Merge branch 'mailbox-devel' of git://git.linaro.org/landing-teams/working/fujitsu...
[deliverable/linux.git] / drivers / nvdimm / pmem.c
1 /*
2 * Persistent Memory Driver
3 *
4 * Copyright (c) 2014-2015, Intel Corporation.
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pfn.h"
33 #include "nd.h"
34
35 struct pmem_device {
36 struct request_queue *pmem_queue;
37 struct gendisk *pmem_disk;
38 struct nd_namespace_common *ndns;
39
40 /* One contiguous memory region per device */
41 phys_addr_t phys_addr;
42 /* when non-zero this device is hosting a 'pfn' instance */
43 phys_addr_t data_offset;
44 u64 pfn_flags;
45 void __pmem *virt_addr;
46 /* immutable base size of the namespace */
47 size_t size;
48 /* trim size when namespace capacity has been section aligned */
49 u32 pfn_pad;
50 struct badblocks bb;
51 };
52
53 static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
54 {
55 if (bb->count) {
56 sector_t first_bad;
57 int num_bad;
58
59 return !!badblocks_check(bb, sector, len / 512, &first_bad,
60 &num_bad);
61 }
62
63 return false;
64 }
65
66 static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
67 unsigned int len)
68 {
69 struct device *dev = disk_to_dev(pmem->pmem_disk);
70 sector_t sector;
71 long cleared;
72
73 sector = (offset - pmem->data_offset) / 512;
74 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
75
76 if (cleared > 0 && cleared / 512) {
77 dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
78 __func__, (unsigned long long) sector,
79 cleared / 512, cleared / 512 > 1 ? "s" : "");
80 badblocks_clear(&pmem->bb, sector, cleared / 512);
81 }
82 invalidate_pmem(pmem->virt_addr + offset, len);
83 }
84
85 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
86 unsigned int len, unsigned int off, int rw,
87 sector_t sector)
88 {
89 int rc = 0;
90 bool bad_pmem = false;
91 void *mem = kmap_atomic(page);
92 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
93 void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
94
95 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
96 bad_pmem = true;
97
98 if (rw == READ) {
99 if (unlikely(bad_pmem))
100 rc = -EIO;
101 else {
102 rc = memcpy_from_pmem(mem + off, pmem_addr, len);
103 flush_dcache_page(page);
104 }
105 } else {
106 flush_dcache_page(page);
107 memcpy_to_pmem(pmem_addr, mem + off, len);
108 if (unlikely(bad_pmem)) {
109 pmem_clear_poison(pmem, pmem_off, len);
110 memcpy_to_pmem(pmem_addr, mem + off, len);
111 }
112 }
113
114 kunmap_atomic(mem);
115 return rc;
116 }
117
118 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
119 {
120 int rc = 0;
121 bool do_acct;
122 unsigned long start;
123 struct bio_vec bvec;
124 struct bvec_iter iter;
125 struct block_device *bdev = bio->bi_bdev;
126 struct pmem_device *pmem = bdev->bd_disk->private_data;
127
128 do_acct = nd_iostat_start(bio, &start);
129 bio_for_each_segment(bvec, bio, iter) {
130 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
131 bvec.bv_offset, bio_data_dir(bio),
132 iter.bi_sector);
133 if (rc) {
134 bio->bi_error = rc;
135 break;
136 }
137 }
138 if (do_acct)
139 nd_iostat_end(bio, start);
140
141 if (bio_data_dir(bio))
142 wmb_pmem();
143
144 bio_endio(bio);
145 return BLK_QC_T_NONE;
146 }
147
148 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
149 struct page *page, int rw)
150 {
151 struct pmem_device *pmem = bdev->bd_disk->private_data;
152 int rc;
153
154 rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
155 if (rw & WRITE)
156 wmb_pmem();
157
158 /*
159 * The ->rw_page interface is subtle and tricky. The core
160 * retries on any error, so we can only invoke page_endio() in
161 * the successful completion case. Otherwise, we'll see crashes
162 * caused by double completion.
163 */
164 if (rc == 0)
165 page_endio(page, rw & WRITE, 0);
166
167 return rc;
168 }
169
170 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
171 void __pmem **kaddr, pfn_t *pfn)
172 {
173 struct pmem_device *pmem = bdev->bd_disk->private_data;
174 resource_size_t offset = sector * 512 + pmem->data_offset;
175
176 *kaddr = pmem->virt_addr + offset;
177 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
178
179 return pmem->size - pmem->pfn_pad - offset;
180 }
181
182 static const struct block_device_operations pmem_fops = {
183 .owner = THIS_MODULE,
184 .rw_page = pmem_rw_page,
185 .direct_access = pmem_direct_access,
186 .revalidate_disk = nvdimm_revalidate_disk,
187 };
188
189 static struct pmem_device *pmem_alloc(struct device *dev,
190 struct resource *res, int id)
191 {
192 struct pmem_device *pmem;
193 struct request_queue *q;
194
195 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
196 if (!pmem)
197 return ERR_PTR(-ENOMEM);
198
199 pmem->phys_addr = res->start;
200 pmem->size = resource_size(res);
201 if (!arch_has_wmb_pmem())
202 dev_warn(dev, "unable to guarantee persistence of writes\n");
203
204 if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
205 dev_name(dev))) {
206 dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
207 &pmem->phys_addr, pmem->size);
208 return ERR_PTR(-EBUSY);
209 }
210
211 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
212 if (!q)
213 return ERR_PTR(-ENOMEM);
214
215 pmem->pfn_flags = PFN_DEV;
216 if (pmem_should_map_pages(dev)) {
217 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
218 &q->q_usage_counter, NULL);
219 pmem->pfn_flags |= PFN_MAP;
220 } else
221 pmem->virt_addr = (void __pmem *) devm_memremap(dev,
222 pmem->phys_addr, pmem->size,
223 ARCH_MEMREMAP_PMEM);
224
225 if (IS_ERR(pmem->virt_addr)) {
226 blk_cleanup_queue(q);
227 return (void __force *) pmem->virt_addr;
228 }
229
230 pmem->pmem_queue = q;
231 return pmem;
232 }
233
234 static void pmem_detach_disk(struct pmem_device *pmem)
235 {
236 if (!pmem->pmem_disk)
237 return;
238
239 del_gendisk(pmem->pmem_disk);
240 put_disk(pmem->pmem_disk);
241 blk_cleanup_queue(pmem->pmem_queue);
242 }
243
244 static int pmem_attach_disk(struct device *dev,
245 struct nd_namespace_common *ndns, struct pmem_device *pmem)
246 {
247 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
248 int nid = dev_to_node(dev);
249 struct resource bb_res;
250 struct gendisk *disk;
251
252 blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
253 blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
254 blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
255 blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
256 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
257
258 disk = alloc_disk_node(0, nid);
259 if (!disk) {
260 blk_cleanup_queue(pmem->pmem_queue);
261 return -ENOMEM;
262 }
263
264 disk->fops = &pmem_fops;
265 disk->private_data = pmem;
266 disk->queue = pmem->pmem_queue;
267 disk->flags = GENHD_FL_EXT_DEVT;
268 nvdimm_namespace_disk_name(ndns, disk->disk_name);
269 disk->driverfs_dev = dev;
270 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
271 / 512);
272 pmem->pmem_disk = disk;
273 devm_exit_badblocks(dev, &pmem->bb);
274 if (devm_init_badblocks(dev, &pmem->bb))
275 return -ENOMEM;
276 bb_res.start = nsio->res.start + pmem->data_offset;
277 bb_res.end = nsio->res.end;
278 if (is_nd_pfn(dev)) {
279 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
280 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
281
282 bb_res.start += __le32_to_cpu(pfn_sb->start_pad);
283 bb_res.end -= __le32_to_cpu(pfn_sb->end_trunc);
284 }
285 nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb,
286 &bb_res);
287 disk->bb = &pmem->bb;
288 add_disk(disk);
289 revalidate_disk(disk);
290
291 return 0;
292 }
293
294 static int pmem_rw_bytes(struct nd_namespace_common *ndns,
295 resource_size_t offset, void *buf, size_t size, int rw)
296 {
297 struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
298
299 if (unlikely(offset + size > pmem->size)) {
300 dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
301 return -EFAULT;
302 }
303
304 if (rw == READ) {
305 unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
306
307 if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
308 return -EIO;
309 return memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
310 } else {
311 memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
312 wmb_pmem();
313 }
314
315 return 0;
316 }
317
318 static int nd_pfn_init(struct nd_pfn *nd_pfn)
319 {
320 struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
321 struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
322 struct nd_namespace_common *ndns = nd_pfn->ndns;
323 u32 start_pad = 0, end_trunc = 0;
324 resource_size_t start, size;
325 struct nd_namespace_io *nsio;
326 struct nd_region *nd_region;
327 unsigned long npfns;
328 phys_addr_t offset;
329 u64 checksum;
330 int rc;
331
332 if (!pfn_sb)
333 return -ENOMEM;
334
335 nd_pfn->pfn_sb = pfn_sb;
336 rc = nd_pfn_validate(nd_pfn);
337 if (rc == -ENODEV)
338 /* no info block, do init */;
339 else
340 return rc;
341
342 nd_region = to_nd_region(nd_pfn->dev.parent);
343 if (nd_region->ro) {
344 dev_info(&nd_pfn->dev,
345 "%s is read-only, unable to init metadata\n",
346 dev_name(&nd_region->dev));
347 goto err;
348 }
349
350 memset(pfn_sb, 0, sizeof(*pfn_sb));
351
352 /*
353 * Check if pmem collides with 'System RAM' when section aligned and
354 * trim it accordingly
355 */
356 nsio = to_nd_namespace_io(&ndns->dev);
357 start = PHYS_SECTION_ALIGN_DOWN(nsio->res.start);
358 size = resource_size(&nsio->res);
359 if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
360 IORES_DESC_NONE) == REGION_MIXED) {
361
362 start = nsio->res.start;
363 start_pad = PHYS_SECTION_ALIGN_UP(start) - start;
364 }
365
366 start = nsio->res.start;
367 size = PHYS_SECTION_ALIGN_UP(start + size) - start;
368 if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
369 IORES_DESC_NONE) == REGION_MIXED) {
370 size = resource_size(&nsio->res);
371 end_trunc = start + size - PHYS_SECTION_ALIGN_DOWN(start + size);
372 }
373
374 if (start_pad + end_trunc)
375 dev_info(&nd_pfn->dev, "%s section collision, truncate %d bytes\n",
376 dev_name(&ndns->dev), start_pad + end_trunc);
377
378 /*
379 * Note, we use 64 here for the standard size of struct page,
380 * debugging options may cause it to be larger in which case the
381 * implementation will limit the pfns advertised through
382 * ->direct_access() to those that are included in the memmap.
383 */
384 start += start_pad;
385 npfns = (pmem->size - start_pad - end_trunc - SZ_8K) / SZ_4K;
386 if (nd_pfn->mode == PFN_MODE_PMEM)
387 offset = ALIGN(start + SZ_8K + 64 * npfns, nd_pfn->align)
388 - start;
389 else if (nd_pfn->mode == PFN_MODE_RAM)
390 offset = ALIGN(start + SZ_8K, nd_pfn->align) - start;
391 else
392 goto err;
393
394 if (offset + start_pad + end_trunc >= pmem->size) {
395 dev_err(&nd_pfn->dev, "%s unable to satisfy requested alignment\n",
396 dev_name(&ndns->dev));
397 goto err;
398 }
399
400 npfns = (pmem->size - offset - start_pad - end_trunc) / SZ_4K;
401 pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
402 pfn_sb->dataoff = cpu_to_le64(offset);
403 pfn_sb->npfns = cpu_to_le64(npfns);
404 memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
405 memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
406 memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
407 pfn_sb->version_major = cpu_to_le16(1);
408 pfn_sb->version_minor = cpu_to_le16(1);
409 pfn_sb->start_pad = cpu_to_le32(start_pad);
410 pfn_sb->end_trunc = cpu_to_le32(end_trunc);
411 checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
412 pfn_sb->checksum = cpu_to_le64(checksum);
413
414 rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
415 if (rc)
416 goto err;
417
418 return 0;
419 err:
420 nd_pfn->pfn_sb = NULL;
421 kfree(pfn_sb);
422 return -ENXIO;
423 }
424
425 static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
426 {
427 struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
428 struct pmem_device *pmem;
429
430 /* free pmem disk */
431 pmem = dev_get_drvdata(&nd_pfn->dev);
432 pmem_detach_disk(pmem);
433
434 /* release nd_pfn resources */
435 kfree(nd_pfn->pfn_sb);
436 nd_pfn->pfn_sb = NULL;
437
438 return 0;
439 }
440
441 /*
442 * We hotplug memory at section granularity, pad the reserved area from
443 * the previous section base to the namespace base address.
444 */
445 static unsigned long init_altmap_base(resource_size_t base)
446 {
447 unsigned long base_pfn = PHYS_PFN(base);
448
449 return PFN_SECTION_ALIGN_DOWN(base_pfn);
450 }
451
452 static unsigned long init_altmap_reserve(resource_size_t base)
453 {
454 unsigned long reserve = PHYS_PFN(SZ_8K);
455 unsigned long base_pfn = PHYS_PFN(base);
456
457 reserve += base_pfn - PFN_SECTION_ALIGN_DOWN(base_pfn);
458 return reserve;
459 }
460
461 static int __nvdimm_namespace_attach_pfn(struct nd_pfn *nd_pfn)
462 {
463 int rc;
464 struct resource res;
465 struct request_queue *q;
466 struct pmem_device *pmem;
467 struct vmem_altmap *altmap;
468 struct device *dev = &nd_pfn->dev;
469 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
470 struct nd_namespace_common *ndns = nd_pfn->ndns;
471 u32 start_pad = __le32_to_cpu(pfn_sb->start_pad);
472 u32 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
473 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
474 resource_size_t base = nsio->res.start + start_pad;
475 struct vmem_altmap __altmap = {
476 .base_pfn = init_altmap_base(base),
477 .reserve = init_altmap_reserve(base),
478 };
479
480 pmem = dev_get_drvdata(dev);
481 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
482 pmem->pfn_pad = start_pad + end_trunc;
483 nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
484 if (nd_pfn->mode == PFN_MODE_RAM) {
485 if (pmem->data_offset < SZ_8K)
486 return -EINVAL;
487 nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
488 altmap = NULL;
489 } else if (nd_pfn->mode == PFN_MODE_PMEM) {
490 nd_pfn->npfns = (pmem->size - pmem->pfn_pad - pmem->data_offset)
491 / PAGE_SIZE;
492 if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
493 dev_info(&nd_pfn->dev,
494 "number of pfns truncated from %lld to %ld\n",
495 le64_to_cpu(nd_pfn->pfn_sb->npfns),
496 nd_pfn->npfns);
497 altmap = & __altmap;
498 altmap->free = PHYS_PFN(pmem->data_offset - SZ_8K);
499 altmap->alloc = 0;
500 } else {
501 rc = -ENXIO;
502 goto err;
503 }
504
505 /* establish pfn range for lookup, and switch to direct map */
506 q = pmem->pmem_queue;
507 memcpy(&res, &nsio->res, sizeof(res));
508 res.start += start_pad;
509 res.end -= end_trunc;
510 devm_memunmap(dev, (void __force *) pmem->virt_addr);
511 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &res,
512 &q->q_usage_counter, altmap);
513 pmem->pfn_flags |= PFN_MAP;
514 if (IS_ERR(pmem->virt_addr)) {
515 rc = PTR_ERR(pmem->virt_addr);
516 goto err;
517 }
518
519 /* attach pmem disk in "pfn-mode" */
520 rc = pmem_attach_disk(dev, ndns, pmem);
521 if (rc)
522 goto err;
523
524 return rc;
525 err:
526 nvdimm_namespace_detach_pfn(ndns);
527 return rc;
528
529 }
530
531 static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
532 {
533 struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
534 int rc;
535
536 if (!nd_pfn->uuid || !nd_pfn->ndns)
537 return -ENODEV;
538
539 rc = nd_pfn_init(nd_pfn);
540 if (rc)
541 return rc;
542 /* we need a valid pfn_sb before we can init a vmem_altmap */
543 return __nvdimm_namespace_attach_pfn(nd_pfn);
544 }
545
546 static int nd_pmem_probe(struct device *dev)
547 {
548 struct nd_region *nd_region = to_nd_region(dev->parent);
549 struct nd_namespace_common *ndns;
550 struct nd_namespace_io *nsio;
551 struct pmem_device *pmem;
552
553 ndns = nvdimm_namespace_common_probe(dev);
554 if (IS_ERR(ndns))
555 return PTR_ERR(ndns);
556
557 nsio = to_nd_namespace_io(&ndns->dev);
558 pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
559 if (IS_ERR(pmem))
560 return PTR_ERR(pmem);
561
562 pmem->ndns = ndns;
563 dev_set_drvdata(dev, pmem);
564 ndns->rw_bytes = pmem_rw_bytes;
565 if (devm_init_badblocks(dev, &pmem->bb))
566 return -ENOMEM;
567 nvdimm_badblocks_populate(nd_region, &pmem->bb, &nsio->res);
568
569 if (is_nd_btt(dev)) {
570 /* btt allocates its own request_queue */
571 blk_cleanup_queue(pmem->pmem_queue);
572 pmem->pmem_queue = NULL;
573 return nvdimm_namespace_attach_btt(ndns);
574 }
575
576 if (is_nd_pfn(dev))
577 return nvdimm_namespace_attach_pfn(ndns);
578
579 if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
580 /*
581 * We'll come back as either btt-pmem, or pfn-pmem, so
582 * drop the queue allocation for now.
583 */
584 blk_cleanup_queue(pmem->pmem_queue);
585 return -ENXIO;
586 }
587
588 return pmem_attach_disk(dev, ndns, pmem);
589 }
590
591 static int nd_pmem_remove(struct device *dev)
592 {
593 struct pmem_device *pmem = dev_get_drvdata(dev);
594
595 if (is_nd_btt(dev))
596 nvdimm_namespace_detach_btt(pmem->ndns);
597 else if (is_nd_pfn(dev))
598 nvdimm_namespace_detach_pfn(pmem->ndns);
599 else
600 pmem_detach_disk(pmem);
601
602 return 0;
603 }
604
605 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
606 {
607 struct pmem_device *pmem = dev_get_drvdata(dev);
608 struct nd_namespace_common *ndns = pmem->ndns;
609 struct nd_region *nd_region = to_nd_region(dev->parent);
610 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
611 struct resource res = {
612 .start = nsio->res.start + pmem->data_offset,
613 .end = nsio->res.end,
614 };
615
616 if (event != NVDIMM_REVALIDATE_POISON)
617 return;
618
619 if (is_nd_pfn(dev)) {
620 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
621 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
622
623 res.start += __le32_to_cpu(pfn_sb->start_pad);
624 res.end -= __le32_to_cpu(pfn_sb->end_trunc);
625 }
626
627 nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
628 }
629
630 MODULE_ALIAS("pmem");
631 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
632 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
633 static struct nd_device_driver nd_pmem_driver = {
634 .probe = nd_pmem_probe,
635 .remove = nd_pmem_remove,
636 .notify = nd_pmem_notify,
637 .drv = {
638 .name = "nd_pmem",
639 },
640 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
641 };
642
643 static int __init pmem_init(void)
644 {
645 return nd_driver_register(&nd_pmem_driver);
646 }
647 module_init(pmem_init);
648
649 static void pmem_exit(void)
650 {
651 driver_unregister(&nd_pmem_driver.drv);
652 }
653 module_exit(pmem_exit);
654
655 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
656 MODULE_LICENSE("GPL v2");
This page took 0.050729 seconds and 5 git commands to generate.