mmc: sdhci-iproc: Clean up platform allocations if shdci init fails
[deliverable/linux.git] / drivers / nvmem / core.c
1 /*
2 * nvmem framework core.
3 *
4 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 and
9 * only version 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/regmap.h>
27 #include <linux/slab.h>
28
29 struct nvmem_device {
30 const char *name;
31 struct regmap *regmap;
32 struct module *owner;
33 struct device dev;
34 int stride;
35 int word_size;
36 int ncells;
37 int id;
38 int users;
39 size_t size;
40 bool read_only;
41 };
42
43 struct nvmem_cell {
44 const char *name;
45 int offset;
46 int bytes;
47 int bit_offset;
48 int nbits;
49 struct nvmem_device *nvmem;
50 struct list_head node;
51 };
52
53 static DEFINE_MUTEX(nvmem_mutex);
54 static DEFINE_IDA(nvmem_ida);
55
56 static LIST_HEAD(nvmem_cells);
57 static DEFINE_MUTEX(nvmem_cells_mutex);
58
59 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
60
61 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
62 struct bin_attribute *attr,
63 char *buf, loff_t pos, size_t count)
64 {
65 struct device *dev = container_of(kobj, struct device, kobj);
66 struct nvmem_device *nvmem = to_nvmem_device(dev);
67 int rc;
68
69 /* Stop the user from reading */
70 if (pos >= nvmem->size)
71 return 0;
72
73 if (count < nvmem->word_size)
74 return -EINVAL;
75
76 if (pos + count > nvmem->size)
77 count = nvmem->size - pos;
78
79 count = round_down(count, nvmem->word_size);
80
81 rc = regmap_raw_read(nvmem->regmap, pos, buf, count);
82
83 if (IS_ERR_VALUE(rc))
84 return rc;
85
86 return count;
87 }
88
89 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
90 struct bin_attribute *attr,
91 char *buf, loff_t pos, size_t count)
92 {
93 struct device *dev = container_of(kobj, struct device, kobj);
94 struct nvmem_device *nvmem = to_nvmem_device(dev);
95 int rc;
96
97 /* Stop the user from writing */
98 if (pos >= nvmem->size)
99 return 0;
100
101 if (count < nvmem->word_size)
102 return -EINVAL;
103
104 if (pos + count > nvmem->size)
105 count = nvmem->size - pos;
106
107 count = round_down(count, nvmem->word_size);
108
109 rc = regmap_raw_write(nvmem->regmap, pos, buf, count);
110
111 if (IS_ERR_VALUE(rc))
112 return rc;
113
114 return count;
115 }
116
117 /* default read/write permissions */
118 static struct bin_attribute bin_attr_rw_nvmem = {
119 .attr = {
120 .name = "nvmem",
121 .mode = S_IWUSR | S_IRUGO,
122 },
123 .read = bin_attr_nvmem_read,
124 .write = bin_attr_nvmem_write,
125 };
126
127 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
128 &bin_attr_rw_nvmem,
129 NULL,
130 };
131
132 static const struct attribute_group nvmem_bin_rw_group = {
133 .bin_attrs = nvmem_bin_rw_attributes,
134 };
135
136 static const struct attribute_group *nvmem_rw_dev_groups[] = {
137 &nvmem_bin_rw_group,
138 NULL,
139 };
140
141 /* read only permission */
142 static struct bin_attribute bin_attr_ro_nvmem = {
143 .attr = {
144 .name = "nvmem",
145 .mode = S_IRUGO,
146 },
147 .read = bin_attr_nvmem_read,
148 };
149
150 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
151 &bin_attr_ro_nvmem,
152 NULL,
153 };
154
155 static const struct attribute_group nvmem_bin_ro_group = {
156 .bin_attrs = nvmem_bin_ro_attributes,
157 };
158
159 static const struct attribute_group *nvmem_ro_dev_groups[] = {
160 &nvmem_bin_ro_group,
161 NULL,
162 };
163
164 static void nvmem_release(struct device *dev)
165 {
166 struct nvmem_device *nvmem = to_nvmem_device(dev);
167
168 ida_simple_remove(&nvmem_ida, nvmem->id);
169 kfree(nvmem);
170 }
171
172 static const struct device_type nvmem_provider_type = {
173 .release = nvmem_release,
174 };
175
176 static struct bus_type nvmem_bus_type = {
177 .name = "nvmem",
178 };
179
180 static int of_nvmem_match(struct device *dev, void *nvmem_np)
181 {
182 return dev->of_node == nvmem_np;
183 }
184
185 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
186 {
187 struct device *d;
188
189 if (!nvmem_np)
190 return NULL;
191
192 d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
193
194 if (!d)
195 return NULL;
196
197 return to_nvmem_device(d);
198 }
199
200 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
201 {
202 struct nvmem_cell *p;
203
204 list_for_each_entry(p, &nvmem_cells, node)
205 if (p && !strcmp(p->name, cell_id))
206 return p;
207
208 return NULL;
209 }
210
211 static void nvmem_cell_drop(struct nvmem_cell *cell)
212 {
213 mutex_lock(&nvmem_cells_mutex);
214 list_del(&cell->node);
215 mutex_unlock(&nvmem_cells_mutex);
216 kfree(cell);
217 }
218
219 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
220 {
221 struct nvmem_cell *cell;
222 struct list_head *p, *n;
223
224 list_for_each_safe(p, n, &nvmem_cells) {
225 cell = list_entry(p, struct nvmem_cell, node);
226 if (cell->nvmem == nvmem)
227 nvmem_cell_drop(cell);
228 }
229 }
230
231 static void nvmem_cell_add(struct nvmem_cell *cell)
232 {
233 mutex_lock(&nvmem_cells_mutex);
234 list_add_tail(&cell->node, &nvmem_cells);
235 mutex_unlock(&nvmem_cells_mutex);
236 }
237
238 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
239 const struct nvmem_cell_info *info,
240 struct nvmem_cell *cell)
241 {
242 cell->nvmem = nvmem;
243 cell->offset = info->offset;
244 cell->bytes = info->bytes;
245 cell->name = info->name;
246
247 cell->bit_offset = info->bit_offset;
248 cell->nbits = info->nbits;
249
250 if (cell->nbits)
251 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
252 BITS_PER_BYTE);
253
254 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
255 dev_err(&nvmem->dev,
256 "cell %s unaligned to nvmem stride %d\n",
257 cell->name, nvmem->stride);
258 return -EINVAL;
259 }
260
261 return 0;
262 }
263
264 static int nvmem_add_cells(struct nvmem_device *nvmem,
265 const struct nvmem_config *cfg)
266 {
267 struct nvmem_cell **cells;
268 const struct nvmem_cell_info *info = cfg->cells;
269 int i, rval;
270
271 cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL);
272 if (!cells)
273 return -ENOMEM;
274
275 for (i = 0; i < cfg->ncells; i++) {
276 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
277 if (!cells[i]) {
278 rval = -ENOMEM;
279 goto err;
280 }
281
282 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
283 if (IS_ERR_VALUE(rval)) {
284 kfree(cells[i]);
285 goto err;
286 }
287
288 nvmem_cell_add(cells[i]);
289 }
290
291 nvmem->ncells = cfg->ncells;
292 /* remove tmp array */
293 kfree(cells);
294
295 return 0;
296 err:
297 while (--i)
298 nvmem_cell_drop(cells[i]);
299
300 return rval;
301 }
302
303 /**
304 * nvmem_register() - Register a nvmem device for given nvmem_config.
305 * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
306 *
307 * @config: nvmem device configuration with which nvmem device is created.
308 *
309 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
310 * on success.
311 */
312
313 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
314 {
315 struct nvmem_device *nvmem;
316 struct device_node *np;
317 struct regmap *rm;
318 int rval;
319
320 if (!config->dev)
321 return ERR_PTR(-EINVAL);
322
323 rm = dev_get_regmap(config->dev, NULL);
324 if (!rm) {
325 dev_err(config->dev, "Regmap not found\n");
326 return ERR_PTR(-EINVAL);
327 }
328
329 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
330 if (!nvmem)
331 return ERR_PTR(-ENOMEM);
332
333 rval = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
334 if (rval < 0) {
335 kfree(nvmem);
336 return ERR_PTR(rval);
337 }
338
339 nvmem->id = rval;
340 nvmem->regmap = rm;
341 nvmem->owner = config->owner;
342 nvmem->stride = regmap_get_reg_stride(rm);
343 nvmem->word_size = regmap_get_val_bytes(rm);
344 nvmem->size = regmap_get_max_register(rm) + nvmem->stride;
345 nvmem->dev.type = &nvmem_provider_type;
346 nvmem->dev.bus = &nvmem_bus_type;
347 nvmem->dev.parent = config->dev;
348 np = config->dev->of_node;
349 nvmem->dev.of_node = np;
350 dev_set_name(&nvmem->dev, "%s%d",
351 config->name ? : "nvmem", config->id);
352
353 nvmem->read_only = of_property_read_bool(np, "read-only") |
354 config->read_only;
355
356 nvmem->dev.groups = nvmem->read_only ? nvmem_ro_dev_groups :
357 nvmem_rw_dev_groups;
358
359 device_initialize(&nvmem->dev);
360
361 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
362
363 rval = device_add(&nvmem->dev);
364 if (rval) {
365 ida_simple_remove(&nvmem_ida, nvmem->id);
366 kfree(nvmem);
367 return ERR_PTR(rval);
368 }
369
370 if (config->cells)
371 nvmem_add_cells(nvmem, config);
372
373 return nvmem;
374 }
375 EXPORT_SYMBOL_GPL(nvmem_register);
376
377 /**
378 * nvmem_unregister() - Unregister previously registered nvmem device
379 *
380 * @nvmem: Pointer to previously registered nvmem device.
381 *
382 * Return: Will be an negative on error or a zero on success.
383 */
384 int nvmem_unregister(struct nvmem_device *nvmem)
385 {
386 mutex_lock(&nvmem_mutex);
387 if (nvmem->users) {
388 mutex_unlock(&nvmem_mutex);
389 return -EBUSY;
390 }
391 mutex_unlock(&nvmem_mutex);
392
393 nvmem_device_remove_all_cells(nvmem);
394 device_del(&nvmem->dev);
395
396 return 0;
397 }
398 EXPORT_SYMBOL_GPL(nvmem_unregister);
399
400 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
401 struct nvmem_cell **cellp,
402 const char *cell_id)
403 {
404 struct nvmem_device *nvmem = NULL;
405
406 mutex_lock(&nvmem_mutex);
407
408 if (np) {
409 nvmem = of_nvmem_find(np);
410 if (!nvmem) {
411 mutex_unlock(&nvmem_mutex);
412 return ERR_PTR(-EPROBE_DEFER);
413 }
414 } else {
415 struct nvmem_cell *cell = nvmem_find_cell(cell_id);
416
417 if (cell) {
418 nvmem = cell->nvmem;
419 *cellp = cell;
420 }
421
422 if (!nvmem) {
423 mutex_unlock(&nvmem_mutex);
424 return ERR_PTR(-ENOENT);
425 }
426 }
427
428 nvmem->users++;
429 mutex_unlock(&nvmem_mutex);
430
431 if (!try_module_get(nvmem->owner)) {
432 dev_err(&nvmem->dev,
433 "could not increase module refcount for cell %s\n",
434 nvmem->name);
435
436 mutex_lock(&nvmem_mutex);
437 nvmem->users--;
438 mutex_unlock(&nvmem_mutex);
439
440 return ERR_PTR(-EINVAL);
441 }
442
443 return nvmem;
444 }
445
446 static void __nvmem_device_put(struct nvmem_device *nvmem)
447 {
448 module_put(nvmem->owner);
449 mutex_lock(&nvmem_mutex);
450 nvmem->users--;
451 mutex_unlock(&nvmem_mutex);
452 }
453
454 static int nvmem_match(struct device *dev, void *data)
455 {
456 return !strcmp(dev_name(dev), data);
457 }
458
459 static struct nvmem_device *nvmem_find(const char *name)
460 {
461 struct device *d;
462
463 d = bus_find_device(&nvmem_bus_type, NULL, (void *)name, nvmem_match);
464
465 if (!d)
466 return NULL;
467
468 return to_nvmem_device(d);
469 }
470
471 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
472 /**
473 * of_nvmem_device_get() - Get nvmem device from a given id
474 *
475 * @dev node: Device tree node that uses the nvmem device
476 * @id: nvmem name from nvmem-names property.
477 *
478 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
479 * on success.
480 */
481 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
482 {
483
484 struct device_node *nvmem_np;
485 int index;
486
487 index = of_property_match_string(np, "nvmem-names", id);
488
489 nvmem_np = of_parse_phandle(np, "nvmem", index);
490 if (!nvmem_np)
491 return ERR_PTR(-EINVAL);
492
493 return __nvmem_device_get(nvmem_np, NULL, NULL);
494 }
495 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
496 #endif
497
498 /**
499 * nvmem_device_get() - Get nvmem device from a given id
500 *
501 * @dev : Device that uses the nvmem device
502 * @id: nvmem name from nvmem-names property.
503 *
504 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
505 * on success.
506 */
507 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
508 {
509 if (dev->of_node) { /* try dt first */
510 struct nvmem_device *nvmem;
511
512 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
513
514 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
515 return nvmem;
516
517 }
518
519 return nvmem_find(dev_name);
520 }
521 EXPORT_SYMBOL_GPL(nvmem_device_get);
522
523 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
524 {
525 struct nvmem_device **nvmem = res;
526
527 if (WARN_ON(!nvmem || !*nvmem))
528 return 0;
529
530 return *nvmem == data;
531 }
532
533 static void devm_nvmem_device_release(struct device *dev, void *res)
534 {
535 nvmem_device_put(*(struct nvmem_device **)res);
536 }
537
538 /**
539 * devm_nvmem_device_put() - put alredy got nvmem device
540 *
541 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
542 * that needs to be released.
543 */
544 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
545 {
546 int ret;
547
548 ret = devres_release(dev, devm_nvmem_device_release,
549 devm_nvmem_device_match, nvmem);
550
551 WARN_ON(ret);
552 }
553 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
554
555 /**
556 * nvmem_device_put() - put alredy got nvmem device
557 *
558 * @nvmem: pointer to nvmem device that needs to be released.
559 */
560 void nvmem_device_put(struct nvmem_device *nvmem)
561 {
562 __nvmem_device_put(nvmem);
563 }
564 EXPORT_SYMBOL_GPL(nvmem_device_put);
565
566 /**
567 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
568 *
569 * @dev node: Device tree node that uses the nvmem cell
570 * @id: nvmem name in nvmems property.
571 *
572 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
573 * on success. The nvmem_cell will be freed by the automatically once the
574 * device is freed.
575 */
576 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
577 {
578 struct nvmem_device **ptr, *nvmem;
579
580 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
581 if (!ptr)
582 return ERR_PTR(-ENOMEM);
583
584 nvmem = nvmem_device_get(dev, id);
585 if (!IS_ERR(nvmem)) {
586 *ptr = nvmem;
587 devres_add(dev, ptr);
588 } else {
589 devres_free(ptr);
590 }
591
592 return nvmem;
593 }
594 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
595
596 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
597 {
598 struct nvmem_cell *cell = NULL;
599 struct nvmem_device *nvmem;
600
601 nvmem = __nvmem_device_get(NULL, &cell, cell_id);
602 if (IS_ERR(nvmem))
603 return ERR_CAST(nvmem);
604
605 return cell;
606 }
607
608 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
609 /**
610 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
611 *
612 * @dev node: Device tree node that uses the nvmem cell
613 * @id: nvmem cell name from nvmem-cell-names property.
614 *
615 * Return: Will be an ERR_PTR() on error or a valid pointer
616 * to a struct nvmem_cell. The nvmem_cell will be freed by the
617 * nvmem_cell_put().
618 */
619 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
620 const char *name)
621 {
622 struct device_node *cell_np, *nvmem_np;
623 struct nvmem_cell *cell;
624 struct nvmem_device *nvmem;
625 const __be32 *addr;
626 int rval, len, index;
627
628 index = of_property_match_string(np, "nvmem-cell-names", name);
629
630 cell_np = of_parse_phandle(np, "nvmem-cells", index);
631 if (!cell_np)
632 return ERR_PTR(-EINVAL);
633
634 nvmem_np = of_get_next_parent(cell_np);
635 if (!nvmem_np)
636 return ERR_PTR(-EINVAL);
637
638 nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
639 if (IS_ERR(nvmem))
640 return ERR_CAST(nvmem);
641
642 addr = of_get_property(cell_np, "reg", &len);
643 if (!addr || (len < 2 * sizeof(u32))) {
644 dev_err(&nvmem->dev, "nvmem: invalid reg on %s\n",
645 cell_np->full_name);
646 rval = -EINVAL;
647 goto err_mem;
648 }
649
650 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
651 if (!cell) {
652 rval = -ENOMEM;
653 goto err_mem;
654 }
655
656 cell->nvmem = nvmem;
657 cell->offset = be32_to_cpup(addr++);
658 cell->bytes = be32_to_cpup(addr);
659 cell->name = cell_np->name;
660
661 addr = of_get_property(cell_np, "bits", &len);
662 if (addr && len == (2 * sizeof(u32))) {
663 cell->bit_offset = be32_to_cpup(addr++);
664 cell->nbits = be32_to_cpup(addr);
665 }
666
667 if (cell->nbits)
668 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
669 BITS_PER_BYTE);
670
671 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
672 dev_err(&nvmem->dev,
673 "cell %s unaligned to nvmem stride %d\n",
674 cell->name, nvmem->stride);
675 rval = -EINVAL;
676 goto err_sanity;
677 }
678
679 nvmem_cell_add(cell);
680
681 return cell;
682
683 err_sanity:
684 kfree(cell);
685
686 err_mem:
687 __nvmem_device_put(nvmem);
688
689 return ERR_PTR(rval);
690 }
691 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
692 #endif
693
694 /**
695 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
696 *
697 * @dev node: Device tree node that uses the nvmem cell
698 * @id: nvmem cell name to get.
699 *
700 * Return: Will be an ERR_PTR() on error or a valid pointer
701 * to a struct nvmem_cell. The nvmem_cell will be freed by the
702 * nvmem_cell_put().
703 */
704 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
705 {
706 struct nvmem_cell *cell;
707
708 if (dev->of_node) { /* try dt first */
709 cell = of_nvmem_cell_get(dev->of_node, cell_id);
710 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
711 return cell;
712 }
713
714 return nvmem_cell_get_from_list(cell_id);
715 }
716 EXPORT_SYMBOL_GPL(nvmem_cell_get);
717
718 static void devm_nvmem_cell_release(struct device *dev, void *res)
719 {
720 nvmem_cell_put(*(struct nvmem_cell **)res);
721 }
722
723 /**
724 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
725 *
726 * @dev node: Device tree node that uses the nvmem cell
727 * @id: nvmem id in nvmem-names property.
728 *
729 * Return: Will be an ERR_PTR() on error or a valid pointer
730 * to a struct nvmem_cell. The nvmem_cell will be freed by the
731 * automatically once the device is freed.
732 */
733 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
734 {
735 struct nvmem_cell **ptr, *cell;
736
737 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
738 if (!ptr)
739 return ERR_PTR(-ENOMEM);
740
741 cell = nvmem_cell_get(dev, id);
742 if (!IS_ERR(cell)) {
743 *ptr = cell;
744 devres_add(dev, ptr);
745 } else {
746 devres_free(ptr);
747 }
748
749 return cell;
750 }
751 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
752
753 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
754 {
755 struct nvmem_cell **c = res;
756
757 if (WARN_ON(!c || !*c))
758 return 0;
759
760 return *c == data;
761 }
762
763 /**
764 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
765 * from devm_nvmem_cell_get.
766 *
767 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get()
768 */
769 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
770 {
771 int ret;
772
773 ret = devres_release(dev, devm_nvmem_cell_release,
774 devm_nvmem_cell_match, cell);
775
776 WARN_ON(ret);
777 }
778 EXPORT_SYMBOL(devm_nvmem_cell_put);
779
780 /**
781 * nvmem_cell_put() - Release previously allocated nvmem cell.
782 *
783 * @cell: Previously allocated nvmem cell by nvmem_cell_get()
784 */
785 void nvmem_cell_put(struct nvmem_cell *cell)
786 {
787 struct nvmem_device *nvmem = cell->nvmem;
788
789 __nvmem_device_put(nvmem);
790 nvmem_cell_drop(cell);
791 }
792 EXPORT_SYMBOL_GPL(nvmem_cell_put);
793
794 static inline void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell,
795 void *buf)
796 {
797 u8 *p, *b;
798 int i, bit_offset = cell->bit_offset;
799
800 p = b = buf;
801 if (bit_offset) {
802 /* First shift */
803 *b++ >>= bit_offset;
804
805 /* setup rest of the bytes if any */
806 for (i = 1; i < cell->bytes; i++) {
807 /* Get bits from next byte and shift them towards msb */
808 *p |= *b << (BITS_PER_BYTE - bit_offset);
809
810 p = b;
811 *b++ >>= bit_offset;
812 }
813
814 /* result fits in less bytes */
815 if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
816 *p-- = 0;
817 }
818 /* clear msb bits if any leftover in the last byte */
819 *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
820 }
821
822 static int __nvmem_cell_read(struct nvmem_device *nvmem,
823 struct nvmem_cell *cell,
824 void *buf, size_t *len)
825 {
826 int rc;
827
828 rc = regmap_raw_read(nvmem->regmap, cell->offset, buf, cell->bytes);
829
830 if (IS_ERR_VALUE(rc))
831 return rc;
832
833 /* shift bits in-place */
834 if (cell->bit_offset || cell->nbits)
835 nvmem_shift_read_buffer_in_place(cell, buf);
836
837 *len = cell->bytes;
838
839 return 0;
840 }
841
842 /**
843 * nvmem_cell_read() - Read a given nvmem cell
844 *
845 * @cell: nvmem cell to be read.
846 * @len: pointer to length of cell which will be populated on successful read.
847 *
848 * Return: ERR_PTR() on error or a valid pointer to a char * buffer on success.
849 * The buffer should be freed by the consumer with a kfree().
850 */
851 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
852 {
853 struct nvmem_device *nvmem = cell->nvmem;
854 u8 *buf;
855 int rc;
856
857 if (!nvmem || !nvmem->regmap)
858 return ERR_PTR(-EINVAL);
859
860 buf = kzalloc(cell->bytes, GFP_KERNEL);
861 if (!buf)
862 return ERR_PTR(-ENOMEM);
863
864 rc = __nvmem_cell_read(nvmem, cell, buf, len);
865 if (IS_ERR_VALUE(rc)) {
866 kfree(buf);
867 return ERR_PTR(rc);
868 }
869
870 return buf;
871 }
872 EXPORT_SYMBOL_GPL(nvmem_cell_read);
873
874 static inline void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
875 u8 *_buf, int len)
876 {
877 struct nvmem_device *nvmem = cell->nvmem;
878 int i, rc, nbits, bit_offset = cell->bit_offset;
879 u8 v, *p, *buf, *b, pbyte, pbits;
880
881 nbits = cell->nbits;
882 buf = kzalloc(cell->bytes, GFP_KERNEL);
883 if (!buf)
884 return ERR_PTR(-ENOMEM);
885
886 memcpy(buf, _buf, len);
887 p = b = buf;
888
889 if (bit_offset) {
890 pbyte = *b;
891 *b <<= bit_offset;
892
893 /* setup the first byte with lsb bits from nvmem */
894 rc = regmap_raw_read(nvmem->regmap, cell->offset, &v, 1);
895 *b++ |= GENMASK(bit_offset - 1, 0) & v;
896
897 /* setup rest of the byte if any */
898 for (i = 1; i < cell->bytes; i++) {
899 /* Get last byte bits and shift them towards lsb */
900 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
901 pbyte = *b;
902 p = b;
903 *b <<= bit_offset;
904 *b++ |= pbits;
905 }
906 }
907
908 /* if it's not end on byte boundary */
909 if ((nbits + bit_offset) % BITS_PER_BYTE) {
910 /* setup the last byte with msb bits from nvmem */
911 rc = regmap_raw_read(nvmem->regmap,
912 cell->offset + cell->bytes - 1, &v, 1);
913 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
914
915 }
916
917 return buf;
918 }
919
920 /**
921 * nvmem_cell_write() - Write to a given nvmem cell
922 *
923 * @cell: nvmem cell to be written.
924 * @buf: Buffer to be written.
925 * @len: length of buffer to be written to nvmem cell.
926 *
927 * Return: length of bytes written or negative on failure.
928 */
929 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
930 {
931 struct nvmem_device *nvmem = cell->nvmem;
932 int rc;
933
934 if (!nvmem || !nvmem->regmap || nvmem->read_only ||
935 (cell->bit_offset == 0 && len != cell->bytes))
936 return -EINVAL;
937
938 if (cell->bit_offset || cell->nbits) {
939 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
940 if (IS_ERR(buf))
941 return PTR_ERR(buf);
942 }
943
944 rc = regmap_raw_write(nvmem->regmap, cell->offset, buf, cell->bytes);
945
946 /* free the tmp buffer */
947 if (cell->bit_offset || cell->nbits)
948 kfree(buf);
949
950 if (IS_ERR_VALUE(rc))
951 return rc;
952
953 return len;
954 }
955 EXPORT_SYMBOL_GPL(nvmem_cell_write);
956
957 /**
958 * nvmem_device_cell_read() - Read a given nvmem device and cell
959 *
960 * @nvmem: nvmem device to read from.
961 * @info: nvmem cell info to be read.
962 * @buf: buffer pointer which will be populated on successful read.
963 *
964 * Return: length of successful bytes read on success and negative
965 * error code on error.
966 */
967 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
968 struct nvmem_cell_info *info, void *buf)
969 {
970 struct nvmem_cell cell;
971 int rc;
972 ssize_t len;
973
974 if (!nvmem || !nvmem->regmap)
975 return -EINVAL;
976
977 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
978 if (IS_ERR_VALUE(rc))
979 return rc;
980
981 rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
982 if (IS_ERR_VALUE(rc))
983 return rc;
984
985 return len;
986 }
987 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
988
989 /**
990 * nvmem_device_cell_write() - Write cell to a given nvmem device
991 *
992 * @nvmem: nvmem device to be written to.
993 * @info: nvmem cell info to be written
994 * @buf: buffer to be written to cell.
995 *
996 * Return: length of bytes written or negative error code on failure.
997 * */
998 int nvmem_device_cell_write(struct nvmem_device *nvmem,
999 struct nvmem_cell_info *info, void *buf)
1000 {
1001 struct nvmem_cell cell;
1002 int rc;
1003
1004 if (!nvmem || !nvmem->regmap)
1005 return -EINVAL;
1006
1007 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1008 if (IS_ERR_VALUE(rc))
1009 return rc;
1010
1011 return nvmem_cell_write(&cell, buf, cell.bytes);
1012 }
1013 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1014
1015 /**
1016 * nvmem_device_read() - Read from a given nvmem device
1017 *
1018 * @nvmem: nvmem device to read from.
1019 * @offset: offset in nvmem device.
1020 * @bytes: number of bytes to read.
1021 * @buf: buffer pointer which will be populated on successful read.
1022 *
1023 * Return: length of successful bytes read on success and negative
1024 * error code on error.
1025 */
1026 int nvmem_device_read(struct nvmem_device *nvmem,
1027 unsigned int offset,
1028 size_t bytes, void *buf)
1029 {
1030 int rc;
1031
1032 if (!nvmem || !nvmem->regmap)
1033 return -EINVAL;
1034
1035 rc = regmap_raw_read(nvmem->regmap, offset, buf, bytes);
1036
1037 if (IS_ERR_VALUE(rc))
1038 return rc;
1039
1040 return bytes;
1041 }
1042 EXPORT_SYMBOL_GPL(nvmem_device_read);
1043
1044 /**
1045 * nvmem_device_write() - Write cell to a given nvmem device
1046 *
1047 * @nvmem: nvmem device to be written to.
1048 * @offset: offset in nvmem device.
1049 * @bytes: number of bytes to write.
1050 * @buf: buffer to be written.
1051 *
1052 * Return: length of bytes written or negative error code on failure.
1053 * */
1054 int nvmem_device_write(struct nvmem_device *nvmem,
1055 unsigned int offset,
1056 size_t bytes, void *buf)
1057 {
1058 int rc;
1059
1060 if (!nvmem || !nvmem->regmap)
1061 return -EINVAL;
1062
1063 rc = regmap_raw_write(nvmem->regmap, offset, buf, bytes);
1064
1065 if (IS_ERR_VALUE(rc))
1066 return rc;
1067
1068
1069 return bytes;
1070 }
1071 EXPORT_SYMBOL_GPL(nvmem_device_write);
1072
1073 static int __init nvmem_init(void)
1074 {
1075 return bus_register(&nvmem_bus_type);
1076 }
1077
1078 static void __exit nvmem_exit(void)
1079 {
1080 bus_unregister(&nvmem_bus_type);
1081 }
1082
1083 subsys_initcall(nvmem_init);
1084 module_exit(nvmem_exit);
1085
1086 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1087 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1088 MODULE_DESCRIPTION("nvmem Driver Core");
1089 MODULE_LICENSE("GPL v2");
This page took 0.054185 seconds and 5 git commands to generate.