powerpc+of: Rename the drivers/of prom_* functions to of_*
[deliverable/linux.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/ctype.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/proc_fs.h>
26
27 /**
28 * struct alias_prop - Alias property in 'aliases' node
29 * @link: List node to link the structure in aliases_lookup list
30 * @alias: Alias property name
31 * @np: Pointer to device_node that the alias stands for
32 * @id: Index value from end of alias name
33 * @stem: Alias string without the index
34 *
35 * The structure represents one alias property of 'aliases' node as
36 * an entry in aliases_lookup list.
37 */
38 struct alias_prop {
39 struct list_head link;
40 const char *alias;
41 struct device_node *np;
42 int id;
43 char stem[0];
44 };
45
46 static LIST_HEAD(aliases_lookup);
47
48 struct device_node *allnodes;
49 struct device_node *of_chosen;
50 struct device_node *of_aliases;
51
52 static DEFINE_MUTEX(of_aliases_mutex);
53
54 /* use when traversing tree through the allnext, child, sibling,
55 * or parent members of struct device_node.
56 */
57 DEFINE_RWLOCK(devtree_lock);
58
59 int of_n_addr_cells(struct device_node *np)
60 {
61 const __be32 *ip;
62
63 do {
64 if (np->parent)
65 np = np->parent;
66 ip = of_get_property(np, "#address-cells", NULL);
67 if (ip)
68 return be32_to_cpup(ip);
69 } while (np->parent);
70 /* No #address-cells property for the root node */
71 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
72 }
73 EXPORT_SYMBOL(of_n_addr_cells);
74
75 int of_n_size_cells(struct device_node *np)
76 {
77 const __be32 *ip;
78
79 do {
80 if (np->parent)
81 np = np->parent;
82 ip = of_get_property(np, "#size-cells", NULL);
83 if (ip)
84 return be32_to_cpup(ip);
85 } while (np->parent);
86 /* No #size-cells property for the root node */
87 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
88 }
89 EXPORT_SYMBOL(of_n_size_cells);
90
91 #if defined(CONFIG_OF_DYNAMIC)
92 /**
93 * of_node_get - Increment refcount of a node
94 * @node: Node to inc refcount, NULL is supported to
95 * simplify writing of callers
96 *
97 * Returns node.
98 */
99 struct device_node *of_node_get(struct device_node *node)
100 {
101 if (node)
102 kref_get(&node->kref);
103 return node;
104 }
105 EXPORT_SYMBOL(of_node_get);
106
107 static inline struct device_node *kref_to_device_node(struct kref *kref)
108 {
109 return container_of(kref, struct device_node, kref);
110 }
111
112 /**
113 * of_node_release - release a dynamically allocated node
114 * @kref: kref element of the node to be released
115 *
116 * In of_node_put() this function is passed to kref_put()
117 * as the destructor.
118 */
119 static void of_node_release(struct kref *kref)
120 {
121 struct device_node *node = kref_to_device_node(kref);
122 struct property *prop = node->properties;
123
124 /* We should never be releasing nodes that haven't been detached. */
125 if (!of_node_check_flag(node, OF_DETACHED)) {
126 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
127 dump_stack();
128 kref_init(&node->kref);
129 return;
130 }
131
132 if (!of_node_check_flag(node, OF_DYNAMIC))
133 return;
134
135 while (prop) {
136 struct property *next = prop->next;
137 kfree(prop->name);
138 kfree(prop->value);
139 kfree(prop);
140 prop = next;
141
142 if (!prop) {
143 prop = node->deadprops;
144 node->deadprops = NULL;
145 }
146 }
147 kfree(node->full_name);
148 kfree(node->data);
149 kfree(node);
150 }
151
152 /**
153 * of_node_put - Decrement refcount of a node
154 * @node: Node to dec refcount, NULL is supported to
155 * simplify writing of callers
156 *
157 */
158 void of_node_put(struct device_node *node)
159 {
160 if (node)
161 kref_put(&node->kref, of_node_release);
162 }
163 EXPORT_SYMBOL(of_node_put);
164 #endif /* CONFIG_OF_DYNAMIC */
165
166 struct property *of_find_property(const struct device_node *np,
167 const char *name,
168 int *lenp)
169 {
170 struct property *pp;
171
172 if (!np)
173 return NULL;
174
175 read_lock(&devtree_lock);
176 for (pp = np->properties; pp; pp = pp->next) {
177 if (of_prop_cmp(pp->name, name) == 0) {
178 if (lenp)
179 *lenp = pp->length;
180 break;
181 }
182 }
183 read_unlock(&devtree_lock);
184
185 return pp;
186 }
187 EXPORT_SYMBOL(of_find_property);
188
189 /**
190 * of_find_all_nodes - Get next node in global list
191 * @prev: Previous node or NULL to start iteration
192 * of_node_put() will be called on it
193 *
194 * Returns a node pointer with refcount incremented, use
195 * of_node_put() on it when done.
196 */
197 struct device_node *of_find_all_nodes(struct device_node *prev)
198 {
199 struct device_node *np;
200
201 read_lock(&devtree_lock);
202 np = prev ? prev->allnext : allnodes;
203 for (; np != NULL; np = np->allnext)
204 if (of_node_get(np))
205 break;
206 of_node_put(prev);
207 read_unlock(&devtree_lock);
208 return np;
209 }
210 EXPORT_SYMBOL(of_find_all_nodes);
211
212 /*
213 * Find a property with a given name for a given node
214 * and return the value.
215 */
216 const void *of_get_property(const struct device_node *np, const char *name,
217 int *lenp)
218 {
219 struct property *pp = of_find_property(np, name, lenp);
220
221 return pp ? pp->value : NULL;
222 }
223 EXPORT_SYMBOL(of_get_property);
224
225 /** Checks if the given "compat" string matches one of the strings in
226 * the device's "compatible" property
227 */
228 int of_device_is_compatible(const struct device_node *device,
229 const char *compat)
230 {
231 const char* cp;
232 int cplen, l;
233
234 cp = of_get_property(device, "compatible", &cplen);
235 if (cp == NULL)
236 return 0;
237 while (cplen > 0) {
238 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
239 return 1;
240 l = strlen(cp) + 1;
241 cp += l;
242 cplen -= l;
243 }
244
245 return 0;
246 }
247 EXPORT_SYMBOL(of_device_is_compatible);
248
249 /**
250 * of_machine_is_compatible - Test root of device tree for a given compatible value
251 * @compat: compatible string to look for in root node's compatible property.
252 *
253 * Returns true if the root node has the given value in its
254 * compatible property.
255 */
256 int of_machine_is_compatible(const char *compat)
257 {
258 struct device_node *root;
259 int rc = 0;
260
261 root = of_find_node_by_path("/");
262 if (root) {
263 rc = of_device_is_compatible(root, compat);
264 of_node_put(root);
265 }
266 return rc;
267 }
268 EXPORT_SYMBOL(of_machine_is_compatible);
269
270 /**
271 * of_device_is_available - check if a device is available for use
272 *
273 * @device: Node to check for availability
274 *
275 * Returns 1 if the status property is absent or set to "okay" or "ok",
276 * 0 otherwise
277 */
278 int of_device_is_available(const struct device_node *device)
279 {
280 const char *status;
281 int statlen;
282
283 status = of_get_property(device, "status", &statlen);
284 if (status == NULL)
285 return 1;
286
287 if (statlen > 0) {
288 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
289 return 1;
290 }
291
292 return 0;
293 }
294 EXPORT_SYMBOL(of_device_is_available);
295
296 /**
297 * of_get_parent - Get a node's parent if any
298 * @node: Node to get parent
299 *
300 * Returns a node pointer with refcount incremented, use
301 * of_node_put() on it when done.
302 */
303 struct device_node *of_get_parent(const struct device_node *node)
304 {
305 struct device_node *np;
306
307 if (!node)
308 return NULL;
309
310 read_lock(&devtree_lock);
311 np = of_node_get(node->parent);
312 read_unlock(&devtree_lock);
313 return np;
314 }
315 EXPORT_SYMBOL(of_get_parent);
316
317 /**
318 * of_get_next_parent - Iterate to a node's parent
319 * @node: Node to get parent of
320 *
321 * This is like of_get_parent() except that it drops the
322 * refcount on the passed node, making it suitable for iterating
323 * through a node's parents.
324 *
325 * Returns a node pointer with refcount incremented, use
326 * of_node_put() on it when done.
327 */
328 struct device_node *of_get_next_parent(struct device_node *node)
329 {
330 struct device_node *parent;
331
332 if (!node)
333 return NULL;
334
335 read_lock(&devtree_lock);
336 parent = of_node_get(node->parent);
337 of_node_put(node);
338 read_unlock(&devtree_lock);
339 return parent;
340 }
341
342 /**
343 * of_get_next_child - Iterate a node childs
344 * @node: parent node
345 * @prev: previous child of the parent node, or NULL to get first
346 *
347 * Returns a node pointer with refcount incremented, use
348 * of_node_put() on it when done.
349 */
350 struct device_node *of_get_next_child(const struct device_node *node,
351 struct device_node *prev)
352 {
353 struct device_node *next;
354
355 read_lock(&devtree_lock);
356 next = prev ? prev->sibling : node->child;
357 for (; next; next = next->sibling)
358 if (of_node_get(next))
359 break;
360 of_node_put(prev);
361 read_unlock(&devtree_lock);
362 return next;
363 }
364 EXPORT_SYMBOL(of_get_next_child);
365
366 /**
367 * of_get_next_available_child - Find the next available child node
368 * @node: parent node
369 * @prev: previous child of the parent node, or NULL to get first
370 *
371 * This function is like of_get_next_child(), except that it
372 * automatically skips any disabled nodes (i.e. status = "disabled").
373 */
374 struct device_node *of_get_next_available_child(const struct device_node *node,
375 struct device_node *prev)
376 {
377 struct device_node *next;
378
379 read_lock(&devtree_lock);
380 next = prev ? prev->sibling : node->child;
381 for (; next; next = next->sibling) {
382 if (!of_device_is_available(next))
383 continue;
384 if (of_node_get(next))
385 break;
386 }
387 of_node_put(prev);
388 read_unlock(&devtree_lock);
389 return next;
390 }
391 EXPORT_SYMBOL(of_get_next_available_child);
392
393 /**
394 * of_get_child_by_name - Find the child node by name for a given parent
395 * @node: parent node
396 * @name: child name to look for.
397 *
398 * This function looks for child node for given matching name
399 *
400 * Returns a node pointer if found, with refcount incremented, use
401 * of_node_put() on it when done.
402 * Returns NULL if node is not found.
403 */
404 struct device_node *of_get_child_by_name(const struct device_node *node,
405 const char *name)
406 {
407 struct device_node *child;
408
409 for_each_child_of_node(node, child)
410 if (child->name && (of_node_cmp(child->name, name) == 0))
411 break;
412 return child;
413 }
414 EXPORT_SYMBOL(of_get_child_by_name);
415
416 /**
417 * of_find_node_by_path - Find a node matching a full OF path
418 * @path: The full path to match
419 *
420 * Returns a node pointer with refcount incremented, use
421 * of_node_put() on it when done.
422 */
423 struct device_node *of_find_node_by_path(const char *path)
424 {
425 struct device_node *np = allnodes;
426
427 read_lock(&devtree_lock);
428 for (; np; np = np->allnext) {
429 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
430 && of_node_get(np))
431 break;
432 }
433 read_unlock(&devtree_lock);
434 return np;
435 }
436 EXPORT_SYMBOL(of_find_node_by_path);
437
438 /**
439 * of_find_node_by_name - Find a node by its "name" property
440 * @from: The node to start searching from or NULL, the node
441 * you pass will not be searched, only the next one
442 * will; typically, you pass what the previous call
443 * returned. of_node_put() will be called on it
444 * @name: The name string to match against
445 *
446 * Returns a node pointer with refcount incremented, use
447 * of_node_put() on it when done.
448 */
449 struct device_node *of_find_node_by_name(struct device_node *from,
450 const char *name)
451 {
452 struct device_node *np;
453
454 read_lock(&devtree_lock);
455 np = from ? from->allnext : allnodes;
456 for (; np; np = np->allnext)
457 if (np->name && (of_node_cmp(np->name, name) == 0)
458 && of_node_get(np))
459 break;
460 of_node_put(from);
461 read_unlock(&devtree_lock);
462 return np;
463 }
464 EXPORT_SYMBOL(of_find_node_by_name);
465
466 /**
467 * of_find_node_by_type - Find a node by its "device_type" property
468 * @from: The node to start searching from, or NULL to start searching
469 * the entire device tree. The node you pass will not be
470 * searched, only the next one will; typically, you pass
471 * what the previous call returned. of_node_put() will be
472 * called on from for you.
473 * @type: The type string to match against
474 *
475 * Returns a node pointer with refcount incremented, use
476 * of_node_put() on it when done.
477 */
478 struct device_node *of_find_node_by_type(struct device_node *from,
479 const char *type)
480 {
481 struct device_node *np;
482
483 read_lock(&devtree_lock);
484 np = from ? from->allnext : allnodes;
485 for (; np; np = np->allnext)
486 if (np->type && (of_node_cmp(np->type, type) == 0)
487 && of_node_get(np))
488 break;
489 of_node_put(from);
490 read_unlock(&devtree_lock);
491 return np;
492 }
493 EXPORT_SYMBOL(of_find_node_by_type);
494
495 /**
496 * of_find_compatible_node - Find a node based on type and one of the
497 * tokens in its "compatible" property
498 * @from: The node to start searching from or NULL, the node
499 * you pass will not be searched, only the next one
500 * will; typically, you pass what the previous call
501 * returned. of_node_put() will be called on it
502 * @type: The type string to match "device_type" or NULL to ignore
503 * @compatible: The string to match to one of the tokens in the device
504 * "compatible" list.
505 *
506 * Returns a node pointer with refcount incremented, use
507 * of_node_put() on it when done.
508 */
509 struct device_node *of_find_compatible_node(struct device_node *from,
510 const char *type, const char *compatible)
511 {
512 struct device_node *np;
513
514 read_lock(&devtree_lock);
515 np = from ? from->allnext : allnodes;
516 for (; np; np = np->allnext) {
517 if (type
518 && !(np->type && (of_node_cmp(np->type, type) == 0)))
519 continue;
520 if (of_device_is_compatible(np, compatible) && of_node_get(np))
521 break;
522 }
523 of_node_put(from);
524 read_unlock(&devtree_lock);
525 return np;
526 }
527 EXPORT_SYMBOL(of_find_compatible_node);
528
529 /**
530 * of_find_node_with_property - Find a node which has a property with
531 * the given name.
532 * @from: The node to start searching from or NULL, the node
533 * you pass will not be searched, only the next one
534 * will; typically, you pass what the previous call
535 * returned. of_node_put() will be called on it
536 * @prop_name: The name of the property to look for.
537 *
538 * Returns a node pointer with refcount incremented, use
539 * of_node_put() on it when done.
540 */
541 struct device_node *of_find_node_with_property(struct device_node *from,
542 const char *prop_name)
543 {
544 struct device_node *np;
545 struct property *pp;
546
547 read_lock(&devtree_lock);
548 np = from ? from->allnext : allnodes;
549 for (; np; np = np->allnext) {
550 for (pp = np->properties; pp; pp = pp->next) {
551 if (of_prop_cmp(pp->name, prop_name) == 0) {
552 of_node_get(np);
553 goto out;
554 }
555 }
556 }
557 out:
558 of_node_put(from);
559 read_unlock(&devtree_lock);
560 return np;
561 }
562 EXPORT_SYMBOL(of_find_node_with_property);
563
564 /**
565 * of_match_node - Tell if an device_node has a matching of_match structure
566 * @matches: array of of device match structures to search in
567 * @node: the of device structure to match against
568 *
569 * Low level utility function used by device matching.
570 */
571 const struct of_device_id *of_match_node(const struct of_device_id *matches,
572 const struct device_node *node)
573 {
574 if (!matches)
575 return NULL;
576
577 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
578 int match = 1;
579 if (matches->name[0])
580 match &= node->name
581 && !strcmp(matches->name, node->name);
582 if (matches->type[0])
583 match &= node->type
584 && !strcmp(matches->type, node->type);
585 if (matches->compatible[0])
586 match &= of_device_is_compatible(node,
587 matches->compatible);
588 if (match)
589 return matches;
590 matches++;
591 }
592 return NULL;
593 }
594 EXPORT_SYMBOL(of_match_node);
595
596 /**
597 * of_find_matching_node - Find a node based on an of_device_id match
598 * table.
599 * @from: The node to start searching from or NULL, the node
600 * you pass will not be searched, only the next one
601 * will; typically, you pass what the previous call
602 * returned. of_node_put() will be called on it
603 * @matches: array of of device match structures to search in
604 *
605 * Returns a node pointer with refcount incremented, use
606 * of_node_put() on it when done.
607 */
608 struct device_node *of_find_matching_node(struct device_node *from,
609 const struct of_device_id *matches)
610 {
611 struct device_node *np;
612
613 read_lock(&devtree_lock);
614 np = from ? from->allnext : allnodes;
615 for (; np; np = np->allnext) {
616 if (of_match_node(matches, np) && of_node_get(np))
617 break;
618 }
619 of_node_put(from);
620 read_unlock(&devtree_lock);
621 return np;
622 }
623 EXPORT_SYMBOL(of_find_matching_node);
624
625 /**
626 * of_modalias_node - Lookup appropriate modalias for a device node
627 * @node: pointer to a device tree node
628 * @modalias: Pointer to buffer that modalias value will be copied into
629 * @len: Length of modalias value
630 *
631 * Based on the value of the compatible property, this routine will attempt
632 * to choose an appropriate modalias value for a particular device tree node.
633 * It does this by stripping the manufacturer prefix (as delimited by a ',')
634 * from the first entry in the compatible list property.
635 *
636 * This routine returns 0 on success, <0 on failure.
637 */
638 int of_modalias_node(struct device_node *node, char *modalias, int len)
639 {
640 const char *compatible, *p;
641 int cplen;
642
643 compatible = of_get_property(node, "compatible", &cplen);
644 if (!compatible || strlen(compatible) > cplen)
645 return -ENODEV;
646 p = strchr(compatible, ',');
647 strlcpy(modalias, p ? p + 1 : compatible, len);
648 return 0;
649 }
650 EXPORT_SYMBOL_GPL(of_modalias_node);
651
652 /**
653 * of_find_node_by_phandle - Find a node given a phandle
654 * @handle: phandle of the node to find
655 *
656 * Returns a node pointer with refcount incremented, use
657 * of_node_put() on it when done.
658 */
659 struct device_node *of_find_node_by_phandle(phandle handle)
660 {
661 struct device_node *np;
662
663 read_lock(&devtree_lock);
664 for (np = allnodes; np; np = np->allnext)
665 if (np->phandle == handle)
666 break;
667 of_node_get(np);
668 read_unlock(&devtree_lock);
669 return np;
670 }
671 EXPORT_SYMBOL(of_find_node_by_phandle);
672
673 /**
674 * of_property_read_u32_array - Find and read an array of 32 bit integers
675 * from a property.
676 *
677 * @np: device node from which the property value is to be read.
678 * @propname: name of the property to be searched.
679 * @out_value: pointer to return value, modified only if return value is 0.
680 *
681 * Search for a property in a device node and read 32-bit value(s) from
682 * it. Returns 0 on success, -EINVAL if the property does not exist,
683 * -ENODATA if property does not have a value, and -EOVERFLOW if the
684 * property data isn't large enough.
685 *
686 * The out_value is modified only if a valid u32 value can be decoded.
687 */
688 int of_property_read_u32_array(const struct device_node *np,
689 const char *propname, u32 *out_values,
690 size_t sz)
691 {
692 struct property *prop = of_find_property(np, propname, NULL);
693 const __be32 *val;
694
695 if (!prop)
696 return -EINVAL;
697 if (!prop->value)
698 return -ENODATA;
699 if ((sz * sizeof(*out_values)) > prop->length)
700 return -EOVERFLOW;
701
702 val = prop->value;
703 while (sz--)
704 *out_values++ = be32_to_cpup(val++);
705 return 0;
706 }
707 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
708
709 /**
710 * of_property_read_u64 - Find and read a 64 bit integer from a property
711 * @np: device node from which the property value is to be read.
712 * @propname: name of the property to be searched.
713 * @out_value: pointer to return value, modified only if return value is 0.
714 *
715 * Search for a property in a device node and read a 64-bit value from
716 * it. Returns 0 on success, -EINVAL if the property does not exist,
717 * -ENODATA if property does not have a value, and -EOVERFLOW if the
718 * property data isn't large enough.
719 *
720 * The out_value is modified only if a valid u64 value can be decoded.
721 */
722 int of_property_read_u64(const struct device_node *np, const char *propname,
723 u64 *out_value)
724 {
725 struct property *prop = of_find_property(np, propname, NULL);
726
727 if (!prop)
728 return -EINVAL;
729 if (!prop->value)
730 return -ENODATA;
731 if (sizeof(*out_value) > prop->length)
732 return -EOVERFLOW;
733 *out_value = of_read_number(prop->value, 2);
734 return 0;
735 }
736 EXPORT_SYMBOL_GPL(of_property_read_u64);
737
738 /**
739 * of_property_read_string - Find and read a string from a property
740 * @np: device node from which the property value is to be read.
741 * @propname: name of the property to be searched.
742 * @out_string: pointer to null terminated return string, modified only if
743 * return value is 0.
744 *
745 * Search for a property in a device tree node and retrieve a null
746 * terminated string value (pointer to data, not a copy). Returns 0 on
747 * success, -EINVAL if the property does not exist, -ENODATA if property
748 * does not have a value, and -EILSEQ if the string is not null-terminated
749 * within the length of the property data.
750 *
751 * The out_string pointer is modified only if a valid string can be decoded.
752 */
753 int of_property_read_string(struct device_node *np, const char *propname,
754 const char **out_string)
755 {
756 struct property *prop = of_find_property(np, propname, NULL);
757 if (!prop)
758 return -EINVAL;
759 if (!prop->value)
760 return -ENODATA;
761 if (strnlen(prop->value, prop->length) >= prop->length)
762 return -EILSEQ;
763 *out_string = prop->value;
764 return 0;
765 }
766 EXPORT_SYMBOL_GPL(of_property_read_string);
767
768 /**
769 * of_property_read_string_index - Find and read a string from a multiple
770 * strings property.
771 * @np: device node from which the property value is to be read.
772 * @propname: name of the property to be searched.
773 * @index: index of the string in the list of strings
774 * @out_string: pointer to null terminated return string, modified only if
775 * return value is 0.
776 *
777 * Search for a property in a device tree node and retrieve a null
778 * terminated string value (pointer to data, not a copy) in the list of strings
779 * contained in that property.
780 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
781 * property does not have a value, and -EILSEQ if the string is not
782 * null-terminated within the length of the property data.
783 *
784 * The out_string pointer is modified only if a valid string can be decoded.
785 */
786 int of_property_read_string_index(struct device_node *np, const char *propname,
787 int index, const char **output)
788 {
789 struct property *prop = of_find_property(np, propname, NULL);
790 int i = 0;
791 size_t l = 0, total = 0;
792 const char *p;
793
794 if (!prop)
795 return -EINVAL;
796 if (!prop->value)
797 return -ENODATA;
798 if (strnlen(prop->value, prop->length) >= prop->length)
799 return -EILSEQ;
800
801 p = prop->value;
802
803 for (i = 0; total < prop->length; total += l, p += l) {
804 l = strlen(p) + 1;
805 if (i++ == index) {
806 *output = p;
807 return 0;
808 }
809 }
810 return -ENODATA;
811 }
812 EXPORT_SYMBOL_GPL(of_property_read_string_index);
813
814 /**
815 * of_property_match_string() - Find string in a list and return index
816 * @np: pointer to node containing string list property
817 * @propname: string list property name
818 * @string: pointer to string to search for in string list
819 *
820 * This function searches a string list property and returns the index
821 * of a specific string value.
822 */
823 int of_property_match_string(struct device_node *np, const char *propname,
824 const char *string)
825 {
826 struct property *prop = of_find_property(np, propname, NULL);
827 size_t l;
828 int i;
829 const char *p, *end;
830
831 if (!prop)
832 return -EINVAL;
833 if (!prop->value)
834 return -ENODATA;
835
836 p = prop->value;
837 end = p + prop->length;
838
839 for (i = 0; p < end; i++, p += l) {
840 l = strlen(p) + 1;
841 if (p + l > end)
842 return -EILSEQ;
843 pr_debug("comparing %s with %s\n", string, p);
844 if (strcmp(string, p) == 0)
845 return i; /* Found it; return index */
846 }
847 return -ENODATA;
848 }
849 EXPORT_SYMBOL_GPL(of_property_match_string);
850
851 /**
852 * of_property_count_strings - Find and return the number of strings from a
853 * multiple strings property.
854 * @np: device node from which the property value is to be read.
855 * @propname: name of the property to be searched.
856 *
857 * Search for a property in a device tree node and retrieve the number of null
858 * terminated string contain in it. Returns the number of strings on
859 * success, -EINVAL if the property does not exist, -ENODATA if property
860 * does not have a value, and -EILSEQ if the string is not null-terminated
861 * within the length of the property data.
862 */
863 int of_property_count_strings(struct device_node *np, const char *propname)
864 {
865 struct property *prop = of_find_property(np, propname, NULL);
866 int i = 0;
867 size_t l = 0, total = 0;
868 const char *p;
869
870 if (!prop)
871 return -EINVAL;
872 if (!prop->value)
873 return -ENODATA;
874 if (strnlen(prop->value, prop->length) >= prop->length)
875 return -EILSEQ;
876
877 p = prop->value;
878
879 for (i = 0; total < prop->length; total += l, p += l, i++)
880 l = strlen(p) + 1;
881
882 return i;
883 }
884 EXPORT_SYMBOL_GPL(of_property_count_strings);
885
886 /**
887 * of_parse_phandle - Resolve a phandle property to a device_node pointer
888 * @np: Pointer to device node holding phandle property
889 * @phandle_name: Name of property holding a phandle value
890 * @index: For properties holding a table of phandles, this is the index into
891 * the table
892 *
893 * Returns the device_node pointer with refcount incremented. Use
894 * of_node_put() on it when done.
895 */
896 struct device_node *
897 of_parse_phandle(struct device_node *np, const char *phandle_name, int index)
898 {
899 const __be32 *phandle;
900 int size;
901
902 phandle = of_get_property(np, phandle_name, &size);
903 if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
904 return NULL;
905
906 return of_find_node_by_phandle(be32_to_cpup(phandle + index));
907 }
908 EXPORT_SYMBOL(of_parse_phandle);
909
910 /**
911 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
912 * @np: pointer to a device tree node containing a list
913 * @list_name: property name that contains a list
914 * @cells_name: property name that specifies phandles' arguments count
915 * @index: index of a phandle to parse out
916 * @out_args: optional pointer to output arguments structure (will be filled)
917 *
918 * This function is useful to parse lists of phandles and their arguments.
919 * Returns 0 on success and fills out_args, on error returns appropriate
920 * errno value.
921 *
922 * Caller is responsible to call of_node_put() on the returned out_args->node
923 * pointer.
924 *
925 * Example:
926 *
927 * phandle1: node1 {
928 * #list-cells = <2>;
929 * }
930 *
931 * phandle2: node2 {
932 * #list-cells = <1>;
933 * }
934 *
935 * node3 {
936 * list = <&phandle1 1 2 &phandle2 3>;
937 * }
938 *
939 * To get a device_node of the `node2' node you may call this:
940 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
941 */
942 int of_parse_phandle_with_args(struct device_node *np, const char *list_name,
943 const char *cells_name, int index,
944 struct of_phandle_args *out_args)
945 {
946 const __be32 *list, *list_end;
947 int size, cur_index = 0;
948 uint32_t count = 0;
949 struct device_node *node = NULL;
950 phandle phandle;
951
952 /* Retrieve the phandle list property */
953 list = of_get_property(np, list_name, &size);
954 if (!list)
955 return -ENOENT;
956 list_end = list + size / sizeof(*list);
957
958 /* Loop over the phandles until all the requested entry is found */
959 while (list < list_end) {
960 count = 0;
961
962 /*
963 * If phandle is 0, then it is an empty entry with no
964 * arguments. Skip forward to the next entry.
965 */
966 phandle = be32_to_cpup(list++);
967 if (phandle) {
968 /*
969 * Find the provider node and parse the #*-cells
970 * property to determine the argument length
971 */
972 node = of_find_node_by_phandle(phandle);
973 if (!node) {
974 pr_err("%s: could not find phandle\n",
975 np->full_name);
976 break;
977 }
978 if (of_property_read_u32(node, cells_name, &count)) {
979 pr_err("%s: could not get %s for %s\n",
980 np->full_name, cells_name,
981 node->full_name);
982 break;
983 }
984
985 /*
986 * Make sure that the arguments actually fit in the
987 * remaining property data length
988 */
989 if (list + count > list_end) {
990 pr_err("%s: arguments longer than property\n",
991 np->full_name);
992 break;
993 }
994 }
995
996 /*
997 * All of the error cases above bail out of the loop, so at
998 * this point, the parsing is successful. If the requested
999 * index matches, then fill the out_args structure and return,
1000 * or return -ENOENT for an empty entry.
1001 */
1002 if (cur_index == index) {
1003 if (!phandle)
1004 return -ENOENT;
1005
1006 if (out_args) {
1007 int i;
1008 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1009 count = MAX_PHANDLE_ARGS;
1010 out_args->np = node;
1011 out_args->args_count = count;
1012 for (i = 0; i < count; i++)
1013 out_args->args[i] = be32_to_cpup(list++);
1014 }
1015 return 0;
1016 }
1017
1018 of_node_put(node);
1019 node = NULL;
1020 list += count;
1021 cur_index++;
1022 }
1023
1024 /* Loop exited without finding a valid entry; return an error */
1025 if (node)
1026 of_node_put(node);
1027 return -EINVAL;
1028 }
1029 EXPORT_SYMBOL(of_parse_phandle_with_args);
1030
1031 #if defined(CONFIG_OF_DYNAMIC)
1032 static int of_property_notify(int action, struct device_node *np,
1033 struct property *prop)
1034 {
1035 struct of_prop_reconfig pr;
1036
1037 pr.dn = np;
1038 pr.prop = prop;
1039 return of_reconfig_notify(action, &pr);
1040 }
1041 #else
1042 static int of_property_notify(int action, struct device_node *np,
1043 struct property *prop)
1044 {
1045 return 0;
1046 }
1047 #endif
1048
1049 /**
1050 * of_add_property - Add a property to a node
1051 */
1052 int of_add_property(struct device_node *np, struct property *prop)
1053 {
1054 struct property **next;
1055 unsigned long flags;
1056 int rc;
1057
1058 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1059 if (rc)
1060 return rc;
1061
1062 prop->next = NULL;
1063 write_lock_irqsave(&devtree_lock, flags);
1064 next = &np->properties;
1065 while (*next) {
1066 if (strcmp(prop->name, (*next)->name) == 0) {
1067 /* duplicate ! don't insert it */
1068 write_unlock_irqrestore(&devtree_lock, flags);
1069 return -1;
1070 }
1071 next = &(*next)->next;
1072 }
1073 *next = prop;
1074 write_unlock_irqrestore(&devtree_lock, flags);
1075
1076 #ifdef CONFIG_PROC_DEVICETREE
1077 /* try to add to proc as well if it was initialized */
1078 if (np->pde)
1079 proc_device_tree_add_prop(np->pde, prop);
1080 #endif /* CONFIG_PROC_DEVICETREE */
1081
1082 return 0;
1083 }
1084
1085 /**
1086 * of_remove_property - Remove a property from a node.
1087 *
1088 * Note that we don't actually remove it, since we have given out
1089 * who-knows-how-many pointers to the data using get-property.
1090 * Instead we just move the property to the "dead properties"
1091 * list, so it won't be found any more.
1092 */
1093 int of_remove_property(struct device_node *np, struct property *prop)
1094 {
1095 struct property **next;
1096 unsigned long flags;
1097 int found = 0;
1098 int rc;
1099
1100 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1101 if (rc)
1102 return rc;
1103
1104 write_lock_irqsave(&devtree_lock, flags);
1105 next = &np->properties;
1106 while (*next) {
1107 if (*next == prop) {
1108 /* found the node */
1109 *next = prop->next;
1110 prop->next = np->deadprops;
1111 np->deadprops = prop;
1112 found = 1;
1113 break;
1114 }
1115 next = &(*next)->next;
1116 }
1117 write_unlock_irqrestore(&devtree_lock, flags);
1118
1119 if (!found)
1120 return -ENODEV;
1121
1122 #ifdef CONFIG_PROC_DEVICETREE
1123 /* try to remove the proc node as well */
1124 if (np->pde)
1125 proc_device_tree_remove_prop(np->pde, prop);
1126 #endif /* CONFIG_PROC_DEVICETREE */
1127
1128 return 0;
1129 }
1130
1131 /*
1132 * of_update_property - Update a property in a node, if the property does
1133 * not exist, add it.
1134 *
1135 * Note that we don't actually remove it, since we have given out
1136 * who-knows-how-many pointers to the data using get-property.
1137 * Instead we just move the property to the "dead properties" list,
1138 * and add the new property to the property list
1139 */
1140 int of_update_property(struct device_node *np, struct property *newprop)
1141 {
1142 struct property **next, *oldprop;
1143 unsigned long flags;
1144 int rc, found = 0;
1145
1146 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1147 if (rc)
1148 return rc;
1149
1150 if (!newprop->name)
1151 return -EINVAL;
1152
1153 oldprop = of_find_property(np, newprop->name, NULL);
1154 if (!oldprop)
1155 return of_add_property(np, newprop);
1156
1157 write_lock_irqsave(&devtree_lock, flags);
1158 next = &np->properties;
1159 while (*next) {
1160 if (*next == oldprop) {
1161 /* found the node */
1162 newprop->next = oldprop->next;
1163 *next = newprop;
1164 oldprop->next = np->deadprops;
1165 np->deadprops = oldprop;
1166 found = 1;
1167 break;
1168 }
1169 next = &(*next)->next;
1170 }
1171 write_unlock_irqrestore(&devtree_lock, flags);
1172
1173 if (!found)
1174 return -ENODEV;
1175
1176 #ifdef CONFIG_PROC_DEVICETREE
1177 /* try to add to proc as well if it was initialized */
1178 if (np->pde)
1179 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1180 #endif /* CONFIG_PROC_DEVICETREE */
1181
1182 return 0;
1183 }
1184
1185 #if defined(CONFIG_OF_DYNAMIC)
1186 /*
1187 * Support for dynamic device trees.
1188 *
1189 * On some platforms, the device tree can be manipulated at runtime.
1190 * The routines in this section support adding, removing and changing
1191 * device tree nodes.
1192 */
1193
1194 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1195
1196 int of_reconfig_notifier_register(struct notifier_block *nb)
1197 {
1198 return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1199 }
1200
1201 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1202 {
1203 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1204 }
1205
1206 int of_reconfig_notify(unsigned long action, void *p)
1207 {
1208 int rc;
1209
1210 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1211 return notifier_to_errno(rc);
1212 }
1213
1214 #ifdef CONFIG_PROC_DEVICETREE
1215 static void of_add_proc_dt_entry(struct device_node *dn)
1216 {
1217 struct proc_dir_entry *ent;
1218
1219 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1220 if (ent)
1221 proc_device_tree_add_node(dn, ent);
1222 }
1223 #else
1224 static void of_add_proc_dt_entry(struct device_node *dn)
1225 {
1226 return;
1227 }
1228 #endif
1229
1230 /**
1231 * of_attach_node - Plug a device node into the tree and global list.
1232 */
1233 int of_attach_node(struct device_node *np)
1234 {
1235 unsigned long flags;
1236 int rc;
1237
1238 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1239 if (rc)
1240 return rc;
1241
1242 write_lock_irqsave(&devtree_lock, flags);
1243 np->sibling = np->parent->child;
1244 np->allnext = allnodes;
1245 np->parent->child = np;
1246 allnodes = np;
1247 write_unlock_irqrestore(&devtree_lock, flags);
1248
1249 of_add_proc_dt_entry(np);
1250 return 0;
1251 }
1252
1253 #ifdef CONFIG_PROC_DEVICETREE
1254 static void of_remove_proc_dt_entry(struct device_node *dn)
1255 {
1256 struct device_node *parent = dn->parent;
1257 struct property *prop = dn->properties;
1258
1259 while (prop) {
1260 remove_proc_entry(prop->name, dn->pde);
1261 prop = prop->next;
1262 }
1263
1264 if (dn->pde)
1265 remove_proc_entry(dn->pde->name, parent->pde);
1266 }
1267 #else
1268 static void of_remove_proc_dt_entry(struct device_node *dn)
1269 {
1270 return;
1271 }
1272 #endif
1273
1274 /**
1275 * of_detach_node - "Unplug" a node from the device tree.
1276 *
1277 * The caller must hold a reference to the node. The memory associated with
1278 * the node is not freed until its refcount goes to zero.
1279 */
1280 int of_detach_node(struct device_node *np)
1281 {
1282 struct device_node *parent;
1283 unsigned long flags;
1284 int rc = 0;
1285
1286 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1287 if (rc)
1288 return rc;
1289
1290 write_lock_irqsave(&devtree_lock, flags);
1291
1292 if (of_node_check_flag(np, OF_DETACHED)) {
1293 /* someone already detached it */
1294 write_unlock_irqrestore(&devtree_lock, flags);
1295 return rc;
1296 }
1297
1298 parent = np->parent;
1299 if (!parent) {
1300 write_unlock_irqrestore(&devtree_lock, flags);
1301 return rc;
1302 }
1303
1304 if (allnodes == np)
1305 allnodes = np->allnext;
1306 else {
1307 struct device_node *prev;
1308 for (prev = allnodes;
1309 prev->allnext != np;
1310 prev = prev->allnext)
1311 ;
1312 prev->allnext = np->allnext;
1313 }
1314
1315 if (parent->child == np)
1316 parent->child = np->sibling;
1317 else {
1318 struct device_node *prevsib;
1319 for (prevsib = np->parent->child;
1320 prevsib->sibling != np;
1321 prevsib = prevsib->sibling)
1322 ;
1323 prevsib->sibling = np->sibling;
1324 }
1325
1326 of_node_set_flag(np, OF_DETACHED);
1327 write_unlock_irqrestore(&devtree_lock, flags);
1328
1329 of_remove_proc_dt_entry(np);
1330 return rc;
1331 }
1332 #endif /* defined(CONFIG_OF_DYNAMIC) */
1333
1334 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1335 int id, const char *stem, int stem_len)
1336 {
1337 ap->np = np;
1338 ap->id = id;
1339 strncpy(ap->stem, stem, stem_len);
1340 ap->stem[stem_len] = 0;
1341 list_add_tail(&ap->link, &aliases_lookup);
1342 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1343 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1344 }
1345
1346 /**
1347 * of_alias_scan - Scan all properties of 'aliases' node
1348 *
1349 * The function scans all the properties of 'aliases' node and populate
1350 * the the global lookup table with the properties. It returns the
1351 * number of alias_prop found, or error code in error case.
1352 *
1353 * @dt_alloc: An allocator that provides a virtual address to memory
1354 * for the resulting tree
1355 */
1356 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1357 {
1358 struct property *pp;
1359
1360 of_chosen = of_find_node_by_path("/chosen");
1361 if (of_chosen == NULL)
1362 of_chosen = of_find_node_by_path("/chosen@0");
1363 of_aliases = of_find_node_by_path("/aliases");
1364 if (!of_aliases)
1365 return;
1366
1367 for_each_property_of_node(of_aliases, pp) {
1368 const char *start = pp->name;
1369 const char *end = start + strlen(start);
1370 struct device_node *np;
1371 struct alias_prop *ap;
1372 int id, len;
1373
1374 /* Skip those we do not want to proceed */
1375 if (!strcmp(pp->name, "name") ||
1376 !strcmp(pp->name, "phandle") ||
1377 !strcmp(pp->name, "linux,phandle"))
1378 continue;
1379
1380 np = of_find_node_by_path(pp->value);
1381 if (!np)
1382 continue;
1383
1384 /* walk the alias backwards to extract the id and work out
1385 * the 'stem' string */
1386 while (isdigit(*(end-1)) && end > start)
1387 end--;
1388 len = end - start;
1389
1390 if (kstrtoint(end, 10, &id) < 0)
1391 continue;
1392
1393 /* Allocate an alias_prop with enough space for the stem */
1394 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1395 if (!ap)
1396 continue;
1397 ap->alias = start;
1398 of_alias_add(ap, np, id, start, len);
1399 }
1400 }
1401
1402 /**
1403 * of_alias_get_id - Get alias id for the given device_node
1404 * @np: Pointer to the given device_node
1405 * @stem: Alias stem of the given device_node
1406 *
1407 * The function travels the lookup table to get alias id for the given
1408 * device_node and alias stem. It returns the alias id if find it.
1409 */
1410 int of_alias_get_id(struct device_node *np, const char *stem)
1411 {
1412 struct alias_prop *app;
1413 int id = -ENODEV;
1414
1415 mutex_lock(&of_aliases_mutex);
1416 list_for_each_entry(app, &aliases_lookup, link) {
1417 if (strcmp(app->stem, stem) != 0)
1418 continue;
1419
1420 if (np == app->np) {
1421 id = app->id;
1422 break;
1423 }
1424 }
1425 mutex_unlock(&of_aliases_mutex);
1426
1427 return id;
1428 }
1429 EXPORT_SYMBOL_GPL(of_alias_get_id);
1430
1431 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1432 u32 *pu)
1433 {
1434 const void *curv = cur;
1435
1436 if (!prop)
1437 return NULL;
1438
1439 if (!cur) {
1440 curv = prop->value;
1441 goto out_val;
1442 }
1443
1444 curv += sizeof(*cur);
1445 if (curv >= prop->value + prop->length)
1446 return NULL;
1447
1448 out_val:
1449 *pu = be32_to_cpup(curv);
1450 return curv;
1451 }
1452 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1453
1454 const char *of_prop_next_string(struct property *prop, const char *cur)
1455 {
1456 const void *curv = cur;
1457
1458 if (!prop)
1459 return NULL;
1460
1461 if (!cur)
1462 return prop->value;
1463
1464 curv += strlen(cur) + 1;
1465 if (curv >= prop->value + prop->length)
1466 return NULL;
1467
1468 return curv;
1469 }
1470 EXPORT_SYMBOL_GPL(of_prop_next_string);
This page took 0.151629 seconds and 5 git commands to generate.