Merge branch 'drm-tda998x-devel' of git://git.armlinux.org.uk/~rmk/linux-arm into...
[deliverable/linux.git] / drivers / nvdimm / region_devs.c
1 /*
2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/pmem.h>
19 #include <linux/sort.h>
20 #include <linux/io.h>
21 #include <linux/nd.h>
22 #include "nd-core.h"
23 #include "nd.h"
24
25 /*
26 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
27 * irrelevant.
28 */
29 #include <linux/io-64-nonatomic-hi-lo.h>
30
31 static DEFINE_IDA(region_ida);
32 static DEFINE_PER_CPU(int, flush_idx);
33
34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
35 struct nd_region_data *ndrd)
36 {
37 int i, j;
38
39 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
40 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
41 for (i = 0; i < nvdimm->num_flush; i++) {
42 struct resource *res = &nvdimm->flush_wpq[i];
43 unsigned long pfn = PHYS_PFN(res->start);
44 void __iomem *flush_page;
45
46 /* check if flush hints share a page */
47 for (j = 0; j < i; j++) {
48 struct resource *res_j = &nvdimm->flush_wpq[j];
49 unsigned long pfn_j = PHYS_PFN(res_j->start);
50
51 if (pfn == pfn_j)
52 break;
53 }
54
55 if (j < i)
56 flush_page = (void __iomem *) ((unsigned long)
57 ndrd->flush_wpq[dimm][j] & PAGE_MASK);
58 else
59 flush_page = devm_nvdimm_ioremap(dev,
60 PHYS_PFN(pfn), PAGE_SIZE);
61 if (!flush_page)
62 return -ENXIO;
63 ndrd->flush_wpq[dimm][i] = flush_page
64 + (res->start & ~PAGE_MASK);
65 }
66
67 return 0;
68 }
69
70 int nd_region_activate(struct nd_region *nd_region)
71 {
72 int i, num_flush = 0;
73 struct nd_region_data *ndrd;
74 struct device *dev = &nd_region->dev;
75 size_t flush_data_size = sizeof(void *);
76
77 nvdimm_bus_lock(&nd_region->dev);
78 for (i = 0; i < nd_region->ndr_mappings; i++) {
79 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
80 struct nvdimm *nvdimm = nd_mapping->nvdimm;
81
82 /* at least one null hint slot per-dimm for the "no-hint" case */
83 flush_data_size += sizeof(void *);
84 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
85 if (!nvdimm->num_flush)
86 continue;
87 flush_data_size += nvdimm->num_flush * sizeof(void *);
88 }
89 nvdimm_bus_unlock(&nd_region->dev);
90
91 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
92 if (!ndrd)
93 return -ENOMEM;
94 dev_set_drvdata(dev, ndrd);
95
96 ndrd->flush_mask = (1 << ilog2(num_flush)) - 1;
97 for (i = 0; i < nd_region->ndr_mappings; i++) {
98 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101
102 if (rc)
103 return rc;
104 }
105
106 return 0;
107 }
108
109 static void nd_region_release(struct device *dev)
110 {
111 struct nd_region *nd_region = to_nd_region(dev);
112 u16 i;
113
114 for (i = 0; i < nd_region->ndr_mappings; i++) {
115 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
116 struct nvdimm *nvdimm = nd_mapping->nvdimm;
117
118 put_device(&nvdimm->dev);
119 }
120 free_percpu(nd_region->lane);
121 ida_simple_remove(&region_ida, nd_region->id);
122 if (is_nd_blk(dev))
123 kfree(to_nd_blk_region(dev));
124 else
125 kfree(nd_region);
126 }
127
128 static struct device_type nd_blk_device_type = {
129 .name = "nd_blk",
130 .release = nd_region_release,
131 };
132
133 static struct device_type nd_pmem_device_type = {
134 .name = "nd_pmem",
135 .release = nd_region_release,
136 };
137
138 static struct device_type nd_volatile_device_type = {
139 .name = "nd_volatile",
140 .release = nd_region_release,
141 };
142
143 bool is_nd_pmem(struct device *dev)
144 {
145 return dev ? dev->type == &nd_pmem_device_type : false;
146 }
147
148 bool is_nd_blk(struct device *dev)
149 {
150 return dev ? dev->type == &nd_blk_device_type : false;
151 }
152
153 struct nd_region *to_nd_region(struct device *dev)
154 {
155 struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
156
157 WARN_ON(dev->type->release != nd_region_release);
158 return nd_region;
159 }
160 EXPORT_SYMBOL_GPL(to_nd_region);
161
162 struct nd_blk_region *to_nd_blk_region(struct device *dev)
163 {
164 struct nd_region *nd_region = to_nd_region(dev);
165
166 WARN_ON(!is_nd_blk(dev));
167 return container_of(nd_region, struct nd_blk_region, nd_region);
168 }
169 EXPORT_SYMBOL_GPL(to_nd_blk_region);
170
171 void *nd_region_provider_data(struct nd_region *nd_region)
172 {
173 return nd_region->provider_data;
174 }
175 EXPORT_SYMBOL_GPL(nd_region_provider_data);
176
177 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
178 {
179 return ndbr->blk_provider_data;
180 }
181 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
182
183 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
184 {
185 ndbr->blk_provider_data = data;
186 }
187 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
188
189 /**
190 * nd_region_to_nstype() - region to an integer namespace type
191 * @nd_region: region-device to interrogate
192 *
193 * This is the 'nstype' attribute of a region as well, an input to the
194 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
195 * namespace devices with namespace drivers.
196 */
197 int nd_region_to_nstype(struct nd_region *nd_region)
198 {
199 if (is_nd_pmem(&nd_region->dev)) {
200 u16 i, alias;
201
202 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
203 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
204 struct nvdimm *nvdimm = nd_mapping->nvdimm;
205
206 if (nvdimm->flags & NDD_ALIASING)
207 alias++;
208 }
209 if (alias)
210 return ND_DEVICE_NAMESPACE_PMEM;
211 else
212 return ND_DEVICE_NAMESPACE_IO;
213 } else if (is_nd_blk(&nd_region->dev)) {
214 return ND_DEVICE_NAMESPACE_BLK;
215 }
216
217 return 0;
218 }
219 EXPORT_SYMBOL(nd_region_to_nstype);
220
221 static ssize_t size_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223 {
224 struct nd_region *nd_region = to_nd_region(dev);
225 unsigned long long size = 0;
226
227 if (is_nd_pmem(dev)) {
228 size = nd_region->ndr_size;
229 } else if (nd_region->ndr_mappings == 1) {
230 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
231
232 size = nd_mapping->size;
233 }
234
235 return sprintf(buf, "%llu\n", size);
236 }
237 static DEVICE_ATTR_RO(size);
238
239 static ssize_t mappings_show(struct device *dev,
240 struct device_attribute *attr, char *buf)
241 {
242 struct nd_region *nd_region = to_nd_region(dev);
243
244 return sprintf(buf, "%d\n", nd_region->ndr_mappings);
245 }
246 static DEVICE_ATTR_RO(mappings);
247
248 static ssize_t nstype_show(struct device *dev,
249 struct device_attribute *attr, char *buf)
250 {
251 struct nd_region *nd_region = to_nd_region(dev);
252
253 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
254 }
255 static DEVICE_ATTR_RO(nstype);
256
257 static ssize_t set_cookie_show(struct device *dev,
258 struct device_attribute *attr, char *buf)
259 {
260 struct nd_region *nd_region = to_nd_region(dev);
261 struct nd_interleave_set *nd_set = nd_region->nd_set;
262
263 if (is_nd_pmem(dev) && nd_set)
264 /* pass, should be precluded by region_visible */;
265 else
266 return -ENXIO;
267
268 return sprintf(buf, "%#llx\n", nd_set->cookie);
269 }
270 static DEVICE_ATTR_RO(set_cookie);
271
272 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
273 {
274 resource_size_t blk_max_overlap = 0, available, overlap;
275 int i;
276
277 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
278
279 retry:
280 available = 0;
281 overlap = blk_max_overlap;
282 for (i = 0; i < nd_region->ndr_mappings; i++) {
283 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
284 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
285
286 /* if a dimm is disabled the available capacity is zero */
287 if (!ndd)
288 return 0;
289
290 if (is_nd_pmem(&nd_region->dev)) {
291 available += nd_pmem_available_dpa(nd_region,
292 nd_mapping, &overlap);
293 if (overlap > blk_max_overlap) {
294 blk_max_overlap = overlap;
295 goto retry;
296 }
297 } else if (is_nd_blk(&nd_region->dev)) {
298 available += nd_blk_available_dpa(nd_mapping);
299 }
300 }
301
302 return available;
303 }
304
305 static ssize_t available_size_show(struct device *dev,
306 struct device_attribute *attr, char *buf)
307 {
308 struct nd_region *nd_region = to_nd_region(dev);
309 unsigned long long available = 0;
310
311 /*
312 * Flush in-flight updates and grab a snapshot of the available
313 * size. Of course, this value is potentially invalidated the
314 * memory nvdimm_bus_lock() is dropped, but that's userspace's
315 * problem to not race itself.
316 */
317 nvdimm_bus_lock(dev);
318 wait_nvdimm_bus_probe_idle(dev);
319 available = nd_region_available_dpa(nd_region);
320 nvdimm_bus_unlock(dev);
321
322 return sprintf(buf, "%llu\n", available);
323 }
324 static DEVICE_ATTR_RO(available_size);
325
326 static ssize_t init_namespaces_show(struct device *dev,
327 struct device_attribute *attr, char *buf)
328 {
329 struct nd_region_data *ndrd = dev_get_drvdata(dev);
330 ssize_t rc;
331
332 nvdimm_bus_lock(dev);
333 if (ndrd)
334 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
335 else
336 rc = -ENXIO;
337 nvdimm_bus_unlock(dev);
338
339 return rc;
340 }
341 static DEVICE_ATTR_RO(init_namespaces);
342
343 static ssize_t namespace_seed_show(struct device *dev,
344 struct device_attribute *attr, char *buf)
345 {
346 struct nd_region *nd_region = to_nd_region(dev);
347 ssize_t rc;
348
349 nvdimm_bus_lock(dev);
350 if (nd_region->ns_seed)
351 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
352 else
353 rc = sprintf(buf, "\n");
354 nvdimm_bus_unlock(dev);
355 return rc;
356 }
357 static DEVICE_ATTR_RO(namespace_seed);
358
359 static ssize_t btt_seed_show(struct device *dev,
360 struct device_attribute *attr, char *buf)
361 {
362 struct nd_region *nd_region = to_nd_region(dev);
363 ssize_t rc;
364
365 nvdimm_bus_lock(dev);
366 if (nd_region->btt_seed)
367 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
368 else
369 rc = sprintf(buf, "\n");
370 nvdimm_bus_unlock(dev);
371
372 return rc;
373 }
374 static DEVICE_ATTR_RO(btt_seed);
375
376 static ssize_t pfn_seed_show(struct device *dev,
377 struct device_attribute *attr, char *buf)
378 {
379 struct nd_region *nd_region = to_nd_region(dev);
380 ssize_t rc;
381
382 nvdimm_bus_lock(dev);
383 if (nd_region->pfn_seed)
384 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
385 else
386 rc = sprintf(buf, "\n");
387 nvdimm_bus_unlock(dev);
388
389 return rc;
390 }
391 static DEVICE_ATTR_RO(pfn_seed);
392
393 static ssize_t dax_seed_show(struct device *dev,
394 struct device_attribute *attr, char *buf)
395 {
396 struct nd_region *nd_region = to_nd_region(dev);
397 ssize_t rc;
398
399 nvdimm_bus_lock(dev);
400 if (nd_region->dax_seed)
401 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
402 else
403 rc = sprintf(buf, "\n");
404 nvdimm_bus_unlock(dev);
405
406 return rc;
407 }
408 static DEVICE_ATTR_RO(dax_seed);
409
410 static ssize_t read_only_show(struct device *dev,
411 struct device_attribute *attr, char *buf)
412 {
413 struct nd_region *nd_region = to_nd_region(dev);
414
415 return sprintf(buf, "%d\n", nd_region->ro);
416 }
417
418 static ssize_t read_only_store(struct device *dev,
419 struct device_attribute *attr, const char *buf, size_t len)
420 {
421 bool ro;
422 int rc = strtobool(buf, &ro);
423 struct nd_region *nd_region = to_nd_region(dev);
424
425 if (rc)
426 return rc;
427
428 nd_region->ro = ro;
429 return len;
430 }
431 static DEVICE_ATTR_RW(read_only);
432
433 static struct attribute *nd_region_attributes[] = {
434 &dev_attr_size.attr,
435 &dev_attr_nstype.attr,
436 &dev_attr_mappings.attr,
437 &dev_attr_btt_seed.attr,
438 &dev_attr_pfn_seed.attr,
439 &dev_attr_dax_seed.attr,
440 &dev_attr_read_only.attr,
441 &dev_attr_set_cookie.attr,
442 &dev_attr_available_size.attr,
443 &dev_attr_namespace_seed.attr,
444 &dev_attr_init_namespaces.attr,
445 NULL,
446 };
447
448 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
449 {
450 struct device *dev = container_of(kobj, typeof(*dev), kobj);
451 struct nd_region *nd_region = to_nd_region(dev);
452 struct nd_interleave_set *nd_set = nd_region->nd_set;
453 int type = nd_region_to_nstype(nd_region);
454
455 if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
456 return 0;
457
458 if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
459 return 0;
460
461 if (a != &dev_attr_set_cookie.attr
462 && a != &dev_attr_available_size.attr)
463 return a->mode;
464
465 if ((type == ND_DEVICE_NAMESPACE_PMEM
466 || type == ND_DEVICE_NAMESPACE_BLK)
467 && a == &dev_attr_available_size.attr)
468 return a->mode;
469 else if (is_nd_pmem(dev) && nd_set)
470 return a->mode;
471
472 return 0;
473 }
474
475 struct attribute_group nd_region_attribute_group = {
476 .attrs = nd_region_attributes,
477 .is_visible = region_visible,
478 };
479 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
480
481 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
482 {
483 struct nd_interleave_set *nd_set = nd_region->nd_set;
484
485 if (nd_set)
486 return nd_set->cookie;
487 return 0;
488 }
489
490 /*
491 * Upon successful probe/remove, take/release a reference on the
492 * associated interleave set (if present), and plant new btt + namespace
493 * seeds. Also, on the removal of a BLK region, notify the provider to
494 * disable the region.
495 */
496 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
497 struct device *dev, bool probe)
498 {
499 struct nd_region *nd_region;
500
501 if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
502 int i;
503
504 nd_region = to_nd_region(dev);
505 for (i = 0; i < nd_region->ndr_mappings; i++) {
506 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
507 struct nvdimm_drvdata *ndd = nd_mapping->ndd;
508 struct nvdimm *nvdimm = nd_mapping->nvdimm;
509
510 kfree(nd_mapping->labels);
511 nd_mapping->labels = NULL;
512 put_ndd(ndd);
513 nd_mapping->ndd = NULL;
514 if (ndd)
515 atomic_dec(&nvdimm->busy);
516 }
517
518 if (is_nd_pmem(dev))
519 return;
520 }
521 if (dev->parent && is_nd_blk(dev->parent) && probe) {
522 nd_region = to_nd_region(dev->parent);
523 nvdimm_bus_lock(dev);
524 if (nd_region->ns_seed == dev)
525 nd_region_create_blk_seed(nd_region);
526 nvdimm_bus_unlock(dev);
527 }
528 if (is_nd_btt(dev) && probe) {
529 struct nd_btt *nd_btt = to_nd_btt(dev);
530
531 nd_region = to_nd_region(dev->parent);
532 nvdimm_bus_lock(dev);
533 if (nd_region->btt_seed == dev)
534 nd_region_create_btt_seed(nd_region);
535 if (nd_region->ns_seed == &nd_btt->ndns->dev &&
536 is_nd_blk(dev->parent))
537 nd_region_create_blk_seed(nd_region);
538 nvdimm_bus_unlock(dev);
539 }
540 if (is_nd_pfn(dev) && probe) {
541 nd_region = to_nd_region(dev->parent);
542 nvdimm_bus_lock(dev);
543 if (nd_region->pfn_seed == dev)
544 nd_region_create_pfn_seed(nd_region);
545 nvdimm_bus_unlock(dev);
546 }
547 if (is_nd_dax(dev) && probe) {
548 nd_region = to_nd_region(dev->parent);
549 nvdimm_bus_lock(dev);
550 if (nd_region->dax_seed == dev)
551 nd_region_create_dax_seed(nd_region);
552 nvdimm_bus_unlock(dev);
553 }
554 }
555
556 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
557 {
558 nd_region_notify_driver_action(nvdimm_bus, dev, true);
559 }
560
561 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
562 {
563 nd_region_notify_driver_action(nvdimm_bus, dev, false);
564 }
565
566 static ssize_t mappingN(struct device *dev, char *buf, int n)
567 {
568 struct nd_region *nd_region = to_nd_region(dev);
569 struct nd_mapping *nd_mapping;
570 struct nvdimm *nvdimm;
571
572 if (n >= nd_region->ndr_mappings)
573 return -ENXIO;
574 nd_mapping = &nd_region->mapping[n];
575 nvdimm = nd_mapping->nvdimm;
576
577 return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
578 nd_mapping->start, nd_mapping->size);
579 }
580
581 #define REGION_MAPPING(idx) \
582 static ssize_t mapping##idx##_show(struct device *dev, \
583 struct device_attribute *attr, char *buf) \
584 { \
585 return mappingN(dev, buf, idx); \
586 } \
587 static DEVICE_ATTR_RO(mapping##idx)
588
589 /*
590 * 32 should be enough for a while, even in the presence of socket
591 * interleave a 32-way interleave set is a degenerate case.
592 */
593 REGION_MAPPING(0);
594 REGION_MAPPING(1);
595 REGION_MAPPING(2);
596 REGION_MAPPING(3);
597 REGION_MAPPING(4);
598 REGION_MAPPING(5);
599 REGION_MAPPING(6);
600 REGION_MAPPING(7);
601 REGION_MAPPING(8);
602 REGION_MAPPING(9);
603 REGION_MAPPING(10);
604 REGION_MAPPING(11);
605 REGION_MAPPING(12);
606 REGION_MAPPING(13);
607 REGION_MAPPING(14);
608 REGION_MAPPING(15);
609 REGION_MAPPING(16);
610 REGION_MAPPING(17);
611 REGION_MAPPING(18);
612 REGION_MAPPING(19);
613 REGION_MAPPING(20);
614 REGION_MAPPING(21);
615 REGION_MAPPING(22);
616 REGION_MAPPING(23);
617 REGION_MAPPING(24);
618 REGION_MAPPING(25);
619 REGION_MAPPING(26);
620 REGION_MAPPING(27);
621 REGION_MAPPING(28);
622 REGION_MAPPING(29);
623 REGION_MAPPING(30);
624 REGION_MAPPING(31);
625
626 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
627 {
628 struct device *dev = container_of(kobj, struct device, kobj);
629 struct nd_region *nd_region = to_nd_region(dev);
630
631 if (n < nd_region->ndr_mappings)
632 return a->mode;
633 return 0;
634 }
635
636 static struct attribute *mapping_attributes[] = {
637 &dev_attr_mapping0.attr,
638 &dev_attr_mapping1.attr,
639 &dev_attr_mapping2.attr,
640 &dev_attr_mapping3.attr,
641 &dev_attr_mapping4.attr,
642 &dev_attr_mapping5.attr,
643 &dev_attr_mapping6.attr,
644 &dev_attr_mapping7.attr,
645 &dev_attr_mapping8.attr,
646 &dev_attr_mapping9.attr,
647 &dev_attr_mapping10.attr,
648 &dev_attr_mapping11.attr,
649 &dev_attr_mapping12.attr,
650 &dev_attr_mapping13.attr,
651 &dev_attr_mapping14.attr,
652 &dev_attr_mapping15.attr,
653 &dev_attr_mapping16.attr,
654 &dev_attr_mapping17.attr,
655 &dev_attr_mapping18.attr,
656 &dev_attr_mapping19.attr,
657 &dev_attr_mapping20.attr,
658 &dev_attr_mapping21.attr,
659 &dev_attr_mapping22.attr,
660 &dev_attr_mapping23.attr,
661 &dev_attr_mapping24.attr,
662 &dev_attr_mapping25.attr,
663 &dev_attr_mapping26.attr,
664 &dev_attr_mapping27.attr,
665 &dev_attr_mapping28.attr,
666 &dev_attr_mapping29.attr,
667 &dev_attr_mapping30.attr,
668 &dev_attr_mapping31.attr,
669 NULL,
670 };
671
672 struct attribute_group nd_mapping_attribute_group = {
673 .is_visible = mapping_visible,
674 .attrs = mapping_attributes,
675 };
676 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
677
678 int nd_blk_region_init(struct nd_region *nd_region)
679 {
680 struct device *dev = &nd_region->dev;
681 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
682
683 if (!is_nd_blk(dev))
684 return 0;
685
686 if (nd_region->ndr_mappings < 1) {
687 dev_err(dev, "invalid BLK region\n");
688 return -ENXIO;
689 }
690
691 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
692 }
693
694 /**
695 * nd_region_acquire_lane - allocate and lock a lane
696 * @nd_region: region id and number of lanes possible
697 *
698 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
699 * We optimize for the common case where there are 256 lanes, one
700 * per-cpu. For larger systems we need to lock to share lanes. For now
701 * this implementation assumes the cost of maintaining an allocator for
702 * free lanes is on the order of the lock hold time, so it implements a
703 * static lane = cpu % num_lanes mapping.
704 *
705 * In the case of a BTT instance on top of a BLK namespace a lane may be
706 * acquired recursively. We lock on the first instance.
707 *
708 * In the case of a BTT instance on top of PMEM, we only acquire a lane
709 * for the BTT metadata updates.
710 */
711 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
712 {
713 unsigned int cpu, lane;
714
715 cpu = get_cpu();
716 if (nd_region->num_lanes < nr_cpu_ids) {
717 struct nd_percpu_lane *ndl_lock, *ndl_count;
718
719 lane = cpu % nd_region->num_lanes;
720 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
721 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
722 if (ndl_count->count++ == 0)
723 spin_lock(&ndl_lock->lock);
724 } else
725 lane = cpu;
726
727 return lane;
728 }
729 EXPORT_SYMBOL(nd_region_acquire_lane);
730
731 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
732 {
733 if (nd_region->num_lanes < nr_cpu_ids) {
734 unsigned int cpu = get_cpu();
735 struct nd_percpu_lane *ndl_lock, *ndl_count;
736
737 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
738 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
739 if (--ndl_count->count == 0)
740 spin_unlock(&ndl_lock->lock);
741 put_cpu();
742 }
743 put_cpu();
744 }
745 EXPORT_SYMBOL(nd_region_release_lane);
746
747 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
748 struct nd_region_desc *ndr_desc, struct device_type *dev_type,
749 const char *caller)
750 {
751 struct nd_region *nd_region;
752 struct device *dev;
753 void *region_buf;
754 unsigned int i;
755 int ro = 0;
756
757 for (i = 0; i < ndr_desc->num_mappings; i++) {
758 struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
759 struct nvdimm *nvdimm = nd_mapping->nvdimm;
760
761 if ((nd_mapping->start | nd_mapping->size) % SZ_4K) {
762 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
763 caller, dev_name(&nvdimm->dev), i);
764
765 return NULL;
766 }
767
768 if (nvdimm->flags & NDD_UNARMED)
769 ro = 1;
770 }
771
772 if (dev_type == &nd_blk_device_type) {
773 struct nd_blk_region_desc *ndbr_desc;
774 struct nd_blk_region *ndbr;
775
776 ndbr_desc = to_blk_region_desc(ndr_desc);
777 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
778 * ndr_desc->num_mappings,
779 GFP_KERNEL);
780 if (ndbr) {
781 nd_region = &ndbr->nd_region;
782 ndbr->enable = ndbr_desc->enable;
783 ndbr->do_io = ndbr_desc->do_io;
784 }
785 region_buf = ndbr;
786 } else {
787 nd_region = kzalloc(sizeof(struct nd_region)
788 + sizeof(struct nd_mapping)
789 * ndr_desc->num_mappings,
790 GFP_KERNEL);
791 region_buf = nd_region;
792 }
793
794 if (!region_buf)
795 return NULL;
796 nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
797 if (nd_region->id < 0)
798 goto err_id;
799
800 nd_region->lane = alloc_percpu(struct nd_percpu_lane);
801 if (!nd_region->lane)
802 goto err_percpu;
803
804 for (i = 0; i < nr_cpu_ids; i++) {
805 struct nd_percpu_lane *ndl;
806
807 ndl = per_cpu_ptr(nd_region->lane, i);
808 spin_lock_init(&ndl->lock);
809 ndl->count = 0;
810 }
811
812 memcpy(nd_region->mapping, ndr_desc->nd_mapping,
813 sizeof(struct nd_mapping) * ndr_desc->num_mappings);
814 for (i = 0; i < ndr_desc->num_mappings; i++) {
815 struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
816 struct nvdimm *nvdimm = nd_mapping->nvdimm;
817
818 get_device(&nvdimm->dev);
819 }
820 nd_region->ndr_mappings = ndr_desc->num_mappings;
821 nd_region->provider_data = ndr_desc->provider_data;
822 nd_region->nd_set = ndr_desc->nd_set;
823 nd_region->num_lanes = ndr_desc->num_lanes;
824 nd_region->flags = ndr_desc->flags;
825 nd_region->ro = ro;
826 nd_region->numa_node = ndr_desc->numa_node;
827 ida_init(&nd_region->ns_ida);
828 ida_init(&nd_region->btt_ida);
829 ida_init(&nd_region->pfn_ida);
830 ida_init(&nd_region->dax_ida);
831 dev = &nd_region->dev;
832 dev_set_name(dev, "region%d", nd_region->id);
833 dev->parent = &nvdimm_bus->dev;
834 dev->type = dev_type;
835 dev->groups = ndr_desc->attr_groups;
836 nd_region->ndr_size = resource_size(ndr_desc->res);
837 nd_region->ndr_start = ndr_desc->res->start;
838 nd_device_register(dev);
839
840 return nd_region;
841
842 err_percpu:
843 ida_simple_remove(&region_ida, nd_region->id);
844 err_id:
845 kfree(region_buf);
846 return NULL;
847 }
848
849 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
850 struct nd_region_desc *ndr_desc)
851 {
852 ndr_desc->num_lanes = ND_MAX_LANES;
853 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
854 __func__);
855 }
856 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
857
858 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
859 struct nd_region_desc *ndr_desc)
860 {
861 if (ndr_desc->num_mappings > 1)
862 return NULL;
863 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
864 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
865 __func__);
866 }
867 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
868
869 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
870 struct nd_region_desc *ndr_desc)
871 {
872 ndr_desc->num_lanes = ND_MAX_LANES;
873 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
874 __func__);
875 }
876 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
877
878 /**
879 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
880 * @nd_region: blk or interleaved pmem region
881 */
882 void nvdimm_flush(struct nd_region *nd_region)
883 {
884 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
885 int i, idx;
886
887 /*
888 * Try to encourage some diversity in flush hint addresses
889 * across cpus assuming a limited number of flush hints.
890 */
891 idx = this_cpu_read(flush_idx);
892 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
893
894 /*
895 * The first wmb() is needed to 'sfence' all previous writes
896 * such that they are architecturally visible for the platform
897 * buffer flush. Note that we've already arranged for pmem
898 * writes to avoid the cache via arch_memcpy_to_pmem(). The
899 * final wmb() ensures ordering for the NVDIMM flush write.
900 */
901 wmb();
902 for (i = 0; i < nd_region->ndr_mappings; i++)
903 if (ndrd->flush_wpq[i][0])
904 writeq(1, ndrd->flush_wpq[i][idx & ndrd->flush_mask]);
905 wmb();
906 }
907 EXPORT_SYMBOL_GPL(nvdimm_flush);
908
909 /**
910 * nvdimm_has_flush - determine write flushing requirements
911 * @nd_region: blk or interleaved pmem region
912 *
913 * Returns 1 if writes require flushing
914 * Returns 0 if writes do not require flushing
915 * Returns -ENXIO if flushing capability can not be determined
916 */
917 int nvdimm_has_flush(struct nd_region *nd_region)
918 {
919 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
920 int i;
921
922 /* no nvdimm == flushing capability unknown */
923 if (nd_region->ndr_mappings == 0)
924 return -ENXIO;
925
926 for (i = 0; i < nd_region->ndr_mappings; i++)
927 /* flush hints present, flushing required */
928 if (ndrd->flush_wpq[i][0])
929 return 1;
930
931 /*
932 * The platform defines dimm devices without hints, assume
933 * platform persistence mechanism like ADR
934 */
935 return 0;
936 }
937 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
938
939 void __exit nd_region_devs_exit(void)
940 {
941 ida_destroy(&region_ida);
942 }
This page took 0.052785 seconds and 5 git commands to generate.