wireless, wavelan: spin off by 1
[deliverable/linux.git] / drivers / net / wireless / wavelan_cs.c
1 /*
2 * Wavelan Pcmcia driver
3 *
4 * Jean II - HPLB '96
5 *
6 * Reorganisation and extension of the driver.
7 * Original copyright follow. See wavelan_cs.p.h for details.
8 *
9 * This code is derived from Anthony D. Joseph's code and all the changes here
10 * are also under the original copyright below.
11 *
12 * This code supports version 2.00 of WaveLAN/PCMCIA cards (2.4GHz), and
13 * can work on Linux 2.0.36 with support of David Hinds' PCMCIA Card Services
14 *
15 * Joe Finney (joe@comp.lancs.ac.uk) at Lancaster University in UK added
16 * critical code in the routine to initialize the Modem Management Controller.
17 *
18 * Thanks to Alan Cox and Bruce Janson for their advice.
19 *
20 * -- Yunzhou Li (scip4166@nus.sg)
21 *
22 #ifdef WAVELAN_ROAMING
23 * Roaming support added 07/22/98 by Justin Seger (jseger@media.mit.edu)
24 * based on patch by Joe Finney from Lancaster University.
25 #endif
26 *
27 * Lucent (formerly AT&T GIS, formerly NCR) WaveLAN PCMCIA card: An
28 * Ethernet-like radio transceiver controlled by an Intel 82593 coprocessor.
29 *
30 * A non-shared memory PCMCIA ethernet driver for linux
31 *
32 * ISA version modified to support PCMCIA by Anthony Joseph (adj@lcs.mit.edu)
33 *
34 *
35 * Joseph O'Sullivan & John Langford (josullvn@cs.cmu.edu & jcl@cs.cmu.edu)
36 *
37 * Apr 2 '98 made changes to bring the i82593 control/int handling in line
38 * with offical specs...
39 *
40 ****************************************************************************
41 * Copyright 1995
42 * Anthony D. Joseph
43 * Massachusetts Institute of Technology
44 *
45 * Permission to use, copy, modify, and distribute this program
46 * for any purpose and without fee is hereby granted, provided
47 * that this copyright and permission notice appear on all copies
48 * and supporting documentation, the name of M.I.T. not be used
49 * in advertising or publicity pertaining to distribution of the
50 * program without specific prior permission, and notice be given
51 * in supporting documentation that copying and distribution is
52 * by permission of M.I.T. M.I.T. makes no representations about
53 * the suitability of this software for any purpose. It is pro-
54 * vided "as is" without express or implied warranty.
55 ****************************************************************************
56 *
57 */
58
59 /* Do *NOT* add other headers here, you are guaranteed to be wrong - Jean II */
60 #include "wavelan_cs.p.h" /* Private header */
61
62 #ifdef WAVELAN_ROAMING
63 static void wl_cell_expiry(unsigned long data);
64 static void wl_del_wavepoint(wavepoint_history *wavepoint, struct net_local *lp);
65 static void wv_nwid_filter(unsigned char mode, net_local *lp);
66 #endif /* WAVELAN_ROAMING */
67
68 /************************* MISC SUBROUTINES **************************/
69 /*
70 * Subroutines which won't fit in one of the following category
71 * (wavelan modem or i82593)
72 */
73
74 /******************* MODEM MANAGEMENT SUBROUTINES *******************/
75 /*
76 * Useful subroutines to manage the modem of the wavelan
77 */
78
79 /*------------------------------------------------------------------*/
80 /*
81 * Read from card's Host Adaptor Status Register.
82 */
83 static inline u_char
84 hasr_read(u_long base)
85 {
86 return(inb(HASR(base)));
87 } /* hasr_read */
88
89 /*------------------------------------------------------------------*/
90 /*
91 * Write to card's Host Adapter Command Register.
92 */
93 static inline void
94 hacr_write(u_long base,
95 u_char hacr)
96 {
97 outb(hacr, HACR(base));
98 } /* hacr_write */
99
100 /*------------------------------------------------------------------*/
101 /*
102 * Write to card's Host Adapter Command Register. Include a delay for
103 * those times when it is needed.
104 */
105 static void
106 hacr_write_slow(u_long base,
107 u_char hacr)
108 {
109 hacr_write(base, hacr);
110 /* delay might only be needed sometimes */
111 mdelay(1);
112 } /* hacr_write_slow */
113
114 /*------------------------------------------------------------------*/
115 /*
116 * Read the Parameter Storage Area from the WaveLAN card's memory
117 */
118 static void
119 psa_read(struct net_device * dev,
120 int o, /* offset in PSA */
121 u_char * b, /* buffer to fill */
122 int n) /* size to read */
123 {
124 net_local *lp = netdev_priv(dev);
125 u_char __iomem *ptr = lp->mem + PSA_ADDR + (o << 1);
126
127 while(n-- > 0)
128 {
129 *b++ = readb(ptr);
130 /* Due to a lack of address decode pins, the WaveLAN PCMCIA card
131 * only supports reading even memory addresses. That means the
132 * increment here MUST be two.
133 * Because of that, we can't use memcpy_fromio()...
134 */
135 ptr += 2;
136 }
137 } /* psa_read */
138
139 /*------------------------------------------------------------------*/
140 /*
141 * Write the Paramter Storage Area to the WaveLAN card's memory
142 */
143 static void
144 psa_write(struct net_device * dev,
145 int o, /* Offset in psa */
146 u_char * b, /* Buffer in memory */
147 int n) /* Length of buffer */
148 {
149 net_local *lp = netdev_priv(dev);
150 u_char __iomem *ptr = lp->mem + PSA_ADDR + (o << 1);
151 int count = 0;
152 unsigned int base = dev->base_addr;
153 /* As there seem to have no flag PSA_BUSY as in the ISA model, we are
154 * oblige to verify this address to know when the PSA is ready... */
155 volatile u_char __iomem *verify = lp->mem + PSA_ADDR +
156 (psaoff(0, psa_comp_number) << 1);
157
158 /* Authorize writing to PSA */
159 hacr_write(base, HACR_PWR_STAT | HACR_ROM_WEN);
160
161 while(n-- > 0)
162 {
163 /* write to PSA */
164 writeb(*b++, ptr);
165 ptr += 2;
166
167 /* I don't have the spec, so I don't know what the correct
168 * sequence to write is. This hack seem to work for me... */
169 count = 0;
170 while((readb(verify) != PSA_COMP_PCMCIA_915) && (count++ < 100))
171 mdelay(1);
172 }
173
174 /* Put the host interface back in standard state */
175 hacr_write(base, HACR_DEFAULT);
176 } /* psa_write */
177
178 #ifdef SET_PSA_CRC
179 /*------------------------------------------------------------------*/
180 /*
181 * Calculate the PSA CRC
182 * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
183 * NOTE: By specifying a length including the CRC position the
184 * returned value should be zero. (i.e. a correct checksum in the PSA)
185 *
186 * The Windows drivers don't use the CRC, but the AP and the PtP tool
187 * depend on it.
188 */
189 static u_short
190 psa_crc(unsigned char * psa, /* The PSA */
191 int size) /* Number of short for CRC */
192 {
193 int byte_cnt; /* Loop on the PSA */
194 u_short crc_bytes = 0; /* Data in the PSA */
195 int bit_cnt; /* Loop on the bits of the short */
196
197 for(byte_cnt = 0; byte_cnt < size; byte_cnt++ )
198 {
199 crc_bytes ^= psa[byte_cnt]; /* Its an xor */
200
201 for(bit_cnt = 1; bit_cnt < 9; bit_cnt++ )
202 {
203 if(crc_bytes & 0x0001)
204 crc_bytes = (crc_bytes >> 1) ^ 0xA001;
205 else
206 crc_bytes >>= 1 ;
207 }
208 }
209
210 return crc_bytes;
211 } /* psa_crc */
212 #endif /* SET_PSA_CRC */
213
214 /*------------------------------------------------------------------*/
215 /*
216 * update the checksum field in the Wavelan's PSA
217 */
218 static void
219 update_psa_checksum(struct net_device * dev)
220 {
221 #ifdef SET_PSA_CRC
222 psa_t psa;
223 u_short crc;
224
225 /* read the parameter storage area */
226 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
227
228 /* update the checksum */
229 crc = psa_crc((unsigned char *) &psa,
230 sizeof(psa) - sizeof(psa.psa_crc[0]) - sizeof(psa.psa_crc[1])
231 - sizeof(psa.psa_crc_status));
232
233 psa.psa_crc[0] = crc & 0xFF;
234 psa.psa_crc[1] = (crc & 0xFF00) >> 8;
235
236 /* Write it ! */
237 psa_write(dev, (char *)&psa.psa_crc - (char *)&psa,
238 (unsigned char *)&psa.psa_crc, 2);
239
240 #ifdef DEBUG_IOCTL_INFO
241 printk (KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
242 dev->name, psa.psa_crc[0], psa.psa_crc[1]);
243
244 /* Check again (luxury !) */
245 crc = psa_crc((unsigned char *) &psa,
246 sizeof(psa) - sizeof(psa.psa_crc_status));
247
248 if(crc != 0)
249 printk(KERN_WARNING "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n", dev->name);
250 #endif /* DEBUG_IOCTL_INFO */
251 #endif /* SET_PSA_CRC */
252 } /* update_psa_checksum */
253
254 /*------------------------------------------------------------------*/
255 /*
256 * Write 1 byte to the MMC.
257 */
258 static void
259 mmc_out(u_long base,
260 u_short o,
261 u_char d)
262 {
263 int count = 0;
264
265 /* Wait for MMC to go idle */
266 while((count++ < 100) && (inb(HASR(base)) & HASR_MMI_BUSY))
267 udelay(10);
268
269 outb((u_char)((o << 1) | MMR_MMI_WR), MMR(base));
270 outb(d, MMD(base));
271 }
272
273 /*------------------------------------------------------------------*/
274 /*
275 * Routine to write bytes to the Modem Management Controller.
276 * We start by the end because it is the way it should be !
277 */
278 static void
279 mmc_write(u_long base,
280 u_char o,
281 u_char * b,
282 int n)
283 {
284 o += n;
285 b += n;
286
287 while(n-- > 0 )
288 mmc_out(base, --o, *(--b));
289 } /* mmc_write */
290
291 /*------------------------------------------------------------------*/
292 /*
293 * Read 1 byte from the MMC.
294 * Optimised version for 1 byte, avoid using memory...
295 */
296 static u_char
297 mmc_in(u_long base,
298 u_short o)
299 {
300 int count = 0;
301
302 while((count++ < 100) && (inb(HASR(base)) & HASR_MMI_BUSY))
303 udelay(10);
304 outb(o << 1, MMR(base)); /* Set the read address */
305
306 outb(0, MMD(base)); /* Required dummy write */
307
308 while((count++ < 100) && (inb(HASR(base)) & HASR_MMI_BUSY))
309 udelay(10);
310 return (u_char) (inb(MMD(base))); /* Now do the actual read */
311 }
312
313 /*------------------------------------------------------------------*/
314 /*
315 * Routine to read bytes from the Modem Management Controller.
316 * The implementation is complicated by a lack of address lines,
317 * which prevents decoding of the low-order bit.
318 * (code has just been moved in the above function)
319 * We start by the end because it is the way it should be !
320 */
321 static void
322 mmc_read(u_long base,
323 u_char o,
324 u_char * b,
325 int n)
326 {
327 o += n;
328 b += n;
329
330 while(n-- > 0)
331 *(--b) = mmc_in(base, --o);
332 } /* mmc_read */
333
334 /*------------------------------------------------------------------*/
335 /*
336 * Get the type of encryption available...
337 */
338 static inline int
339 mmc_encr(u_long base) /* i/o port of the card */
340 {
341 int temp;
342
343 temp = mmc_in(base, mmroff(0, mmr_des_avail));
344 if((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
345 return 0;
346 else
347 return temp;
348 }
349
350 /*------------------------------------------------------------------*/
351 /*
352 * Wait for the frequency EEprom to complete a command...
353 */
354 static void
355 fee_wait(u_long base, /* i/o port of the card */
356 int delay, /* Base delay to wait for */
357 int number) /* Number of time to wait */
358 {
359 int count = 0; /* Wait only a limited time */
360
361 while((count++ < number) &&
362 (mmc_in(base, mmroff(0, mmr_fee_status)) & MMR_FEE_STATUS_BUSY))
363 udelay(delay);
364 }
365
366 /*------------------------------------------------------------------*/
367 /*
368 * Read bytes from the Frequency EEprom (frequency select cards).
369 */
370 static void
371 fee_read(u_long base, /* i/o port of the card */
372 u_short o, /* destination offset */
373 u_short * b, /* data buffer */
374 int n) /* number of registers */
375 {
376 b += n; /* Position at the end of the area */
377
378 /* Write the address */
379 mmc_out(base, mmwoff(0, mmw_fee_addr), o + n - 1);
380
381 /* Loop on all buffer */
382 while(n-- > 0)
383 {
384 /* Write the read command */
385 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_READ);
386
387 /* Wait until EEprom is ready (should be quick !) */
388 fee_wait(base, 10, 100);
389
390 /* Read the value */
391 *--b = ((mmc_in(base, mmroff(0, mmr_fee_data_h)) << 8) |
392 mmc_in(base, mmroff(0, mmr_fee_data_l)));
393 }
394 }
395
396
397 /*------------------------------------------------------------------*/
398 /*
399 * Write bytes from the Frequency EEprom (frequency select cards).
400 * This is a bit complicated, because the frequency eeprom has to
401 * be unprotected and the write enabled.
402 * Jean II
403 */
404 static void
405 fee_write(u_long base, /* i/o port of the card */
406 u_short o, /* destination offset */
407 u_short * b, /* data buffer */
408 int n) /* number of registers */
409 {
410 b += n; /* Position at the end of the area */
411
412 #ifdef EEPROM_IS_PROTECTED /* disabled */
413 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
414 /* Ask to read the protected register */
415 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
416
417 fee_wait(base, 10, 100);
418
419 /* Read the protected register */
420 printk("Protected 2 : %02X-%02X\n",
421 mmc_in(base, mmroff(0, mmr_fee_data_h)),
422 mmc_in(base, mmroff(0, mmr_fee_data_l)));
423 #endif /* DOESNT_SEEM_TO_WORK */
424
425 /* Enable protected register */
426 mmc_out(base, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
427 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
428
429 fee_wait(base, 10, 100);
430
431 /* Unprotect area */
432 mmc_out(base, mmwoff(0, mmw_fee_addr), o + n);
433 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
434 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
435 /* Or use : */
436 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
437 #endif /* DOESNT_SEEM_TO_WORK */
438
439 fee_wait(base, 10, 100);
440 #endif /* EEPROM_IS_PROTECTED */
441
442 /* Write enable */
443 mmc_out(base, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
444 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
445
446 fee_wait(base, 10, 100);
447
448 /* Write the EEprom address */
449 mmc_out(base, mmwoff(0, mmw_fee_addr), o + n - 1);
450
451 /* Loop on all buffer */
452 while(n-- > 0)
453 {
454 /* Write the value */
455 mmc_out(base, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
456 mmc_out(base, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
457
458 /* Write the write command */
459 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WRITE);
460
461 /* Wavelan doc says : wait at least 10 ms for EEBUSY = 0 */
462 mdelay(10);
463 fee_wait(base, 10, 100);
464 }
465
466 /* Write disable */
467 mmc_out(base, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
468 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
469
470 fee_wait(base, 10, 100);
471
472 #ifdef EEPROM_IS_PROTECTED /* disabled */
473 /* Reprotect EEprom */
474 mmc_out(base, mmwoff(0, mmw_fee_addr), 0x00);
475 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
476
477 fee_wait(base, 10, 100);
478 #endif /* EEPROM_IS_PROTECTED */
479 }
480
481 /******************* WaveLAN Roaming routines... ********************/
482
483 #ifdef WAVELAN_ROAMING /* Conditional compile, see wavelan_cs.h */
484
485 static unsigned char WAVELAN_BEACON_ADDRESS[] = {0x09,0x00,0x0e,0x20,0x03,0x00};
486
487 static void wv_roam_init(struct net_device *dev)
488 {
489 net_local *lp= netdev_priv(dev);
490
491 /* Do not remove this unless you have a good reason */
492 printk(KERN_NOTICE "%s: Warning, you have enabled roaming on"
493 " device %s !\n", dev->name, dev->name);
494 printk(KERN_NOTICE "Roaming is currently an experimental unsupported feature"
495 " of the Wavelan driver.\n");
496 printk(KERN_NOTICE "It may work, but may also make the driver behave in"
497 " erratic ways or crash.\n");
498
499 lp->wavepoint_table.head=NULL; /* Initialise WavePoint table */
500 lp->wavepoint_table.num_wavepoints=0;
501 lp->wavepoint_table.locked=0;
502 lp->curr_point=NULL; /* No default WavePoint */
503 lp->cell_search=0;
504
505 lp->cell_timer.data=(long)lp; /* Start cell expiry timer */
506 lp->cell_timer.function=wl_cell_expiry;
507 lp->cell_timer.expires=jiffies+CELL_TIMEOUT;
508 add_timer(&lp->cell_timer);
509
510 wv_nwid_filter(NWID_PROMISC,lp) ; /* Enter NWID promiscuous mode */
511 /* to build up a good WavePoint */
512 /* table... */
513 printk(KERN_DEBUG "WaveLAN: Roaming enabled on device %s\n",dev->name);
514 }
515
516 static void wv_roam_cleanup(struct net_device *dev)
517 {
518 wavepoint_history *ptr,*old_ptr;
519 net_local *lp= netdev_priv(dev);
520
521 printk(KERN_DEBUG "WaveLAN: Roaming Disabled on device %s\n",dev->name);
522
523 /* Fixme : maybe we should check that the timer exist before deleting it */
524 del_timer(&lp->cell_timer); /* Remove cell expiry timer */
525 ptr=lp->wavepoint_table.head; /* Clear device's WavePoint table */
526 while(ptr!=NULL)
527 {
528 old_ptr=ptr;
529 ptr=ptr->next;
530 wl_del_wavepoint(old_ptr,lp);
531 }
532 }
533
534 /* Enable/Disable NWID promiscuous mode on a given device */
535 static void wv_nwid_filter(unsigned char mode, net_local *lp)
536 {
537 mm_t m;
538 unsigned long flags;
539
540 #ifdef WAVELAN_ROAMING_DEBUG
541 printk(KERN_DEBUG "WaveLAN: NWID promisc %s, device %s\n",(mode==NWID_PROMISC) ? "on" : "off", lp->dev->name);
542 #endif
543
544 /* Disable interrupts & save flags */
545 spin_lock_irqsave(&lp->spinlock, flags);
546
547 m.w.mmw_loopt_sel = (mode==NWID_PROMISC) ? MMW_LOOPT_SEL_DIS_NWID : 0x00;
548 mmc_write(lp->dev->base_addr, (char *)&m.w.mmw_loopt_sel - (char *)&m, (unsigned char *)&m.w.mmw_loopt_sel, 1);
549
550 if(mode==NWID_PROMISC)
551 lp->cell_search=1;
552 else
553 lp->cell_search=0;
554
555 /* ReEnable interrupts & restore flags */
556 spin_unlock_irqrestore(&lp->spinlock, flags);
557 }
558
559 /* Find a record in the WavePoint table matching a given NWID */
560 static wavepoint_history *wl_roam_check(unsigned short nwid, net_local *lp)
561 {
562 wavepoint_history *ptr=lp->wavepoint_table.head;
563
564 while(ptr!=NULL){
565 if(ptr->nwid==nwid)
566 return ptr;
567 ptr=ptr->next;
568 }
569 return NULL;
570 }
571
572 /* Create a new wavepoint table entry */
573 static wavepoint_history *wl_new_wavepoint(unsigned short nwid, unsigned char seq, net_local* lp)
574 {
575 wavepoint_history *new_wavepoint;
576
577 #ifdef WAVELAN_ROAMING_DEBUG
578 printk(KERN_DEBUG "WaveLAN: New Wavepoint, NWID:%.4X\n",nwid);
579 #endif
580
581 if(lp->wavepoint_table.num_wavepoints==MAX_WAVEPOINTS)
582 return NULL;
583
584 new_wavepoint = kmalloc(sizeof(wavepoint_history),GFP_ATOMIC);
585 if(new_wavepoint==NULL)
586 return NULL;
587
588 new_wavepoint->nwid=nwid; /* New WavePoints NWID */
589 new_wavepoint->average_fast=0; /* Running Averages..*/
590 new_wavepoint->average_slow=0;
591 new_wavepoint->qualptr=0; /* Start of ringbuffer */
592 new_wavepoint->last_seq=seq-1; /* Last sequence no.seen */
593 memset(new_wavepoint->sigqual,0,WAVEPOINT_HISTORY);/* Empty ringbuffer */
594
595 new_wavepoint->next=lp->wavepoint_table.head;/* Add to wavepoint table */
596 new_wavepoint->prev=NULL;
597
598 if(lp->wavepoint_table.head!=NULL)
599 lp->wavepoint_table.head->prev=new_wavepoint;
600
601 lp->wavepoint_table.head=new_wavepoint;
602
603 lp->wavepoint_table.num_wavepoints++; /* no. of visible wavepoints */
604
605 return new_wavepoint;
606 }
607
608 /* Remove a wavepoint entry from WavePoint table */
609 static void wl_del_wavepoint(wavepoint_history *wavepoint, struct net_local *lp)
610 {
611 if(wavepoint==NULL)
612 return;
613
614 if(lp->curr_point==wavepoint)
615 lp->curr_point=NULL;
616
617 if(wavepoint->prev!=NULL)
618 wavepoint->prev->next=wavepoint->next;
619
620 if(wavepoint->next!=NULL)
621 wavepoint->next->prev=wavepoint->prev;
622
623 if(lp->wavepoint_table.head==wavepoint)
624 lp->wavepoint_table.head=wavepoint->next;
625
626 lp->wavepoint_table.num_wavepoints--;
627 kfree(wavepoint);
628 }
629
630 /* Timer callback function - checks WavePoint table for stale entries */
631 static void wl_cell_expiry(unsigned long data)
632 {
633 net_local *lp=(net_local *)data;
634 wavepoint_history *wavepoint=lp->wavepoint_table.head,*old_point;
635
636 #if WAVELAN_ROAMING_DEBUG > 1
637 printk(KERN_DEBUG "WaveLAN: Wavepoint timeout, dev %s\n",lp->dev->name);
638 #endif
639
640 if(lp->wavepoint_table.locked)
641 {
642 #if WAVELAN_ROAMING_DEBUG > 1
643 printk(KERN_DEBUG "WaveLAN: Wavepoint table locked...\n");
644 #endif
645
646 lp->cell_timer.expires=jiffies+1; /* If table in use, come back later */
647 add_timer(&lp->cell_timer);
648 return;
649 }
650
651 while(wavepoint!=NULL)
652 {
653 if(time_after(jiffies, wavepoint->last_seen + CELL_TIMEOUT))
654 {
655 #ifdef WAVELAN_ROAMING_DEBUG
656 printk(KERN_DEBUG "WaveLAN: Bye bye %.4X\n",wavepoint->nwid);
657 #endif
658
659 old_point=wavepoint;
660 wavepoint=wavepoint->next;
661 wl_del_wavepoint(old_point,lp);
662 }
663 else
664 wavepoint=wavepoint->next;
665 }
666 lp->cell_timer.expires=jiffies+CELL_TIMEOUT;
667 add_timer(&lp->cell_timer);
668 }
669
670 /* Update SNR history of a wavepoint */
671 static void wl_update_history(wavepoint_history *wavepoint, unsigned char sigqual, unsigned char seq)
672 {
673 int i=0,num_missed=0,ptr=0;
674 int average_fast=0,average_slow=0;
675
676 num_missed=(seq-wavepoint->last_seq)%WAVEPOINT_HISTORY;/* Have we missed
677 any beacons? */
678 if(num_missed)
679 for(i=0;i<num_missed;i++)
680 {
681 wavepoint->sigqual[wavepoint->qualptr++]=0; /* If so, enter them as 0's */
682 wavepoint->qualptr %=WAVEPOINT_HISTORY; /* in the ringbuffer. */
683 }
684 wavepoint->last_seen=jiffies; /* Add beacon to history */
685 wavepoint->last_seq=seq;
686 wavepoint->sigqual[wavepoint->qualptr++]=sigqual;
687 wavepoint->qualptr %=WAVEPOINT_HISTORY;
688 ptr=(wavepoint->qualptr-WAVEPOINT_FAST_HISTORY+WAVEPOINT_HISTORY)%WAVEPOINT_HISTORY;
689
690 for(i=0;i<WAVEPOINT_FAST_HISTORY;i++) /* Update running averages */
691 {
692 average_fast+=wavepoint->sigqual[ptr++];
693 ptr %=WAVEPOINT_HISTORY;
694 }
695
696 average_slow=average_fast;
697 for(i=WAVEPOINT_FAST_HISTORY;i<WAVEPOINT_HISTORY;i++)
698 {
699 average_slow+=wavepoint->sigqual[ptr++];
700 ptr %=WAVEPOINT_HISTORY;
701 }
702
703 wavepoint->average_fast=average_fast/WAVEPOINT_FAST_HISTORY;
704 wavepoint->average_slow=average_slow/WAVEPOINT_HISTORY;
705 }
706
707 /* Perform a handover to a new WavePoint */
708 static void wv_roam_handover(wavepoint_history *wavepoint, net_local *lp)
709 {
710 unsigned int base = lp->dev->base_addr;
711 mm_t m;
712 unsigned long flags;
713
714 if(wavepoint==lp->curr_point) /* Sanity check... */
715 {
716 wv_nwid_filter(!NWID_PROMISC,lp);
717 return;
718 }
719
720 #ifdef WAVELAN_ROAMING_DEBUG
721 printk(KERN_DEBUG "WaveLAN: Doing handover to %.4X, dev %s\n",wavepoint->nwid,lp->dev->name);
722 #endif
723
724 /* Disable interrupts & save flags */
725 spin_lock_irqsave(&lp->spinlock, flags);
726
727 m.w.mmw_netw_id_l = wavepoint->nwid & 0xFF;
728 m.w.mmw_netw_id_h = (wavepoint->nwid & 0xFF00) >> 8;
729
730 mmc_write(base, (char *)&m.w.mmw_netw_id_l - (char *)&m, (unsigned char *)&m.w.mmw_netw_id_l, 2);
731
732 /* ReEnable interrupts & restore flags */
733 spin_unlock_irqrestore(&lp->spinlock, flags);
734
735 wv_nwid_filter(!NWID_PROMISC,lp);
736 lp->curr_point=wavepoint;
737 }
738
739 /* Called when a WavePoint beacon is received */
740 static void wl_roam_gather(struct net_device * dev,
741 u_char * hdr, /* Beacon header */
742 u_char * stats) /* SNR, Signal quality
743 of packet */
744 {
745 wavepoint_beacon *beacon= (wavepoint_beacon *)hdr; /* Rcvd. Beacon */
746 unsigned short nwid=ntohs(beacon->nwid);
747 unsigned short sigqual=stats[2] & MMR_SGNL_QUAL; /* SNR of beacon */
748 wavepoint_history *wavepoint=NULL; /* WavePoint table entry */
749 net_local *lp = netdev_priv(dev); /* Device info */
750
751 #ifdef I_NEED_THIS_FEATURE
752 /* Some people don't need this, some other may need it */
753 nwid=nwid^ntohs(beacon->domain_id);
754 #endif
755
756 #if WAVELAN_ROAMING_DEBUG > 1
757 printk(KERN_DEBUG "WaveLAN: beacon, dev %s:\n",dev->name);
758 printk(KERN_DEBUG "Domain: %.4X NWID: %.4X SigQual=%d\n",ntohs(beacon->domain_id),nwid,sigqual);
759 #endif
760
761 lp->wavepoint_table.locked=1; /* <Mutex> */
762
763 wavepoint=wl_roam_check(nwid,lp); /* Find WavePoint table entry */
764 if(wavepoint==NULL) /* If no entry, Create a new one... */
765 {
766 wavepoint=wl_new_wavepoint(nwid,beacon->seq,lp);
767 if(wavepoint==NULL)
768 goto out;
769 }
770 if(lp->curr_point==NULL) /* If this is the only WavePoint, */
771 wv_roam_handover(wavepoint, lp); /* Jump on it! */
772
773 wl_update_history(wavepoint, sigqual, beacon->seq); /* Update SNR history
774 stats. */
775
776 if(lp->curr_point->average_slow < SEARCH_THRESH_LOW) /* If our current */
777 if(!lp->cell_search) /* WavePoint is getting faint, */
778 wv_nwid_filter(NWID_PROMISC,lp); /* start looking for a new one */
779
780 if(wavepoint->average_slow >
781 lp->curr_point->average_slow + WAVELAN_ROAMING_DELTA)
782 wv_roam_handover(wavepoint, lp); /* Handover to a better WavePoint */
783
784 if(lp->curr_point->average_slow > SEARCH_THRESH_HIGH) /* If our SNR is */
785 if(lp->cell_search) /* getting better, drop out of cell search mode */
786 wv_nwid_filter(!NWID_PROMISC,lp);
787
788 out:
789 lp->wavepoint_table.locked=0; /* </MUTEX> :-) */
790 }
791
792 /* Test this MAC frame a WavePoint beacon */
793 static inline int WAVELAN_BEACON(unsigned char *data)
794 {
795 wavepoint_beacon *beacon= (wavepoint_beacon *)data;
796 static const wavepoint_beacon beacon_template={0xaa,0xaa,0x03,0x08,0x00,0x0e,0x20,0x03,0x00};
797
798 if(memcmp(beacon,&beacon_template,9)==0)
799 return 1;
800 else
801 return 0;
802 }
803 #endif /* WAVELAN_ROAMING */
804
805 /************************ I82593 SUBROUTINES *************************/
806 /*
807 * Useful subroutines to manage the Ethernet controller
808 */
809
810 /*------------------------------------------------------------------*/
811 /*
812 * Routine to synchronously send a command to the i82593 chip.
813 * Should be called with interrupts disabled.
814 * (called by wv_packet_write(), wv_ru_stop(), wv_ru_start(),
815 * wv_82593_config() & wv_diag())
816 */
817 static int
818 wv_82593_cmd(struct net_device * dev,
819 char * str,
820 int cmd,
821 int result)
822 {
823 unsigned int base = dev->base_addr;
824 int status;
825 int wait_completed;
826 long spin;
827
828 /* Spin until the chip finishes executing its current command (if any) */
829 spin = 1000;
830 do
831 {
832 /* Time calibration of the loop */
833 udelay(10);
834
835 /* Read the interrupt register */
836 outb(OP0_NOP | CR0_STATUS_3, LCCR(base));
837 status = inb(LCSR(base));
838 }
839 while(((status & SR3_EXEC_STATE_MASK) != SR3_EXEC_IDLE) && (spin-- > 0));
840
841 /* If the interrupt hasn't been posted */
842 if (spin < 0) {
843 #ifdef DEBUG_INTERRUPT_ERROR
844 printk(KERN_INFO "wv_82593_cmd: %s timeout (previous command), status 0x%02x\n",
845 str, status);
846 #endif
847 return(FALSE);
848 }
849
850 /* Issue the command to the controller */
851 outb(cmd, LCCR(base));
852
853 /* If we don't have to check the result of the command
854 * Note : this mean that the irq handler will deal with that */
855 if(result == SR0_NO_RESULT)
856 return(TRUE);
857
858 /* We are waiting for command completion */
859 wait_completed = TRUE;
860
861 /* Busy wait while the LAN controller executes the command. */
862 spin = 1000;
863 do
864 {
865 /* Time calibration of the loop */
866 udelay(10);
867
868 /* Read the interrupt register */
869 outb(CR0_STATUS_0 | OP0_NOP, LCCR(base));
870 status = inb(LCSR(base));
871
872 /* Check if there was an interrupt posted */
873 if((status & SR0_INTERRUPT))
874 {
875 /* Acknowledge the interrupt */
876 outb(CR0_INT_ACK | OP0_NOP, LCCR(base));
877
878 /* Check if interrupt is a command completion */
879 if(((status & SR0_BOTH_RX_TX) != SR0_BOTH_RX_TX) &&
880 ((status & SR0_BOTH_RX_TX) != 0x0) &&
881 !(status & SR0_RECEPTION))
882 {
883 /* Signal command completion */
884 wait_completed = FALSE;
885 }
886 else
887 {
888 /* Note : Rx interrupts will be handled later, because we can
889 * handle multiple Rx packets at once */
890 #ifdef DEBUG_INTERRUPT_INFO
891 printk(KERN_INFO "wv_82593_cmd: not our interrupt\n");
892 #endif
893 }
894 }
895 }
896 while(wait_completed && (spin-- > 0));
897
898 /* If the interrupt hasn't be posted */
899 if(wait_completed)
900 {
901 #ifdef DEBUG_INTERRUPT_ERROR
902 printk(KERN_INFO "wv_82593_cmd: %s timeout, status 0x%02x\n",
903 str, status);
904 #endif
905 return(FALSE);
906 }
907
908 /* Check the return code returned by the card (see above) against
909 * the expected return code provided by the caller */
910 if((status & SR0_EVENT_MASK) != result)
911 {
912 #ifdef DEBUG_INTERRUPT_ERROR
913 printk(KERN_INFO "wv_82593_cmd: %s failed, status = 0x%x\n",
914 str, status);
915 #endif
916 return(FALSE);
917 }
918
919 return(TRUE);
920 } /* wv_82593_cmd */
921
922 /*------------------------------------------------------------------*/
923 /*
924 * This routine does a 593 op-code number 7, and obtains the diagnose
925 * status for the WaveLAN.
926 */
927 static inline int
928 wv_diag(struct net_device * dev)
929 {
930 return(wv_82593_cmd(dev, "wv_diag(): diagnose",
931 OP0_DIAGNOSE, SR0_DIAGNOSE_PASSED));
932 } /* wv_diag */
933
934 /*------------------------------------------------------------------*/
935 /*
936 * Routine to read len bytes from the i82593's ring buffer, starting at
937 * chip address addr. The results read from the chip are stored in buf.
938 * The return value is the address to use for next the call.
939 */
940 static int
941 read_ringbuf(struct net_device * dev,
942 int addr,
943 char * buf,
944 int len)
945 {
946 unsigned int base = dev->base_addr;
947 int ring_ptr = addr;
948 int chunk_len;
949 char * buf_ptr = buf;
950
951 /* Get all the buffer */
952 while(len > 0)
953 {
954 /* Position the Program I/O Register at the ring buffer pointer */
955 outb(ring_ptr & 0xff, PIORL(base));
956 outb(((ring_ptr >> 8) & PIORH_MASK), PIORH(base));
957
958 /* First, determine how much we can read without wrapping around the
959 ring buffer */
960 if((addr + len) < (RX_BASE + RX_SIZE))
961 chunk_len = len;
962 else
963 chunk_len = RX_BASE + RX_SIZE - addr;
964 insb(PIOP(base), buf_ptr, chunk_len);
965 buf_ptr += chunk_len;
966 len -= chunk_len;
967 ring_ptr = (ring_ptr - RX_BASE + chunk_len) % RX_SIZE + RX_BASE;
968 }
969 return(ring_ptr);
970 } /* read_ringbuf */
971
972 /*------------------------------------------------------------------*/
973 /*
974 * Reconfigure the i82593, or at least ask for it...
975 * Because wv_82593_config use the transmission buffer, we must do it
976 * when we are sure that there is no transmission, so we do it now
977 * or in wavelan_packet_xmit() (I can't find any better place,
978 * wavelan_interrupt is not an option...), so you may experience
979 * some delay sometime...
980 */
981 static void
982 wv_82593_reconfig(struct net_device * dev)
983 {
984 net_local * lp = netdev_priv(dev);
985 struct pcmcia_device * link = lp->link;
986 unsigned long flags;
987
988 /* Arm the flag, will be cleard in wv_82593_config() */
989 lp->reconfig_82593 = TRUE;
990
991 /* Check if we can do it now ! */
992 if((link->open) && (netif_running(dev)) && !(netif_queue_stopped(dev)))
993 {
994 spin_lock_irqsave(&lp->spinlock, flags); /* Disable interrupts */
995 wv_82593_config(dev);
996 spin_unlock_irqrestore(&lp->spinlock, flags); /* Re-enable interrupts */
997 }
998 else
999 {
1000 #ifdef DEBUG_IOCTL_INFO
1001 printk(KERN_DEBUG
1002 "%s: wv_82593_reconfig(): delayed (state = %lX, link = %d)\n",
1003 dev->name, dev->state, link->open);
1004 #endif
1005 }
1006 }
1007
1008 /********************* DEBUG & INFO SUBROUTINES *********************/
1009 /*
1010 * This routines are used in the code to show debug informations.
1011 * Most of the time, it dump the content of hardware structures...
1012 */
1013
1014 #ifdef DEBUG_PSA_SHOW
1015 /*------------------------------------------------------------------*/
1016 /*
1017 * Print the formatted contents of the Parameter Storage Area.
1018 */
1019 static void
1020 wv_psa_show(psa_t * p)
1021 {
1022 printk(KERN_DEBUG "##### wavelan psa contents: #####\n");
1023 printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
1024 p->psa_io_base_addr_1,
1025 p->psa_io_base_addr_2,
1026 p->psa_io_base_addr_3,
1027 p->psa_io_base_addr_4);
1028 printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
1029 p->psa_rem_boot_addr_1,
1030 p->psa_rem_boot_addr_2,
1031 p->psa_rem_boot_addr_3);
1032 printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
1033 printk("psa_int_req_no: %d\n", p->psa_int_req_no);
1034 #ifdef DEBUG_SHOW_UNUSED
1035 printk(KERN_DEBUG "psa_unused0[]: %pM\n", p->psa_unused0);
1036 #endif /* DEBUG_SHOW_UNUSED */
1037 printk(KERN_DEBUG "psa_univ_mac_addr[]: %pM\n", p->psa_univ_mac_addr);
1038 printk(KERN_DEBUG "psa_local_mac_addr[]: %pM\n", p->psa_local_mac_addr);
1039 printk(KERN_DEBUG "psa_univ_local_sel: %d, ", p->psa_univ_local_sel);
1040 printk("psa_comp_number: %d, ", p->psa_comp_number);
1041 printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
1042 printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
1043 p->psa_feature_select);
1044 printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
1045 printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
1046 printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
1047 printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0], p->psa_nwid[1]);
1048 printk("psa_nwid_select: %d\n", p->psa_nwid_select);
1049 printk(KERN_DEBUG "psa_encryption_select: %d, ", p->psa_encryption_select);
1050 printk("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
1051 p->psa_encryption_key[0],
1052 p->psa_encryption_key[1],
1053 p->psa_encryption_key[2],
1054 p->psa_encryption_key[3],
1055 p->psa_encryption_key[4],
1056 p->psa_encryption_key[5],
1057 p->psa_encryption_key[6],
1058 p->psa_encryption_key[7]);
1059 printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
1060 printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
1061 p->psa_call_code[0]);
1062 printk("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1063 p->psa_call_code[0],
1064 p->psa_call_code[1],
1065 p->psa_call_code[2],
1066 p->psa_call_code[3],
1067 p->psa_call_code[4],
1068 p->psa_call_code[5],
1069 p->psa_call_code[6],
1070 p->psa_call_code[7]);
1071 #ifdef DEBUG_SHOW_UNUSED
1072 printk(KERN_DEBUG "psa_reserved[]: %02X:%02X\n",
1073 p->psa_reserved[0],
1074 p->psa_reserved[1]);
1075 #endif /* DEBUG_SHOW_UNUSED */
1076 printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
1077 printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
1078 printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
1079 } /* wv_psa_show */
1080 #endif /* DEBUG_PSA_SHOW */
1081
1082 #ifdef DEBUG_MMC_SHOW
1083 /*------------------------------------------------------------------*/
1084 /*
1085 * Print the formatted status of the Modem Management Controller.
1086 * This function need to be completed...
1087 */
1088 static void
1089 wv_mmc_show(struct net_device * dev)
1090 {
1091 unsigned int base = dev->base_addr;
1092 net_local * lp = netdev_priv(dev);
1093 mmr_t m;
1094
1095 /* Basic check */
1096 if(hasr_read(base) & HASR_NO_CLK)
1097 {
1098 printk(KERN_WARNING "%s: wv_mmc_show: modem not connected\n",
1099 dev->name);
1100 return;
1101 }
1102
1103 spin_lock_irqsave(&lp->spinlock, flags);
1104
1105 /* Read the mmc */
1106 mmc_out(base, mmwoff(0, mmw_freeze), 1);
1107 mmc_read(base, 0, (u_char *)&m, sizeof(m));
1108 mmc_out(base, mmwoff(0, mmw_freeze), 0);
1109
1110 /* Don't forget to update statistics */
1111 lp->wstats.discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
1112
1113 spin_unlock_irqrestore(&lp->spinlock, flags);
1114
1115 printk(KERN_DEBUG "##### wavelan modem status registers: #####\n");
1116 #ifdef DEBUG_SHOW_UNUSED
1117 printk(KERN_DEBUG "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1118 m.mmr_unused0[0],
1119 m.mmr_unused0[1],
1120 m.mmr_unused0[2],
1121 m.mmr_unused0[3],
1122 m.mmr_unused0[4],
1123 m.mmr_unused0[5],
1124 m.mmr_unused0[6],
1125 m.mmr_unused0[7]);
1126 #endif /* DEBUG_SHOW_UNUSED */
1127 printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
1128 m.mmr_des_avail, m.mmr_des_status);
1129 #ifdef DEBUG_SHOW_UNUSED
1130 printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
1131 m.mmr_unused1[0],
1132 m.mmr_unused1[1],
1133 m.mmr_unused1[2],
1134 m.mmr_unused1[3],
1135 m.mmr_unused1[4]);
1136 #endif /* DEBUG_SHOW_UNUSED */
1137 printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
1138 m.mmr_dce_status,
1139 (m.mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ? "energy detected,":"",
1140 (m.mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
1141 "loop test indicated," : "",
1142 (m.mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ? "transmitter on," : "",
1143 (m.mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
1144 "jabber timer expired," : "");
1145 printk(KERN_DEBUG "Dsp ID: %02X\n",
1146 m.mmr_dsp_id);
1147 #ifdef DEBUG_SHOW_UNUSED
1148 printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
1149 m.mmr_unused2[0],
1150 m.mmr_unused2[1]);
1151 #endif /* DEBUG_SHOW_UNUSED */
1152 printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
1153 (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
1154 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
1155 printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
1156 m.mmr_thr_pre_set & MMR_THR_PRE_SET,
1157 (m.mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" : "below");
1158 printk(KERN_DEBUG "signal_lvl: %d [%s], ",
1159 m.mmr_signal_lvl & MMR_SIGNAL_LVL,
1160 (m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" : "no new msg");
1161 printk("silence_lvl: %d [%s], ", m.mmr_silence_lvl & MMR_SILENCE_LVL,
1162 (m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" : "no new update");
1163 printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
1164 (m.mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" : "Antenna 0");
1165 #ifdef DEBUG_SHOW_UNUSED
1166 printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
1167 #endif /* DEBUG_SHOW_UNUSED */
1168 } /* wv_mmc_show */
1169 #endif /* DEBUG_MMC_SHOW */
1170
1171 #ifdef DEBUG_I82593_SHOW
1172 /*------------------------------------------------------------------*/
1173 /*
1174 * Print the formatted status of the i82593's receive unit.
1175 */
1176 static void
1177 wv_ru_show(struct net_device * dev)
1178 {
1179 net_local *lp = netdev_priv(dev);
1180
1181 printk(KERN_DEBUG "##### wavelan i82593 receiver status: #####\n");
1182 printk(KERN_DEBUG "ru: rfp %d stop %d", lp->rfp, lp->stop);
1183 /*
1184 * Not implemented yet...
1185 */
1186 printk("\n");
1187 } /* wv_ru_show */
1188 #endif /* DEBUG_I82593_SHOW */
1189
1190 #ifdef DEBUG_DEVICE_SHOW
1191 /*------------------------------------------------------------------*/
1192 /*
1193 * Print the formatted status of the WaveLAN PCMCIA device driver.
1194 */
1195 static void
1196 wv_dev_show(struct net_device * dev)
1197 {
1198 printk(KERN_DEBUG "dev:");
1199 printk(" state=%lX,", dev->state);
1200 printk(" trans_start=%ld,", dev->trans_start);
1201 printk(" flags=0x%x,", dev->flags);
1202 printk("\n");
1203 } /* wv_dev_show */
1204
1205 /*------------------------------------------------------------------*/
1206 /*
1207 * Print the formatted status of the WaveLAN PCMCIA device driver's
1208 * private information.
1209 */
1210 static void
1211 wv_local_show(struct net_device * dev)
1212 {
1213 net_local *lp = netdev_priv(dev);
1214
1215 printk(KERN_DEBUG "local:");
1216 /*
1217 * Not implemented yet...
1218 */
1219 printk("\n");
1220 } /* wv_local_show */
1221 #endif /* DEBUG_DEVICE_SHOW */
1222
1223 #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
1224 /*------------------------------------------------------------------*/
1225 /*
1226 * Dump packet header (and content if necessary) on the screen
1227 */
1228 static void
1229 wv_packet_info(u_char * p, /* Packet to dump */
1230 int length, /* Length of the packet */
1231 char * msg1, /* Name of the device */
1232 char * msg2) /* Name of the function */
1233 {
1234 int i;
1235 int maxi;
1236
1237 printk(KERN_DEBUG "%s: %s(): dest %pM, length %d\n",
1238 msg1, msg2, p, length);
1239 printk(KERN_DEBUG "%s: %s(): src %pM, type 0x%02X%02X\n",
1240 msg1, msg2, &p[6], p[12], p[13]);
1241
1242 #ifdef DEBUG_PACKET_DUMP
1243
1244 printk(KERN_DEBUG "data=\"");
1245
1246 if((maxi = length) > DEBUG_PACKET_DUMP)
1247 maxi = DEBUG_PACKET_DUMP;
1248 for(i = 14; i < maxi; i++)
1249 if(p[i] >= ' ' && p[i] <= '~')
1250 printk(" %c", p[i]);
1251 else
1252 printk("%02X", p[i]);
1253 if(maxi < length)
1254 printk("..");
1255 printk("\"\n");
1256 printk(KERN_DEBUG "\n");
1257 #endif /* DEBUG_PACKET_DUMP */
1258 }
1259 #endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
1260
1261 /*------------------------------------------------------------------*/
1262 /*
1263 * This is the information which is displayed by the driver at startup
1264 * There is a lot of flag to configure it at your will...
1265 */
1266 static void
1267 wv_init_info(struct net_device * dev)
1268 {
1269 unsigned int base = dev->base_addr;
1270 psa_t psa;
1271
1272 /* Read the parameter storage area */
1273 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
1274
1275 #ifdef DEBUG_PSA_SHOW
1276 wv_psa_show(&psa);
1277 #endif
1278 #ifdef DEBUG_MMC_SHOW
1279 wv_mmc_show(dev);
1280 #endif
1281 #ifdef DEBUG_I82593_SHOW
1282 wv_ru_show(dev);
1283 #endif
1284
1285 #ifdef DEBUG_BASIC_SHOW
1286 /* Now, let's go for the basic stuff */
1287 printk(KERN_NOTICE "%s: WaveLAN: port %#x, irq %d, hw_addr %pM",
1288 dev->name, base, dev->irq, dev->dev_addr);
1289
1290 /* Print current network id */
1291 if(psa.psa_nwid_select)
1292 printk(", nwid 0x%02X-%02X", psa.psa_nwid[0], psa.psa_nwid[1]);
1293 else
1294 printk(", nwid off");
1295
1296 /* If 2.00 card */
1297 if(!(mmc_in(base, mmroff(0, mmr_fee_status)) &
1298 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1299 {
1300 unsigned short freq;
1301
1302 /* Ask the EEprom to read the frequency from the first area */
1303 fee_read(base, 0x00 /* 1st area - frequency... */,
1304 &freq, 1);
1305
1306 /* Print frequency */
1307 printk(", 2.00, %ld", (freq >> 6) + 2400L);
1308
1309 /* Hack !!! */
1310 if(freq & 0x20)
1311 printk(".5");
1312 }
1313 else
1314 {
1315 printk(", PCMCIA, ");
1316 switch (psa.psa_subband)
1317 {
1318 case PSA_SUBBAND_915:
1319 printk("915");
1320 break;
1321 case PSA_SUBBAND_2425:
1322 printk("2425");
1323 break;
1324 case PSA_SUBBAND_2460:
1325 printk("2460");
1326 break;
1327 case PSA_SUBBAND_2484:
1328 printk("2484");
1329 break;
1330 case PSA_SUBBAND_2430_5:
1331 printk("2430.5");
1332 break;
1333 default:
1334 printk("unknown");
1335 }
1336 }
1337
1338 printk(" MHz\n");
1339 #endif /* DEBUG_BASIC_SHOW */
1340
1341 #ifdef DEBUG_VERSION_SHOW
1342 /* Print version information */
1343 printk(KERN_NOTICE "%s", version);
1344 #endif
1345 } /* wv_init_info */
1346
1347 /********************* IOCTL, STATS & RECONFIG *********************/
1348 /*
1349 * We found here routines that are called by Linux on differents
1350 * occasions after the configuration and not for transmitting data
1351 * These may be called when the user use ifconfig, /proc/net/dev
1352 * or wireless extensions
1353 */
1354
1355 /*------------------------------------------------------------------*/
1356 /*
1357 * Get the current ethernet statistics. This may be called with the
1358 * card open or closed.
1359 * Used when the user read /proc/net/dev
1360 */
1361 static en_stats *
1362 wavelan_get_stats(struct net_device * dev)
1363 {
1364 #ifdef DEBUG_IOCTL_TRACE
1365 printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
1366 #endif
1367
1368 return(&((net_local *)netdev_priv(dev))->stats);
1369 }
1370
1371 /*------------------------------------------------------------------*/
1372 /*
1373 * Set or clear the multicast filter for this adaptor.
1374 * num_addrs == -1 Promiscuous mode, receive all packets
1375 * num_addrs == 0 Normal mode, clear multicast list
1376 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1377 * and do best-effort filtering.
1378 */
1379
1380 static void
1381 wavelan_set_multicast_list(struct net_device * dev)
1382 {
1383 net_local * lp = netdev_priv(dev);
1384
1385 #ifdef DEBUG_IOCTL_TRACE
1386 printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n", dev->name);
1387 #endif
1388
1389 #ifdef DEBUG_IOCTL_INFO
1390 printk(KERN_DEBUG "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
1391 dev->name, dev->flags, dev->mc_count);
1392 #endif
1393
1394 if(dev->flags & IFF_PROMISC)
1395 {
1396 /*
1397 * Enable promiscuous mode: receive all packets.
1398 */
1399 if(!lp->promiscuous)
1400 {
1401 lp->promiscuous = 1;
1402 lp->allmulticast = 0;
1403 lp->mc_count = 0;
1404
1405 wv_82593_reconfig(dev);
1406 }
1407 }
1408 else
1409 /* If all multicast addresses
1410 * or too much multicast addresses for the hardware filter */
1411 if((dev->flags & IFF_ALLMULTI) ||
1412 (dev->mc_count > I82593_MAX_MULTICAST_ADDRESSES))
1413 {
1414 /*
1415 * Disable promiscuous mode, but active the all multicast mode
1416 */
1417 if(!lp->allmulticast)
1418 {
1419 lp->promiscuous = 0;
1420 lp->allmulticast = 1;
1421 lp->mc_count = 0;
1422
1423 wv_82593_reconfig(dev);
1424 }
1425 }
1426 else
1427 /* If there is some multicast addresses to send */
1428 if(dev->mc_list != (struct dev_mc_list *) NULL)
1429 {
1430 /*
1431 * Disable promiscuous mode, but receive all packets
1432 * in multicast list
1433 */
1434 #ifdef MULTICAST_AVOID
1435 if(lp->promiscuous || lp->allmulticast ||
1436 (dev->mc_count != lp->mc_count))
1437 #endif
1438 {
1439 lp->promiscuous = 0;
1440 lp->allmulticast = 0;
1441 lp->mc_count = dev->mc_count;
1442
1443 wv_82593_reconfig(dev);
1444 }
1445 }
1446 else
1447 {
1448 /*
1449 * Switch to normal mode: disable promiscuous mode and
1450 * clear the multicast list.
1451 */
1452 if(lp->promiscuous || lp->mc_count == 0)
1453 {
1454 lp->promiscuous = 0;
1455 lp->allmulticast = 0;
1456 lp->mc_count = 0;
1457
1458 wv_82593_reconfig(dev);
1459 }
1460 }
1461 #ifdef DEBUG_IOCTL_TRACE
1462 printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n", dev->name);
1463 #endif
1464 }
1465
1466 /*------------------------------------------------------------------*/
1467 /*
1468 * This function doesn't exist...
1469 * (Note : it was a nice way to test the reconfigure stuff...)
1470 */
1471 #ifdef SET_MAC_ADDRESS
1472 static int
1473 wavelan_set_mac_address(struct net_device * dev,
1474 void * addr)
1475 {
1476 struct sockaddr * mac = addr;
1477
1478 /* Copy the address */
1479 memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
1480
1481 /* Reconfig the beast */
1482 wv_82593_reconfig(dev);
1483
1484 return 0;
1485 }
1486 #endif /* SET_MAC_ADDRESS */
1487
1488
1489 /*------------------------------------------------------------------*/
1490 /*
1491 * Frequency setting (for hardware able of it)
1492 * It's a bit complicated and you don't really want to look into it...
1493 */
1494 static int
1495 wv_set_frequency(u_long base, /* i/o port of the card */
1496 iw_freq * frequency)
1497 {
1498 const int BAND_NUM = 10; /* Number of bands */
1499 long freq = 0L; /* offset to 2.4 GHz in .5 MHz */
1500 #ifdef DEBUG_IOCTL_INFO
1501 int i;
1502 #endif
1503
1504 /* Setting by frequency */
1505 /* Theoritically, you may set any frequency between
1506 * the two limits with a 0.5 MHz precision. In practice,
1507 * I don't want you to have trouble with local
1508 * regulations... */
1509 if((frequency->e == 1) &&
1510 (frequency->m >= (int) 2.412e8) && (frequency->m <= (int) 2.487e8))
1511 {
1512 freq = ((frequency->m / 10000) - 24000L) / 5;
1513 }
1514
1515 /* Setting by channel (same as wfreqsel) */
1516 /* Warning : each channel is 22MHz wide, so some of the channels
1517 * will interfere... */
1518 if((frequency->e == 0) &&
1519 (frequency->m >= 0) && (frequency->m < BAND_NUM))
1520 {
1521 /* Get frequency offset. */
1522 freq = channel_bands[frequency->m] >> 1;
1523 }
1524
1525 /* Verify if the frequency is allowed */
1526 if(freq != 0L)
1527 {
1528 u_short table[10]; /* Authorized frequency table */
1529
1530 /* Read the frequency table */
1531 fee_read(base, 0x71 /* frequency table */,
1532 table, 10);
1533
1534 #ifdef DEBUG_IOCTL_INFO
1535 printk(KERN_DEBUG "Frequency table :");
1536 for(i = 0; i < 10; i++)
1537 {
1538 printk(" %04X",
1539 table[i]);
1540 }
1541 printk("\n");
1542 #endif
1543
1544 /* Look in the table if the frequency is allowed */
1545 if(!(table[9 - ((freq - 24) / 16)] &
1546 (1 << ((freq - 24) % 16))))
1547 return -EINVAL; /* not allowed */
1548 }
1549 else
1550 return -EINVAL;
1551
1552 /* If we get a usable frequency */
1553 if(freq != 0L)
1554 {
1555 unsigned short area[16];
1556 unsigned short dac[2];
1557 unsigned short area_verify[16];
1558 unsigned short dac_verify[2];
1559 /* Corresponding gain (in the power adjust value table)
1560 * see AT&T Wavelan Data Manual, REF 407-024689/E, page 3-8
1561 * & WCIN062D.DOC, page 6.2.9 */
1562 unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
1563 int power_band = 0; /* Selected band */
1564 unsigned short power_adjust; /* Correct value */
1565
1566 /* Search for the gain */
1567 power_band = 0;
1568 while((freq > power_limit[power_band]) &&
1569 (power_limit[++power_band] != 0))
1570 ;
1571
1572 /* Read the first area */
1573 fee_read(base, 0x00,
1574 area, 16);
1575
1576 /* Read the DAC */
1577 fee_read(base, 0x60,
1578 dac, 2);
1579
1580 /* Read the new power adjust value */
1581 fee_read(base, 0x6B - (power_band >> 1),
1582 &power_adjust, 1);
1583 if(power_band & 0x1)
1584 power_adjust >>= 8;
1585 else
1586 power_adjust &= 0xFF;
1587
1588 #ifdef DEBUG_IOCTL_INFO
1589 printk(KERN_DEBUG "Wavelan EEprom Area 1 :");
1590 for(i = 0; i < 16; i++)
1591 {
1592 printk(" %04X",
1593 area[i]);
1594 }
1595 printk("\n");
1596
1597 printk(KERN_DEBUG "Wavelan EEprom DAC : %04X %04X\n",
1598 dac[0], dac[1]);
1599 #endif
1600
1601 /* Frequency offset (for info only...) */
1602 area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
1603
1604 /* Receiver Principle main divider coefficient */
1605 area[3] = (freq >> 1) + 2400L - 352L;
1606 area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1607
1608 /* Transmitter Main divider coefficient */
1609 area[13] = (freq >> 1) + 2400L;
1610 area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1611
1612 /* Others part of the area are flags, bit streams or unused... */
1613
1614 /* Set the value in the DAC */
1615 dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
1616 dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
1617
1618 /* Write the first area */
1619 fee_write(base, 0x00,
1620 area, 16);
1621
1622 /* Write the DAC */
1623 fee_write(base, 0x60,
1624 dac, 2);
1625
1626 /* We now should verify here that the EEprom writing was ok */
1627
1628 /* ReRead the first area */
1629 fee_read(base, 0x00,
1630 area_verify, 16);
1631
1632 /* ReRead the DAC */
1633 fee_read(base, 0x60,
1634 dac_verify, 2);
1635
1636 /* Compare */
1637 if(memcmp(area, area_verify, 16 * 2) ||
1638 memcmp(dac, dac_verify, 2 * 2))
1639 {
1640 #ifdef DEBUG_IOCTL_ERROR
1641 printk(KERN_INFO "Wavelan: wv_set_frequency : unable to write new frequency to EEprom (?)\n");
1642 #endif
1643 return -EOPNOTSUPP;
1644 }
1645
1646 /* We must download the frequency parameters to the
1647 * synthetisers (from the EEprom - area 1)
1648 * Note : as the EEprom is auto decremented, we set the end
1649 * if the area... */
1650 mmc_out(base, mmwoff(0, mmw_fee_addr), 0x0F);
1651 mmc_out(base, mmwoff(0, mmw_fee_ctrl),
1652 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1653
1654 /* Wait until the download is finished */
1655 fee_wait(base, 100, 100);
1656
1657 /* We must now download the power adjust value (gain) to
1658 * the synthetisers (from the EEprom - area 7 - DAC) */
1659 mmc_out(base, mmwoff(0, mmw_fee_addr), 0x61);
1660 mmc_out(base, mmwoff(0, mmw_fee_ctrl),
1661 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1662
1663 /* Wait until the download is finished */
1664 fee_wait(base, 100, 100);
1665
1666 #ifdef DEBUG_IOCTL_INFO
1667 /* Verification of what we have done... */
1668
1669 printk(KERN_DEBUG "Wavelan EEprom Area 1 :");
1670 for(i = 0; i < 16; i++)
1671 {
1672 printk(" %04X",
1673 area_verify[i]);
1674 }
1675 printk("\n");
1676
1677 printk(KERN_DEBUG "Wavelan EEprom DAC : %04X %04X\n",
1678 dac_verify[0], dac_verify[1]);
1679 #endif
1680
1681 return 0;
1682 }
1683 else
1684 return -EINVAL; /* Bah, never get there... */
1685 }
1686
1687 /*------------------------------------------------------------------*/
1688 /*
1689 * Give the list of available frequencies
1690 */
1691 static int
1692 wv_frequency_list(u_long base, /* i/o port of the card */
1693 iw_freq * list, /* List of frequency to fill */
1694 int max) /* Maximum number of frequencies */
1695 {
1696 u_short table[10]; /* Authorized frequency table */
1697 long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */
1698 int i; /* index in the table */
1699 const int BAND_NUM = 10; /* Number of bands */
1700 int c = 0; /* Channel number */
1701
1702 /* Read the frequency table */
1703 fee_read(base, 0x71 /* frequency table */,
1704 table, 10);
1705
1706 /* Look all frequencies */
1707 i = 0;
1708 for(freq = 0; freq < 150; freq++)
1709 /* Look in the table if the frequency is allowed */
1710 if(table[9 - (freq / 16)] & (1 << (freq % 16)))
1711 {
1712 /* Compute approximate channel number */
1713 while((((channel_bands[c] >> 1) - 24) < freq) &&
1714 (c < BAND_NUM))
1715 c++;
1716 list[i].i = c; /* Set the list index */
1717
1718 /* put in the list */
1719 list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
1720 list[i++].e = 1;
1721
1722 /* Check number */
1723 if(i >= max)
1724 return(i);
1725 }
1726
1727 return(i);
1728 }
1729
1730 #ifdef IW_WIRELESS_SPY
1731 /*------------------------------------------------------------------*/
1732 /*
1733 * Gather wireless spy statistics : for each packet, compare the source
1734 * address with out list, and if match, get the stats...
1735 * Sorry, but this function really need wireless extensions...
1736 */
1737 static inline void
1738 wl_spy_gather(struct net_device * dev,
1739 u_char * mac, /* MAC address */
1740 u_char * stats) /* Statistics to gather */
1741 {
1742 struct iw_quality wstats;
1743
1744 wstats.qual = stats[2] & MMR_SGNL_QUAL;
1745 wstats.level = stats[0] & MMR_SIGNAL_LVL;
1746 wstats.noise = stats[1] & MMR_SILENCE_LVL;
1747 wstats.updated = 0x7;
1748
1749 /* Update spy records */
1750 wireless_spy_update(dev, mac, &wstats);
1751 }
1752 #endif /* IW_WIRELESS_SPY */
1753
1754 #ifdef HISTOGRAM
1755 /*------------------------------------------------------------------*/
1756 /*
1757 * This function calculate an histogram on the signal level.
1758 * As the noise is quite constant, it's like doing it on the SNR.
1759 * We have defined a set of interval (lp->his_range), and each time
1760 * the level goes in that interval, we increment the count (lp->his_sum).
1761 * With this histogram you may detect if one wavelan is really weak,
1762 * or you may also calculate the mean and standard deviation of the level...
1763 */
1764 static inline void
1765 wl_his_gather(struct net_device * dev,
1766 u_char * stats) /* Statistics to gather */
1767 {
1768 net_local * lp = netdev_priv(dev);
1769 u_char level = stats[0] & MMR_SIGNAL_LVL;
1770 int i;
1771
1772 /* Find the correct interval */
1773 i = 0;
1774 while((i < (lp->his_number - 1)) && (level >= lp->his_range[i++]))
1775 ;
1776
1777 /* Increment interval counter */
1778 (lp->his_sum[i])++;
1779 }
1780 #endif /* HISTOGRAM */
1781
1782 static void wl_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1783 {
1784 strncpy(info->driver, "wavelan_cs", sizeof(info->driver)-1);
1785 }
1786
1787 static const struct ethtool_ops ops = {
1788 .get_drvinfo = wl_get_drvinfo
1789 };
1790
1791 /*------------------------------------------------------------------*/
1792 /*
1793 * Wireless Handler : get protocol name
1794 */
1795 static int wavelan_get_name(struct net_device *dev,
1796 struct iw_request_info *info,
1797 union iwreq_data *wrqu,
1798 char *extra)
1799 {
1800 strcpy(wrqu->name, "WaveLAN");
1801 return 0;
1802 }
1803
1804 /*------------------------------------------------------------------*/
1805 /*
1806 * Wireless Handler : set NWID
1807 */
1808 static int wavelan_set_nwid(struct net_device *dev,
1809 struct iw_request_info *info,
1810 union iwreq_data *wrqu,
1811 char *extra)
1812 {
1813 unsigned int base = dev->base_addr;
1814 net_local *lp = netdev_priv(dev);
1815 psa_t psa;
1816 mm_t m;
1817 unsigned long flags;
1818 int ret = 0;
1819
1820 /* Disable interrupts and save flags. */
1821 spin_lock_irqsave(&lp->spinlock, flags);
1822
1823 /* Set NWID in WaveLAN. */
1824 if (!wrqu->nwid.disabled) {
1825 /* Set NWID in psa */
1826 psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
1827 psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
1828 psa.psa_nwid_select = 0x01;
1829 psa_write(dev,
1830 (char *) psa.psa_nwid - (char *) &psa,
1831 (unsigned char *) psa.psa_nwid, 3);
1832
1833 /* Set NWID in mmc. */
1834 m.w.mmw_netw_id_l = psa.psa_nwid[1];
1835 m.w.mmw_netw_id_h = psa.psa_nwid[0];
1836 mmc_write(base,
1837 (char *) &m.w.mmw_netw_id_l -
1838 (char *) &m,
1839 (unsigned char *) &m.w.mmw_netw_id_l, 2);
1840 mmc_out(base, mmwoff(0, mmw_loopt_sel), 0x00);
1841 } else {
1842 /* Disable NWID in the psa. */
1843 psa.psa_nwid_select = 0x00;
1844 psa_write(dev,
1845 (char *) &psa.psa_nwid_select -
1846 (char *) &psa,
1847 (unsigned char *) &psa.psa_nwid_select,
1848 1);
1849
1850 /* Disable NWID in the mmc (no filtering). */
1851 mmc_out(base, mmwoff(0, mmw_loopt_sel),
1852 MMW_LOOPT_SEL_DIS_NWID);
1853 }
1854 /* update the Wavelan checksum */
1855 update_psa_checksum(dev);
1856
1857 /* Enable interrupts and restore flags. */
1858 spin_unlock_irqrestore(&lp->spinlock, flags);
1859
1860 return ret;
1861 }
1862
1863 /*------------------------------------------------------------------*/
1864 /*
1865 * Wireless Handler : get NWID
1866 */
1867 static int wavelan_get_nwid(struct net_device *dev,
1868 struct iw_request_info *info,
1869 union iwreq_data *wrqu,
1870 char *extra)
1871 {
1872 net_local *lp = netdev_priv(dev);
1873 psa_t psa;
1874 unsigned long flags;
1875 int ret = 0;
1876
1877 /* Disable interrupts and save flags. */
1878 spin_lock_irqsave(&lp->spinlock, flags);
1879
1880 /* Read the NWID. */
1881 psa_read(dev,
1882 (char *) psa.psa_nwid - (char *) &psa,
1883 (unsigned char *) psa.psa_nwid, 3);
1884 wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
1885 wrqu->nwid.disabled = !(psa.psa_nwid_select);
1886 wrqu->nwid.fixed = 1; /* Superfluous */
1887
1888 /* Enable interrupts and restore flags. */
1889 spin_unlock_irqrestore(&lp->spinlock, flags);
1890
1891 return ret;
1892 }
1893
1894 /*------------------------------------------------------------------*/
1895 /*
1896 * Wireless Handler : set frequency
1897 */
1898 static int wavelan_set_freq(struct net_device *dev,
1899 struct iw_request_info *info,
1900 union iwreq_data *wrqu,
1901 char *extra)
1902 {
1903 unsigned int base = dev->base_addr;
1904 net_local *lp = netdev_priv(dev);
1905 unsigned long flags;
1906 int ret;
1907
1908 /* Disable interrupts and save flags. */
1909 spin_lock_irqsave(&lp->spinlock, flags);
1910
1911 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
1912 if (!(mmc_in(base, mmroff(0, mmr_fee_status)) &
1913 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1914 ret = wv_set_frequency(base, &(wrqu->freq));
1915 else
1916 ret = -EOPNOTSUPP;
1917
1918 /* Enable interrupts and restore flags. */
1919 spin_unlock_irqrestore(&lp->spinlock, flags);
1920
1921 return ret;
1922 }
1923
1924 /*------------------------------------------------------------------*/
1925 /*
1926 * Wireless Handler : get frequency
1927 */
1928 static int wavelan_get_freq(struct net_device *dev,
1929 struct iw_request_info *info,
1930 union iwreq_data *wrqu,
1931 char *extra)
1932 {
1933 unsigned int base = dev->base_addr;
1934 net_local *lp = netdev_priv(dev);
1935 psa_t psa;
1936 unsigned long flags;
1937 int ret = 0;
1938
1939 /* Disable interrupts and save flags. */
1940 spin_lock_irqsave(&lp->spinlock, flags);
1941
1942 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
1943 * Does it work for everybody, especially old cards? */
1944 if (!(mmc_in(base, mmroff(0, mmr_fee_status)) &
1945 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1946 unsigned short freq;
1947
1948 /* Ask the EEPROM to read the frequency from the first area. */
1949 fee_read(base, 0x00, &freq, 1);
1950 wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
1951 wrqu->freq.e = 1;
1952 } else {
1953 psa_read(dev,
1954 (char *) &psa.psa_subband - (char *) &psa,
1955 (unsigned char *) &psa.psa_subband, 1);
1956
1957 if (psa.psa_subband <= 4) {
1958 wrqu->freq.m = fixed_bands[psa.psa_subband];
1959 wrqu->freq.e = (psa.psa_subband != 0);
1960 } else
1961 ret = -EOPNOTSUPP;
1962 }
1963
1964 /* Enable interrupts and restore flags. */
1965 spin_unlock_irqrestore(&lp->spinlock, flags);
1966
1967 return ret;
1968 }
1969
1970 /*------------------------------------------------------------------*/
1971 /*
1972 * Wireless Handler : set level threshold
1973 */
1974 static int wavelan_set_sens(struct net_device *dev,
1975 struct iw_request_info *info,
1976 union iwreq_data *wrqu,
1977 char *extra)
1978 {
1979 unsigned int base = dev->base_addr;
1980 net_local *lp = netdev_priv(dev);
1981 psa_t psa;
1982 unsigned long flags;
1983 int ret = 0;
1984
1985 /* Disable interrupts and save flags. */
1986 spin_lock_irqsave(&lp->spinlock, flags);
1987
1988 /* Set the level threshold. */
1989 /* We should complain loudly if wrqu->sens.fixed = 0, because we
1990 * can't set auto mode... */
1991 psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
1992 psa_write(dev,
1993 (char *) &psa.psa_thr_pre_set - (char *) &psa,
1994 (unsigned char *) &psa.psa_thr_pre_set, 1);
1995 /* update the Wavelan checksum */
1996 update_psa_checksum(dev);
1997 mmc_out(base, mmwoff(0, mmw_thr_pre_set),
1998 psa.psa_thr_pre_set);
1999
2000 /* Enable interrupts and restore flags. */
2001 spin_unlock_irqrestore(&lp->spinlock, flags);
2002
2003 return ret;
2004 }
2005
2006 /*------------------------------------------------------------------*/
2007 /*
2008 * Wireless Handler : get level threshold
2009 */
2010 static int wavelan_get_sens(struct net_device *dev,
2011 struct iw_request_info *info,
2012 union iwreq_data *wrqu,
2013 char *extra)
2014 {
2015 net_local *lp = netdev_priv(dev);
2016 psa_t psa;
2017 unsigned long flags;
2018 int ret = 0;
2019
2020 /* Disable interrupts and save flags. */
2021 spin_lock_irqsave(&lp->spinlock, flags);
2022
2023 /* Read the level threshold. */
2024 psa_read(dev,
2025 (char *) &psa.psa_thr_pre_set - (char *) &psa,
2026 (unsigned char *) &psa.psa_thr_pre_set, 1);
2027 wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
2028 wrqu->sens.fixed = 1;
2029
2030 /* Enable interrupts and restore flags. */
2031 spin_unlock_irqrestore(&lp->spinlock, flags);
2032
2033 return ret;
2034 }
2035
2036 /*------------------------------------------------------------------*/
2037 /*
2038 * Wireless Handler : set encryption key
2039 */
2040 static int wavelan_set_encode(struct net_device *dev,
2041 struct iw_request_info *info,
2042 union iwreq_data *wrqu,
2043 char *extra)
2044 {
2045 unsigned int base = dev->base_addr;
2046 net_local *lp = netdev_priv(dev);
2047 unsigned long flags;
2048 psa_t psa;
2049 int ret = 0;
2050
2051 /* Disable interrupts and save flags. */
2052 spin_lock_irqsave(&lp->spinlock, flags);
2053
2054 /* Check if capable of encryption */
2055 if (!mmc_encr(base)) {
2056 ret = -EOPNOTSUPP;
2057 }
2058
2059 /* Check the size of the key */
2060 if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
2061 ret = -EINVAL;
2062 }
2063
2064 if(!ret) {
2065 /* Basic checking... */
2066 if (wrqu->encoding.length == 8) {
2067 /* Copy the key in the driver */
2068 memcpy(psa.psa_encryption_key, extra,
2069 wrqu->encoding.length);
2070 psa.psa_encryption_select = 1;
2071
2072 psa_write(dev,
2073 (char *) &psa.psa_encryption_select -
2074 (char *) &psa,
2075 (unsigned char *) &psa.
2076 psa_encryption_select, 8 + 1);
2077
2078 mmc_out(base, mmwoff(0, mmw_encr_enable),
2079 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
2080 mmc_write(base, mmwoff(0, mmw_encr_key),
2081 (unsigned char *) &psa.
2082 psa_encryption_key, 8);
2083 }
2084
2085 /* disable encryption */
2086 if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
2087 psa.psa_encryption_select = 0;
2088 psa_write(dev,
2089 (char *) &psa.psa_encryption_select -
2090 (char *) &psa,
2091 (unsigned char *) &psa.
2092 psa_encryption_select, 1);
2093
2094 mmc_out(base, mmwoff(0, mmw_encr_enable), 0);
2095 }
2096 /* update the Wavelan checksum */
2097 update_psa_checksum(dev);
2098 }
2099
2100 /* Enable interrupts and restore flags. */
2101 spin_unlock_irqrestore(&lp->spinlock, flags);
2102
2103 return ret;
2104 }
2105
2106 /*------------------------------------------------------------------*/
2107 /*
2108 * Wireless Handler : get encryption key
2109 */
2110 static int wavelan_get_encode(struct net_device *dev,
2111 struct iw_request_info *info,
2112 union iwreq_data *wrqu,
2113 char *extra)
2114 {
2115 unsigned int base = dev->base_addr;
2116 net_local *lp = netdev_priv(dev);
2117 psa_t psa;
2118 unsigned long flags;
2119 int ret = 0;
2120
2121 /* Disable interrupts and save flags. */
2122 spin_lock_irqsave(&lp->spinlock, flags);
2123
2124 /* Check if encryption is available */
2125 if (!mmc_encr(base)) {
2126 ret = -EOPNOTSUPP;
2127 } else {
2128 /* Read the encryption key */
2129 psa_read(dev,
2130 (char *) &psa.psa_encryption_select -
2131 (char *) &psa,
2132 (unsigned char *) &psa.
2133 psa_encryption_select, 1 + 8);
2134
2135 /* encryption is enabled ? */
2136 if (psa.psa_encryption_select)
2137 wrqu->encoding.flags = IW_ENCODE_ENABLED;
2138 else
2139 wrqu->encoding.flags = IW_ENCODE_DISABLED;
2140 wrqu->encoding.flags |= mmc_encr(base);
2141
2142 /* Copy the key to the user buffer */
2143 wrqu->encoding.length = 8;
2144 memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
2145 }
2146
2147 /* Enable interrupts and restore flags. */
2148 spin_unlock_irqrestore(&lp->spinlock, flags);
2149
2150 return ret;
2151 }
2152
2153 #ifdef WAVELAN_ROAMING_EXT
2154 /*------------------------------------------------------------------*/
2155 /*
2156 * Wireless Handler : set ESSID (domain)
2157 */
2158 static int wavelan_set_essid(struct net_device *dev,
2159 struct iw_request_info *info,
2160 union iwreq_data *wrqu,
2161 char *extra)
2162 {
2163 net_local *lp = netdev_priv(dev);
2164 unsigned long flags;
2165 int ret = 0;
2166
2167 /* Disable interrupts and save flags. */
2168 spin_lock_irqsave(&lp->spinlock, flags);
2169
2170 /* Check if disable */
2171 if(wrqu->data.flags == 0)
2172 lp->filter_domains = 0;
2173 else {
2174 char essid[IW_ESSID_MAX_SIZE + 1];
2175 char * endp;
2176
2177 /* Terminate the string */
2178 memcpy(essid, extra, wrqu->data.length);
2179 essid[IW_ESSID_MAX_SIZE] = '\0';
2180
2181 #ifdef DEBUG_IOCTL_INFO
2182 printk(KERN_DEBUG "SetEssid : ``%s''\n", essid);
2183 #endif /* DEBUG_IOCTL_INFO */
2184
2185 /* Convert to a number (note : Wavelan specific) */
2186 lp->domain_id = simple_strtoul(essid, &endp, 16);
2187 /* Has it worked ? */
2188 if(endp > essid)
2189 lp->filter_domains = 1;
2190 else {
2191 lp->filter_domains = 0;
2192 ret = -EINVAL;
2193 }
2194 }
2195
2196 /* Enable interrupts and restore flags. */
2197 spin_unlock_irqrestore(&lp->spinlock, flags);
2198
2199 return ret;
2200 }
2201
2202 /*------------------------------------------------------------------*/
2203 /*
2204 * Wireless Handler : get ESSID (domain)
2205 */
2206 static int wavelan_get_essid(struct net_device *dev,
2207 struct iw_request_info *info,
2208 union iwreq_data *wrqu,
2209 char *extra)
2210 {
2211 net_local *lp = netdev_priv(dev);
2212
2213 /* Is the domain ID active ? */
2214 wrqu->data.flags = lp->filter_domains;
2215
2216 /* Copy Domain ID into a string (Wavelan specific) */
2217 /* Sound crazy, be we can't have a snprintf in the kernel !!! */
2218 sprintf(extra, "%lX", lp->domain_id);
2219 extra[IW_ESSID_MAX_SIZE] = '\0';
2220
2221 /* Set the length */
2222 wrqu->data.length = strlen(extra);
2223
2224 return 0;
2225 }
2226
2227 /*------------------------------------------------------------------*/
2228 /*
2229 * Wireless Handler : set AP address
2230 */
2231 static int wavelan_set_wap(struct net_device *dev,
2232 struct iw_request_info *info,
2233 union iwreq_data *wrqu,
2234 char *extra)
2235 {
2236 #ifdef DEBUG_IOCTL_INFO
2237 printk(KERN_DEBUG "Set AP to : %pM\n", wrqu->ap_addr.sa_data);
2238 #endif /* DEBUG_IOCTL_INFO */
2239
2240 return -EOPNOTSUPP;
2241 }
2242
2243 /*------------------------------------------------------------------*/
2244 /*
2245 * Wireless Handler : get AP address
2246 */
2247 static int wavelan_get_wap(struct net_device *dev,
2248 struct iw_request_info *info,
2249 union iwreq_data *wrqu,
2250 char *extra)
2251 {
2252 /* Should get the real McCoy instead of own Ethernet address */
2253 memcpy(wrqu->ap_addr.sa_data, dev->dev_addr, WAVELAN_ADDR_SIZE);
2254 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
2255
2256 return -EOPNOTSUPP;
2257 }
2258 #endif /* WAVELAN_ROAMING_EXT */
2259
2260 #ifdef WAVELAN_ROAMING
2261 /*------------------------------------------------------------------*/
2262 /*
2263 * Wireless Handler : set mode
2264 */
2265 static int wavelan_set_mode(struct net_device *dev,
2266 struct iw_request_info *info,
2267 union iwreq_data *wrqu,
2268 char *extra)
2269 {
2270 net_local *lp = netdev_priv(dev);
2271 unsigned long flags;
2272 int ret = 0;
2273
2274 /* Disable interrupts and save flags. */
2275 spin_lock_irqsave(&lp->spinlock, flags);
2276
2277 /* Check mode */
2278 switch(wrqu->mode) {
2279 case IW_MODE_ADHOC:
2280 if(do_roaming) {
2281 wv_roam_cleanup(dev);
2282 do_roaming = 0;
2283 }
2284 break;
2285 case IW_MODE_INFRA:
2286 if(!do_roaming) {
2287 wv_roam_init(dev);
2288 do_roaming = 1;
2289 }
2290 break;
2291 default:
2292 ret = -EINVAL;
2293 }
2294
2295 /* Enable interrupts and restore flags. */
2296 spin_unlock_irqrestore(&lp->spinlock, flags);
2297
2298 return ret;
2299 }
2300
2301 /*------------------------------------------------------------------*/
2302 /*
2303 * Wireless Handler : get mode
2304 */
2305 static int wavelan_get_mode(struct net_device *dev,
2306 struct iw_request_info *info,
2307 union iwreq_data *wrqu,
2308 char *extra)
2309 {
2310 if(do_roaming)
2311 wrqu->mode = IW_MODE_INFRA;
2312 else
2313 wrqu->mode = IW_MODE_ADHOC;
2314
2315 return 0;
2316 }
2317 #endif /* WAVELAN_ROAMING */
2318
2319 /*------------------------------------------------------------------*/
2320 /*
2321 * Wireless Handler : get range info
2322 */
2323 static int wavelan_get_range(struct net_device *dev,
2324 struct iw_request_info *info,
2325 union iwreq_data *wrqu,
2326 char *extra)
2327 {
2328 unsigned int base = dev->base_addr;
2329 net_local *lp = netdev_priv(dev);
2330 struct iw_range *range = (struct iw_range *) extra;
2331 unsigned long flags;
2332 int ret = 0;
2333
2334 /* Set the length (very important for backward compatibility) */
2335 wrqu->data.length = sizeof(struct iw_range);
2336
2337 /* Set all the info we don't care or don't know about to zero */
2338 memset(range, 0, sizeof(struct iw_range));
2339
2340 /* Set the Wireless Extension versions */
2341 range->we_version_compiled = WIRELESS_EXT;
2342 range->we_version_source = 9;
2343
2344 /* Set information in the range struct. */
2345 range->throughput = 1.4 * 1000 * 1000; /* don't argue on this ! */
2346 range->min_nwid = 0x0000;
2347 range->max_nwid = 0xFFFF;
2348
2349 range->sensitivity = 0x3F;
2350 range->max_qual.qual = MMR_SGNL_QUAL;
2351 range->max_qual.level = MMR_SIGNAL_LVL;
2352 range->max_qual.noise = MMR_SILENCE_LVL;
2353 range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
2354 /* Need to get better values for those two */
2355 range->avg_qual.level = 30;
2356 range->avg_qual.noise = 8;
2357
2358 range->num_bitrates = 1;
2359 range->bitrate[0] = 2000000; /* 2 Mb/s */
2360
2361 /* Event capability (kernel + driver) */
2362 range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
2363 IW_EVENT_CAPA_MASK(0x8B04) |
2364 IW_EVENT_CAPA_MASK(0x8B06));
2365 range->event_capa[1] = IW_EVENT_CAPA_K_1;
2366
2367 /* Disable interrupts and save flags. */
2368 spin_lock_irqsave(&lp->spinlock, flags);
2369
2370 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
2371 if (!(mmc_in(base, mmroff(0, mmr_fee_status)) &
2372 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
2373 range->num_channels = 10;
2374 range->num_frequency = wv_frequency_list(base, range->freq,
2375 IW_MAX_FREQUENCIES);
2376 } else
2377 range->num_channels = range->num_frequency = 0;
2378
2379 /* Encryption supported ? */
2380 if (mmc_encr(base)) {
2381 range->encoding_size[0] = 8; /* DES = 64 bits key */
2382 range->num_encoding_sizes = 1;
2383 range->max_encoding_tokens = 1; /* Only one key possible */
2384 } else {
2385 range->num_encoding_sizes = 0;
2386 range->max_encoding_tokens = 0;
2387 }
2388
2389 /* Enable interrupts and restore flags. */
2390 spin_unlock_irqrestore(&lp->spinlock, flags);
2391
2392 return ret;
2393 }
2394
2395 /*------------------------------------------------------------------*/
2396 /*
2397 * Wireless Private Handler : set quality threshold
2398 */
2399 static int wavelan_set_qthr(struct net_device *dev,
2400 struct iw_request_info *info,
2401 union iwreq_data *wrqu,
2402 char *extra)
2403 {
2404 unsigned int base = dev->base_addr;
2405 net_local *lp = netdev_priv(dev);
2406 psa_t psa;
2407 unsigned long flags;
2408
2409 /* Disable interrupts and save flags. */
2410 spin_lock_irqsave(&lp->spinlock, flags);
2411
2412 psa.psa_quality_thr = *(extra) & 0x0F;
2413 psa_write(dev,
2414 (char *) &psa.psa_quality_thr - (char *) &psa,
2415 (unsigned char *) &psa.psa_quality_thr, 1);
2416 /* update the Wavelan checksum */
2417 update_psa_checksum(dev);
2418 mmc_out(base, mmwoff(0, mmw_quality_thr),
2419 psa.psa_quality_thr);
2420
2421 /* Enable interrupts and restore flags. */
2422 spin_unlock_irqrestore(&lp->spinlock, flags);
2423
2424 return 0;
2425 }
2426
2427 /*------------------------------------------------------------------*/
2428 /*
2429 * Wireless Private Handler : get quality threshold
2430 */
2431 static int wavelan_get_qthr(struct net_device *dev,
2432 struct iw_request_info *info,
2433 union iwreq_data *wrqu,
2434 char *extra)
2435 {
2436 net_local *lp = netdev_priv(dev);
2437 psa_t psa;
2438 unsigned long flags;
2439
2440 /* Disable interrupts and save flags. */
2441 spin_lock_irqsave(&lp->spinlock, flags);
2442
2443 psa_read(dev,
2444 (char *) &psa.psa_quality_thr - (char *) &psa,
2445 (unsigned char *) &psa.psa_quality_thr, 1);
2446 *(extra) = psa.psa_quality_thr & 0x0F;
2447
2448 /* Enable interrupts and restore flags. */
2449 spin_unlock_irqrestore(&lp->spinlock, flags);
2450
2451 return 0;
2452 }
2453
2454 #ifdef WAVELAN_ROAMING
2455 /*------------------------------------------------------------------*/
2456 /*
2457 * Wireless Private Handler : set roaming
2458 */
2459 static int wavelan_set_roam(struct net_device *dev,
2460 struct iw_request_info *info,
2461 union iwreq_data *wrqu,
2462 char *extra)
2463 {
2464 net_local *lp = netdev_priv(dev);
2465 unsigned long flags;
2466
2467 /* Disable interrupts and save flags. */
2468 spin_lock_irqsave(&lp->spinlock, flags);
2469
2470 /* Note : should check if user == root */
2471 if(do_roaming && (*extra)==0)
2472 wv_roam_cleanup(dev);
2473 else if(do_roaming==0 && (*extra)!=0)
2474 wv_roam_init(dev);
2475
2476 do_roaming = (*extra);
2477
2478 /* Enable interrupts and restore flags. */
2479 spin_unlock_irqrestore(&lp->spinlock, flags);
2480
2481 return 0;
2482 }
2483
2484 /*------------------------------------------------------------------*/
2485 /*
2486 * Wireless Private Handler : get quality threshold
2487 */
2488 static int wavelan_get_roam(struct net_device *dev,
2489 struct iw_request_info *info,
2490 union iwreq_data *wrqu,
2491 char *extra)
2492 {
2493 *(extra) = do_roaming;
2494
2495 return 0;
2496 }
2497 #endif /* WAVELAN_ROAMING */
2498
2499 #ifdef HISTOGRAM
2500 /*------------------------------------------------------------------*/
2501 /*
2502 * Wireless Private Handler : set histogram
2503 */
2504 static int wavelan_set_histo(struct net_device *dev,
2505 struct iw_request_info *info,
2506 union iwreq_data *wrqu,
2507 char *extra)
2508 {
2509 net_local *lp = netdev_priv(dev);
2510
2511 /* Check the number of intervals. */
2512 if (wrqu->data.length > 16) {
2513 return(-E2BIG);
2514 }
2515
2516 /* Disable histo while we copy the addresses.
2517 * As we don't disable interrupts, we need to do this */
2518 lp->his_number = 0;
2519
2520 /* Are there ranges to copy? */
2521 if (wrqu->data.length > 0) {
2522 /* Copy interval ranges to the driver */
2523 memcpy(lp->his_range, extra, wrqu->data.length);
2524
2525 {
2526 int i;
2527 printk(KERN_DEBUG "Histo :");
2528 for(i = 0; i < wrqu->data.length; i++)
2529 printk(" %d", lp->his_range[i]);
2530 printk("\n");
2531 }
2532
2533 /* Reset result structure. */
2534 memset(lp->his_sum, 0x00, sizeof(long) * 16);
2535 }
2536
2537 /* Now we can set the number of ranges */
2538 lp->his_number = wrqu->data.length;
2539
2540 return(0);
2541 }
2542
2543 /*------------------------------------------------------------------*/
2544 /*
2545 * Wireless Private Handler : get histogram
2546 */
2547 static int wavelan_get_histo(struct net_device *dev,
2548 struct iw_request_info *info,
2549 union iwreq_data *wrqu,
2550 char *extra)
2551 {
2552 net_local *lp = netdev_priv(dev);
2553
2554 /* Set the number of intervals. */
2555 wrqu->data.length = lp->his_number;
2556
2557 /* Give back the distribution statistics */
2558 if(lp->his_number > 0)
2559 memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
2560
2561 return(0);
2562 }
2563 #endif /* HISTOGRAM */
2564
2565 /*------------------------------------------------------------------*/
2566 /*
2567 * Structures to export the Wireless Handlers
2568 */
2569
2570 static const struct iw_priv_args wavelan_private_args[] = {
2571 /*{ cmd, set_args, get_args, name } */
2572 { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
2573 { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
2574 { SIOCSIPROAM, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setroam" },
2575 { SIOCGIPROAM, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getroam" },
2576 { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" },
2577 { SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" },
2578 };
2579
2580 static const iw_handler wavelan_handler[] =
2581 {
2582 NULL, /* SIOCSIWNAME */
2583 wavelan_get_name, /* SIOCGIWNAME */
2584 wavelan_set_nwid, /* SIOCSIWNWID */
2585 wavelan_get_nwid, /* SIOCGIWNWID */
2586 wavelan_set_freq, /* SIOCSIWFREQ */
2587 wavelan_get_freq, /* SIOCGIWFREQ */
2588 #ifdef WAVELAN_ROAMING
2589 wavelan_set_mode, /* SIOCSIWMODE */
2590 wavelan_get_mode, /* SIOCGIWMODE */
2591 #else /* WAVELAN_ROAMING */
2592 NULL, /* SIOCSIWMODE */
2593 NULL, /* SIOCGIWMODE */
2594 #endif /* WAVELAN_ROAMING */
2595 wavelan_set_sens, /* SIOCSIWSENS */
2596 wavelan_get_sens, /* SIOCGIWSENS */
2597 NULL, /* SIOCSIWRANGE */
2598 wavelan_get_range, /* SIOCGIWRANGE */
2599 NULL, /* SIOCSIWPRIV */
2600 NULL, /* SIOCGIWPRIV */
2601 NULL, /* SIOCSIWSTATS */
2602 NULL, /* SIOCGIWSTATS */
2603 iw_handler_set_spy, /* SIOCSIWSPY */
2604 iw_handler_get_spy, /* SIOCGIWSPY */
2605 iw_handler_set_thrspy, /* SIOCSIWTHRSPY */
2606 iw_handler_get_thrspy, /* SIOCGIWTHRSPY */
2607 #ifdef WAVELAN_ROAMING_EXT
2608 wavelan_set_wap, /* SIOCSIWAP */
2609 wavelan_get_wap, /* SIOCGIWAP */
2610 NULL, /* -- hole -- */
2611 NULL, /* SIOCGIWAPLIST */
2612 NULL, /* -- hole -- */
2613 NULL, /* -- hole -- */
2614 wavelan_set_essid, /* SIOCSIWESSID */
2615 wavelan_get_essid, /* SIOCGIWESSID */
2616 #else /* WAVELAN_ROAMING_EXT */
2617 NULL, /* SIOCSIWAP */
2618 NULL, /* SIOCGIWAP */
2619 NULL, /* -- hole -- */
2620 NULL, /* SIOCGIWAPLIST */
2621 NULL, /* -- hole -- */
2622 NULL, /* -- hole -- */
2623 NULL, /* SIOCSIWESSID */
2624 NULL, /* SIOCGIWESSID */
2625 #endif /* WAVELAN_ROAMING_EXT */
2626 NULL, /* SIOCSIWNICKN */
2627 NULL, /* SIOCGIWNICKN */
2628 NULL, /* -- hole -- */
2629 NULL, /* -- hole -- */
2630 NULL, /* SIOCSIWRATE */
2631 NULL, /* SIOCGIWRATE */
2632 NULL, /* SIOCSIWRTS */
2633 NULL, /* SIOCGIWRTS */
2634 NULL, /* SIOCSIWFRAG */
2635 NULL, /* SIOCGIWFRAG */
2636 NULL, /* SIOCSIWTXPOW */
2637 NULL, /* SIOCGIWTXPOW */
2638 NULL, /* SIOCSIWRETRY */
2639 NULL, /* SIOCGIWRETRY */
2640 wavelan_set_encode, /* SIOCSIWENCODE */
2641 wavelan_get_encode, /* SIOCGIWENCODE */
2642 };
2643
2644 static const iw_handler wavelan_private_handler[] =
2645 {
2646 wavelan_set_qthr, /* SIOCIWFIRSTPRIV */
2647 wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */
2648 #ifdef WAVELAN_ROAMING
2649 wavelan_set_roam, /* SIOCIWFIRSTPRIV + 2 */
2650 wavelan_get_roam, /* SIOCIWFIRSTPRIV + 3 */
2651 #else /* WAVELAN_ROAMING */
2652 NULL, /* SIOCIWFIRSTPRIV + 2 */
2653 NULL, /* SIOCIWFIRSTPRIV + 3 */
2654 #endif /* WAVELAN_ROAMING */
2655 #ifdef HISTOGRAM
2656 wavelan_set_histo, /* SIOCIWFIRSTPRIV + 4 */
2657 wavelan_get_histo, /* SIOCIWFIRSTPRIV + 5 */
2658 #endif /* HISTOGRAM */
2659 };
2660
2661 static const struct iw_handler_def wavelan_handler_def =
2662 {
2663 .num_standard = ARRAY_SIZE(wavelan_handler),
2664 .num_private = ARRAY_SIZE(wavelan_private_handler),
2665 .num_private_args = ARRAY_SIZE(wavelan_private_args),
2666 .standard = wavelan_handler,
2667 .private = wavelan_private_handler,
2668 .private_args = wavelan_private_args,
2669 .get_wireless_stats = wavelan_get_wireless_stats,
2670 };
2671
2672 /*------------------------------------------------------------------*/
2673 /*
2674 * Get wireless statistics
2675 * Called by /proc/net/wireless...
2676 */
2677 static iw_stats *
2678 wavelan_get_wireless_stats(struct net_device * dev)
2679 {
2680 unsigned int base = dev->base_addr;
2681 net_local * lp = netdev_priv(dev);
2682 mmr_t m;
2683 iw_stats * wstats;
2684 unsigned long flags;
2685
2686 #ifdef DEBUG_IOCTL_TRACE
2687 printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n", dev->name);
2688 #endif
2689
2690 /* Disable interrupts & save flags */
2691 spin_lock_irqsave(&lp->spinlock, flags);
2692
2693 wstats = &lp->wstats;
2694
2695 /* Get data from the mmc */
2696 mmc_out(base, mmwoff(0, mmw_freeze), 1);
2697
2698 mmc_read(base, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
2699 mmc_read(base, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l, 2);
2700 mmc_read(base, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set, 4);
2701
2702 mmc_out(base, mmwoff(0, mmw_freeze), 0);
2703
2704 /* Copy data to wireless stuff */
2705 wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
2706 wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
2707 wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
2708 wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
2709 wstats->qual.updated = (((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) |
2710 ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) |
2711 ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
2712 wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
2713 wstats->discard.code = 0L;
2714 wstats->discard.misc = 0L;
2715
2716 /* ReEnable interrupts & restore flags */
2717 spin_unlock_irqrestore(&lp->spinlock, flags);
2718
2719 #ifdef DEBUG_IOCTL_TRACE
2720 printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n", dev->name);
2721 #endif
2722 return &lp->wstats;
2723 }
2724
2725 /************************* PACKET RECEPTION *************************/
2726 /*
2727 * This part deal with receiving the packets.
2728 * The interrupt handler get an interrupt when a packet has been
2729 * successfully received and called this part...
2730 */
2731
2732 /*------------------------------------------------------------------*/
2733 /*
2734 * Calculate the starting address of the frame pointed to by the receive
2735 * frame pointer and verify that the frame seem correct
2736 * (called by wv_packet_rcv())
2737 */
2738 static int
2739 wv_start_of_frame(struct net_device * dev,
2740 int rfp, /* end of frame */
2741 int wrap) /* start of buffer */
2742 {
2743 unsigned int base = dev->base_addr;
2744 int rp;
2745 int len;
2746
2747 rp = (rfp - 5 + RX_SIZE) % RX_SIZE;
2748 outb(rp & 0xff, PIORL(base));
2749 outb(((rp >> 8) & PIORH_MASK), PIORH(base));
2750 len = inb(PIOP(base));
2751 len |= inb(PIOP(base)) << 8;
2752
2753 /* Sanity checks on size */
2754 /* Frame too big */
2755 if(len > MAXDATAZ + 100)
2756 {
2757 #ifdef DEBUG_RX_ERROR
2758 printk(KERN_INFO "%s: wv_start_of_frame: Received frame too large, rfp %d len 0x%x\n",
2759 dev->name, rfp, len);
2760 #endif
2761 return(-1);
2762 }
2763
2764 /* Frame too short */
2765 if(len < 7)
2766 {
2767 #ifdef DEBUG_RX_ERROR
2768 printk(KERN_INFO "%s: wv_start_of_frame: Received null frame, rfp %d len 0x%x\n",
2769 dev->name, rfp, len);
2770 #endif
2771 return(-1);
2772 }
2773
2774 /* Wrap around buffer */
2775 if(len > ((wrap - (rfp - len) + RX_SIZE) % RX_SIZE)) /* magic formula ! */
2776 {
2777 #ifdef DEBUG_RX_ERROR
2778 printk(KERN_INFO "%s: wv_start_of_frame: wrap around buffer, wrap %d rfp %d len 0x%x\n",
2779 dev->name, wrap, rfp, len);
2780 #endif
2781 return(-1);
2782 }
2783
2784 return((rp - len + RX_SIZE) % RX_SIZE);
2785 } /* wv_start_of_frame */
2786
2787 /*------------------------------------------------------------------*/
2788 /*
2789 * This routine does the actual copy of data (including the ethernet
2790 * header structure) from the WaveLAN card to an sk_buff chain that
2791 * will be passed up to the network interface layer. NOTE: We
2792 * currently don't handle trailer protocols (neither does the rest of
2793 * the network interface), so if that is needed, it will (at least in
2794 * part) be added here. The contents of the receive ring buffer are
2795 * copied to a message chain that is then passed to the kernel.
2796 *
2797 * Note: if any errors occur, the packet is "dropped on the floor"
2798 * (called by wv_packet_rcv())
2799 */
2800 static void
2801 wv_packet_read(struct net_device * dev,
2802 int fd_p,
2803 int sksize)
2804 {
2805 net_local * lp = netdev_priv(dev);
2806 struct sk_buff * skb;
2807
2808 #ifdef DEBUG_RX_TRACE
2809 printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
2810 dev->name, fd_p, sksize);
2811 #endif
2812
2813 /* Allocate some buffer for the new packet */
2814 if((skb = dev_alloc_skb(sksize+2)) == (struct sk_buff *) NULL)
2815 {
2816 #ifdef DEBUG_RX_ERROR
2817 printk(KERN_INFO "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC)\n",
2818 dev->name, sksize);
2819 #endif
2820 lp->stats.rx_dropped++;
2821 /*
2822 * Not only do we want to return here, but we also need to drop the
2823 * packet on the floor to clear the interrupt.
2824 */
2825 return;
2826 }
2827
2828 skb_reserve(skb, 2);
2829 fd_p = read_ringbuf(dev, fd_p, (char *) skb_put(skb, sksize), sksize);
2830 skb->protocol = eth_type_trans(skb, dev);
2831
2832 #ifdef DEBUG_RX_INFO
2833 wv_packet_info(skb_mac_header(skb), sksize, dev->name, "wv_packet_read");
2834 #endif /* DEBUG_RX_INFO */
2835
2836 /* Statistics gathering & stuff associated.
2837 * It seem a bit messy with all the define, but it's really simple... */
2838 if(
2839 #ifdef IW_WIRELESS_SPY
2840 (lp->spy_data.spy_number > 0) ||
2841 #endif /* IW_WIRELESS_SPY */
2842 #ifdef HISTOGRAM
2843 (lp->his_number > 0) ||
2844 #endif /* HISTOGRAM */
2845 #ifdef WAVELAN_ROAMING
2846 (do_roaming) ||
2847 #endif /* WAVELAN_ROAMING */
2848 0)
2849 {
2850 u_char stats[3]; /* Signal level, Noise level, Signal quality */
2851
2852 /* read signal level, silence level and signal quality bytes */
2853 fd_p = read_ringbuf(dev, (fd_p + 4) % RX_SIZE + RX_BASE,
2854 stats, 3);
2855 #ifdef DEBUG_RX_INFO
2856 printk(KERN_DEBUG "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
2857 dev->name, stats[0] & 0x3F, stats[1] & 0x3F, stats[2] & 0x0F);
2858 #endif
2859
2860 #ifdef WAVELAN_ROAMING
2861 if(do_roaming)
2862 if(WAVELAN_BEACON(skb->data))
2863 wl_roam_gather(dev, skb->data, stats);
2864 #endif /* WAVELAN_ROAMING */
2865
2866 #ifdef WIRELESS_SPY
2867 wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE, stats);
2868 #endif /* WIRELESS_SPY */
2869 #ifdef HISTOGRAM
2870 wl_his_gather(dev, stats);
2871 #endif /* HISTOGRAM */
2872 }
2873
2874 /*
2875 * Hand the packet to the Network Module
2876 */
2877 netif_rx(skb);
2878
2879 /* Keep stats up to date */
2880 lp->stats.rx_packets++;
2881 lp->stats.rx_bytes += sksize;
2882
2883 #ifdef DEBUG_RX_TRACE
2884 printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
2885 #endif
2886 return;
2887 }
2888
2889 /*------------------------------------------------------------------*/
2890 /*
2891 * This routine is called by the interrupt handler to initiate a
2892 * packet transfer from the card to the network interface layer above
2893 * this driver. This routine checks if a buffer has been successfully
2894 * received by the WaveLAN card. If so, the routine wv_packet_read is
2895 * called to do the actual transfer of the card's data including the
2896 * ethernet header into a packet consisting of an sk_buff chain.
2897 * (called by wavelan_interrupt())
2898 * Note : the spinlock is already grabbed for us and irq are disabled.
2899 */
2900 static void
2901 wv_packet_rcv(struct net_device * dev)
2902 {
2903 unsigned int base = dev->base_addr;
2904 net_local * lp = netdev_priv(dev);
2905 int newrfp;
2906 int rp;
2907 int len;
2908 int f_start;
2909 int status;
2910 int i593_rfp;
2911 int stat_ptr;
2912 u_char c[4];
2913
2914 #ifdef DEBUG_RX_TRACE
2915 printk(KERN_DEBUG "%s: ->wv_packet_rcv()\n", dev->name);
2916 #endif
2917
2918 /* Get the new receive frame pointer from the i82593 chip */
2919 outb(CR0_STATUS_2 | OP0_NOP, LCCR(base));
2920 i593_rfp = inb(LCSR(base));
2921 i593_rfp |= inb(LCSR(base)) << 8;
2922 i593_rfp %= RX_SIZE;
2923
2924 /* Get the new receive frame pointer from the WaveLAN card.
2925 * It is 3 bytes more than the increment of the i82593 receive
2926 * frame pointer, for each packet. This is because it includes the
2927 * 3 roaming bytes added by the mmc.
2928 */
2929 newrfp = inb(RPLL(base));
2930 newrfp |= inb(RPLH(base)) << 8;
2931 newrfp %= RX_SIZE;
2932
2933 #ifdef DEBUG_RX_INFO
2934 printk(KERN_DEBUG "%s: wv_packet_rcv(): i593_rfp %d stop %d newrfp %d lp->rfp %d\n",
2935 dev->name, i593_rfp, lp->stop, newrfp, lp->rfp);
2936 #endif
2937
2938 #ifdef DEBUG_RX_ERROR
2939 /* If no new frame pointer... */
2940 if(lp->overrunning || newrfp == lp->rfp)
2941 printk(KERN_INFO "%s: wv_packet_rcv(): no new frame: i593_rfp %d stop %d newrfp %d lp->rfp %d\n",
2942 dev->name, i593_rfp, lp->stop, newrfp, lp->rfp);
2943 #endif
2944
2945 /* Read all frames (packets) received */
2946 while(newrfp != lp->rfp)
2947 {
2948 /* A frame is composed of the packet, followed by a status word,
2949 * the length of the frame (word) and the mmc info (SNR & qual).
2950 * It's because the length is at the end that we can only scan
2951 * frames backward. */
2952
2953 /* Find the first frame by skipping backwards over the frames */
2954 rp = newrfp; /* End of last frame */
2955 while(((f_start = wv_start_of_frame(dev, rp, newrfp)) != lp->rfp) &&
2956 (f_start != -1))
2957 rp = f_start;
2958
2959 /* If we had a problem */
2960 if(f_start == -1)
2961 {
2962 #ifdef DEBUG_RX_ERROR
2963 printk(KERN_INFO "wavelan_cs: cannot find start of frame ");
2964 printk(" i593_rfp %d stop %d newrfp %d lp->rfp %d\n",
2965 i593_rfp, lp->stop, newrfp, lp->rfp);
2966 #endif
2967 lp->rfp = rp; /* Get to the last usable frame */
2968 continue;
2969 }
2970
2971 /* f_start point to the beggining of the first frame received
2972 * and rp to the beggining of the next one */
2973
2974 /* Read status & length of the frame */
2975 stat_ptr = (rp - 7 + RX_SIZE) % RX_SIZE;
2976 stat_ptr = read_ringbuf(dev, stat_ptr, c, 4);
2977 status = c[0] | (c[1] << 8);
2978 len = c[2] | (c[3] << 8);
2979
2980 /* Check status */
2981 if((status & RX_RCV_OK) != RX_RCV_OK)
2982 {
2983 lp->stats.rx_errors++;
2984 if(status & RX_NO_SFD)
2985 lp->stats.rx_frame_errors++;
2986 if(status & RX_CRC_ERR)
2987 lp->stats.rx_crc_errors++;
2988 if(status & RX_OVRRUN)
2989 lp->stats.rx_over_errors++;
2990
2991 #ifdef DEBUG_RX_FAIL
2992 printk(KERN_DEBUG "%s: wv_packet_rcv(): packet not received ok, status = 0x%x\n",
2993 dev->name, status);
2994 #endif
2995 }
2996 else
2997 /* Read the packet and transmit to Linux */
2998 wv_packet_read(dev, f_start, len - 2);
2999
3000 /* One frame has been processed, skip it */
3001 lp->rfp = rp;
3002 }
3003
3004 /*
3005 * Update the frame stop register, but set it to less than
3006 * the full 8K to allow space for 3 bytes of signal strength
3007 * per packet.
3008 */
3009 lp->stop = (i593_rfp + RX_SIZE - ((RX_SIZE / 64) * 3)) % RX_SIZE;
3010 outb(OP0_SWIT_TO_PORT_1 | CR0_CHNL, LCCR(base));
3011 outb(CR1_STOP_REG_UPDATE | (lp->stop >> RX_SIZE_SHIFT), LCCR(base));
3012 outb(OP1_SWIT_TO_PORT_0, LCCR(base));
3013
3014 #ifdef DEBUG_RX_TRACE
3015 printk(KERN_DEBUG "%s: <-wv_packet_rcv()\n", dev->name);
3016 #endif
3017 }
3018
3019 /*********************** PACKET TRANSMISSION ***********************/
3020 /*
3021 * This part deal with sending packet through the wavelan
3022 * We copy the packet to the send buffer and then issue the send
3023 * command to the i82593. The result of this operation will be
3024 * checked in wavelan_interrupt()
3025 */
3026
3027 /*------------------------------------------------------------------*/
3028 /*
3029 * This routine fills in the appropriate registers and memory
3030 * locations on the WaveLAN card and starts the card off on
3031 * the transmit.
3032 * (called in wavelan_packet_xmit())
3033 */
3034 static void
3035 wv_packet_write(struct net_device * dev,
3036 void * buf,
3037 short length)
3038 {
3039 net_local * lp = netdev_priv(dev);
3040 unsigned int base = dev->base_addr;
3041 unsigned long flags;
3042 int clen = length;
3043 register u_short xmtdata_base = TX_BASE;
3044
3045 #ifdef DEBUG_TX_TRACE
3046 printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name, length);
3047 #endif
3048
3049 spin_lock_irqsave(&lp->spinlock, flags);
3050
3051 /* Write the length of data buffer followed by the buffer */
3052 outb(xmtdata_base & 0xff, PIORL(base));
3053 outb(((xmtdata_base >> 8) & PIORH_MASK) | PIORH_SEL_TX, PIORH(base));
3054 outb(clen & 0xff, PIOP(base)); /* lsb */
3055 outb(clen >> 8, PIOP(base)); /* msb */
3056
3057 /* Send the data */
3058 outsb(PIOP(base), buf, clen);
3059
3060 /* Indicate end of transmit chain */
3061 outb(OP0_NOP, PIOP(base));
3062 /* josullvn@cs.cmu.edu: need to send a second NOP for alignment... */
3063 outb(OP0_NOP, PIOP(base));
3064
3065 /* Reset the transmit DMA pointer */
3066 hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
3067 hacr_write(base, HACR_DEFAULT);
3068 /* Send the transmit command */
3069 wv_82593_cmd(dev, "wv_packet_write(): transmit",
3070 OP0_TRANSMIT, SR0_NO_RESULT);
3071
3072 /* Make sure the watchdog will keep quiet for a while */
3073 dev->trans_start = jiffies;
3074
3075 /* Keep stats up to date */
3076 lp->stats.tx_bytes += length;
3077
3078 spin_unlock_irqrestore(&lp->spinlock, flags);
3079
3080 #ifdef DEBUG_TX_INFO
3081 wv_packet_info((u_char *) buf, length, dev->name, "wv_packet_write");
3082 #endif /* DEBUG_TX_INFO */
3083
3084 #ifdef DEBUG_TX_TRACE
3085 printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
3086 #endif
3087 }
3088
3089 /*------------------------------------------------------------------*/
3090 /*
3091 * This routine is called when we want to send a packet (NET3 callback)
3092 * In this routine, we check if the harware is ready to accept
3093 * the packet. We also prevent reentrance. Then, we call the function
3094 * to send the packet...
3095 */
3096 static int
3097 wavelan_packet_xmit(struct sk_buff * skb,
3098 struct net_device * dev)
3099 {
3100 net_local * lp = netdev_priv(dev);
3101 unsigned long flags;
3102
3103 #ifdef DEBUG_TX_TRACE
3104 printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
3105 (unsigned) skb);
3106 #endif
3107
3108 /*
3109 * Block a timer-based transmit from overlapping a previous transmit.
3110 * In other words, prevent reentering this routine.
3111 */
3112 netif_stop_queue(dev);
3113
3114 /* If somebody has asked to reconfigure the controller,
3115 * we can do it now */
3116 if(lp->reconfig_82593)
3117 {
3118 spin_lock_irqsave(&lp->spinlock, flags); /* Disable interrupts */
3119 wv_82593_config(dev);
3120 spin_unlock_irqrestore(&lp->spinlock, flags); /* Re-enable interrupts */
3121 /* Note : the configure procedure was totally synchronous,
3122 * so the Tx buffer is now free */
3123 }
3124
3125 #ifdef DEBUG_TX_ERROR
3126 if (skb->next)
3127 printk(KERN_INFO "skb has next\n");
3128 #endif
3129
3130 /* Check if we need some padding */
3131 /* Note : on wireless the propagation time is in the order of 1us,
3132 * and we don't have the Ethernet specific requirement of beeing
3133 * able to detect collisions, therefore in theory we don't really
3134 * need to pad. Jean II */
3135 if (skb_padto(skb, ETH_ZLEN))
3136 return 0;
3137
3138 wv_packet_write(dev, skb->data, skb->len);
3139
3140 dev_kfree_skb(skb);
3141
3142 #ifdef DEBUG_TX_TRACE
3143 printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
3144 #endif
3145 return(0);
3146 }
3147
3148 /********************** HARDWARE CONFIGURATION **********************/
3149 /*
3150 * This part do the real job of starting and configuring the hardware.
3151 */
3152
3153 /*------------------------------------------------------------------*/
3154 /*
3155 * Routine to initialize the Modem Management Controller.
3156 * (called by wv_hw_config())
3157 */
3158 static int
3159 wv_mmc_init(struct net_device * dev)
3160 {
3161 unsigned int base = dev->base_addr;
3162 psa_t psa;
3163 mmw_t m;
3164 int configured;
3165 int i; /* Loop counter */
3166
3167 #ifdef DEBUG_CONFIG_TRACE
3168 printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
3169 #endif
3170
3171 /* Read the parameter storage area */
3172 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
3173
3174 /*
3175 * Check the first three octets of the MAC addr for the manufacturer's code.
3176 * Note: If you get the error message below, you've got a
3177 * non-NCR/AT&T/Lucent PCMCIA cards, see wavelan_cs.h for detail on
3178 * how to configure your card...
3179 */
3180 for (i = 0; i < ARRAY_SIZE(MAC_ADDRESSES); i++)
3181 if ((psa.psa_univ_mac_addr[0] == MAC_ADDRESSES[i][0]) &&
3182 (psa.psa_univ_mac_addr[1] == MAC_ADDRESSES[i][1]) &&
3183 (psa.psa_univ_mac_addr[2] == MAC_ADDRESSES[i][2]))
3184 break;
3185
3186 /* If we have not found it... */
3187 if (i == ARRAY_SIZE(MAC_ADDRESSES))
3188 {
3189 #ifdef DEBUG_CONFIG_ERRORS
3190 printk(KERN_WARNING "%s: wv_mmc_init(): Invalid MAC address: %02X:%02X:%02X:...\n",
3191 dev->name, psa.psa_univ_mac_addr[0],
3192 psa.psa_univ_mac_addr[1], psa.psa_univ_mac_addr[2]);
3193 #endif
3194 return FALSE;
3195 }
3196
3197 /* Get the MAC address */
3198 memcpy(&dev->dev_addr[0], &psa.psa_univ_mac_addr[0], WAVELAN_ADDR_SIZE);
3199
3200 #ifdef USE_PSA_CONFIG
3201 configured = psa.psa_conf_status & 1;
3202 #else
3203 configured = 0;
3204 #endif
3205
3206 /* Is the PSA is not configured */
3207 if(!configured)
3208 {
3209 /* User will be able to configure NWID after (with iwconfig) */
3210 psa.psa_nwid[0] = 0;
3211 psa.psa_nwid[1] = 0;
3212
3213 /* As NWID is not set : no NWID checking */
3214 psa.psa_nwid_select = 0;
3215
3216 /* Disable encryption */
3217 psa.psa_encryption_select = 0;
3218
3219 /* Set to standard values
3220 * 0x04 for AT,
3221 * 0x01 for MCA,
3222 * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
3223 */
3224 if (psa.psa_comp_number & 1)
3225 psa.psa_thr_pre_set = 0x01;
3226 else
3227 psa.psa_thr_pre_set = 0x04;
3228 psa.psa_quality_thr = 0x03;
3229
3230 /* It is configured */
3231 psa.psa_conf_status |= 1;
3232
3233 #ifdef USE_PSA_CONFIG
3234 /* Write the psa */
3235 psa_write(dev, (char *)psa.psa_nwid - (char *)&psa,
3236 (unsigned char *)psa.psa_nwid, 4);
3237 psa_write(dev, (char *)&psa.psa_thr_pre_set - (char *)&psa,
3238 (unsigned char *)&psa.psa_thr_pre_set, 1);
3239 psa_write(dev, (char *)&psa.psa_quality_thr - (char *)&psa,
3240 (unsigned char *)&psa.psa_quality_thr, 1);
3241 psa_write(dev, (char *)&psa.psa_conf_status - (char *)&psa,
3242 (unsigned char *)&psa.psa_conf_status, 1);
3243 /* update the Wavelan checksum */
3244 update_psa_checksum(dev);
3245 #endif /* USE_PSA_CONFIG */
3246 }
3247
3248 /* Zero the mmc structure */
3249 memset(&m, 0x00, sizeof(m));
3250
3251 /* Copy PSA info to the mmc */
3252 m.mmw_netw_id_l = psa.psa_nwid[1];
3253 m.mmw_netw_id_h = psa.psa_nwid[0];
3254
3255 if(psa.psa_nwid_select & 1)
3256 m.mmw_loopt_sel = 0x00;
3257 else
3258 m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
3259
3260 memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
3261 sizeof(m.mmw_encr_key));
3262
3263 if(psa.psa_encryption_select)
3264 m.mmw_encr_enable = MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
3265 else
3266 m.mmw_encr_enable = 0;
3267
3268 m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
3269 m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
3270
3271 /*
3272 * Set default modem control parameters.
3273 * See NCR document 407-0024326 Rev. A.
3274 */
3275 m.mmw_jabber_enable = 0x01;
3276 m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
3277 m.mmw_ifs = 0x20;
3278 m.mmw_mod_delay = 0x04;
3279 m.mmw_jam_time = 0x38;
3280
3281 m.mmw_des_io_invert = 0;
3282 m.mmw_freeze = 0;
3283 m.mmw_decay_prm = 0;
3284 m.mmw_decay_updat_prm = 0;
3285
3286 /* Write all info to mmc */
3287 mmc_write(base, 0, (u_char *)&m, sizeof(m));
3288
3289 /* The following code start the modem of the 2.00 frequency
3290 * selectable cards at power on. It's not strictly needed for the
3291 * following boots...
3292 * The original patch was by Joe Finney for the PCMCIA driver, but
3293 * I've cleaned it a bit and add documentation.
3294 * Thanks to Loeke Brederveld from Lucent for the info.
3295 */
3296
3297 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
3298 * (does it work for everybody ? - especially old cards...) */
3299 /* Note : WFREQSEL verify that it is able to read from EEprom
3300 * a sensible frequency (address 0x00) + that MMR_FEE_STATUS_ID
3301 * is 0xA (Xilinx version) or 0xB (Ariadne version).
3302 * My test is more crude but do work... */
3303 if(!(mmc_in(base, mmroff(0, mmr_fee_status)) &
3304 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
3305 {
3306 /* We must download the frequency parameters to the
3307 * synthetisers (from the EEprom - area 1)
3308 * Note : as the EEprom is auto decremented, we set the end
3309 * if the area... */
3310 m.mmw_fee_addr = 0x0F;
3311 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3312 mmc_write(base, (char *)&m.mmw_fee_ctrl - (char *)&m,
3313 (unsigned char *)&m.mmw_fee_ctrl, 2);
3314
3315 /* Wait until the download is finished */
3316 fee_wait(base, 100, 100);
3317
3318 #ifdef DEBUG_CONFIG_INFO
3319 /* The frequency was in the last word downloaded... */
3320 mmc_read(base, (char *)&m.mmw_fee_data_l - (char *)&m,
3321 (unsigned char *)&m.mmw_fee_data_l, 2);
3322
3323 /* Print some info for the user */
3324 printk(KERN_DEBUG "%s: Wavelan 2.00 recognised (frequency select) : Current frequency = %ld\n",
3325 dev->name,
3326 ((m.mmw_fee_data_h << 4) |
3327 (m.mmw_fee_data_l >> 4)) * 5 / 2 + 24000L);
3328 #endif
3329
3330 /* We must now download the power adjust value (gain) to
3331 * the synthetisers (from the EEprom - area 7 - DAC) */
3332 m.mmw_fee_addr = 0x61;
3333 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3334 mmc_write(base, (char *)&m.mmw_fee_ctrl - (char *)&m,
3335 (unsigned char *)&m.mmw_fee_ctrl, 2);
3336
3337 /* Wait until the download is finished */
3338 } /* if 2.00 card */
3339
3340 #ifdef DEBUG_CONFIG_TRACE
3341 printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
3342 #endif
3343 return TRUE;
3344 }
3345
3346 /*------------------------------------------------------------------*/
3347 /*
3348 * Routine to gracefully turn off reception, and wait for any commands
3349 * to complete.
3350 * (called in wv_ru_start() and wavelan_close() and wavelan_event())
3351 */
3352 static int
3353 wv_ru_stop(struct net_device * dev)
3354 {
3355 unsigned int base = dev->base_addr;
3356 net_local * lp = netdev_priv(dev);
3357 unsigned long flags;
3358 int status;
3359 int spin;
3360
3361 #ifdef DEBUG_CONFIG_TRACE
3362 printk(KERN_DEBUG "%s: ->wv_ru_stop()\n", dev->name);
3363 #endif
3364
3365 spin_lock_irqsave(&lp->spinlock, flags);
3366
3367 /* First, send the LAN controller a stop receive command */
3368 wv_82593_cmd(dev, "wv_graceful_shutdown(): stop-rcv",
3369 OP0_STOP_RCV, SR0_NO_RESULT);
3370
3371 /* Then, spin until the receive unit goes idle */
3372 spin = 300;
3373 do
3374 {
3375 udelay(10);
3376 outb(OP0_NOP | CR0_STATUS_3, LCCR(base));
3377 status = inb(LCSR(base));
3378 }
3379 while(((status & SR3_RCV_STATE_MASK) != SR3_RCV_IDLE) && (spin-- > 0));
3380
3381 /* Now, spin until the chip finishes executing its current command */
3382 do
3383 {
3384 udelay(10);
3385 outb(OP0_NOP | CR0_STATUS_3, LCCR(base));
3386 status = inb(LCSR(base));
3387 }
3388 while(((status & SR3_EXEC_STATE_MASK) != SR3_EXEC_IDLE) && (spin-- > 0));
3389
3390 spin_unlock_irqrestore(&lp->spinlock, flags);
3391
3392 /* If there was a problem */
3393 if(spin <= 0)
3394 {
3395 #ifdef DEBUG_CONFIG_ERRORS
3396 printk(KERN_INFO "%s: wv_ru_stop(): The chip doesn't want to stop...\n",
3397 dev->name);
3398 #endif
3399 return FALSE;
3400 }
3401
3402 #ifdef DEBUG_CONFIG_TRACE
3403 printk(KERN_DEBUG "%s: <-wv_ru_stop()\n", dev->name);
3404 #endif
3405 return TRUE;
3406 } /* wv_ru_stop */
3407
3408 /*------------------------------------------------------------------*/
3409 /*
3410 * This routine starts the receive unit running. First, it checks if
3411 * the card is actually ready. Then the card is instructed to receive
3412 * packets again.
3413 * (called in wv_hw_reset() & wavelan_open())
3414 */
3415 static int
3416 wv_ru_start(struct net_device * dev)
3417 {
3418 unsigned int base = dev->base_addr;
3419 net_local * lp = netdev_priv(dev);
3420 unsigned long flags;
3421
3422 #ifdef DEBUG_CONFIG_TRACE
3423 printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
3424 #endif
3425
3426 /*
3427 * We need to start from a quiescent state. To do so, we could check
3428 * if the card is already running, but instead we just try to shut
3429 * it down. First, we disable reception (in case it was already enabled).
3430 */
3431 if(!wv_ru_stop(dev))
3432 return FALSE;
3433
3434 spin_lock_irqsave(&lp->spinlock, flags);
3435
3436 /* Now we know that no command is being executed. */
3437
3438 /* Set the receive frame pointer and stop pointer */
3439 lp->rfp = 0;
3440 outb(OP0_SWIT_TO_PORT_1 | CR0_CHNL, LCCR(base));
3441
3442 /* Reset ring management. This sets the receive frame pointer to 1 */
3443 outb(OP1_RESET_RING_MNGMT, LCCR(base));
3444
3445 #if 0
3446 /* XXX the i82593 manual page 6-4 seems to indicate that the stop register
3447 should be set as below */
3448 /* outb(CR1_STOP_REG_UPDATE|((RX_SIZE - 0x40)>> RX_SIZE_SHIFT),LCCR(base));*/
3449 #elif 0
3450 /* but I set it 0 instead */
3451 lp->stop = 0;
3452 #else
3453 /* but I set it to 3 bytes per packet less than 8K */
3454 lp->stop = (0 + RX_SIZE - ((RX_SIZE / 64) * 3)) % RX_SIZE;
3455 #endif
3456 outb(CR1_STOP_REG_UPDATE | (lp->stop >> RX_SIZE_SHIFT), LCCR(base));
3457 outb(OP1_INT_ENABLE, LCCR(base));
3458 outb(OP1_SWIT_TO_PORT_0, LCCR(base));
3459
3460 /* Reset receive DMA pointer */
3461 hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
3462 hacr_write_slow(base, HACR_DEFAULT);
3463
3464 /* Receive DMA on channel 1 */
3465 wv_82593_cmd(dev, "wv_ru_start(): rcv-enable",
3466 CR0_CHNL | OP0_RCV_ENABLE, SR0_NO_RESULT);
3467
3468 #ifdef DEBUG_I82593_SHOW
3469 {
3470 int status;
3471 int opri;
3472 int spin = 10000;
3473
3474 /* spin until the chip starts receiving */
3475 do
3476 {
3477 outb(OP0_NOP | CR0_STATUS_3, LCCR(base));
3478 status = inb(LCSR(base));
3479 if(spin-- <= 0)
3480 break;
3481 }
3482 while(((status & SR3_RCV_STATE_MASK) != SR3_RCV_ACTIVE) &&
3483 ((status & SR3_RCV_STATE_MASK) != SR3_RCV_READY));
3484 printk(KERN_DEBUG "rcv status is 0x%x [i:%d]\n",
3485 (status & SR3_RCV_STATE_MASK), i);
3486 }
3487 #endif
3488
3489 spin_unlock_irqrestore(&lp->spinlock, flags);
3490
3491 #ifdef DEBUG_CONFIG_TRACE
3492 printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
3493 #endif
3494 return TRUE;
3495 }
3496
3497 /*------------------------------------------------------------------*/
3498 /*
3499 * This routine does a standard config of the WaveLAN controller (i82593).
3500 * In the ISA driver, this is integrated in wavelan_hardware_reset()
3501 * (called by wv_hw_config(), wv_82593_reconfig() & wavelan_packet_xmit())
3502 */
3503 static int
3504 wv_82593_config(struct net_device * dev)
3505 {
3506 unsigned int base = dev->base_addr;
3507 net_local * lp = netdev_priv(dev);
3508 struct i82593_conf_block cfblk;
3509 int ret = TRUE;
3510
3511 #ifdef DEBUG_CONFIG_TRACE
3512 printk(KERN_DEBUG "%s: ->wv_82593_config()\n", dev->name);
3513 #endif
3514
3515 /* Create & fill i82593 config block
3516 *
3517 * Now conform to Wavelan document WCIN085B
3518 */
3519 memset(&cfblk, 0x00, sizeof(struct i82593_conf_block));
3520 cfblk.d6mod = FALSE; /* Run in i82593 advanced mode */
3521 cfblk.fifo_limit = 5; /* = 56 B rx and 40 B tx fifo thresholds */
3522 cfblk.forgnesi = FALSE; /* 0=82C501, 1=AMD7992B compatibility */
3523 cfblk.fifo_32 = 1;
3524 cfblk.throttle_enb = FALSE;
3525 cfblk.contin = TRUE; /* enable continuous mode */
3526 cfblk.cntrxint = FALSE; /* enable continuous mode receive interrupts */
3527 cfblk.addr_len = WAVELAN_ADDR_SIZE;
3528 cfblk.acloc = TRUE; /* Disable source addr insertion by i82593 */
3529 cfblk.preamb_len = 0; /* 2 bytes preamble (SFD) */
3530 cfblk.loopback = FALSE;
3531 cfblk.lin_prio = 0; /* conform to 802.3 backoff algorithm */
3532 cfblk.exp_prio = 5; /* conform to 802.3 backoff algorithm */
3533 cfblk.bof_met = 1; /* conform to 802.3 backoff algorithm */
3534 cfblk.ifrm_spc = 0x20 >> 4; /* 32 bit times interframe spacing */
3535 cfblk.slottim_low = 0x20 >> 5; /* 32 bit times slot time */
3536 cfblk.slottim_hi = 0x0;
3537 cfblk.max_retr = 15;
3538 cfblk.prmisc = ((lp->promiscuous) ? TRUE: FALSE); /* Promiscuous mode */
3539 cfblk.bc_dis = FALSE; /* Enable broadcast reception */
3540 cfblk.crs_1 = TRUE; /* Transmit without carrier sense */
3541 cfblk.nocrc_ins = FALSE; /* i82593 generates CRC */
3542 cfblk.crc_1632 = FALSE; /* 32-bit Autodin-II CRC */
3543 cfblk.crs_cdt = FALSE; /* CD not to be interpreted as CS */
3544 cfblk.cs_filter = 0; /* CS is recognized immediately */
3545 cfblk.crs_src = FALSE; /* External carrier sense */
3546 cfblk.cd_filter = 0; /* CD is recognized immediately */
3547 cfblk.min_fr_len = ETH_ZLEN >> 2; /* Minimum frame length 64 bytes */
3548 cfblk.lng_typ = FALSE; /* Length field > 1500 = type field */
3549 cfblk.lng_fld = TRUE; /* Disable 802.3 length field check */
3550 cfblk.rxcrc_xf = TRUE; /* Don't transfer CRC to memory */
3551 cfblk.artx = TRUE; /* Disable automatic retransmission */
3552 cfblk.sarec = TRUE; /* Disable source addr trig of CD */
3553 cfblk.tx_jabber = TRUE; /* Disable jabber jam sequence */
3554 cfblk.hash_1 = FALSE; /* Use bits 0-5 in mc address hash */
3555 cfblk.lbpkpol = TRUE; /* Loopback pin active high */
3556 cfblk.fdx = FALSE; /* Disable full duplex operation */
3557 cfblk.dummy_6 = 0x3f; /* all ones */
3558 cfblk.mult_ia = FALSE; /* No multiple individual addresses */
3559 cfblk.dis_bof = FALSE; /* Disable the backoff algorithm ?! */
3560 cfblk.dummy_1 = TRUE; /* set to 1 */
3561 cfblk.tx_ifs_retrig = 3; /* Hmm... Disabled */
3562 #ifdef MULTICAST_ALL
3563 cfblk.mc_all = (lp->allmulticast ? TRUE: FALSE); /* Allow all multicasts */
3564 #else
3565 cfblk.mc_all = FALSE; /* No multicast all mode */
3566 #endif
3567 cfblk.rcv_mon = 0; /* Monitor mode disabled */
3568 cfblk.frag_acpt = TRUE; /* Do not accept fragments */
3569 cfblk.tstrttrs = FALSE; /* No start transmission threshold */
3570 cfblk.fretx = TRUE; /* FIFO automatic retransmission */
3571 cfblk.syncrqs = FALSE; /* Synchronous DRQ deassertion... */
3572 cfblk.sttlen = TRUE; /* 6 byte status registers */
3573 cfblk.rx_eop = TRUE; /* Signal EOP on packet reception */
3574 cfblk.tx_eop = TRUE; /* Signal EOP on packet transmission */
3575 cfblk.rbuf_size = RX_SIZE>>11; /* Set receive buffer size */
3576 cfblk.rcvstop = TRUE; /* Enable Receive Stop Register */
3577
3578 #ifdef DEBUG_I82593_SHOW
3579 {
3580 u_char *c = (u_char *) &cfblk;
3581 int i;
3582 printk(KERN_DEBUG "wavelan_cs: config block:");
3583 for(i = 0; i < sizeof(struct i82593_conf_block); i++,c++)
3584 {
3585 if((i % 16) == 0) printk("\n" KERN_DEBUG);
3586 printk("%02x ", *c);
3587 }
3588 printk("\n");
3589 }
3590 #endif
3591
3592 /* Copy the config block to the i82593 */
3593 outb(TX_BASE & 0xff, PIORL(base));
3594 outb(((TX_BASE >> 8) & PIORH_MASK) | PIORH_SEL_TX, PIORH(base));
3595 outb(sizeof(struct i82593_conf_block) & 0xff, PIOP(base)); /* lsb */
3596 outb(sizeof(struct i82593_conf_block) >> 8, PIOP(base)); /* msb */
3597 outsb(PIOP(base), (char *) &cfblk, sizeof(struct i82593_conf_block));
3598
3599 /* reset transmit DMA pointer */
3600 hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
3601 hacr_write(base, HACR_DEFAULT);
3602 if(!wv_82593_cmd(dev, "wv_82593_config(): configure",
3603 OP0_CONFIGURE, SR0_CONFIGURE_DONE))
3604 ret = FALSE;
3605
3606 /* Initialize adapter's ethernet MAC address */
3607 outb(TX_BASE & 0xff, PIORL(base));
3608 outb(((TX_BASE >> 8) & PIORH_MASK) | PIORH_SEL_TX, PIORH(base));
3609 outb(WAVELAN_ADDR_SIZE, PIOP(base)); /* byte count lsb */
3610 outb(0, PIOP(base)); /* byte count msb */
3611 outsb(PIOP(base), &dev->dev_addr[0], WAVELAN_ADDR_SIZE);
3612
3613 /* reset transmit DMA pointer */
3614 hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
3615 hacr_write(base, HACR_DEFAULT);
3616 if(!wv_82593_cmd(dev, "wv_82593_config(): ia-setup",
3617 OP0_IA_SETUP, SR0_IA_SETUP_DONE))
3618 ret = FALSE;
3619
3620 #ifdef WAVELAN_ROAMING
3621 /* If roaming is enabled, join the "Beacon Request" multicast group... */
3622 /* But only if it's not in there already! */
3623 if(do_roaming)
3624 dev_mc_add(dev,WAVELAN_BEACON_ADDRESS, WAVELAN_ADDR_SIZE, 1);
3625 #endif /* WAVELAN_ROAMING */
3626
3627 /* If any multicast address to set */
3628 if(lp->mc_count)
3629 {
3630 struct dev_mc_list * dmi;
3631 int addrs_len = WAVELAN_ADDR_SIZE * lp->mc_count;
3632
3633 #ifdef DEBUG_CONFIG_INFO
3634 printk(KERN_DEBUG "%s: wv_hw_config(): set %d multicast addresses:\n",
3635 dev->name, lp->mc_count);
3636 for(dmi=dev->mc_list; dmi; dmi=dmi->next)
3637 printk(KERN_DEBUG " %pM\n", dmi->dmi_addr);
3638 #endif
3639
3640 /* Initialize adapter's ethernet multicast addresses */
3641 outb(TX_BASE & 0xff, PIORL(base));
3642 outb(((TX_BASE >> 8) & PIORH_MASK) | PIORH_SEL_TX, PIORH(base));
3643 outb(addrs_len & 0xff, PIOP(base)); /* byte count lsb */
3644 outb((addrs_len >> 8), PIOP(base)); /* byte count msb */
3645 for(dmi=dev->mc_list; dmi; dmi=dmi->next)
3646 outsb(PIOP(base), dmi->dmi_addr, dmi->dmi_addrlen);
3647
3648 /* reset transmit DMA pointer */
3649 hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
3650 hacr_write(base, HACR_DEFAULT);
3651 if(!wv_82593_cmd(dev, "wv_82593_config(): mc-setup",
3652 OP0_MC_SETUP, SR0_MC_SETUP_DONE))
3653 ret = FALSE;
3654 lp->mc_count = dev->mc_count; /* remember to avoid repeated reset */
3655 }
3656
3657 /* Job done, clear the flag */
3658 lp->reconfig_82593 = FALSE;
3659
3660 #ifdef DEBUG_CONFIG_TRACE
3661 printk(KERN_DEBUG "%s: <-wv_82593_config()\n", dev->name);
3662 #endif
3663 return(ret);
3664 }
3665
3666 /*------------------------------------------------------------------*/
3667 /*
3668 * Read the Access Configuration Register, perform a software reset,
3669 * and then re-enable the card's software.
3670 *
3671 * If I understand correctly : reset the pcmcia interface of the
3672 * wavelan.
3673 * (called by wv_config())
3674 */
3675 static int
3676 wv_pcmcia_reset(struct net_device * dev)
3677 {
3678 int i;
3679 conf_reg_t reg = { 0, CS_READ, CISREG_COR, 0 };
3680 struct pcmcia_device * link = ((net_local *)netdev_priv(dev))->link;
3681
3682 #ifdef DEBUG_CONFIG_TRACE
3683 printk(KERN_DEBUG "%s: ->wv_pcmcia_reset()\n", dev->name);
3684 #endif
3685
3686 i = pcmcia_access_configuration_register(link, &reg);
3687 if (i != 0)
3688 {
3689 cs_error(link, AccessConfigurationRegister, i);
3690 return FALSE;
3691 }
3692
3693 #ifdef DEBUG_CONFIG_INFO
3694 printk(KERN_DEBUG "%s: wavelan_pcmcia_reset(): Config reg is 0x%x\n",
3695 dev->name, (u_int) reg.Value);
3696 #endif
3697
3698 reg.Action = CS_WRITE;
3699 reg.Value = reg.Value | COR_SW_RESET;
3700 i = pcmcia_access_configuration_register(link, &reg);
3701 if (i != 0)
3702 {
3703 cs_error(link, AccessConfigurationRegister, i);
3704 return FALSE;
3705 }
3706
3707 reg.Action = CS_WRITE;
3708 reg.Value = COR_LEVEL_IRQ | COR_CONFIG;
3709 i = pcmcia_access_configuration_register(link, &reg);
3710 if (i != 0)
3711 {
3712 cs_error(link, AccessConfigurationRegister, i);
3713 return FALSE;
3714 }
3715
3716 #ifdef DEBUG_CONFIG_TRACE
3717 printk(KERN_DEBUG "%s: <-wv_pcmcia_reset()\n", dev->name);
3718 #endif
3719 return TRUE;
3720 }
3721
3722 /*------------------------------------------------------------------*/
3723 /*
3724 * wavelan_hw_config() is called after a CARD_INSERTION event is
3725 * received, to configure the wavelan hardware.
3726 * Note that the reception will be enabled in wavelan->open(), so the
3727 * device is configured but idle...
3728 * Performs the following actions:
3729 * 1. A pcmcia software reset (using wv_pcmcia_reset())
3730 * 2. A power reset (reset DMA)
3731 * 3. Reset the LAN controller
3732 * 4. Initialize the radio modem (using wv_mmc_init)
3733 * 5. Configure LAN controller (using wv_82593_config)
3734 * 6. Perform a diagnostic on the LAN controller
3735 * (called by wavelan_event() & wv_hw_reset())
3736 */
3737 static int
3738 wv_hw_config(struct net_device * dev)
3739 {
3740 net_local * lp = netdev_priv(dev);
3741 unsigned int base = dev->base_addr;
3742 unsigned long flags;
3743 int ret = FALSE;
3744
3745 #ifdef DEBUG_CONFIG_TRACE
3746 printk(KERN_DEBUG "%s: ->wv_hw_config()\n", dev->name);
3747 #endif
3748
3749 /* compile-time check the sizes of structures */
3750 BUILD_BUG_ON(sizeof(psa_t) != PSA_SIZE);
3751 BUILD_BUG_ON(sizeof(mmw_t) != MMW_SIZE);
3752 BUILD_BUG_ON(sizeof(mmr_t) != MMR_SIZE);
3753
3754 /* Reset the pcmcia interface */
3755 if(wv_pcmcia_reset(dev) == FALSE)
3756 return FALSE;
3757
3758 /* Disable interrupts */
3759 spin_lock_irqsave(&lp->spinlock, flags);
3760
3761 /* Disguised goto ;-) */
3762 do
3763 {
3764 /* Power UP the module + reset the modem + reset host adapter
3765 * (in fact, reset DMA channels) */
3766 hacr_write_slow(base, HACR_RESET);
3767 hacr_write(base, HACR_DEFAULT);
3768
3769 /* Check if the module has been powered up... */
3770 if(hasr_read(base) & HASR_NO_CLK)
3771 {
3772 #ifdef DEBUG_CONFIG_ERRORS
3773 printk(KERN_WARNING "%s: wv_hw_config(): modem not connected or not a wavelan card\n",
3774 dev->name);
3775 #endif
3776 break;
3777 }
3778
3779 /* initialize the modem */
3780 if(wv_mmc_init(dev) == FALSE)
3781 {
3782 #ifdef DEBUG_CONFIG_ERRORS
3783 printk(KERN_WARNING "%s: wv_hw_config(): Can't configure the modem\n",
3784 dev->name);
3785 #endif
3786 break;
3787 }
3788
3789 /* reset the LAN controller (i82593) */
3790 outb(OP0_RESET, LCCR(base));
3791 mdelay(1); /* A bit crude ! */
3792
3793 /* Initialize the LAN controller */
3794 if(wv_82593_config(dev) == FALSE)
3795 {
3796 #ifdef DEBUG_CONFIG_ERRORS
3797 printk(KERN_INFO "%s: wv_hw_config(): i82593 init failed\n",
3798 dev->name);
3799 #endif
3800 break;
3801 }
3802
3803 /* Diagnostic */
3804 if(wv_diag(dev) == FALSE)
3805 {
3806 #ifdef DEBUG_CONFIG_ERRORS
3807 printk(KERN_INFO "%s: wv_hw_config(): i82593 diagnostic failed\n",
3808 dev->name);
3809 #endif
3810 break;
3811 }
3812
3813 /*
3814 * insert code for loopback test here
3815 */
3816
3817 /* The device is now configured */
3818 lp->configured = 1;
3819 ret = TRUE;
3820 }
3821 while(0);
3822
3823 /* Re-enable interrupts */
3824 spin_unlock_irqrestore(&lp->spinlock, flags);
3825
3826 #ifdef DEBUG_CONFIG_TRACE
3827 printk(KERN_DEBUG "%s: <-wv_hw_config()\n", dev->name);
3828 #endif
3829 return(ret);
3830 }
3831
3832 /*------------------------------------------------------------------*/
3833 /*
3834 * Totally reset the wavelan and restart it.
3835 * Performs the following actions:
3836 * 1. Call wv_hw_config()
3837 * 2. Start the LAN controller's receive unit
3838 * (called by wavelan_event(), wavelan_watchdog() and wavelan_open())
3839 */
3840 static void
3841 wv_hw_reset(struct net_device * dev)
3842 {
3843 net_local * lp = netdev_priv(dev);
3844
3845 #ifdef DEBUG_CONFIG_TRACE
3846 printk(KERN_DEBUG "%s: ->wv_hw_reset()\n", dev->name);
3847 #endif
3848
3849 lp->nresets++;
3850 lp->configured = 0;
3851
3852 /* Call wv_hw_config() for most of the reset & init stuff */
3853 if(wv_hw_config(dev) == FALSE)
3854 return;
3855
3856 /* start receive unit */
3857 wv_ru_start(dev);
3858
3859 #ifdef DEBUG_CONFIG_TRACE
3860 printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
3861 #endif
3862 }
3863
3864 /*------------------------------------------------------------------*/
3865 /*
3866 * wv_pcmcia_config() is called after a CARD_INSERTION event is
3867 * received, to configure the PCMCIA socket, and to make the ethernet
3868 * device available to the system.
3869 * (called by wavelan_event())
3870 */
3871 static int
3872 wv_pcmcia_config(struct pcmcia_device * link)
3873 {
3874 struct net_device * dev = (struct net_device *) link->priv;
3875 int i;
3876 win_req_t req;
3877 memreq_t mem;
3878 net_local * lp = netdev_priv(dev);
3879
3880
3881 #ifdef DEBUG_CONFIG_TRACE
3882 printk(KERN_DEBUG "->wv_pcmcia_config(0x%p)\n", link);
3883 #endif
3884
3885 do
3886 {
3887 i = pcmcia_request_io(link, &link->io);
3888 if (i != 0)
3889 {
3890 cs_error(link, RequestIO, i);
3891 break;
3892 }
3893
3894 /*
3895 * Now allocate an interrupt line. Note that this does not
3896 * actually assign a handler to the interrupt.
3897 */
3898 i = pcmcia_request_irq(link, &link->irq);
3899 if (i != 0)
3900 {
3901 cs_error(link, RequestIRQ, i);
3902 break;
3903 }
3904
3905 /*
3906 * This actually configures the PCMCIA socket -- setting up
3907 * the I/O windows and the interrupt mapping.
3908 */
3909 link->conf.ConfigIndex = 1;
3910 i = pcmcia_request_configuration(link, &link->conf);
3911 if (i != 0)
3912 {
3913 cs_error(link, RequestConfiguration, i);
3914 break;
3915 }
3916
3917 /*
3918 * Allocate a small memory window. Note that the struct pcmcia_device
3919 * structure provides space for one window handle -- if your
3920 * device needs several windows, you'll need to keep track of
3921 * the handles in your private data structure, link->priv.
3922 */
3923 req.Attributes = WIN_DATA_WIDTH_8|WIN_MEMORY_TYPE_AM|WIN_ENABLE;
3924 req.Base = req.Size = 0;
3925 req.AccessSpeed = mem_speed;
3926 i = pcmcia_request_window(&link, &req, &link->win);
3927 if (i != 0)
3928 {
3929 cs_error(link, RequestWindow, i);
3930 break;
3931 }
3932
3933 lp->mem = ioremap(req.Base, req.Size);
3934 dev->mem_start = (u_long)lp->mem;
3935 dev->mem_end = dev->mem_start + req.Size;
3936
3937 mem.CardOffset = 0; mem.Page = 0;
3938 i = pcmcia_map_mem_page(link->win, &mem);
3939 if (i != 0)
3940 {
3941 cs_error(link, MapMemPage, i);
3942 break;
3943 }
3944
3945 /* Feed device with this info... */
3946 dev->irq = link->irq.AssignedIRQ;
3947 dev->base_addr = link->io.BasePort1;
3948 netif_start_queue(dev);
3949
3950 #ifdef DEBUG_CONFIG_INFO
3951 printk(KERN_DEBUG "wv_pcmcia_config: MEMSTART %p IRQ %d IOPORT 0x%x\n",
3952 lp->mem, dev->irq, (u_int) dev->base_addr);
3953 #endif
3954
3955 SET_NETDEV_DEV(dev, &handle_to_dev(link));
3956 i = register_netdev(dev);
3957 if(i != 0)
3958 {
3959 #ifdef DEBUG_CONFIG_ERRORS
3960 printk(KERN_INFO "wv_pcmcia_config(): register_netdev() failed\n");
3961 #endif
3962 break;
3963 }
3964 }
3965 while(0); /* Humm... Disguised goto !!! */
3966
3967 /* If any step failed, release any partially configured state */
3968 if(i != 0)
3969 {
3970 wv_pcmcia_release(link);
3971 return FALSE;
3972 }
3973
3974 strcpy(((net_local *) netdev_priv(dev))->node.dev_name, dev->name);
3975 link->dev_node = &((net_local *) netdev_priv(dev))->node;
3976
3977 #ifdef DEBUG_CONFIG_TRACE
3978 printk(KERN_DEBUG "<-wv_pcmcia_config()\n");
3979 #endif
3980 return TRUE;
3981 }
3982
3983 /*------------------------------------------------------------------*/
3984 /*
3985 * After a card is removed, wv_pcmcia_release() will unregister the net
3986 * device, and release the PCMCIA configuration. If the device is
3987 * still open, this will be postponed until it is closed.
3988 */
3989 static void
3990 wv_pcmcia_release(struct pcmcia_device *link)
3991 {
3992 struct net_device * dev = (struct net_device *) link->priv;
3993 net_local * lp = netdev_priv(dev);
3994
3995 #ifdef DEBUG_CONFIG_TRACE
3996 printk(KERN_DEBUG "%s: -> wv_pcmcia_release(0x%p)\n", dev->name, link);
3997 #endif
3998
3999 iounmap(lp->mem);
4000 pcmcia_disable_device(link);
4001
4002 #ifdef DEBUG_CONFIG_TRACE
4003 printk(KERN_DEBUG "%s: <- wv_pcmcia_release()\n", dev->name);
4004 #endif
4005 }
4006
4007 /************************ INTERRUPT HANDLING ************************/
4008
4009 /*
4010 * This function is the interrupt handler for the WaveLAN card. This
4011 * routine will be called whenever:
4012 * 1. A packet is received.
4013 * 2. A packet has successfully been transferred and the unit is
4014 * ready to transmit another packet.
4015 * 3. A command has completed execution.
4016 */
4017 static irqreturn_t
4018 wavelan_interrupt(int irq,
4019 void * dev_id)
4020 {
4021 struct net_device * dev = dev_id;
4022 net_local * lp;
4023 unsigned int base;
4024 int status0;
4025 u_int tx_status;
4026
4027 #ifdef DEBUG_INTERRUPT_TRACE
4028 printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
4029 #endif
4030
4031 lp = netdev_priv(dev);
4032 base = dev->base_addr;
4033
4034 #ifdef DEBUG_INTERRUPT_INFO
4035 /* Check state of our spinlock (it should be cleared) */
4036 if(spin_is_locked(&lp->spinlock))
4037 printk(KERN_DEBUG
4038 "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
4039 dev->name);
4040 #endif
4041
4042 /* Prevent reentrancy. We need to do that because we may have
4043 * multiple interrupt handler running concurently.
4044 * It is safe because interrupts are disabled before aquiring
4045 * the spinlock. */
4046 spin_lock(&lp->spinlock);
4047
4048 /* Treat all pending interrupts */
4049 while(1)
4050 {
4051 /* ---------------- INTERRUPT CHECKING ---------------- */
4052 /*
4053 * Look for the interrupt and verify the validity
4054 */
4055 outb(CR0_STATUS_0 | OP0_NOP, LCCR(base));
4056 status0 = inb(LCSR(base));
4057
4058 #ifdef DEBUG_INTERRUPT_INFO
4059 printk(KERN_DEBUG "status0 0x%x [%s => 0x%x]", status0,
4060 (status0&SR0_INTERRUPT)?"int":"no int",status0&~SR0_INTERRUPT);
4061 if(status0&SR0_INTERRUPT)
4062 {
4063 printk(" [%s => %d]\n", (status0 & SR0_CHNL) ? "chnl" :
4064 ((status0 & SR0_EXECUTION) ? "cmd" :
4065 ((status0 & SR0_RECEPTION) ? "recv" : "unknown")),
4066 (status0 & SR0_EVENT_MASK));
4067 }
4068 else
4069 printk("\n");
4070 #endif
4071
4072 /* Return if no actual interrupt from i82593 (normal exit) */
4073 if(!(status0 & SR0_INTERRUPT))
4074 break;
4075
4076 /* If interrupt is both Rx and Tx or none...
4077 * This code in fact is there to catch the spurious interrupt
4078 * when you remove the wavelan pcmcia card from the socket */
4079 if(((status0 & SR0_BOTH_RX_TX) == SR0_BOTH_RX_TX) ||
4080 ((status0 & SR0_BOTH_RX_TX) == 0x0))
4081 {
4082 #ifdef DEBUG_INTERRUPT_INFO
4083 printk(KERN_INFO "%s: wv_interrupt(): bogus interrupt (or from dead card) : %X\n",
4084 dev->name, status0);
4085 #endif
4086 /* Acknowledge the interrupt */
4087 outb(CR0_INT_ACK | OP0_NOP, LCCR(base));
4088 break;
4089 }
4090
4091 /* ----------------- RECEIVING PACKET ----------------- */
4092 /*
4093 * When the wavelan signal the reception of a new packet,
4094 * we call wv_packet_rcv() to copy if from the buffer and
4095 * send it to NET3
4096 */
4097 if(status0 & SR0_RECEPTION)
4098 {
4099 #ifdef DEBUG_INTERRUPT_INFO
4100 printk(KERN_DEBUG "%s: wv_interrupt(): receive\n", dev->name);
4101 #endif
4102
4103 if((status0 & SR0_EVENT_MASK) == SR0_STOP_REG_HIT)
4104 {
4105 #ifdef DEBUG_INTERRUPT_ERROR
4106 printk(KERN_INFO "%s: wv_interrupt(): receive buffer overflow\n",
4107 dev->name);
4108 #endif
4109 lp->stats.rx_over_errors++;
4110 lp->overrunning = 1;
4111 }
4112
4113 /* Get the packet */
4114 wv_packet_rcv(dev);
4115 lp->overrunning = 0;
4116
4117 /* Acknowledge the interrupt */
4118 outb(CR0_INT_ACK | OP0_NOP, LCCR(base));
4119 continue;
4120 }
4121
4122 /* ---------------- COMMAND COMPLETION ---------------- */
4123 /*
4124 * Interrupts issued when the i82593 has completed a command.
4125 * Most likely : transmission done
4126 */
4127
4128 /* If a transmission has been done */
4129 if((status0 & SR0_EVENT_MASK) == SR0_TRANSMIT_DONE ||
4130 (status0 & SR0_EVENT_MASK) == SR0_RETRANSMIT_DONE ||
4131 (status0 & SR0_EVENT_MASK) == SR0_TRANSMIT_NO_CRC_DONE)
4132 {
4133 #ifdef DEBUG_TX_ERROR
4134 if((status0 & SR0_EVENT_MASK) == SR0_TRANSMIT_NO_CRC_DONE)
4135 printk(KERN_INFO "%s: wv_interrupt(): packet transmitted without CRC.\n",
4136 dev->name);
4137 #endif
4138
4139 /* Get transmission status */
4140 tx_status = inb(LCSR(base));
4141 tx_status |= (inb(LCSR(base)) << 8);
4142 #ifdef DEBUG_INTERRUPT_INFO
4143 printk(KERN_DEBUG "%s: wv_interrupt(): transmission done\n",
4144 dev->name);
4145 {
4146 u_int rcv_bytes;
4147 u_char status3;
4148 rcv_bytes = inb(LCSR(base));
4149 rcv_bytes |= (inb(LCSR(base)) << 8);
4150 status3 = inb(LCSR(base));
4151 printk(KERN_DEBUG "tx_status 0x%02x rcv_bytes 0x%02x status3 0x%x\n",
4152 tx_status, rcv_bytes, (u_int) status3);
4153 }
4154 #endif
4155 /* Check for possible errors */
4156 if((tx_status & TX_OK) != TX_OK)
4157 {
4158 lp->stats.tx_errors++;
4159
4160 if(tx_status & TX_FRTL)
4161 {
4162 #ifdef DEBUG_TX_ERROR
4163 printk(KERN_INFO "%s: wv_interrupt(): frame too long\n",
4164 dev->name);
4165 #endif
4166 }
4167 if(tx_status & TX_UND_RUN)
4168 {
4169 #ifdef DEBUG_TX_FAIL
4170 printk(KERN_DEBUG "%s: wv_interrupt(): DMA underrun\n",
4171 dev->name);
4172 #endif
4173 lp->stats.tx_aborted_errors++;
4174 }
4175 if(tx_status & TX_LOST_CTS)
4176 {
4177 #ifdef DEBUG_TX_FAIL
4178 printk(KERN_DEBUG "%s: wv_interrupt(): no CTS\n", dev->name);
4179 #endif
4180 lp->stats.tx_carrier_errors++;
4181 }
4182 if(tx_status & TX_LOST_CRS)
4183 {
4184 #ifdef DEBUG_TX_FAIL
4185 printk(KERN_DEBUG "%s: wv_interrupt(): no carrier\n",
4186 dev->name);
4187 #endif
4188 lp->stats.tx_carrier_errors++;
4189 }
4190 if(tx_status & TX_HRT_BEAT)
4191 {
4192 #ifdef DEBUG_TX_FAIL
4193 printk(KERN_DEBUG "%s: wv_interrupt(): heart beat\n", dev->name);
4194 #endif
4195 lp->stats.tx_heartbeat_errors++;
4196 }
4197 if(tx_status & TX_DEFER)
4198 {
4199 #ifdef DEBUG_TX_FAIL
4200 printk(KERN_DEBUG "%s: wv_interrupt(): channel jammed\n",
4201 dev->name);
4202 #endif
4203 }
4204 /* Ignore late collisions since they're more likely to happen
4205 * here (the WaveLAN design prevents the LAN controller from
4206 * receiving while it is transmitting). We take action only when
4207 * the maximum retransmit attempts is exceeded.
4208 */
4209 if(tx_status & TX_COLL)
4210 {
4211 if(tx_status & TX_MAX_COL)
4212 {
4213 #ifdef DEBUG_TX_FAIL
4214 printk(KERN_DEBUG "%s: wv_interrupt(): channel congestion\n",
4215 dev->name);
4216 #endif
4217 if(!(tx_status & TX_NCOL_MASK))
4218 {
4219 lp->stats.collisions += 0x10;
4220 }
4221 }
4222 }
4223 } /* if(!(tx_status & TX_OK)) */
4224
4225 lp->stats.collisions += (tx_status & TX_NCOL_MASK);
4226 lp->stats.tx_packets++;
4227
4228 netif_wake_queue(dev);
4229 outb(CR0_INT_ACK | OP0_NOP, LCCR(base)); /* Acknowledge the interrupt */
4230 }
4231 else /* if interrupt = transmit done or retransmit done */
4232 {
4233 #ifdef DEBUG_INTERRUPT_ERROR
4234 printk(KERN_INFO "wavelan_cs: unknown interrupt, status0 = %02x\n",
4235 status0);
4236 #endif
4237 outb(CR0_INT_ACK | OP0_NOP, LCCR(base)); /* Acknowledge the interrupt */
4238 }
4239 } /* while(1) */
4240
4241 spin_unlock(&lp->spinlock);
4242
4243 #ifdef DEBUG_INTERRUPT_TRACE
4244 printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
4245 #endif
4246
4247 /* We always return IRQ_HANDLED, because we will receive empty
4248 * interrupts under normal operations. Anyway, it doesn't matter
4249 * as we are dealing with an ISA interrupt that can't be shared.
4250 *
4251 * Explanation : under heavy receive, the following happens :
4252 * ->wavelan_interrupt()
4253 * (status0 & SR0_INTERRUPT) != 0
4254 * ->wv_packet_rcv()
4255 * (status0 & SR0_INTERRUPT) != 0
4256 * ->wv_packet_rcv()
4257 * (status0 & SR0_INTERRUPT) == 0 // i.e. no more event
4258 * <-wavelan_interrupt()
4259 * ->wavelan_interrupt()
4260 * (status0 & SR0_INTERRUPT) == 0 // i.e. empty interrupt
4261 * <-wavelan_interrupt()
4262 * Jean II */
4263 return IRQ_HANDLED;
4264 } /* wv_interrupt */
4265
4266 /*------------------------------------------------------------------*/
4267 /*
4268 * Watchdog: when we start a transmission, a timer is set for us in the
4269 * kernel. If the transmission completes, this timer is disabled. If
4270 * the timer expires, we are called and we try to unlock the hardware.
4271 *
4272 * Note : This watchdog is move clever than the one in the ISA driver,
4273 * because it try to abort the current command before reseting
4274 * everything...
4275 * On the other hand, it's a bit simpler, because we don't have to
4276 * deal with the multiple Tx buffers...
4277 */
4278 static void
4279 wavelan_watchdog(struct net_device * dev)
4280 {
4281 net_local * lp = netdev_priv(dev);
4282 unsigned int base = dev->base_addr;
4283 unsigned long flags;
4284 int aborted = FALSE;
4285
4286 #ifdef DEBUG_INTERRUPT_TRACE
4287 printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
4288 #endif
4289
4290 #ifdef DEBUG_INTERRUPT_ERROR
4291 printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
4292 dev->name);
4293 #endif
4294
4295 spin_lock_irqsave(&lp->spinlock, flags);
4296
4297 /* Ask to abort the current command */
4298 outb(OP0_ABORT, LCCR(base));
4299
4300 /* Wait for the end of the command (a bit hackish) */
4301 if(wv_82593_cmd(dev, "wavelan_watchdog(): abort",
4302 OP0_NOP | CR0_STATUS_3, SR0_EXECUTION_ABORTED))
4303 aborted = TRUE;
4304
4305 /* Release spinlock here so that wv_hw_reset() can grab it */
4306 spin_unlock_irqrestore(&lp->spinlock, flags);
4307
4308 /* Check if we were successful in aborting it */
4309 if(!aborted)
4310 {
4311 /* It seem that it wasn't enough */
4312 #ifdef DEBUG_INTERRUPT_ERROR
4313 printk(KERN_INFO "%s: wavelan_watchdog: abort failed, trying reset\n",
4314 dev->name);
4315 #endif
4316 wv_hw_reset(dev);
4317 }
4318
4319 #ifdef DEBUG_PSA_SHOW
4320 {
4321 psa_t psa;
4322 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
4323 wv_psa_show(&psa);
4324 }
4325 #endif
4326 #ifdef DEBUG_MMC_SHOW
4327 wv_mmc_show(dev);
4328 #endif
4329 #ifdef DEBUG_I82593_SHOW
4330 wv_ru_show(dev);
4331 #endif
4332
4333 /* We are no more waiting for something... */
4334 netif_wake_queue(dev);
4335
4336 #ifdef DEBUG_INTERRUPT_TRACE
4337 printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
4338 #endif
4339 }
4340
4341 /********************* CONFIGURATION CALLBACKS *********************/
4342 /*
4343 * Here are the functions called by the pcmcia package (cardmgr) and
4344 * linux networking (NET3) for initialization, configuration and
4345 * deinstallations of the Wavelan Pcmcia Hardware.
4346 */
4347
4348 /*------------------------------------------------------------------*/
4349 /*
4350 * Configure and start up the WaveLAN PCMCIA adaptor.
4351 * Called by NET3 when it "open" the device.
4352 */
4353 static int
4354 wavelan_open(struct net_device * dev)
4355 {
4356 net_local * lp = netdev_priv(dev);
4357 struct pcmcia_device * link = lp->link;
4358 unsigned int base = dev->base_addr;
4359
4360 #ifdef DEBUG_CALLBACK_TRACE
4361 printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
4362 (unsigned int) dev);
4363 #endif
4364
4365 /* Check if the modem is powered up (wavelan_close() power it down */
4366 if(hasr_read(base) & HASR_NO_CLK)
4367 {
4368 /* Power up (power up time is 250us) */
4369 hacr_write(base, HACR_DEFAULT);
4370
4371 /* Check if the module has been powered up... */
4372 if(hasr_read(base) & HASR_NO_CLK)
4373 {
4374 #ifdef DEBUG_CONFIG_ERRORS
4375 printk(KERN_WARNING "%s: wavelan_open(): modem not connected\n",
4376 dev->name);
4377 #endif
4378 return FALSE;
4379 }
4380 }
4381
4382 /* Start reception and declare the driver ready */
4383 if(!lp->configured)
4384 return FALSE;
4385 if(!wv_ru_start(dev))
4386 wv_hw_reset(dev); /* If problem : reset */
4387 netif_start_queue(dev);
4388
4389 /* Mark the device as used */
4390 link->open++;
4391
4392 #ifdef WAVELAN_ROAMING
4393 if(do_roaming)
4394 wv_roam_init(dev);
4395 #endif /* WAVELAN_ROAMING */
4396
4397 #ifdef DEBUG_CALLBACK_TRACE
4398 printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
4399 #endif
4400 return 0;
4401 }
4402
4403 /*------------------------------------------------------------------*/
4404 /*
4405 * Shutdown the WaveLAN PCMCIA adaptor.
4406 * Called by NET3 when it "close" the device.
4407 */
4408 static int
4409 wavelan_close(struct net_device * dev)
4410 {
4411 struct pcmcia_device * link = ((net_local *)netdev_priv(dev))->link;
4412 unsigned int base = dev->base_addr;
4413
4414 #ifdef DEBUG_CALLBACK_TRACE
4415 printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
4416 (unsigned int) dev);
4417 #endif
4418
4419 /* If the device isn't open, then nothing to do */
4420 if(!link->open)
4421 {
4422 #ifdef DEBUG_CONFIG_INFO
4423 printk(KERN_DEBUG "%s: wavelan_close(): device not open\n", dev->name);
4424 #endif
4425 return 0;
4426 }
4427
4428 #ifdef WAVELAN_ROAMING
4429 /* Cleanup of roaming stuff... */
4430 if(do_roaming)
4431 wv_roam_cleanup(dev);
4432 #endif /* WAVELAN_ROAMING */
4433
4434 link->open--;
4435
4436 /* If the card is still present */
4437 if(netif_running(dev))
4438 {
4439 netif_stop_queue(dev);
4440
4441 /* Stop receiving new messages and wait end of transmission */
4442 wv_ru_stop(dev);
4443
4444 /* Power down the module */
4445 hacr_write(base, HACR_DEFAULT & (~HACR_PWR_STAT));
4446 }
4447
4448 #ifdef DEBUG_CALLBACK_TRACE
4449 printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
4450 #endif
4451 return 0;
4452 }
4453
4454 /*------------------------------------------------------------------*/
4455 /*
4456 * wavelan_attach() creates an "instance" of the driver, allocating
4457 * local data structures for one device (one interface). The device
4458 * is registered with Card Services.
4459 *
4460 * The dev_link structure is initialized, but we don't actually
4461 * configure the card at this point -- we wait until we receive a
4462 * card insertion event.
4463 */
4464 static int
4465 wavelan_probe(struct pcmcia_device *p_dev)
4466 {
4467 struct net_device * dev; /* Interface generic data */
4468 net_local * lp; /* Interface specific data */
4469 int ret;
4470
4471 #ifdef DEBUG_CALLBACK_TRACE
4472 printk(KERN_DEBUG "-> wavelan_attach()\n");
4473 #endif
4474
4475 /* The io structure describes IO port mapping */
4476 p_dev->io.NumPorts1 = 8;
4477 p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
4478 p_dev->io.IOAddrLines = 3;
4479
4480 /* Interrupt setup */
4481 p_dev->irq.Attributes = IRQ_TYPE_DYNAMIC_SHARING | IRQ_HANDLE_PRESENT;
4482 p_dev->irq.IRQInfo1 = IRQ_LEVEL_ID;
4483 p_dev->irq.Handler = wavelan_interrupt;
4484
4485 /* General socket configuration */
4486 p_dev->conf.Attributes = CONF_ENABLE_IRQ;
4487 p_dev->conf.IntType = INT_MEMORY_AND_IO;
4488
4489 /* Allocate the generic data structure */
4490 dev = alloc_etherdev(sizeof(net_local));
4491 if (!dev)
4492 return -ENOMEM;
4493
4494 p_dev->priv = p_dev->irq.Instance = dev;
4495
4496 lp = netdev_priv(dev);
4497
4498 /* Init specific data */
4499 lp->configured = 0;
4500 lp->reconfig_82593 = FALSE;
4501 lp->nresets = 0;
4502 /* Multicast stuff */
4503 lp->promiscuous = 0;
4504 lp->allmulticast = 0;
4505 lp->mc_count = 0;
4506
4507 /* Init spinlock */
4508 spin_lock_init(&lp->spinlock);
4509
4510 /* back links */
4511 lp->dev = dev;
4512
4513 /* wavelan NET3 callbacks */
4514 dev->open = &wavelan_open;
4515 dev->stop = &wavelan_close;
4516 dev->hard_start_xmit = &wavelan_packet_xmit;
4517 dev->get_stats = &wavelan_get_stats;
4518 dev->set_multicast_list = &wavelan_set_multicast_list;
4519 #ifdef SET_MAC_ADDRESS
4520 dev->set_mac_address = &wavelan_set_mac_address;
4521 #endif /* SET_MAC_ADDRESS */
4522
4523 /* Set the watchdog timer */
4524 dev->tx_timeout = &wavelan_watchdog;
4525 dev->watchdog_timeo = WATCHDOG_JIFFIES;
4526 SET_ETHTOOL_OPS(dev, &ops);
4527
4528 dev->wireless_handlers = &wavelan_handler_def;
4529 lp->wireless_data.spy_data = &lp->spy_data;
4530 dev->wireless_data = &lp->wireless_data;
4531
4532 /* Other specific data */
4533 dev->mtu = WAVELAN_MTU;
4534
4535 ret = wv_pcmcia_config(p_dev);
4536 if (ret)
4537 return ret;
4538
4539 ret = wv_hw_config(dev);
4540 if (ret) {
4541 dev->irq = 0;
4542 pcmcia_disable_device(p_dev);
4543 return ret;
4544 }
4545
4546 wv_init_info(dev);
4547
4548 #ifdef DEBUG_CALLBACK_TRACE
4549 printk(KERN_DEBUG "<- wavelan_attach()\n");
4550 #endif
4551
4552 return 0;
4553 }
4554
4555 /*------------------------------------------------------------------*/
4556 /*
4557 * This deletes a driver "instance". The device is de-registered with
4558 * Card Services. If it has been released, all local data structures
4559 * are freed. Otherwise, the structures will be freed when the device
4560 * is released.
4561 */
4562 static void
4563 wavelan_detach(struct pcmcia_device *link)
4564 {
4565 #ifdef DEBUG_CALLBACK_TRACE
4566 printk(KERN_DEBUG "-> wavelan_detach(0x%p)\n", link);
4567 #endif
4568
4569 /* Some others haven't done their job : give them another chance */
4570 wv_pcmcia_release(link);
4571
4572 /* Free pieces */
4573 if(link->priv)
4574 {
4575 struct net_device * dev = (struct net_device *) link->priv;
4576
4577 /* Remove ourselves from the kernel list of ethernet devices */
4578 /* Warning : can't be called from interrupt, timer or wavelan_close() */
4579 if (link->dev_node)
4580 unregister_netdev(dev);
4581 link->dev_node = NULL;
4582 ((net_local *)netdev_priv(dev))->link = NULL;
4583 ((net_local *)netdev_priv(dev))->dev = NULL;
4584 free_netdev(dev);
4585 }
4586
4587 #ifdef DEBUG_CALLBACK_TRACE
4588 printk(KERN_DEBUG "<- wavelan_detach()\n");
4589 #endif
4590 }
4591
4592 static int wavelan_suspend(struct pcmcia_device *link)
4593 {
4594 struct net_device * dev = (struct net_device *) link->priv;
4595
4596 /* NB: wavelan_close will be called, but too late, so we are
4597 * obliged to close nicely the wavelan here. David, could you
4598 * close the device before suspending them ? And, by the way,
4599 * could you, on resume, add a "route add -net ..." after the
4600 * ifconfig up ? Thanks... */
4601
4602 /* Stop receiving new messages and wait end of transmission */
4603 wv_ru_stop(dev);
4604
4605 if (link->open)
4606 netif_device_detach(dev);
4607
4608 /* Power down the module */
4609 hacr_write(dev->base_addr, HACR_DEFAULT & (~HACR_PWR_STAT));
4610
4611 return 0;
4612 }
4613
4614 static int wavelan_resume(struct pcmcia_device *link)
4615 {
4616 struct net_device * dev = (struct net_device *) link->priv;
4617
4618 if (link->open) {
4619 wv_hw_reset(dev);
4620 netif_device_attach(dev);
4621 }
4622
4623 return 0;
4624 }
4625
4626
4627 static struct pcmcia_device_id wavelan_ids[] = {
4628 PCMCIA_DEVICE_PROD_ID12("AT&T","WaveLAN/PCMCIA", 0xe7c5affd, 0x1bc50975),
4629 PCMCIA_DEVICE_PROD_ID12("Digital", "RoamAbout/DS", 0x9999ab35, 0x00d05e06),
4630 PCMCIA_DEVICE_PROD_ID12("Lucent Technologies", "WaveLAN/PCMCIA", 0x23eb9949, 0x1bc50975),
4631 PCMCIA_DEVICE_PROD_ID12("NCR", "WaveLAN/PCMCIA", 0x24358cd4, 0x1bc50975),
4632 PCMCIA_DEVICE_NULL,
4633 };
4634 MODULE_DEVICE_TABLE(pcmcia, wavelan_ids);
4635
4636 static struct pcmcia_driver wavelan_driver = {
4637 .owner = THIS_MODULE,
4638 .drv = {
4639 .name = "wavelan_cs",
4640 },
4641 .probe = wavelan_probe,
4642 .remove = wavelan_detach,
4643 .id_table = wavelan_ids,
4644 .suspend = wavelan_suspend,
4645 .resume = wavelan_resume,
4646 };
4647
4648 static int __init
4649 init_wavelan_cs(void)
4650 {
4651 return pcmcia_register_driver(&wavelan_driver);
4652 }
4653
4654 static void __exit
4655 exit_wavelan_cs(void)
4656 {
4657 pcmcia_unregister_driver(&wavelan_driver);
4658 }
4659
4660 module_init(init_wavelan_cs);
4661 module_exit(exit_wavelan_cs);
This page took 0.304603 seconds and 5 git commands to generate.