)
1639 /* Look in the table if the frequency is allowed */
1640 if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
1641 /* Compute approximate channel number */
1642 while ((c < ARRAY_SIZE(channel_bands)) &&
1643 (((channel_bands[c] >> 1) - 24) < freq))
1644 c++;
1645 list[i].i = c; /* Set the list index */
1646
1647 /* put in the list */
1648 list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
1649 list[i++].e = 1;
1650
1651 /* Check number. */
1652 if (i >= max)
1653 return (i);
1654 }
1655
1656 return (i);
1657 }
1658
1659 #ifdef IW_WIRELESS_SPY
1660 /*------------------------------------------------------------------*/
1661 /*
1662 * Gather wireless spy statistics: for each packet, compare the source
1663 * address with our list, and if they match, get the statistics.
1664 * Sorry, but this function really needs the wireless extensions.
1665 */
1666 static inline void wl_spy_gather(struct net_device * dev,
1667 u8 * mac, /* MAC address */
1668 u8 * stats) /* Statistics to gather */
1669 {
1670 struct iw_quality wstats;
1671
1672 wstats.qual = stats[2] & MMR_SGNL_QUAL;
1673 wstats.level = stats[0] & MMR_SIGNAL_LVL;
1674 wstats.noise = stats[1] & MMR_SILENCE_LVL;
1675 wstats.updated = 0x7;
1676
1677 /* Update spy records */
1678 wireless_spy_update(dev, mac, &wstats);
1679 }
1680 #endif /* IW_WIRELESS_SPY */
1681
1682 #ifdef HISTOGRAM
1683 /*------------------------------------------------------------------*/
1684 /*
1685 * This function calculates a histogram of the signal level.
1686 * As the noise is quite constant, it's like doing it on the SNR.
1687 * We have defined a set of interval (lp->his_range), and each time
1688 * the level goes in that interval, we increment the count (lp->his_sum).
1689 * With this histogram you may detect if one WaveLAN is really weak,
1690 * or you may also calculate the mean and standard deviation of the level.
1691 */
1692 static inline void wl_his_gather(struct net_device * dev, u8 * stats)
1693 { /* Statistics to gather */
1694 net_local *lp = netdev_priv(dev);
1695 u8 level = stats[0] & MMR_SIGNAL_LVL;
1696 int i;
1697
1698 /* Find the correct interval. */
1699 i = 0;
1700 while ((i < (lp->his_number - 1))
1701 && (level >= lp->his_range[i++]));
1702
1703 /* Increment interval counter. */
1704 (lp->his_sum[i])++;
1705 }
1706 #endif /* HISTOGRAM */
1707
1708 /*------------------------------------------------------------------*/
1709 /*
1710 * Wireless Handler : get protocol name
1711 */
1712 static int wavelan_get_name(struct net_device *dev,
1713 struct iw_request_info *info,
1714 union iwreq_data *wrqu,
1715 char *extra)
1716 {
1717 strcpy(wrqu->name, "WaveLAN");
1718 return 0;
1719 }
1720
1721 /*------------------------------------------------------------------*/
1722 /*
1723 * Wireless Handler : set NWID
1724 */
1725 static int wavelan_set_nwid(struct net_device *dev,
1726 struct iw_request_info *info,
1727 union iwreq_data *wrqu,
1728 char *extra)
1729 {
1730 unsigned long ioaddr = dev->base_addr;
1731 net_local *lp = netdev_priv(dev); /* lp is not unused */
1732 psa_t psa;
1733 mm_t m;
1734 unsigned long flags;
1735 int ret = 0;
1736
1737 /* Disable interrupts and save flags. */
1738 spin_lock_irqsave(&lp->spinlock, flags);
1739
1740 /* Set NWID in WaveLAN. */
1741 if (!wrqu->nwid.disabled) {
1742 /* Set NWID in psa */
1743 psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
1744 psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
1745 psa.psa_nwid_select = 0x01;
1746 psa_write(ioaddr, lp->hacr,
1747 (char *) psa.psa_nwid - (char *) &psa,
1748 (unsigned char *) psa.psa_nwid, 3);
1749
1750 /* Set NWID in mmc. */
1751 m.w.mmw_netw_id_l = psa.psa_nwid[1];
1752 m.w.mmw_netw_id_h = psa.psa_nwid[0];
1753 mmc_write(ioaddr,
1754 (char *) &m.w.mmw_netw_id_l -
1755 (char *) &m,
1756 (unsigned char *) &m.w.mmw_netw_id_l, 2);
1757 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
1758 } else {
1759 /* Disable NWID in the psa. */
1760 psa.psa_nwid_select = 0x00;
1761 psa_write(ioaddr, lp->hacr,
1762 (char *) &psa.psa_nwid_select -
1763 (char *) &psa,
1764 (unsigned char *) &psa.psa_nwid_select,
1765 1);
1766
1767 /* Disable NWID in the mmc (no filtering). */
1768 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
1769 MMW_LOOPT_SEL_DIS_NWID);
1770 }
1771 /* update the Wavelan checksum */
1772 update_psa_checksum(dev, ioaddr, lp->hacr);
1773
1774 /* Enable interrupts and restore flags. */
1775 spin_unlock_irqrestore(&lp->spinlock, flags);
1776
1777 return ret;
1778 }
1779
1780 /*------------------------------------------------------------------*/
1781 /*
1782 * Wireless Handler : get NWID
1783 */
1784 static int wavelan_get_nwid(struct net_device *dev,
1785 struct iw_request_info *info,
1786 union iwreq_data *wrqu,
1787 char *extra)
1788 {
1789 unsigned long ioaddr = dev->base_addr;
1790 net_local *lp = netdev_priv(dev); /* lp is not unused */
1791 psa_t psa;
1792 unsigned long flags;
1793 int ret = 0;
1794
1795 /* Disable interrupts and save flags. */
1796 spin_lock_irqsave(&lp->spinlock, flags);
1797
1798 /* Read the NWID. */
1799 psa_read(ioaddr, lp->hacr,
1800 (char *) psa.psa_nwid - (char *) &psa,
1801 (unsigned char *) psa.psa_nwid, 3);
1802 wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
1803 wrqu->nwid.disabled = !(psa.psa_nwid_select);
1804 wrqu->nwid.fixed = 1; /* Superfluous */
1805
1806 /* Enable interrupts and restore flags. */
1807 spin_unlock_irqrestore(&lp->spinlock, flags);
1808
1809 return ret;
1810 }
1811
1812 /*------------------------------------------------------------------*/
1813 /*
1814 * Wireless Handler : set frequency
1815 */
1816 static int wavelan_set_freq(struct net_device *dev,
1817 struct iw_request_info *info,
1818 union iwreq_data *wrqu,
1819 char *extra)
1820 {
1821 unsigned long ioaddr = dev->base_addr;
1822 net_local *lp = netdev_priv(dev); /* lp is not unused */
1823 unsigned long flags;
1824 int ret;
1825
1826 /* Disable interrupts and save flags. */
1827 spin_lock_irqsave(&lp->spinlock, flags);
1828
1829 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
1830 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1831 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1832 ret = wv_set_frequency(ioaddr, &(wrqu->freq));
1833 else
1834 ret = -EOPNOTSUPP;
1835
1836 /* Enable interrupts and restore flags. */
1837 spin_unlock_irqrestore(&lp->spinlock, flags);
1838
1839 return ret;
1840 }
1841
1842 /*------------------------------------------------------------------*/
1843 /*
1844 * Wireless Handler : get frequency
1845 */
1846 static int wavelan_get_freq(struct net_device *dev,
1847 struct iw_request_info *info,
1848 union iwreq_data *wrqu,
1849 char *extra)
1850 {
1851 unsigned long ioaddr = dev->base_addr;
1852 net_local *lp = netdev_priv(dev); /* lp is not unused */
1853 psa_t psa;
1854 unsigned long flags;
1855 int ret = 0;
1856
1857 /* Disable interrupts and save flags. */
1858 spin_lock_irqsave(&lp->spinlock, flags);
1859
1860 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
1861 * Does it work for everybody, especially old cards? */
1862 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1863 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1864 unsigned short freq;
1865
1866 /* Ask the EEPROM to read the frequency from the first area. */
1867 fee_read(ioaddr, 0x00, &freq, 1);
1868 wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
1869 wrqu->freq.e = 1;
1870 } else {
1871 psa_read(ioaddr, lp->hacr,
1872 (char *) &psa.psa_subband - (char *) &psa,
1873 (unsigned char *) &psa.psa_subband, 1);
1874
1875 if (psa.psa_subband <= 4) {
1876 wrqu->freq.m = fixed_bands[psa.psa_subband];
1877 wrqu->freq.e = (psa.psa_subband != 0);
1878 } else
1879 ret = -EOPNOTSUPP;
1880 }
1881
1882 /* Enable interrupts and restore flags. */
1883 spin_unlock_irqrestore(&lp->spinlock, flags);
1884
1885 return ret;
1886 }
1887
1888 /*------------------------------------------------------------------*/
1889 /*
1890 * Wireless Handler : set level threshold
1891 */
1892 static int wavelan_set_sens(struct net_device *dev,
1893 struct iw_request_info *info,
1894 union iwreq_data *wrqu,
1895 char *extra)
1896 {
1897 unsigned long ioaddr = dev->base_addr;
1898 net_local *lp = netdev_priv(dev); /* lp is not unused */
1899 psa_t psa;
1900 unsigned long flags;
1901 int ret = 0;
1902
1903 /* Disable interrupts and save flags. */
1904 spin_lock_irqsave(&lp->spinlock, flags);
1905
1906 /* Set the level threshold. */
1907 /* We should complain loudly if wrqu->sens.fixed = 0, because we
1908 * can't set auto mode... */
1909 psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
1910 psa_write(ioaddr, lp->hacr,
1911 (char *) &psa.psa_thr_pre_set - (char *) &psa,
1912 (unsigned char *) &psa.psa_thr_pre_set, 1);
1913 /* update the Wavelan checksum */
1914 update_psa_checksum(dev, ioaddr, lp->hacr);
1915 mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
1916 psa.psa_thr_pre_set);
1917
1918 /* Enable interrupts and restore flags. */
1919 spin_unlock_irqrestore(&lp->spinlock, flags);
1920
1921 return ret;
1922 }
1923
1924 /*------------------------------------------------------------------*/
1925 /*
1926 * Wireless Handler : get level threshold
1927 */
1928 static int wavelan_get_sens(struct net_device *dev,
1929 struct iw_request_info *info,
1930 union iwreq_data *wrqu,
1931 char *extra)
1932 {
1933 unsigned long ioaddr = dev->base_addr;
1934 net_local *lp = netdev_priv(dev); /* lp is not unused */
1935 psa_t psa;
1936 unsigned long flags;
1937 int ret = 0;
1938
1939 /* Disable interrupts and save flags. */
1940 spin_lock_irqsave(&lp->spinlock, flags);
1941
1942 /* Read the level threshold. */
1943 psa_read(ioaddr, lp->hacr,
1944 (char *) &psa.psa_thr_pre_set - (char *) &psa,
1945 (unsigned char *) &psa.psa_thr_pre_set, 1);
1946 wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
1947 wrqu->sens.fixed = 1;
1948
1949 /* Enable interrupts and restore flags. */
1950 spin_unlock_irqrestore(&lp->spinlock, flags);
1951
1952 return ret;
1953 }
1954
1955 /*------------------------------------------------------------------*/
1956 /*
1957 * Wireless Handler : set encryption key
1958 */
1959 static int wavelan_set_encode(struct net_device *dev,
1960 struct iw_request_info *info,
1961 union iwreq_data *wrqu,
1962 char *extra)
1963 {
1964 unsigned long ioaddr = dev->base_addr;
1965 net_local *lp = netdev_priv(dev); /* lp is not unused */
1966 unsigned long flags;
1967 psa_t psa;
1968 int ret = 0;
1969
1970 /* Disable interrupts and save flags. */
1971 spin_lock_irqsave(&lp->spinlock, flags);
1972
1973 /* Check if capable of encryption */
1974 if (!mmc_encr(ioaddr)) {
1975 ret = -EOPNOTSUPP;
1976 }
1977
1978 /* Check the size of the key */
1979 if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
1980 ret = -EINVAL;
1981 }
1982
1983 if(!ret) {
1984 /* Basic checking... */
1985 if (wrqu->encoding.length == 8) {
1986 /* Copy the key in the driver */
1987 memcpy(psa.psa_encryption_key, extra,
1988 wrqu->encoding.length);
1989 psa.psa_encryption_select = 1;
1990
1991 psa_write(ioaddr, lp->hacr,
1992 (char *) &psa.psa_encryption_select -
1993 (char *) &psa,
1994 (unsigned char *) &psa.
1995 psa_encryption_select, 8 + 1);
1996
1997 mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
1998 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
1999 mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
2000 (unsigned char *) &psa.
2001 psa_encryption_key, 8);
2002 }
2003
2004 /* disable encryption */
2005 if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
2006 psa.psa_encryption_select = 0;
2007 psa_write(ioaddr, lp->hacr,
2008 (char *) &psa.psa_encryption_select -
2009 (char *) &psa,
2010 (unsigned char *) &psa.
2011 psa_encryption_select, 1);
2012
2013 mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
2014 }
2015 /* update the Wavelan checksum */
2016 update_psa_checksum(dev, ioaddr, lp->hacr);
2017 }
2018
2019 /* Enable interrupts and restore flags. */
2020 spin_unlock_irqrestore(&lp->spinlock, flags);
2021
2022 return ret;
2023 }
2024
2025 /*------------------------------------------------------------------*/
2026 /*
2027 * Wireless Handler : get encryption key
2028 */
2029 static int wavelan_get_encode(struct net_device *dev,
2030 struct iw_request_info *info,
2031 union iwreq_data *wrqu,
2032 char *extra)
2033 {
2034 unsigned long ioaddr = dev->base_addr;
2035 net_local *lp = netdev_priv(dev); /* lp is not unused */
2036 psa_t psa;
2037 unsigned long flags;
2038 int ret = 0;
2039
2040 /* Disable interrupts and save flags. */
2041 spin_lock_irqsave(&lp->spinlock, flags);
2042
2043 /* Check if encryption is available */
2044 if (!mmc_encr(ioaddr)) {
2045 ret = -EOPNOTSUPP;
2046 } else {
2047 /* Read the encryption key */
2048 psa_read(ioaddr, lp->hacr,
2049 (char *) &psa.psa_encryption_select -
2050 (char *) &psa,
2051 (unsigned char *) &psa.
2052 psa_encryption_select, 1 + 8);
2053
2054 /* encryption is enabled ? */
2055 if (psa.psa_encryption_select)
2056 wrqu->encoding.flags = IW_ENCODE_ENABLED;
2057 else
2058 wrqu->encoding.flags = IW_ENCODE_DISABLED;
2059 wrqu->encoding.flags |= mmc_encr(ioaddr);
2060
2061 /* Copy the key to the user buffer */
2062 wrqu->encoding.length = 8;
2063 memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
2064 }
2065
2066 /* Enable interrupts and restore flags. */
2067 spin_unlock_irqrestore(&lp->spinlock, flags);
2068
2069 return ret;
2070 }
2071
2072 /*------------------------------------------------------------------*/
2073 /*
2074 * Wireless Handler : get range info
2075 */
2076 static int wavelan_get_range(struct net_device *dev,
2077 struct iw_request_info *info,
2078 union iwreq_data *wrqu,
2079 char *extra)
2080 {
2081 unsigned long ioaddr = dev->base_addr;
2082 net_local *lp = netdev_priv(dev); /* lp is not unused */
2083 struct iw_range *range = (struct iw_range *) extra;
2084 unsigned long flags;
2085 int ret = 0;
2086
2087 /* Set the length (very important for backward compatibility) */
2088 wrqu->data.length = sizeof(struct iw_range);
2089
2090 /* Set all the info we don't care or don't know about to zero */
2091 memset(range, 0, sizeof(struct iw_range));
2092
2093 /* Set the Wireless Extension versions */
2094 range->we_version_compiled = WIRELESS_EXT;
2095 range->we_version_source = 9;
2096
2097 /* Set information in the range struct. */
2098 range->throughput = 1.6 * 1000 * 1000; /* don't argue on this ! */
2099 range->min_nwid = 0x0000;
2100 range->max_nwid = 0xFFFF;
2101
2102 range->sensitivity = 0x3F;
2103 range->max_qual.qual = MMR_SGNL_QUAL;
2104 range->max_qual.level = MMR_SIGNAL_LVL;
2105 range->max_qual.noise = MMR_SILENCE_LVL;
2106 range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
2107 /* Need to get better values for those two */
2108 range->avg_qual.level = 30;
2109 range->avg_qual.noise = 8;
2110
2111 range->num_bitrates = 1;
2112 range->bitrate[0] = 2000000; /* 2 Mb/s */
2113
2114 /* Event capability (kernel + driver) */
2115 range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
2116 IW_EVENT_CAPA_MASK(0x8B04));
2117 range->event_capa[1] = IW_EVENT_CAPA_K_1;
2118
2119 /* Disable interrupts and save flags. */
2120 spin_lock_irqsave(&lp->spinlock, flags);
2121
2122 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
2123 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
2124 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
2125 range->num_channels = 10;
2126 range->num_frequency = wv_frequency_list(ioaddr, range->freq,
2127 IW_MAX_FREQUENCIES);
2128 } else
2129 range->num_channels = range->num_frequency = 0;
2130
2131 /* Encryption supported ? */
2132 if (mmc_encr(ioaddr)) {
2133 range->encoding_size[0] = 8; /* DES = 64 bits key */
2134 range->num_encoding_sizes = 1;
2135 range->max_encoding_tokens = 1; /* Only one key possible */
2136 } else {
2137 range->num_encoding_sizes = 0;
2138 range->max_encoding_tokens = 0;
2139 }
2140
2141 /* Enable interrupts and restore flags. */
2142 spin_unlock_irqrestore(&lp->spinlock, flags);
2143
2144 return ret;
2145 }
2146
2147 /*------------------------------------------------------------------*/
2148 /*
2149 * Wireless Private Handler : set quality threshold
2150 */
2151 static int wavelan_set_qthr(struct net_device *dev,
2152 struct iw_request_info *info,
2153 union iwreq_data *wrqu,
2154 char *extra)
2155 {
2156 unsigned long ioaddr = dev->base_addr;
2157 net_local *lp = netdev_priv(dev); /* lp is not unused */
2158 psa_t psa;
2159 unsigned long flags;
2160
2161 /* Disable interrupts and save flags. */
2162 spin_lock_irqsave(&lp->spinlock, flags);
2163
2164 psa.psa_quality_thr = *(extra) & 0x0F;
2165 psa_write(ioaddr, lp->hacr,
2166 (char *) &psa.psa_quality_thr - (char *) &psa,
2167 (unsigned char *) &psa.psa_quality_thr, 1);
2168 /* update the Wavelan checksum */
2169 update_psa_checksum(dev, ioaddr, lp->hacr);
2170 mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
2171 psa.psa_quality_thr);
2172
2173 /* Enable interrupts and restore flags. */
2174 spin_unlock_irqrestore(&lp->spinlock, flags);
2175
2176 return 0;
2177 }
2178
2179 /*------------------------------------------------------------------*/
2180 /*
2181 * Wireless Private Handler : get quality threshold
2182 */
2183 static int wavelan_get_qthr(struct net_device *dev,
2184 struct iw_request_info *info,
2185 union iwreq_data *wrqu,
2186 char *extra)
2187 {
2188 unsigned long ioaddr = dev->base_addr;
2189 net_local *lp = netdev_priv(dev); /* lp is not unused */
2190 psa_t psa;
2191 unsigned long flags;
2192
2193 /* Disable interrupts and save flags. */
2194 spin_lock_irqsave(&lp->spinlock, flags);
2195
2196 psa_read(ioaddr, lp->hacr,
2197 (char *) &psa.psa_quality_thr - (char *) &psa,
2198 (unsigned char *) &psa.psa_quality_thr, 1);
2199 *(extra) = psa.psa_quality_thr & 0x0F;
2200
2201 /* Enable interrupts and restore flags. */
2202 spin_unlock_irqrestore(&lp->spinlock, flags);
2203
2204 return 0;
2205 }
2206
2207 #ifdef HISTOGRAM
2208 /*------------------------------------------------------------------*/
2209 /*
2210 * Wireless Private Handler : set histogram
2211 */
2212 static int wavelan_set_histo(struct net_device *dev,
2213 struct iw_request_info *info,
2214 union iwreq_data *wrqu,
2215 char *extra)
2216 {
2217 net_local *lp = netdev_priv(dev); /* lp is not unused */
2218
2219 /* Check the number of intervals. */
2220 if (wrqu->data.length > 16) {
2221 return(-E2BIG);
2222 }
2223
2224 /* Disable histo while we copy the addresses.
2225 * As we don't disable interrupts, we need to do this */
2226 lp->his_number = 0;
2227
2228 /* Are there ranges to copy? */
2229 if (wrqu->data.length > 0) {
2230 /* Copy interval ranges to the driver */
2231 memcpy(lp->his_range, extra, wrqu->data.length);
2232
2233 {
2234 int i;
2235 printk(KERN_DEBUG "Histo :");
2236 for(i = 0; i < wrqu->data.length; i++)
2237 printk(" %d", lp->his_range[i]);
2238 printk("\n");
2239 }
2240
2241 /* Reset result structure. */
2242 memset(lp->his_sum, 0x00, sizeof(long) * 16);
2243 }
2244
2245 /* Now we can set the number of ranges */
2246 lp->his_number = wrqu->data.length;
2247
2248 return(0);
2249 }
2250
2251 /*------------------------------------------------------------------*/
2252 /*
2253 * Wireless Private Handler : get histogram
2254 */
2255 static int wavelan_get_histo(struct net_device *dev,
2256 struct iw_request_info *info,
2257 union iwreq_data *wrqu,
2258 char *extra)
2259 {
2260 net_local *lp = netdev_priv(dev); /* lp is not unused */
2261
2262 /* Set the number of intervals. */
2263 wrqu->data.length = lp->his_number;
2264
2265 /* Give back the distribution statistics */
2266 if(lp->his_number > 0)
2267 memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
2268
2269 return(0);
2270 }
2271 #endif /* HISTOGRAM */
2272
2273 /*------------------------------------------------------------------*/
2274 /*
2275 * Structures to export the Wireless Handlers
2276 */
2277
2278 static const iw_handler wavelan_handler[] =
2279 {
2280 NULL, /* SIOCSIWNAME */
2281 wavelan_get_name, /* SIOCGIWNAME */
2282 wavelan_set_nwid, /* SIOCSIWNWID */
2283 wavelan_get_nwid, /* SIOCGIWNWID */
2284 wavelan_set_freq, /* SIOCSIWFREQ */
2285 wavelan_get_freq, /* SIOCGIWFREQ */
2286 NULL, /* SIOCSIWMODE */
2287 NULL, /* SIOCGIWMODE */
2288 wavelan_set_sens, /* SIOCSIWSENS */
2289 wavelan_get_sens, /* SIOCGIWSENS */
2290 NULL, /* SIOCSIWRANGE */
2291 wavelan_get_range, /* SIOCGIWRANGE */
2292 NULL, /* SIOCSIWPRIV */
2293 NULL, /* SIOCGIWPRIV */
2294 NULL, /* SIOCSIWSTATS */
2295 NULL, /* SIOCGIWSTATS */
2296 iw_handler_set_spy, /* SIOCSIWSPY */
2297 iw_handler_get_spy, /* SIOCGIWSPY */
2298 iw_handler_set_thrspy, /* SIOCSIWTHRSPY */
2299 iw_handler_get_thrspy, /* SIOCGIWTHRSPY */
2300 NULL, /* SIOCSIWAP */
2301 NULL, /* SIOCGIWAP */
2302 NULL, /* -- hole -- */
2303 NULL, /* SIOCGIWAPLIST */
2304 NULL, /* -- hole -- */
2305 NULL, /* -- hole -- */
2306 NULL, /* SIOCSIWESSID */
2307 NULL, /* SIOCGIWESSID */
2308 NULL, /* SIOCSIWNICKN */
2309 NULL, /* SIOCGIWNICKN */
2310 NULL, /* -- hole -- */
2311 NULL, /* -- hole -- */
2312 NULL, /* SIOCSIWRATE */
2313 NULL, /* SIOCGIWRATE */
2314 NULL, /* SIOCSIWRTS */
2315 NULL, /* SIOCGIWRTS */
2316 NULL, /* SIOCSIWFRAG */
2317 NULL, /* SIOCGIWFRAG */
2318 NULL, /* SIOCSIWTXPOW */
2319 NULL, /* SIOCGIWTXPOW */
2320 NULL, /* SIOCSIWRETRY */
2321 NULL, /* SIOCGIWRETRY */
2322 /* Bummer ! Why those are only at the end ??? */
2323 wavelan_set_encode, /* SIOCSIWENCODE */
2324 wavelan_get_encode, /* SIOCGIWENCODE */
2325 };
2326
2327 static const iw_handler wavelan_private_handler[] =
2328 {
2329 wavelan_set_qthr, /* SIOCIWFIRSTPRIV */
2330 wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */
2331 #ifdef HISTOGRAM
2332 wavelan_set_histo, /* SIOCIWFIRSTPRIV + 2 */
2333 wavelan_get_histo, /* SIOCIWFIRSTPRIV + 3 */
2334 #endif /* HISTOGRAM */
2335 };
2336
2337 static const struct iw_priv_args wavelan_private_args[] = {
2338 /*{ cmd, set_args, get_args, name } */
2339 { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
2340 { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
2341 { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" },
2342 { SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" },
2343 };
2344
2345 static const struct iw_handler_def wavelan_handler_def =
2346 {
2347 .num_standard = ARRAY_SIZE(wavelan_handler),
2348 .num_private = ARRAY_SIZE(wavelan_private_handler),
2349 .num_private_args = ARRAY_SIZE(wavelan_private_args),
2350 .standard = wavelan_handler,
2351 .private = wavelan_private_handler,
2352 .private_args = wavelan_private_args,
2353 .get_wireless_stats = wavelan_get_wireless_stats,
2354 };
2355
2356 /*------------------------------------------------------------------*/
2357 /*
2358 * Get wireless statistics.
2359 * Called by /proc/net/wireless
2360 */
2361 static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
2362 {
2363 unsigned long ioaddr = dev->base_addr;
2364 net_local *lp = netdev_priv(dev);
2365 mmr_t m;
2366 iw_stats *wstats;
2367 unsigned long flags;
2368
2369 #ifdef DEBUG_IOCTL_TRACE
2370 printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
2371 dev->name);
2372 #endif
2373
2374 /* Check */
2375 if (lp == (net_local *) NULL)
2376 return (iw_stats *) NULL;
2377
2378 /* Disable interrupts and save flags. */
2379 spin_lock_irqsave(&lp->spinlock, flags);
2380
2381 wstats = &lp->wstats;
2382
2383 /* Get data from the mmc. */
2384 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2385
2386 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
2387 mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
2388 2);
2389 mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
2390 4);
2391
2392 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2393
2394 /* Copy data to wireless stuff. */
2395 wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
2396 wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
2397 wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
2398 wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
2399 wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7)
2400 | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6)
2401 | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
2402 wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
2403 wstats->discard.code = 0L;
2404 wstats->discard.misc = 0L;
2405
2406 /* Enable interrupts and restore flags. */
2407 spin_unlock_irqrestore(&lp->spinlock, flags);
2408
2409 #ifdef DEBUG_IOCTL_TRACE
2410 printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
2411 dev->name);
2412 #endif
2413 return &lp->wstats;
2414 }
2415
2416 /************************* PACKET RECEPTION *************************/
2417 /*
2418 * This part deals with receiving the packets.
2419 * The interrupt handler gets an interrupt when a packet has been
2420 * successfully received and calls this part.
2421 */
2422
2423 /*------------------------------------------------------------------*/
2424 /*
2425 * This routine does the actual copying of data (including the Ethernet
2426 * header structure) from the WaveLAN card to an sk_buff chain that
2427 * will be passed up to the network interface layer. NOTE: we
2428 * currently don't handle trailer protocols (neither does the rest of
2429 * the network interface), so if that is needed, it will (at least in
2430 * part) be added here. The contents of the receive ring buffer are
2431 * copied to a message chain that is then passed to the kernel.
2432 *
2433 * Note: if any errors occur, the packet is "dropped on the floor".
2434 * (called by wv_packet_rcv())
2435 */
2436 static void
2437 wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
2438 {
2439 net_local *lp = netdev_priv(dev);
2440 unsigned long ioaddr = dev->base_addr;
2441 struct sk_buff *skb;
2442
2443 #ifdef DEBUG_RX_TRACE
2444 printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
2445 dev->name, buf_off, sksize);
2446 #endif
2447
2448 /* Allocate buffer for the data */
2449 if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
2450 #ifdef DEBUG_RX_ERROR
2451 printk(KERN_INFO
2452 "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
2453 dev->name, sksize);
2454 #endif
2455 dev->stats.rx_dropped++;
2456 return;
2457 }
2458
2459 /* Copy the packet to the buffer. */
2460 obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
2461 skb->protocol = eth_type_trans(skb, dev);
2462
2463 #ifdef DEBUG_RX_INFO
2464 wv_packet_info(skb_mac_header(skb), sksize, dev->name,
2465 "wv_packet_read");
2466 #endif /* DEBUG_RX_INFO */
2467
2468 /* Statistics-gathering and associated stuff.
2469 * It seem a bit messy with all the define, but it's really
2470 * simple... */
2471 if (
2472 #ifdef IW_WIRELESS_SPY /* defined in iw_handler.h */
2473 (lp->spy_data.spy_number > 0) ||
2474 #endif /* IW_WIRELESS_SPY */
2475 #ifdef HISTOGRAM
2476 (lp->his_number > 0) ||
2477 #endif /* HISTOGRAM */
2478 0) {
2479 u8 stats[3]; /* signal level, noise level, signal quality */
2480
2481 /* Read signal level, silence level and signal quality bytes */
2482 /* Note: in the PCMCIA hardware, these are part of the frame.
2483 * It seems that for the ISA hardware, it's nowhere to be
2484 * found in the frame, so I'm obliged to do this (it has a
2485 * side effect on /proc/net/wireless).
2486 * Any ideas?
2487 */
2488 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2489 mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
2490 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2491
2492 #ifdef DEBUG_RX_INFO
2493 printk(KERN_DEBUG
2494 "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
2495 dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
2496 stats[2] & 0x0F);
2497 #endif
2498
2499 /* Spying stuff */
2500 #ifdef IW_WIRELESS_SPY
2501 wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE,
2502 stats);
2503 #endif /* IW_WIRELESS_SPY */
2504 #ifdef HISTOGRAM
2505 wl_his_gather(dev, stats);
2506 #endif /* HISTOGRAM */
2507 }
2508
2509 /*
2510 * Hand the packet to the network module.
2511 */
2512 netif_rx(skb);
2513
2514 /* Keep statistics up to date */
2515 dev->stats.rx_packets++;
2516 dev->stats.rx_bytes += sksize;
2517
2518 #ifdef DEBUG_RX_TRACE
2519 printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
2520 #endif
2521 }
2522
2523 /*------------------------------------------------------------------*/
2524 /*
2525 * Transfer as many packets as we can
2526 * from the device RAM.
2527 * (called in wavelan_interrupt()).
2528 * Note : the spinlock is already grabbed for us.
2529 */
2530 static void wv_receive(struct net_device * dev)
2531 {
2532 unsigned long ioaddr = dev->base_addr;
2533 net_local *lp = netdev_priv(dev);
2534 fd_t fd;
2535 rbd_t rbd;
2536 int nreaped = 0;
2537
2538 #ifdef DEBUG_RX_TRACE
2539 printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
2540 #endif
2541
2542 /* Loop on each received packet. */
2543 for (;;) {
2544 obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
2545 sizeof(fd));
2546
2547 /* Note about the status :
2548 * It start up to be 0 (the value we set). Then, when the RU
2549 * grab the buffer to prepare for reception, it sets the
2550 * FD_STATUS_B flag. When the RU has finished receiving the
2551 * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
2552 * completion and set the other flags to indicate the eventual
2553 * errors. FD_STATUS_OK indicates that the reception was OK.
2554 */
2555
2556 /* If the current frame is not complete, we have reached the end. */
2557 if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
2558 break; /* This is how we exit the loop. */
2559
2560 nreaped++;
2561
2562 /* Check whether frame was correctly received. */
2563 if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
2564 /* Does the frame contain a pointer to the data? Let's check. */
2565 if (fd.fd_rbd_offset != I82586NULL) {
2566 /* Read the receive buffer descriptor */
2567 obram_read(ioaddr, fd.fd_rbd_offset,
2568 (unsigned char *) &rbd,
2569 sizeof(rbd));
2570
2571 #ifdef DEBUG_RX_ERROR
2572 if ((rbd.rbd_status & RBD_STATUS_EOF) !=
2573 RBD_STATUS_EOF) printk(KERN_INFO
2574 "%s: wv_receive(): missing EOF flag.\n",
2575 dev->name);
2576
2577 if ((rbd.rbd_status & RBD_STATUS_F) !=
2578 RBD_STATUS_F) printk(KERN_INFO
2579 "%s: wv_receive(): missing F flag.\n",
2580 dev->name);
2581 #endif /* DEBUG_RX_ERROR */
2582
2583 /* Read the packet and transmit to Linux */
2584 wv_packet_read(dev, rbd.rbd_bufl,
2585 rbd.
2586 rbd_status &
2587 RBD_STATUS_ACNT);
2588 }
2589 #ifdef DEBUG_RX_ERROR
2590 else /* if frame has no data */
2591 printk(KERN_INFO
2592 "%s: wv_receive(): frame has no data.\n",
2593 dev->name);
2594 #endif
2595 } else { /* If reception was no successful */
2596
2597 dev->stats.rx_errors++;
2598
2599 #ifdef DEBUG_RX_INFO
2600 printk(KERN_DEBUG
2601 "%s: wv_receive(): frame not received successfully (%X).\n",
2602 dev->name, fd.fd_status);
2603 #endif
2604
2605 #ifdef DEBUG_RX_ERROR
2606 if ((fd.fd_status & FD_STATUS_S6) != 0)
2607 printk(KERN_INFO
2608 "%s: wv_receive(): no EOF flag.\n",
2609 dev->name);
2610 #endif
2611
2612 if ((fd.fd_status & FD_STATUS_S7) != 0) {
2613 dev->stats.rx_length_errors++;
2614 #ifdef DEBUG_RX_FAIL
2615 printk(KERN_DEBUG
2616 "%s: wv_receive(): frame too short.\n",
2617 dev->name);
2618 #endif
2619 }
2620
2621 if ((fd.fd_status & FD_STATUS_S8) != 0) {
2622 dev->stats.rx_over_errors++;
2623 #ifdef DEBUG_RX_FAIL
2624 printk(KERN_DEBUG
2625 "%s: wv_receive(): rx DMA overrun.\n",
2626 dev->name);
2627 #endif
2628 }
2629
2630 if ((fd.fd_status & FD_STATUS_S9) != 0) {
2631 dev->stats.rx_fifo_errors++;
2632 #ifdef DEBUG_RX_FAIL
2633 printk(KERN_DEBUG
2634 "%s: wv_receive(): ran out of resources.\n",
2635 dev->name);
2636 #endif
2637 }
2638
2639 if ((fd.fd_status & FD_STATUS_S10) != 0) {
2640 dev->stats.rx_frame_errors++;
2641 #ifdef DEBUG_RX_FAIL
2642 printk(KERN_DEBUG
2643 "%s: wv_receive(): alignment error.\n",
2644 dev->name);
2645 #endif
2646 }
2647
2648 if ((fd.fd_status & FD_STATUS_S11) != 0) {
2649 dev->stats.rx_crc_errors++;
2650 #ifdef DEBUG_RX_FAIL
2651 printk(KERN_DEBUG
2652 "%s: wv_receive(): CRC error.\n",
2653 dev->name);
2654 #endif
2655 }
2656 }
2657
2658 fd.fd_status = 0;
2659 obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
2660 (unsigned char *) &fd.fd_status,
2661 sizeof(fd.fd_status));
2662
2663 fd.fd_command = FD_COMMAND_EL;
2664 obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
2665 (unsigned char *) &fd.fd_command,
2666 sizeof(fd.fd_command));
2667
2668 fd.fd_command = 0;
2669 obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
2670 (unsigned char *) &fd.fd_command,
2671 sizeof(fd.fd_command));
2672
2673 lp->rx_last = lp->rx_head;
2674 lp->rx_head = fd.fd_link_offset;
2675 } /* for(;;) -> loop on all frames */
2676
2677 #ifdef DEBUG_RX_INFO
2678 if (nreaped > 1)
2679 printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
2680 dev->name, nreaped);
2681 #endif
2682 #ifdef DEBUG_RX_TRACE
2683 printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
2684 #endif
2685 }
2686
2687 /*********************** PACKET TRANSMISSION ***********************/
2688 /*
2689 * This part deals with sending packets through the WaveLAN.
2690 *
2691 */
2692
2693 /*------------------------------------------------------------------*/
2694 /*
2695 * This routine fills in the appropriate registers and memory
2696 * locations on the WaveLAN card and starts the card off on
2697 * the transmit.
2698 *
2699 * The principle:
2700 * Each block contains a transmit command, a NOP command,
2701 * a transmit block descriptor and a buffer.
2702 * The CU read the transmit block which point to the tbd,
2703 * read the tbd and the content of the buffer.
2704 * When it has finish with it, it goes to the next command
2705 * which in our case is the NOP. The NOP points on itself,
2706 * so the CU stop here.
2707 * When we add the next block, we modify the previous nop
2708 * to make it point on the new tx command.
2709 * Simple, isn't it ?
2710 *
2711 * (called in wavelan_packet_xmit())
2712 */
2713 static int wv_packet_write(struct net_device * dev, void *buf, short length)
2714 {
2715 net_local *lp = netdev_priv(dev);
2716 unsigned long ioaddr = dev->base_addr;
2717 unsigned short txblock;
2718 unsigned short txpred;
2719 unsigned short tx_addr;
2720 unsigned short nop_addr;
2721 unsigned short tbd_addr;
2722 unsigned short buf_addr;
2723 ac_tx_t tx;
2724 ac_nop_t nop;
2725 tbd_t tbd;
2726 int clen = length;
2727 unsigned long flags;
2728
2729 #ifdef DEBUG_TX_TRACE
2730 printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
2731 length);
2732 #endif
2733
2734 spin_lock_irqsave(&lp->spinlock, flags);
2735
2736 /* Check nothing bad has happened */
2737 if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
2738 #ifdef DEBUG_TX_ERROR
2739 printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
2740 dev->name);
2741 #endif
2742 spin_unlock_irqrestore(&lp->spinlock, flags);
2743 return 1;
2744 }
2745
2746 /* Calculate addresses of next block and previous block. */
2747 txblock = lp->tx_first_free;
2748 txpred = txblock - TXBLOCKZ;
2749 if (txpred < OFFSET_CU)
2750 txpred += NTXBLOCKS * TXBLOCKZ;
2751 lp->tx_first_free += TXBLOCKZ;
2752 if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
2753 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
2754
2755 lp->tx_n_in_use++;
2756
2757 /* Calculate addresses of the different parts of the block. */
2758 tx_addr = txblock;
2759 nop_addr = tx_addr + sizeof(tx);
2760 tbd_addr = nop_addr + sizeof(nop);
2761 buf_addr = tbd_addr + sizeof(tbd);
2762
2763 /*
2764 * Transmit command
2765 */
2766 tx.tx_h.ac_status = 0;
2767 obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
2768 (unsigned char *) &tx.tx_h.ac_status,
2769 sizeof(tx.tx_h.ac_status));
2770
2771 /*
2772 * NOP command
2773 */
2774 nop.nop_h.ac_status = 0;
2775 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2776 (unsigned char *) &nop.nop_h.ac_status,
2777 sizeof(nop.nop_h.ac_status));
2778 nop.nop_h.ac_link = nop_addr;
2779 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2780 (unsigned char *) &nop.nop_h.ac_link,
2781 sizeof(nop.nop_h.ac_link));
2782
2783 /*
2784 * Transmit buffer descriptor
2785 */
2786 tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
2787 tbd.tbd_next_bd_offset = I82586NULL;
2788 tbd.tbd_bufl = buf_addr;
2789 tbd.tbd_bufh = 0;
2790 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
2791
2792 /*
2793 * Data
2794 */
2795 obram_write(ioaddr, buf_addr, buf, length);
2796
2797 /*
2798 * Overwrite the predecessor NOP link
2799 * so that it points to this txblock.
2800 */
2801 nop_addr = txpred + sizeof(tx);
2802 nop.nop_h.ac_status = 0;
2803 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2804 (unsigned char *) &nop.nop_h.ac_status,
2805 sizeof(nop.nop_h.ac_status));
2806 nop.nop_h.ac_link = txblock;
2807 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2808 (unsigned char *) &nop.nop_h.ac_link,
2809 sizeof(nop.nop_h.ac_link));
2810
2811 /* Make sure the watchdog will keep quiet for a while */
2812 dev->trans_start = jiffies;
2813
2814 /* Keep stats up to date. */
2815 dev->stats.tx_bytes += length;
2816
2817 if (lp->tx_first_in_use == I82586NULL)
2818 lp->tx_first_in_use = txblock;
2819
2820 if (lp->tx_n_in_use < NTXBLOCKS - 1)
2821 netif_wake_queue(dev);
2822
2823 spin_unlock_irqrestore(&lp->spinlock, flags);
2824
2825 #ifdef DEBUG_TX_INFO
2826 wv_packet_info((u8 *) buf, length, dev->name,
2827 "wv_packet_write");
2828 #endif /* DEBUG_TX_INFO */
2829
2830 #ifdef DEBUG_TX_TRACE
2831 printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
2832 #endif
2833
2834 return 0;
2835 }
2836
2837 /*------------------------------------------------------------------*/
2838 /*
2839 * This routine is called when we want to send a packet (NET3 callback)
2840 * In this routine, we check if the harware is ready to accept
2841 * the packet. We also prevent reentrance. Then we call the function
2842 * to send the packet.
2843 */
2844 static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev)
2845 {
2846 net_local *lp = netdev_priv(dev);
2847 unsigned long flags;
2848 char data[ETH_ZLEN];
2849
2850 #ifdef DEBUG_TX_TRACE
2851 printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
2852 (unsigned) skb);
2853 #endif
2854
2855 /*
2856 * Block a timer-based transmit from overlapping.
2857 * In other words, prevent reentering this routine.
2858 */
2859 netif_stop_queue(dev);
2860
2861 /* If somebody has asked to reconfigure the controller,
2862 * we can do it now.
2863 */
2864 if (lp->reconfig_82586) {
2865 spin_lock_irqsave(&lp->spinlock, flags);
2866 wv_82586_config(dev);
2867 spin_unlock_irqrestore(&lp->spinlock, flags);
2868 /* Check that we can continue */
2869 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
2870 return NETDEV_TX_BUSY;
2871 }
2872
2873 /* Do we need some padding? */
2874 /* Note : on wireless the propagation time is in the order of 1us,
2875 * and we don't have the Ethernet specific requirement of beeing
2876 * able to detect collisions, therefore in theory we don't really
2877 * need to pad. Jean II */
2878 if (skb->len < ETH_ZLEN) {
2879 memset(data, 0, ETH_ZLEN);
2880 skb_copy_from_linear_data(skb, data, skb->len);
2881 /* Write packet on the card */
2882 if(wv_packet_write(dev, data, ETH_ZLEN))
2883 return NETDEV_TX_BUSY; /* We failed */
2884 }
2885 else if(wv_packet_write(dev, skb->data, skb->len))
2886 return NETDEV_TX_BUSY; /* We failed */
2887
2888
2889 dev_kfree_skb(skb);
2890
2891 #ifdef DEBUG_TX_TRACE
2892 printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
2893 #endif
2894 return NETDEV_TX_OK;
2895 }
2896
2897 /*********************** HARDWARE CONFIGURATION ***********************/
2898 /*
2899 * This part does the real job of starting and configuring the hardware.
2900 */
2901
2902 /*--------------------------------------------------------------------*/
2903 /*
2904 * Routine to initialize the Modem Management Controller.
2905 * (called by wv_hw_reset())
2906 */
2907 static int wv_mmc_init(struct net_device * dev)
2908 {
2909 unsigned long ioaddr = dev->base_addr;
2910 net_local *lp = netdev_priv(dev);
2911 psa_t psa;
2912 mmw_t m;
2913 int configured;
2914
2915 #ifdef DEBUG_CONFIG_TRACE
2916 printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
2917 #endif
2918
2919 /* Read the parameter storage area. */
2920 psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
2921
2922 #ifdef USE_PSA_CONFIG
2923 configured = psa.psa_conf_status & 1;
2924 #else
2925 configured = 0;
2926 #endif
2927
2928 /* Is the PSA is not configured */
2929 if (!configured) {
2930 /* User will be able to configure NWID later (with iwconfig). */
2931 psa.psa_nwid[0] = 0;
2932 psa.psa_nwid[1] = 0;
2933
2934 /* no NWID checking since NWID is not set */
2935 psa.psa_nwid_select = 0;
2936
2937 /* Disable encryption */
2938 psa.psa_encryption_select = 0;
2939
2940 /* Set to standard values:
2941 * 0x04 for AT,
2942 * 0x01 for MCA,
2943 * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
2944 */
2945 if (psa.psa_comp_number & 1)
2946 psa.psa_thr_pre_set = 0x01;
2947 else
2948 psa.psa_thr_pre_set = 0x04;
2949 psa.psa_quality_thr = 0x03;
2950
2951 /* It is configured */
2952 psa.psa_conf_status |= 1;
2953
2954 #ifdef USE_PSA_CONFIG
2955 /* Write the psa. */
2956 psa_write(ioaddr, lp->hacr,
2957 (char *) psa.psa_nwid - (char *) &psa,
2958 (unsigned char *) psa.psa_nwid, 4);
2959 psa_write(ioaddr, lp->hacr,
2960 (char *) &psa.psa_thr_pre_set - (char *) &psa,
2961 (unsigned char *) &psa.psa_thr_pre_set, 1);
2962 psa_write(ioaddr, lp->hacr,
2963 (char *) &psa.psa_quality_thr - (char *) &psa,
2964 (unsigned char *) &psa.psa_quality_thr, 1);
2965 psa_write(ioaddr, lp->hacr,
2966 (char *) &psa.psa_conf_status - (char *) &psa,
2967 (unsigned char *) &psa.psa_conf_status, 1);
2968 /* update the Wavelan checksum */
2969 update_psa_checksum(dev, ioaddr, lp->hacr);
2970 #endif
2971 }
2972
2973 /* Zero the mmc structure. */
2974 memset(&m, 0x00, sizeof(m));
2975
2976 /* Copy PSA info to the mmc. */
2977 m.mmw_netw_id_l = psa.psa_nwid[1];
2978 m.mmw_netw_id_h = psa.psa_nwid[0];
2979
2980 if (psa.psa_nwid_select & 1)
2981 m.mmw_loopt_sel = 0x00;
2982 else
2983 m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
2984
2985 memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
2986 sizeof(m.mmw_encr_key));
2987
2988 if (psa.psa_encryption_select)
2989 m.mmw_encr_enable =
2990 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
2991 else
2992 m.mmw_encr_enable = 0;
2993
2994 m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
2995 m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
2996
2997 /*
2998 * Set default modem control parameters.
2999 * See NCR document 407-0024326 Rev. A.
3000 */
3001 m.mmw_jabber_enable = 0x01;
3002 m.mmw_freeze = 0;
3003 m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
3004 m.mmw_ifs = 0x20;
3005 m.mmw_mod_delay = 0x04;
3006 m.mmw_jam_time = 0x38;
3007
3008 m.mmw_des_io_invert = 0;
3009 m.mmw_decay_prm = 0;
3010 m.mmw_decay_updat_prm = 0;
3011
3012 /* Write all info to MMC. */
3013 mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
3014
3015 /* The following code starts the modem of the 2.00 frequency
3016 * selectable cards at power on. It's not strictly needed for the
3017 * following boots.
3018 * The original patch was by Joe Finney for the PCMCIA driver, but
3019 * I've cleaned it up a bit and added documentation.
3020 * Thanks to Loeke Brederveld from Lucent for the info.
3021 */
3022
3023 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
3024 * Does it work for everybody, especially old cards? */
3025 /* Note: WFREQSEL verifies that it is able to read a sensible
3026 * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
3027 * is 0xA (Xilinx version) or 0xB (Ariadne version).
3028 * My test is more crude but does work. */
3029 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
3030 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
3031 /* We must download the frequency parameters to the
3032 * synthesizers (from the EEPROM - area 1)
3033 * Note: as the EEPROM is automatically decremented, we set the end
3034 * if the area... */
3035 m.mmw_fee_addr = 0x0F;
3036 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3037 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3038 (unsigned char *) &m.mmw_fee_ctrl, 2);
3039
3040 /* Wait until the download is finished. */
3041 fee_wait(ioaddr, 100, 100);
3042
3043 #ifdef DEBUG_CONFIG_INFO
3044 /* The frequency was in the last word downloaded. */
3045 mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
3046 (unsigned char *) &m.mmw_fee_data_l, 2);
3047
3048 /* Print some info for the user. */
3049 printk(KERN_DEBUG
3050 "%s: WaveLAN 2.00 recognised (frequency select). Current frequency = %ld\n",
3051 dev->name,
3052 ((m.
3053 mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
3054 5 / 2 + 24000L);
3055 #endif
3056
3057 /* We must now download the power adjust value (gain) to
3058 * the synthesizers (from the EEPROM - area 7 - DAC). */
3059 m.mmw_fee_addr = 0x61;
3060 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3061 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3062 (unsigned char *) &m.mmw_fee_ctrl, 2);
3063
3064 /* Wait until the download is finished. */
3065 }
3066 /* if 2.00 card */
3067 #ifdef DEBUG_CONFIG_TRACE
3068 printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
3069 #endif
3070 return 0;
3071 }
3072
3073 /*------------------------------------------------------------------*/
3074 /*
3075 * Construct the fd and rbd structures.
3076 * Start the receive unit.
3077 * (called by wv_hw_reset())
3078 */
3079 static int wv_ru_start(struct net_device * dev)
3080 {
3081 net_local *lp = netdev_priv(dev);
3082 unsigned long ioaddr = dev->base_addr;
3083 u16 scb_cs;
3084 fd_t fd;
3085 rbd_t rbd;
3086 u16 rx;
3087 u16 rx_next;
3088 int i;
3089
3090 #ifdef DEBUG_CONFIG_TRACE
3091 printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
3092 #endif
3093
3094 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3095 (unsigned char *) &scb_cs, sizeof(scb_cs));
3096 if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
3097 return 0;
3098
3099 lp->rx_head = OFFSET_RU;
3100
3101 for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
3102 rx_next =
3103 (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
3104
3105 fd.fd_status = 0;
3106 fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
3107 fd.fd_link_offset = rx_next;
3108 fd.fd_rbd_offset = rx + sizeof(fd);
3109 obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
3110
3111 rbd.rbd_status = 0;
3112 rbd.rbd_next_rbd_offset = I82586NULL;
3113 rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
3114 rbd.rbd_bufh = 0;
3115 rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
3116 obram_write(ioaddr, rx + sizeof(fd),
3117 (unsigned char *) &rbd, sizeof(rbd));
3118
3119 lp->rx_last = rx;
3120 }
3121
3122 obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
3123 (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
3124
3125 scb_cs = SCB_CMD_RUC_GO;
3126 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3127 (unsigned char *) &scb_cs, sizeof(scb_cs));
3128
3129 set_chan_attn(ioaddr, lp->hacr);
3130
3131 for (i = 1000; i > 0; i--) {
3132 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3133 (unsigned char *) &scb_cs, sizeof(scb_cs));
3134 if (scb_cs == 0)
3135 break;
3136
3137 udelay(10);
3138 }
3139
3140 if (i <= 0) {
3141 #ifdef DEBUG_CONFIG_ERROR
3142 printk(KERN_INFO
3143 "%s: wavelan_ru_start(): board not accepting command.\n",
3144 dev->name);
3145 #endif
3146 return -1;
3147 }
3148 #ifdef DEBUG_CONFIG_TRACE
3149 printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
3150 #endif
3151 return 0;
3152 }
3153
3154 /*------------------------------------------------------------------*/
3155 /*
3156 * Initialise the transmit blocks.
3157 * Start the command unit executing the NOP
3158 * self-loop of the first transmit block.
3159 *
3160 * Here we create the list of send buffers used to transmit packets
3161 * between the PC and the command unit. For each buffer, we create a
3162 * buffer descriptor (pointing on the buffer), a transmit command
3163 * (pointing to the buffer descriptor) and a NOP command.
3164 * The transmit command is linked to the NOP, and the NOP to itself.
3165 * When we will have finished executing the transmit command, we will
3166 * then loop on the NOP. By releasing the NOP link to a new command,
3167 * we may send another buffer.
3168 *
3169 * (called by wv_hw_reset())
3170 */
3171 static int wv_cu_start(struct net_device * dev)
3172 {
3173 net_local *lp = netdev_priv(dev);
3174 unsigned long ioaddr = dev->base_addr;
3175 int i;
3176 u16 txblock;
3177 u16 first_nop;
3178 u16 scb_cs;
3179
3180 #ifdef DEBUG_CONFIG_TRACE
3181 printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
3182 #endif
3183
3184 lp->tx_first_free = OFFSET_CU;
3185 lp->tx_first_in_use = I82586NULL;
3186
3187 for (i = 0, txblock = OFFSET_CU;
3188 i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
3189 ac_tx_t tx;
3190 ac_nop_t nop;
3191 tbd_t tbd;
3192 unsigned short tx_addr;
3193 unsigned short nop_addr;
3194 unsigned short tbd_addr;
3195 unsigned short buf_addr;
3196
3197 tx_addr = txblock;
3198 nop_addr = tx_addr + sizeof(tx);
3199 tbd_addr = nop_addr + sizeof(nop);
3200 buf_addr = tbd_addr + sizeof(tbd);
3201
3202 tx.tx_h.ac_status = 0;
3203 tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
3204 tx.tx_h.ac_link = nop_addr;
3205 tx.tx_tbd_offset = tbd_addr;
3206 obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
3207 sizeof(tx));
3208
3209 nop.nop_h.ac_status = 0;
3210 nop.nop_h.ac_command = acmd_nop;
3211 nop.nop_h.ac_link = nop_addr;
3212 obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
3213 sizeof(nop));
3214
3215 tbd.tbd_status = TBD_STATUS_EOF;
3216 tbd.tbd_next_bd_offset = I82586NULL;
3217 tbd.tbd_bufl = buf_addr;
3218 tbd.tbd_bufh = 0;
3219 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
3220 sizeof(tbd));
3221 }
3222
3223 first_nop =
3224 OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
3225 obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
3226 (unsigned char *) &first_nop, sizeof(first_nop));
3227
3228 scb_cs = SCB_CMD_CUC_GO;
3229 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3230 (unsigned char *) &scb_cs, sizeof(scb_cs));
3231
3232 set_chan_attn(ioaddr, lp->hacr);
3233
3234 for (i = 1000; i > 0; i--) {
3235 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3236 (unsigned char *) &scb_cs, sizeof(scb_cs));
3237 if (scb_cs == 0)
3238 break;
3239
3240 udelay(10);
3241 }
3242
3243 if (i <= 0) {
3244 #ifdef DEBUG_CONFIG_ERROR
3245 printk(KERN_INFO
3246 "%s: wavelan_cu_start(): board not accepting command.\n",
3247 dev->name);
3248 #endif
3249 return -1;
3250 }
3251
3252 lp->tx_n_in_use = 0;
3253 netif_start_queue(dev);
3254 #ifdef DEBUG_CONFIG_TRACE
3255 printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
3256 #endif
3257 return 0;
3258 }
3259
3260 /*------------------------------------------------------------------*/
3261 /*
3262 * This routine does a standard configuration of the WaveLAN
3263 * controller (i82586).
3264 *
3265 * It initialises the scp, iscp and scb structure
3266 * The first two are just pointers to the next.
3267 * The last one is used for basic configuration and for basic
3268 * communication (interrupt status).
3269 *
3270 * (called by wv_hw_reset())
3271 */
3272 static int wv_82586_start(struct net_device * dev)
3273 {
3274 net_local *lp = netdev_priv(dev);
3275 unsigned long ioaddr = dev->base_addr;
3276 scp_t scp; /* system configuration pointer */
3277 iscp_t iscp; /* intermediate scp */
3278 scb_t scb; /* system control block */
3279 ach_t cb; /* Action command header */
3280 u8 zeroes[512];
3281 int i;
3282
3283 #ifdef DEBUG_CONFIG_TRACE
3284 printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
3285 #endif
3286
3287 /*
3288 * Clear the onboard RAM.
3289 */
3290 memset(&zeroes[0], 0x00, sizeof(zeroes));
3291 for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
3292 obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
3293
3294 /*
3295 * Construct the command unit structures:
3296 * scp, iscp, scb, cb.
3297 */
3298 memset(&scp, 0x00, sizeof(scp));
3299 scp.scp_sysbus = SCP_SY_16BBUS;
3300 scp.scp_iscpl = OFFSET_ISCP;
3301 obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
3302 sizeof(scp));
3303
3304 memset(&iscp, 0x00, sizeof(iscp));
3305 iscp.iscp_busy = 1;
3306 iscp.iscp_offset = OFFSET_SCB;
3307 obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3308 sizeof(iscp));
3309
3310 /* Our first command is to reset the i82586. */
3311 memset(&scb, 0x00, sizeof(scb));
3312 scb.scb_command = SCB_CMD_RESET;
3313 scb.scb_cbl_offset = OFFSET_CU;
3314 scb.scb_rfa_offset = OFFSET_RU;
3315 obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3316 sizeof(scb));
3317
3318 set_chan_attn(ioaddr, lp->hacr);
3319
3320 /* Wait for command to finish. */
3321 for (i = 1000; i > 0; i--) {
3322 obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3323 sizeof(iscp));
3324
3325 if (iscp.iscp_busy == (unsigned short) 0)
3326 break;
3327
3328 udelay(10);
3329 }
3330
3331 if (i <= 0) {
3332 #ifdef DEBUG_CONFIG_ERROR
3333 printk(KERN_INFO
3334 "%s: wv_82586_start(): iscp_busy timeout.\n",
3335 dev->name);
3336 #endif
3337 return -1;
3338 }
3339
3340 /* Check command completion. */
3341 for (i = 15; i > 0; i--) {
3342 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3343 sizeof(scb));
3344
3345 if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
3346 break;
3347
3348 udelay(10);
3349 }
3350
3351 if (i <= 0) {
3352 #ifdef DEBUG_CONFIG_ERROR
3353 printk(KERN_INFO
3354 "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
3355 dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
3356 #endif
3357 return -1;
3358 }
3359
3360 wv_ack(dev);
3361
3362 /* Set the action command header. */
3363 memset(&cb, 0x00, sizeof(cb));
3364 cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
3365 cb.ac_link = OFFSET_CU;
3366 obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3367
3368 if (wv_synchronous_cmd(dev, "diag()") == -1)
3369 return -1;
3370
3371 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3372 if (cb.ac_status & AC_SFLD_FAIL) {
3373 #ifdef DEBUG_CONFIG_ERROR
3374 printk(KERN_INFO
3375 "%s: wv_82586_start(): i82586 Self Test failed.\n",
3376 dev->name);
3377 #endif
3378 return -1;
3379 }
3380 #ifdef DEBUG_I82586_SHOW
3381 wv_scb_show(ioaddr);
3382 #endif
3383
3384 #ifdef DEBUG_CONFIG_TRACE
3385 printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
3386 #endif
3387 return 0;
3388 }
3389
3390 /*------------------------------------------------------------------*/
3391 /*
3392 * This routine does a standard configuration of the WaveLAN
3393 * controller (i82586).
3394 *
3395 * This routine is a violent hack. We use the first free transmit block
3396 * to make our configuration. In the buffer area, we create the three
3397 * configuration commands (linked). We make the previous NOP point to
3398 * the beginning of the buffer instead of the tx command. After, we go
3399 * as usual to the NOP command.
3400 * Note that only the last command (mc_set) will generate an interrupt.
3401 *
3402 * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
3403 */
3404 static void wv_82586_config(struct net_device * dev)
3405 {
3406 net_local *lp = netdev_priv(dev);
3407 unsigned long ioaddr = dev->base_addr;
3408 unsigned short txblock;
3409 unsigned short txpred;
3410 unsigned short tx_addr;
3411 unsigned short nop_addr;
3412 unsigned short tbd_addr;
3413 unsigned short cfg_addr;
3414 unsigned short ias_addr;
3415 unsigned short mcs_addr;
3416 ac_tx_t tx;
3417 ac_nop_t nop;
3418 ac_cfg_t cfg; /* Configure action */
3419 ac_ias_t ias; /* IA-setup action */
3420 ac_mcs_t mcs; /* Multicast setup */
3421 struct dev_mc_list *dmi;
3422
3423 #ifdef DEBUG_CONFIG_TRACE
3424 printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
3425 #endif
3426
3427 /* Check nothing bad has happened */
3428 if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
3429 #ifdef DEBUG_CONFIG_ERROR
3430 printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
3431 dev->name);
3432 #endif
3433 return;
3434 }
3435
3436 /* Calculate addresses of next block and previous block. */
3437 txblock = lp->tx_first_free;
3438 txpred = txblock - TXBLOCKZ;
3439 if (txpred < OFFSET_CU)
3440 txpred += NTXBLOCKS * TXBLOCKZ;
3441 lp->tx_first_free += TXBLOCKZ;
3442 if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
3443 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
3444
3445 lp->tx_n_in_use++;
3446
3447 /* Calculate addresses of the different parts of the block. */
3448 tx_addr = txblock;
3449 nop_addr = tx_addr + sizeof(tx);
3450 tbd_addr = nop_addr + sizeof(nop);
3451 cfg_addr = tbd_addr + sizeof(tbd_t); /* beginning of the buffer */
3452 ias_addr = cfg_addr + sizeof(cfg);
3453 mcs_addr = ias_addr + sizeof(ias);
3454
3455 /*
3456 * Transmit command
3457 */
3458 tx.tx_h.ac_status = 0xFFFF; /* Fake completion value */
3459 obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
3460 (unsigned char *) &tx.tx_h.ac_status,
3461 sizeof(tx.tx_h.ac_status));
3462
3463 /*
3464 * NOP command
3465 */
3466 nop.nop_h.ac_status = 0;
3467 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3468 (unsigned char *) &nop.nop_h.ac_status,
3469 sizeof(nop.nop_h.ac_status));
3470 nop.nop_h.ac_link = nop_addr;
3471 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3472 (unsigned char *) &nop.nop_h.ac_link,
3473 sizeof(nop.nop_h.ac_link));
3474
3475 /* Create a configure action. */
3476 memset(&cfg, 0x00, sizeof(cfg));
3477
3478 /*
3479 * For Linux we invert AC_CFG_ALOC() so as to conform
3480 * to the way that net packets reach us from above.
3481 * (See also ac_tx_t.)
3482 *
3483 * Updated from Wavelan Manual WCIN085B
3484 */
3485 cfg.cfg_byte_cnt =
3486 AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
3487 cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
3488 cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
3489 cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
3490 AC_CFG_ILPBCK(0) |
3491 AC_CFG_PRELEN(AC_CFG_PLEN_2) |
3492 AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
3493 cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
3494 AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
3495 cfg.cfg_ifs = 0x20;
3496 cfg.cfg_slotl = 0x0C;
3497 cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
3498 cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
3499 AC_CFG_BTSTF(0) |
3500 AC_CFG_CRC16(0) |
3501 AC_CFG_NCRC(0) |
3502 AC_CFG_TNCRS(1) |
3503 AC_CFG_MANCH(0) |
3504 AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
3505 cfg.cfg_byte15 = AC_CFG_ICDS(0) |
3506 AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
3507 /*
3508 cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
3509 */
3510 cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
3511
3512 cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
3513 cfg.cfg_h.ac_link = ias_addr;
3514 obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
3515
3516 /* Set up the MAC address */
3517 memset(&ias, 0x00, sizeof(ias));
3518 ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
3519 ias.ias_h.ac_link = mcs_addr;
3520 memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
3521 sizeof(ias.ias_addr));
3522 obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
3523
3524 /* Initialize adapter's Ethernet multicast addresses */
3525 memset(&mcs, 0x00, sizeof(mcs));
3526 mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
3527 mcs.mcs_h.ac_link = nop_addr;
3528 mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
3529 obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
3530
3531 /* Any address to set? */
3532 if (lp->mc_count) {
3533 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3534 outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
3535 WAVELAN_ADDR_SIZE >> 1);
3536
3537 #ifdef DEBUG_CONFIG_INFO
3538 printk(KERN_DEBUG
3539 "%s: wv_82586_config(): set %d multicast addresses:\n",
3540 dev->name, lp->mc_count);
3541 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3542 printk(KERN_DEBUG " %pM\n", dmi->dmi_addr);
3543 #endif
3544 }
3545
3546 /*
3547 * Overwrite the predecessor NOP link
3548 * so that it points to the configure action.
3549 */
3550 nop_addr = txpred + sizeof(tx);
3551 nop.nop_h.ac_status = 0;
3552 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3553 (unsigned char *) &nop.nop_h.ac_status,
3554 sizeof(nop.nop_h.ac_status));
3555 nop.nop_h.ac_link = cfg_addr;
3556 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3557 (unsigned char *) &nop.nop_h.ac_link,
3558 sizeof(nop.nop_h.ac_link));
3559
3560 /* Job done, clear the flag */
3561 lp->reconfig_82586 = 0;
3562
3563 if (lp->tx_first_in_use == I82586NULL)
3564 lp->tx_first_in_use = txblock;
3565
3566 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
3567 netif_stop_queue(dev);
3568
3569 #ifdef DEBUG_CONFIG_TRACE
3570 printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
3571 #endif
3572 }
3573
3574 /*------------------------------------------------------------------*/
3575 /*
3576 * This routine, called by wavelan_close(), gracefully stops the
3577 * WaveLAN controller (i82586).
3578 * (called by wavelan_close())
3579 */
3580 static void wv_82586_stop(struct net_device * dev)
3581 {
3582 net_local *lp = netdev_priv(dev);
3583 unsigned long ioaddr = dev->base_addr;
3584 u16 scb_cmd;
3585
3586 #ifdef DEBUG_CONFIG_TRACE
3587 printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
3588 #endif
3589
3590 /* Suspend both command unit and receive unit. */
3591 scb_cmd =
3592 (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
3593 SCB_CMD_RUC_SUS);
3594 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3595 (unsigned char *) &scb_cmd, sizeof(scb_cmd));
3596 set_chan_attn(ioaddr, lp->hacr);
3597
3598 /* No more interrupts */
3599 wv_ints_off(dev);
3600
3601 #ifdef DEBUG_CONFIG_TRACE
3602 printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
3603 #endif
3604 }
3605
3606 /*------------------------------------------------------------------*/
3607 /*
3608 * Totally reset the WaveLAN and restart it.
3609 * Performs the following actions:
3610 * 1. A power reset (reset DMA)
3611 * 2. Initialize the radio modem (using wv_mmc_init)
3612 * 3. Reset & Configure LAN controller (using wv_82586_start)
3613 * 4. Start the LAN controller's command unit
3614 * 5. Start the LAN controller's receive unit
3615 * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
3616 */
3617 static int wv_hw_reset(struct net_device * dev)
3618 {
3619 net_local *lp = netdev_priv(dev);
3620 unsigned long ioaddr = dev->base_addr;
3621
3622 #ifdef DEBUG_CONFIG_TRACE
3623 printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
3624 (unsigned int) dev);
3625 #endif
3626
3627 /* Increase the number of resets done. */
3628 lp->nresets++;
3629
3630 wv_hacr_reset(ioaddr);
3631 lp->hacr = HACR_DEFAULT;
3632
3633 if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
3634 return -1;
3635
3636 /* Enable the card to send interrupts. */
3637 wv_ints_on(dev);
3638
3639 /* Start card functions */
3640 if (wv_cu_start(dev) < 0)
3641 return -1;
3642
3643 /* Setup the controller and parameters */
3644 wv_82586_config(dev);
3645
3646 /* Finish configuration with the receive unit */
3647 if (wv_ru_start(dev) < 0)
3648 return -1;
3649
3650 #ifdef DEBUG_CONFIG_TRACE
3651 printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
3652 #endif
3653 return 0;
3654 }
3655
3656 /*------------------------------------------------------------------*/
3657 /*
3658 * Check if there is a WaveLAN at the specific base address.
3659 * As a side effect, this reads the MAC address.
3660 * (called in wavelan_probe() and init_module())
3661 */
3662 static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
3663 {
3664 int i; /* Loop counter */
3665
3666 /* Check if the base address if available. */
3667 if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
3668 return -EBUSY; /* ioaddr already used */
3669
3670 /* Reset host interface */
3671 wv_hacr_reset(ioaddr);
3672
3673 /* Read the MAC address from the parameter storage area. */
3674 psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
3675 mac, 6);
3676
3677 release_region(ioaddr, sizeof(ha_t));
3678
3679 /*
3680 * Check the first three octets of the address for the manufacturer's code.
3681 * Note: if this can't find your WaveLAN card, you've got a
3682 * non-NCR/AT&T/Lucent ISA card. See wavelan.p.h for detail on
3683 * how to configure your card.
3684 */
3685 for (i = 0; i < ARRAY_SIZE(MAC_ADDRESSES); i++)
3686 if ((mac[0] == MAC_ADDRESSES[i][0]) &&
3687 (mac[1] == MAC_ADDRESSES[i][1]) &&
3688 (mac[2] == MAC_ADDRESSES[i][2]))
3689 return 0;
3690
3691 #ifdef DEBUG_CONFIG_INFO
3692 printk(KERN_WARNING
3693 "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
3694 ioaddr, mac[0], mac[1], mac[2]);
3695 #endif
3696 return -ENODEV;
3697 }
3698
3699 /************************ INTERRUPT HANDLING ************************/
3700
3701 /*
3702 * This function is the interrupt handler for the WaveLAN card. This
3703 * routine will be called whenever:
3704 */
3705 static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
3706 {
3707 struct net_device *dev;
3708 unsigned long ioaddr;
3709 net_local *lp;
3710 u16 hasr;
3711 u16 status;
3712 u16 ack_cmd;
3713
3714 dev = dev_id;
3715
3716 #ifdef DEBUG_INTERRUPT_TRACE
3717 printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
3718 #endif
3719
3720 lp = netdev_priv(dev);
3721 ioaddr = dev->base_addr;
3722
3723 #ifdef DEBUG_INTERRUPT_INFO
3724 /* Check state of our spinlock */
3725 if(spin_is_locked(&lp->spinlock))
3726 printk(KERN_DEBUG
3727 "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
3728 dev->name);
3729 #endif
3730
3731 /* Prevent reentrancy. We need to do that because we may have
3732 * multiple interrupt handler running concurrently.
3733 * It is safe because interrupts are disabled before acquiring
3734 * the spinlock. */
3735 spin_lock(&lp->spinlock);
3736
3737 /* We always had spurious interrupts at startup, but lately I
3738 * saw them comming *between* the request_irq() and the
3739 * spin_lock_irqsave() in wavelan_open(), so the spinlock
3740 * protection is no enough.
3741 * So, we also check lp->hacr that will tell us is we enabled
3742 * irqs or not (see wv_ints_on()).
3743 * We can't use netif_running(dev) because we depend on the
3744 * proper processing of the irq generated during the config. */
3745
3746 /* Which interrupt it is ? */
3747 hasr = hasr_read(ioaddr);
3748
3749 #ifdef DEBUG_INTERRUPT_INFO
3750 printk(KERN_INFO
3751 "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
3752 dev->name, hasr, lp->hacr);
3753 #endif
3754
3755 /* Check modem interrupt */
3756 if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
3757 u8 dce_status;
3758
3759 /*
3760 * Interrupt from the modem management controller.
3761 * This will clear it -- ignored for now.
3762 */
3763 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
3764 sizeof(dce_status));
3765
3766 #ifdef DEBUG_INTERRUPT_ERROR
3767 printk(KERN_INFO
3768 "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
3769 dev->name, dce_status);
3770 #endif
3771 }
3772
3773 /* Check if not controller interrupt */
3774 if (((hasr & HASR_82586_INTR) == 0) ||
3775 ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
3776 #ifdef DEBUG_INTERRUPT_ERROR
3777 printk(KERN_INFO
3778 "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
3779 dev->name, hasr);
3780 #endif
3781 spin_unlock (&lp->spinlock);
3782 return IRQ_NONE;
3783 }
3784
3785 /* Read interrupt data. */
3786 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3787 (unsigned char *) &status, sizeof(status));
3788
3789 /*
3790 * Acknowledge the interrupt(s).
3791 */
3792 ack_cmd = status & SCB_ST_INT;
3793 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3794 (unsigned char *) &ack_cmd, sizeof(ack_cmd));
3795 set_chan_attn(ioaddr, lp->hacr);
3796
3797 #ifdef DEBUG_INTERRUPT_INFO
3798 printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
3799 dev->name, status);
3800 #endif
3801
3802 /* Command completed. */
3803 if ((status & SCB_ST_CX) == SCB_ST_CX) {
3804 #ifdef DEBUG_INTERRUPT_INFO
3805 printk(KERN_DEBUG
3806 "%s: wavelan_interrupt(): command completed.\n",
3807 dev->name);
3808 #endif
3809 wv_complete(dev, ioaddr, lp);
3810 }
3811
3812 /* Frame received. */
3813 if ((status & SCB_ST_FR) == SCB_ST_FR) {
3814 #ifdef DEBUG_INTERRUPT_INFO
3815 printk(KERN_DEBUG
3816 "%s: wavelan_interrupt(): received packet.\n",
3817 dev->name);
3818 #endif
3819 wv_receive(dev);
3820 }
3821
3822 /* Check the state of the command unit. */
3823 if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
3824 (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
3825 (netif_running(dev)))) {
3826 #ifdef DEBUG_INTERRUPT_ERROR
3827 printk(KERN_INFO
3828 "%s: wavelan_interrupt(): CU inactive -- restarting\n",
3829 dev->name);
3830 #endif
3831 wv_hw_reset(dev);
3832 }
3833
3834 /* Check the state of the command unit. */
3835 if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
3836 (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
3837 (netif_running(dev)))) {
3838 #ifdef DEBUG_INTERRUPT_ERROR
3839 printk(KERN_INFO
3840 "%s: wavelan_interrupt(): RU not ready -- restarting\n",
3841 dev->name);
3842 #endif
3843 wv_hw_reset(dev);
3844 }
3845
3846 /* Release spinlock */
3847 spin_unlock (&lp->spinlock);
3848
3849 #ifdef DEBUG_INTERRUPT_TRACE
3850 printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
3851 #endif
3852 return IRQ_HANDLED;
3853 }
3854
3855 /*------------------------------------------------------------------*/
3856 /*
3857 * Watchdog: when we start a transmission, a timer is set for us in the
3858 * kernel. If the transmission completes, this timer is disabled. If
3859 * the timer expires, we are called and we try to unlock the hardware.
3860 */
3861 static void wavelan_watchdog(struct net_device * dev)
3862 {
3863 net_local *lp = netdev_priv(dev);
3864 u_long ioaddr = dev->base_addr;
3865 unsigned long flags;
3866 unsigned int nreaped;
3867
3868 #ifdef DEBUG_INTERRUPT_TRACE
3869 printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
3870 #endif
3871
3872 #ifdef DEBUG_INTERRUPT_ERROR
3873 printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
3874 dev->name);
3875 #endif
3876
3877 /* Check that we came here for something */
3878 if (lp->tx_n_in_use <= 0) {
3879 return;
3880 }
3881
3882 spin_lock_irqsave(&lp->spinlock, flags);
3883
3884 /* Try to see if some buffers are not free (in case we missed
3885 * an interrupt */
3886 nreaped = wv_complete(dev, ioaddr, lp);
3887
3888 #ifdef DEBUG_INTERRUPT_INFO
3889 printk(KERN_DEBUG
3890 "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
3891 dev->name, nreaped, lp->tx_n_in_use);
3892 #endif
3893
3894 #ifdef DEBUG_PSA_SHOW
3895 {
3896 psa_t psa;
3897 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
3898 wv_psa_show(&psa);
3899 }
3900 #endif
3901 #ifdef DEBUG_MMC_SHOW
3902 wv_mmc_show(dev);
3903 #endif
3904 #ifdef DEBUG_I82586_SHOW
3905 wv_cu_show(dev);
3906 #endif
3907
3908 /* If no buffer has been freed */
3909 if (nreaped == 0) {
3910 #ifdef DEBUG_INTERRUPT_ERROR
3911 printk(KERN_INFO
3912 "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
3913 dev->name);
3914 #endif
3915 wv_hw_reset(dev);
3916 }
3917
3918 /* At this point, we should have some free Tx buffer ;-) */
3919 if (lp->tx_n_in_use < NTXBLOCKS - 1)
3920 netif_wake_queue(dev);
3921
3922 spin_unlock_irqrestore(&lp->spinlock, flags);
3923
3924 #ifdef DEBUG_INTERRUPT_TRACE
3925 printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
3926 #endif
3927 }
3928
3929 /********************* CONFIGURATION CALLBACKS *********************/
3930 /*
3931 * Here are the functions called by the Linux networking code (NET3)
3932 * for initialization, configuration and deinstallations of the
3933 * WaveLAN ISA hardware.
3934 */
3935
3936 /*------------------------------------------------------------------*/
3937 /*
3938 * Configure and start up the WaveLAN PCMCIA adaptor.
3939 * Called by NET3 when it "opens" the device.
3940 */
3941 static int wavelan_open(struct net_device * dev)
3942 {
3943 net_local *lp = netdev_priv(dev);
3944 unsigned long flags;
3945
3946 #ifdef DEBUG_CALLBACK_TRACE
3947 printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
3948 (unsigned int) dev);
3949 #endif
3950
3951 /* Check irq */
3952 if (dev->irq == 0) {
3953 #ifdef DEBUG_CONFIG_ERROR
3954 printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
3955 dev->name);
3956 #endif
3957 return -ENXIO;
3958 }
3959
3960 if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0)
3961 {
3962 #ifdef DEBUG_CONFIG_ERROR
3963 printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
3964 dev->name);
3965 #endif
3966 return -EAGAIN;
3967 }
3968
3969 spin_lock_irqsave(&lp->spinlock, flags);
3970
3971 if (wv_hw_reset(dev) != -1) {
3972 netif_start_queue(dev);
3973 } else {
3974 free_irq(dev->irq, dev);
3975 #ifdef DEBUG_CONFIG_ERROR
3976 printk(KERN_INFO
3977 "%s: wavelan_open(): impossible to start the card\n",
3978 dev->name);
3979 #endif
3980 spin_unlock_irqrestore(&lp->spinlock, flags);
3981 return -EAGAIN;
3982 }
3983 spin_unlock_irqrestore(&lp->spinlock, flags);
3984
3985 #ifdef DEBUG_CALLBACK_TRACE
3986 printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
3987 #endif
3988 return 0;
3989 }
3990
3991 /*------------------------------------------------------------------*/
3992 /*
3993 * Shut down the WaveLAN ISA card.
3994 * Called by NET3 when it "closes" the device.
3995 */
3996 static int wavelan_close(struct net_device * dev)
3997 {
3998 net_local *lp = netdev_priv(dev);
3999 unsigned long flags;
4000
4001 #ifdef DEBUG_CALLBACK_TRACE
4002 printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
4003 (unsigned int) dev);
4004 #endif
4005
4006 netif_stop_queue(dev);
4007
4008 /*
4009 * Flush the Tx and disable Rx.
4010 */
4011 spin_lock_irqsave(&lp->spinlock, flags);
4012 wv_82586_stop(dev);
4013 spin_unlock_irqrestore(&lp->spinlock, flags);
4014
4015 free_irq(dev->irq, dev);
4016
4017 #ifdef DEBUG_CALLBACK_TRACE
4018 printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
4019 #endif
4020 return 0;
4021 }
4022
4023 static const struct net_device_ops wavelan_netdev_ops = {
4024 .ndo_open = wavelan_open,
4025 .ndo_stop = wavelan_close,
4026 .ndo_start_xmit = wavelan_packet_xmit,
4027 .ndo_set_multicast_list = wavelan_set_multicast_list,
4028 .ndo_tx_timeout = wavelan_watchdog,
4029 .ndo_change_mtu = eth_change_mtu,
4030 .ndo_validate_addr = eth_validate_addr,
4031 #ifdef SET_MAC_ADDRESS
4032 .ndo_set_mac_address = wavelan_set_mac_address
4033 #else
4034 .ndo_set_mac_address = eth_mac_addr,
4035 #endif
4036 };
4037
4038
4039 /*------------------------------------------------------------------*/
4040 /*
4041 * Probe an I/O address, and if the WaveLAN is there configure the
4042 * device structure
4043 * (called by wavelan_probe() and via init_module()).
4044 */
4045 static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
4046 {
4047 u8 irq_mask;
4048 int irq;
4049 net_local *lp;
4050 mac_addr mac;
4051 int err;
4052
4053 if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
4054 return -EADDRINUSE;
4055
4056 err = wv_check_ioaddr(ioaddr, mac);
4057 if (err)
4058 goto out;
4059
4060 memcpy(dev->dev_addr, mac, 6);
4061
4062 dev->base_addr = ioaddr;
4063
4064 #ifdef DEBUG_CALLBACK_TRACE
4065 printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
4066 dev->name, (unsigned int) dev, ioaddr);
4067 #endif
4068
4069 /* Check IRQ argument on command line. */
4070 if (dev->irq != 0) {
4071 irq_mask = wv_irq_to_psa(dev->irq);
4072
4073 if (irq_mask == 0) {
4074 #ifdef DEBUG_CONFIG_ERROR
4075 printk(KERN_WARNING
4076 "%s: wavelan_config(): invalid IRQ %d ignored.\n",
4077 dev->name, dev->irq);
4078 #endif
4079 dev->irq = 0;
4080 } else {
4081 #ifdef DEBUG_CONFIG_INFO
4082 printk(KERN_DEBUG
4083 "%s: wavelan_config(): changing IRQ to %d\n",
4084 dev->name, dev->irq);
4085 #endif
4086 psa_write(ioaddr, HACR_DEFAULT,
4087 psaoff(0, psa_int_req_no), &irq_mask, 1);
4088 /* update the Wavelan checksum */
4089 update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
4090 wv_hacr_reset(ioaddr);
4091 }
4092 }
4093
4094 psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
4095 &irq_mask, 1);
4096 if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
4097 #ifdef DEBUG_CONFIG_ERROR
4098 printk(KERN_INFO
4099 "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
4100 dev->name, irq_mask);
4101 #endif
4102 err = -EAGAIN;
4103 goto out;
4104 }
4105
4106 dev->irq = irq;
4107
4108 dev->mem_start = 0x0000;
4109 dev->mem_end = 0x0000;
4110 dev->if_port = 0;
4111
4112 /* Initialize device structures */
4113 memset(netdev_priv(dev), 0, sizeof(net_local));
4114 lp = netdev_priv(dev);
4115
4116 /* Back link to the device structure. */
4117 lp->dev = dev;
4118 /* Add the device at the beginning of the linked list. */
4119 lp->next = wavelan_list;
4120 wavelan_list = lp;
4121
4122 lp->hacr = HACR_DEFAULT;
4123
4124 /* Multicast stuff */
4125 lp->promiscuous = 0;
4126 lp->mc_count = 0;
4127
4128 /* Init spinlock */
4129 spin_lock_init(&lp->spinlock);
4130
4131 dev->netdev_ops = &wavelan_netdev_ops;
4132 dev->watchdog_timeo = WATCHDOG_JIFFIES;
4133 dev->wireless_handlers = &wavelan_handler_def;
4134 lp->wireless_data.spy_data = &lp->spy_data;
4135 dev->wireless_data = &lp->wireless_data;
4136
4137 dev->mtu = WAVELAN_MTU;
4138
4139 /* Display nice information. */
4140 wv_init_info(dev);
4141
4142 #ifdef DEBUG_CALLBACK_TRACE
4143 printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
4144 #endif
4145 return 0;
4146 out:
4147 release_region(ioaddr, sizeof(ha_t));
4148 return err;
4149 }
4150
4151 /*------------------------------------------------------------------*/
4152 /*
4153 * Check for a network adaptor of this type. Return '0' iff one
4154 * exists. There seem to be different interpretations of
4155 * the initial value of dev->base_addr.
4156 * We follow the example in drivers/net/ne.c.
4157 * (called in "Space.c")
4158 */
4159 struct net_device * __init wavelan_probe(int unit)
4160 {
4161 struct net_device *dev;
4162 short base_addr;
4163 int def_irq;
4164 int i;
4165 int r = 0;
4166
4167 /* compile-time check the sizes of structures */
4168 BUILD_BUG_ON(sizeof(psa_t) != PSA_SIZE);
4169 BUILD_BUG_ON(sizeof(mmw_t) != MMW_SIZE);
4170 BUILD_BUG_ON(sizeof(mmr_t) != MMR_SIZE);
4171 BUILD_BUG_ON(sizeof(ha_t) != HA_SIZE);
4172
4173 dev = alloc_etherdev(sizeof(net_local));
4174 if (!dev)
4175 return ERR_PTR(-ENOMEM);
4176
4177 sprintf(dev->name, "eth%d", unit);
4178 netdev_boot_setup_check(dev);
4179 base_addr = dev->base_addr;
4180 def_irq = dev->irq;
4181
4182 #ifdef DEBUG_CALLBACK_TRACE
4183 printk(KERN_DEBUG
4184 "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
4185 dev->name, dev, (unsigned int) dev->base_addr);
4186 #endif
4187
4188 /* Don't probe at all. */
4189 if (base_addr < 0) {
4190 #ifdef DEBUG_CONFIG_ERROR
4191 printk(KERN_WARNING
4192 "%s: wavelan_probe(): invalid base address\n",
4193 dev->name);
4194 #endif
4195 r = -ENXIO;
4196 } else if (base_addr > 0x100) { /* Check a single specified location. */
4197 r = wavelan_config(dev, base_addr);
4198 #ifdef DEBUG_CONFIG_INFO
4199 if (r != 0)
4200 printk(KERN_DEBUG
4201 "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
4202 dev->name, base_addr);
4203 #endif
4204
4205 #ifdef DEBUG_CALLBACK_TRACE
4206 printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
4207 #endif
4208 } else { /* Scan all possible addresses of the WaveLAN hardware. */
4209 for (i = 0; i < ARRAY_SIZE(iobase); i++) {
4210 dev->irq = def_irq;
4211 if (wavelan_config(dev, iobase[i]) == 0) {
4212 #ifdef DEBUG_CALLBACK_TRACE
4213 printk(KERN_DEBUG
4214 "%s: <-wavelan_probe()\n",
4215 dev->name);
4216 #endif
4217 break;
4218 }
4219 }
4220 if (i == ARRAY_SIZE(iobase))
4221 r = -ENODEV;
4222 }
4223 if (r)
4224 goto out;
4225 r = register_netdev(dev);
4226 if (r)
4227 goto out1;
4228 return dev;
4229 out1:
4230 release_region(dev->base_addr, sizeof(ha_t));
4231 wavelan_list = wavelan_list->next;
4232 out:
4233 free_netdev(dev);
4234 return ERR_PTR(r);
4235 }
4236
4237 /****************************** MODULE ******************************/
4238 /*
4239 * Module entry point: insertion and removal
4240 */
4241
4242 #ifdef MODULE
4243 /*------------------------------------------------------------------*/
4244 /*
4245 * Insertion of the module
4246 * I'm now quite proud of the multi-device support.
4247 */
4248 int __init init_module(void)
4249 {
4250 int ret = -EIO; /* Return error if no cards found */
4251 int i;
4252
4253 #ifdef DEBUG_MODULE_TRACE
4254 printk(KERN_DEBUG "-> init_module()\n");
4255 #endif
4256
4257 /* If probing is asked */
4258 if (io[0] == 0) {
4259 #ifdef DEBUG_CONFIG_ERROR
4260 printk(KERN_WARNING
4261 "WaveLAN init_module(): doing device probing (bad !)\n");
4262 printk(KERN_WARNING
4263 "Specify base addresses while loading module to correct the problem\n");
4264 #endif
4265
4266 /* Copy the basic set of address to be probed. */
4267 for (i = 0; i < ARRAY_SIZE(iobase); i++)
4268 io[i] = iobase[i];
4269 }
4270
4271
4272 /* Loop on all possible base addresses. */
4273 for (i = 0; i < ARRAY_SIZE(io) && io[i] != 0; i++) {
4274 struct net_device *dev = alloc_etherdev(sizeof(net_local));
4275 if (!dev)
4276 break;
4277 if (name[i])
4278 strcpy(dev->name, name[i]); /* Copy name */
4279 dev->base_addr = io[i];
4280 dev->irq = irq[i];
4281
4282 /* Check if there is something at this base address. */
4283 if (wavelan_config(dev, io[i]) == 0) {
4284 if (register_netdev(dev) != 0) {
4285 release_region(dev->base_addr, sizeof(ha_t));
4286 wavelan_list = wavelan_list->next;
4287 } else {
4288 ret = 0;
4289 continue;
4290 }
4291 }
4292 free_netdev(dev);
4293 }
4294
4295 #ifdef DEBUG_CONFIG_ERROR
4296 if (!wavelan_list)
4297 printk(KERN_WARNING
4298 "WaveLAN init_module(): no device found\n");
4299 #endif
4300
4301 #ifdef DEBUG_MODULE_TRACE
4302 printk(KERN_DEBUG "<- init_module()\n");
4303 #endif
4304 return ret;
4305 }
4306
4307 /*------------------------------------------------------------------*/
4308 /*
4309 * Removal of the module
4310 */
4311 void cleanup_module(void)
4312 {
4313 #ifdef DEBUG_MODULE_TRACE
4314 printk(KERN_DEBUG "-> cleanup_module()\n");
4315 #endif
4316
4317 /* Loop on all devices and release them. */
4318 while (wavelan_list) {
4319 struct net_device *dev = wavelan_list->dev;
4320
4321 #ifdef DEBUG_CONFIG_INFO
4322 printk(KERN_DEBUG
4323 "%s: cleanup_module(): removing device at 0x%x\n",
4324 dev->name, (unsigned int) dev);
4325 #endif
4326 unregister_netdev(dev);
4327
4328 release_region(dev->base_addr, sizeof(ha_t));
4329 wavelan_list = wavelan_list->next;
4330
4331 free_netdev(dev);
4332 }
4333
4334 #ifdef DEBUG_MODULE_TRACE
4335 printk(KERN_DEBUG "<- cleanup_module()\n");
4336 #endif
4337 }
4338 #endif /* MODULE */
4339 MODULE_LICENSE("GPL");
4340
4341 /*
4342 * This software may only be used and distributed
4343 * according to the terms of the GNU General Public License.
4344 *
4345 * This software was developed as a component of the
4346 * Linux operating system.
4347 * It is based on other device drivers and information
4348 * either written or supplied by:
4349 * Ajay Bakre (bakre@paul.rutgers.edu),
4350 * Donald Becker (becker@scyld.com),
4351 * Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
4352 * Anders Klemets (klemets@it.kth.se),
4353 * Vladimir V. Kolpakov (w@stier.koenig.ru),
4354 * Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
4355 * Pauline Middelink (middelin@polyware.iaf.nl),
4356 * Robert Morris (rtm@das.harvard.edu),
4357 * Jean Tourrilhes (jt@hplb.hpl.hp.com),
4358 * Girish Welling (welling@paul.rutgers.edu),
4359 *
4360 * Thanks go also to:
4361 * James Ashton (jaa101@syseng.anu.edu.au),
4362 * Alan Cox (alan@lxorguk.ukuu.org.uk),
4363 * Allan Creighton (allanc@cs.usyd.edu.au),
4364 * Matthew Geier (matthew@cs.usyd.edu.au),
4365 * Remo di Giovanni (remo@cs.usyd.edu.au),
4366 * Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
4367 * Vipul Gupta (vgupta@cs.binghamton.edu),
4368 * Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
4369 * Tim Nicholson (tim@cs.usyd.edu.au),
4370 * Ian Parkin (ian@cs.usyd.edu.au),
4371 * John Rosenberg (johnr@cs.usyd.edu.au),
4372 * George Rossi (george@phm.gov.au),
4373 * Arthur Scott (arthur@cs.usyd.edu.au),
4374 * Peter Storey,
4375 * for their assistance and advice.
4376 *
4377 * Please send bug reports, updates, comments to:
4378 *
4379 * Bruce Janson Email: bruce@cs.usyd.edu.au
4380 * Basser Department of Computer Science Phone: +61-2-9351-3423
4381 * University of Sydney, N.S.W., 2006, AUSTRALIA Fax: +61-2-9351-3838
4382 */
This page took 0.128814 seconds and 5 git commands to generate.