of: search the best compatible match first in __of_match_node()
[deliverable/linux.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26 #include <linux/proc_fs.h>
27
28 #include "of_private.h"
29
30 LIST_HEAD(aliases_lookup);
31
32 struct device_node *of_allnodes;
33 EXPORT_SYMBOL(of_allnodes);
34 struct device_node *of_chosen;
35 struct device_node *of_aliases;
36 static struct device_node *of_stdout;
37
38 DEFINE_MUTEX(of_aliases_mutex);
39
40 /* use when traversing tree through the allnext, child, sibling,
41 * or parent members of struct device_node.
42 */
43 DEFINE_RAW_SPINLOCK(devtree_lock);
44
45 int of_n_addr_cells(struct device_node *np)
46 {
47 const __be32 *ip;
48
49 do {
50 if (np->parent)
51 np = np->parent;
52 ip = of_get_property(np, "#address-cells", NULL);
53 if (ip)
54 return be32_to_cpup(ip);
55 } while (np->parent);
56 /* No #address-cells property for the root node */
57 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
58 }
59 EXPORT_SYMBOL(of_n_addr_cells);
60
61 int of_n_size_cells(struct device_node *np)
62 {
63 const __be32 *ip;
64
65 do {
66 if (np->parent)
67 np = np->parent;
68 ip = of_get_property(np, "#size-cells", NULL);
69 if (ip)
70 return be32_to_cpup(ip);
71 } while (np->parent);
72 /* No #size-cells property for the root node */
73 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_size_cells);
76
77 #ifdef CONFIG_NUMA
78 int __weak of_node_to_nid(struct device_node *np)
79 {
80 return numa_node_id();
81 }
82 #endif
83
84 #if defined(CONFIG_OF_DYNAMIC)
85 /**
86 * of_node_get - Increment refcount of a node
87 * @node: Node to inc refcount, NULL is supported to
88 * simplify writing of callers
89 *
90 * Returns node.
91 */
92 struct device_node *of_node_get(struct device_node *node)
93 {
94 if (node)
95 kref_get(&node->kref);
96 return node;
97 }
98 EXPORT_SYMBOL(of_node_get);
99
100 static inline struct device_node *kref_to_device_node(struct kref *kref)
101 {
102 return container_of(kref, struct device_node, kref);
103 }
104
105 /**
106 * of_node_release - release a dynamically allocated node
107 * @kref: kref element of the node to be released
108 *
109 * In of_node_put() this function is passed to kref_put()
110 * as the destructor.
111 */
112 static void of_node_release(struct kref *kref)
113 {
114 struct device_node *node = kref_to_device_node(kref);
115 struct property *prop = node->properties;
116
117 /* We should never be releasing nodes that haven't been detached. */
118 if (!of_node_check_flag(node, OF_DETACHED)) {
119 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
120 dump_stack();
121 kref_init(&node->kref);
122 return;
123 }
124
125 if (!of_node_check_flag(node, OF_DYNAMIC))
126 return;
127
128 while (prop) {
129 struct property *next = prop->next;
130 kfree(prop->name);
131 kfree(prop->value);
132 kfree(prop);
133 prop = next;
134
135 if (!prop) {
136 prop = node->deadprops;
137 node->deadprops = NULL;
138 }
139 }
140 kfree(node->full_name);
141 kfree(node->data);
142 kfree(node);
143 }
144
145 /**
146 * of_node_put - Decrement refcount of a node
147 * @node: Node to dec refcount, NULL is supported to
148 * simplify writing of callers
149 *
150 */
151 void of_node_put(struct device_node *node)
152 {
153 if (node)
154 kref_put(&node->kref, of_node_release);
155 }
156 EXPORT_SYMBOL(of_node_put);
157 #endif /* CONFIG_OF_DYNAMIC */
158
159 static struct property *__of_find_property(const struct device_node *np,
160 const char *name, int *lenp)
161 {
162 struct property *pp;
163
164 if (!np)
165 return NULL;
166
167 for (pp = np->properties; pp; pp = pp->next) {
168 if (of_prop_cmp(pp->name, name) == 0) {
169 if (lenp)
170 *lenp = pp->length;
171 break;
172 }
173 }
174
175 return pp;
176 }
177
178 struct property *of_find_property(const struct device_node *np,
179 const char *name,
180 int *lenp)
181 {
182 struct property *pp;
183 unsigned long flags;
184
185 raw_spin_lock_irqsave(&devtree_lock, flags);
186 pp = __of_find_property(np, name, lenp);
187 raw_spin_unlock_irqrestore(&devtree_lock, flags);
188
189 return pp;
190 }
191 EXPORT_SYMBOL(of_find_property);
192
193 /**
194 * of_find_all_nodes - Get next node in global list
195 * @prev: Previous node or NULL to start iteration
196 * of_node_put() will be called on it
197 *
198 * Returns a node pointer with refcount incremented, use
199 * of_node_put() on it when done.
200 */
201 struct device_node *of_find_all_nodes(struct device_node *prev)
202 {
203 struct device_node *np;
204 unsigned long flags;
205
206 raw_spin_lock_irqsave(&devtree_lock, flags);
207 np = prev ? prev->allnext : of_allnodes;
208 for (; np != NULL; np = np->allnext)
209 if (of_node_get(np))
210 break;
211 of_node_put(prev);
212 raw_spin_unlock_irqrestore(&devtree_lock, flags);
213 return np;
214 }
215 EXPORT_SYMBOL(of_find_all_nodes);
216
217 /*
218 * Find a property with a given name for a given node
219 * and return the value.
220 */
221 static const void *__of_get_property(const struct device_node *np,
222 const char *name, int *lenp)
223 {
224 struct property *pp = __of_find_property(np, name, lenp);
225
226 return pp ? pp->value : NULL;
227 }
228
229 /*
230 * Find a property with a given name for a given node
231 * and return the value.
232 */
233 const void *of_get_property(const struct device_node *np, const char *name,
234 int *lenp)
235 {
236 struct property *pp = of_find_property(np, name, lenp);
237
238 return pp ? pp->value : NULL;
239 }
240 EXPORT_SYMBOL(of_get_property);
241
242 /*
243 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
244 *
245 * @cpu: logical cpu index of a core/thread
246 * @phys_id: physical identifier of a core/thread
247 *
248 * CPU logical to physical index mapping is architecture specific.
249 * However this __weak function provides a default match of physical
250 * id to logical cpu index. phys_id provided here is usually values read
251 * from the device tree which must match the hardware internal registers.
252 *
253 * Returns true if the physical identifier and the logical cpu index
254 * correspond to the same core/thread, false otherwise.
255 */
256 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
257 {
258 return (u32)phys_id == cpu;
259 }
260
261 /**
262 * Checks if the given "prop_name" property holds the physical id of the
263 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
264 * NULL, local thread number within the core is returned in it.
265 */
266 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
267 const char *prop_name, int cpu, unsigned int *thread)
268 {
269 const __be32 *cell;
270 int ac, prop_len, tid;
271 u64 hwid;
272
273 ac = of_n_addr_cells(cpun);
274 cell = of_get_property(cpun, prop_name, &prop_len);
275 if (!cell || !ac)
276 return false;
277 prop_len /= sizeof(*cell) * ac;
278 for (tid = 0; tid < prop_len; tid++) {
279 hwid = of_read_number(cell, ac);
280 if (arch_match_cpu_phys_id(cpu, hwid)) {
281 if (thread)
282 *thread = tid;
283 return true;
284 }
285 cell += ac;
286 }
287 return false;
288 }
289
290 /*
291 * arch_find_n_match_cpu_physical_id - See if the given device node is
292 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
293 * else false. If 'thread' is non-NULL, the local thread number within the
294 * core is returned in it.
295 */
296 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
297 int cpu, unsigned int *thread)
298 {
299 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
300 * for thread ids on PowerPC. If it doesn't exist fallback to
301 * standard "reg" property.
302 */
303 if (IS_ENABLED(CONFIG_PPC) &&
304 __of_find_n_match_cpu_property(cpun,
305 "ibm,ppc-interrupt-server#s",
306 cpu, thread))
307 return true;
308
309 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
310 return true;
311
312 return false;
313 }
314
315 /**
316 * of_get_cpu_node - Get device node associated with the given logical CPU
317 *
318 * @cpu: CPU number(logical index) for which device node is required
319 * @thread: if not NULL, local thread number within the physical core is
320 * returned
321 *
322 * The main purpose of this function is to retrieve the device node for the
323 * given logical CPU index. It should be used to initialize the of_node in
324 * cpu device. Once of_node in cpu device is populated, all the further
325 * references can use that instead.
326 *
327 * CPU logical to physical index mapping is architecture specific and is built
328 * before booting secondary cores. This function uses arch_match_cpu_phys_id
329 * which can be overridden by architecture specific implementation.
330 *
331 * Returns a node pointer for the logical cpu if found, else NULL.
332 */
333 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
334 {
335 struct device_node *cpun;
336
337 for_each_node_by_type(cpun, "cpu") {
338 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
339 return cpun;
340 }
341 return NULL;
342 }
343 EXPORT_SYMBOL(of_get_cpu_node);
344
345 /** Checks if the given "compat" string matches one of the strings in
346 * the device's "compatible" property
347 */
348 static int __of_device_is_compatible(const struct device_node *device,
349 const char *compat)
350 {
351 const char* cp;
352 int cplen, l;
353
354 cp = __of_get_property(device, "compatible", &cplen);
355 if (cp == NULL)
356 return 0;
357 while (cplen > 0) {
358 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
359 return 1;
360 l = strlen(cp) + 1;
361 cp += l;
362 cplen -= l;
363 }
364
365 return 0;
366 }
367
368 /** Checks if the given "compat" string matches one of the strings in
369 * the device's "compatible" property
370 */
371 int of_device_is_compatible(const struct device_node *device,
372 const char *compat)
373 {
374 unsigned long flags;
375 int res;
376
377 raw_spin_lock_irqsave(&devtree_lock, flags);
378 res = __of_device_is_compatible(device, compat);
379 raw_spin_unlock_irqrestore(&devtree_lock, flags);
380 return res;
381 }
382 EXPORT_SYMBOL(of_device_is_compatible);
383
384 /**
385 * of_machine_is_compatible - Test root of device tree for a given compatible value
386 * @compat: compatible string to look for in root node's compatible property.
387 *
388 * Returns true if the root node has the given value in its
389 * compatible property.
390 */
391 int of_machine_is_compatible(const char *compat)
392 {
393 struct device_node *root;
394 int rc = 0;
395
396 root = of_find_node_by_path("/");
397 if (root) {
398 rc = of_device_is_compatible(root, compat);
399 of_node_put(root);
400 }
401 return rc;
402 }
403 EXPORT_SYMBOL(of_machine_is_compatible);
404
405 /**
406 * __of_device_is_available - check if a device is available for use
407 *
408 * @device: Node to check for availability, with locks already held
409 *
410 * Returns 1 if the status property is absent or set to "okay" or "ok",
411 * 0 otherwise
412 */
413 static int __of_device_is_available(const struct device_node *device)
414 {
415 const char *status;
416 int statlen;
417
418 if (!device)
419 return 0;
420
421 status = __of_get_property(device, "status", &statlen);
422 if (status == NULL)
423 return 1;
424
425 if (statlen > 0) {
426 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
427 return 1;
428 }
429
430 return 0;
431 }
432
433 /**
434 * of_device_is_available - check if a device is available for use
435 *
436 * @device: Node to check for availability
437 *
438 * Returns 1 if the status property is absent or set to "okay" or "ok",
439 * 0 otherwise
440 */
441 int of_device_is_available(const struct device_node *device)
442 {
443 unsigned long flags;
444 int res;
445
446 raw_spin_lock_irqsave(&devtree_lock, flags);
447 res = __of_device_is_available(device);
448 raw_spin_unlock_irqrestore(&devtree_lock, flags);
449 return res;
450
451 }
452 EXPORT_SYMBOL(of_device_is_available);
453
454 /**
455 * of_get_parent - Get a node's parent if any
456 * @node: Node to get parent
457 *
458 * Returns a node pointer with refcount incremented, use
459 * of_node_put() on it when done.
460 */
461 struct device_node *of_get_parent(const struct device_node *node)
462 {
463 struct device_node *np;
464 unsigned long flags;
465
466 if (!node)
467 return NULL;
468
469 raw_spin_lock_irqsave(&devtree_lock, flags);
470 np = of_node_get(node->parent);
471 raw_spin_unlock_irqrestore(&devtree_lock, flags);
472 return np;
473 }
474 EXPORT_SYMBOL(of_get_parent);
475
476 /**
477 * of_get_next_parent - Iterate to a node's parent
478 * @node: Node to get parent of
479 *
480 * This is like of_get_parent() except that it drops the
481 * refcount on the passed node, making it suitable for iterating
482 * through a node's parents.
483 *
484 * Returns a node pointer with refcount incremented, use
485 * of_node_put() on it when done.
486 */
487 struct device_node *of_get_next_parent(struct device_node *node)
488 {
489 struct device_node *parent;
490 unsigned long flags;
491
492 if (!node)
493 return NULL;
494
495 raw_spin_lock_irqsave(&devtree_lock, flags);
496 parent = of_node_get(node->parent);
497 of_node_put(node);
498 raw_spin_unlock_irqrestore(&devtree_lock, flags);
499 return parent;
500 }
501 EXPORT_SYMBOL(of_get_next_parent);
502
503 /**
504 * of_get_next_child - Iterate a node childs
505 * @node: parent node
506 * @prev: previous child of the parent node, or NULL to get first
507 *
508 * Returns a node pointer with refcount incremented, use
509 * of_node_put() on it when done.
510 */
511 struct device_node *of_get_next_child(const struct device_node *node,
512 struct device_node *prev)
513 {
514 struct device_node *next;
515 unsigned long flags;
516
517 raw_spin_lock_irqsave(&devtree_lock, flags);
518 next = prev ? prev->sibling : node->child;
519 for (; next; next = next->sibling)
520 if (of_node_get(next))
521 break;
522 of_node_put(prev);
523 raw_spin_unlock_irqrestore(&devtree_lock, flags);
524 return next;
525 }
526 EXPORT_SYMBOL(of_get_next_child);
527
528 /**
529 * of_get_next_available_child - Find the next available child node
530 * @node: parent node
531 * @prev: previous child of the parent node, or NULL to get first
532 *
533 * This function is like of_get_next_child(), except that it
534 * automatically skips any disabled nodes (i.e. status = "disabled").
535 */
536 struct device_node *of_get_next_available_child(const struct device_node *node,
537 struct device_node *prev)
538 {
539 struct device_node *next;
540 unsigned long flags;
541
542 raw_spin_lock_irqsave(&devtree_lock, flags);
543 next = prev ? prev->sibling : node->child;
544 for (; next; next = next->sibling) {
545 if (!__of_device_is_available(next))
546 continue;
547 if (of_node_get(next))
548 break;
549 }
550 of_node_put(prev);
551 raw_spin_unlock_irqrestore(&devtree_lock, flags);
552 return next;
553 }
554 EXPORT_SYMBOL(of_get_next_available_child);
555
556 /**
557 * of_get_child_by_name - Find the child node by name for a given parent
558 * @node: parent node
559 * @name: child name to look for.
560 *
561 * This function looks for child node for given matching name
562 *
563 * Returns a node pointer if found, with refcount incremented, use
564 * of_node_put() on it when done.
565 * Returns NULL if node is not found.
566 */
567 struct device_node *of_get_child_by_name(const struct device_node *node,
568 const char *name)
569 {
570 struct device_node *child;
571
572 for_each_child_of_node(node, child)
573 if (child->name && (of_node_cmp(child->name, name) == 0))
574 break;
575 return child;
576 }
577 EXPORT_SYMBOL(of_get_child_by_name);
578
579 /**
580 * of_find_node_by_path - Find a node matching a full OF path
581 * @path: The full path to match
582 *
583 * Returns a node pointer with refcount incremented, use
584 * of_node_put() on it when done.
585 */
586 struct device_node *of_find_node_by_path(const char *path)
587 {
588 struct device_node *np = of_allnodes;
589 unsigned long flags;
590
591 raw_spin_lock_irqsave(&devtree_lock, flags);
592 for (; np; np = np->allnext) {
593 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
594 && of_node_get(np))
595 break;
596 }
597 raw_spin_unlock_irqrestore(&devtree_lock, flags);
598 return np;
599 }
600 EXPORT_SYMBOL(of_find_node_by_path);
601
602 /**
603 * of_find_node_by_name - Find a node by its "name" property
604 * @from: The node to start searching from or NULL, the node
605 * you pass will not be searched, only the next one
606 * will; typically, you pass what the previous call
607 * returned. of_node_put() will be called on it
608 * @name: The name string to match against
609 *
610 * Returns a node pointer with refcount incremented, use
611 * of_node_put() on it when done.
612 */
613 struct device_node *of_find_node_by_name(struct device_node *from,
614 const char *name)
615 {
616 struct device_node *np;
617 unsigned long flags;
618
619 raw_spin_lock_irqsave(&devtree_lock, flags);
620 np = from ? from->allnext : of_allnodes;
621 for (; np; np = np->allnext)
622 if (np->name && (of_node_cmp(np->name, name) == 0)
623 && of_node_get(np))
624 break;
625 of_node_put(from);
626 raw_spin_unlock_irqrestore(&devtree_lock, flags);
627 return np;
628 }
629 EXPORT_SYMBOL(of_find_node_by_name);
630
631 /**
632 * of_find_node_by_type - Find a node by its "device_type" property
633 * @from: The node to start searching from, or NULL to start searching
634 * the entire device tree. The node you pass will not be
635 * searched, only the next one will; typically, you pass
636 * what the previous call returned. of_node_put() will be
637 * called on from for you.
638 * @type: The type string to match against
639 *
640 * Returns a node pointer with refcount incremented, use
641 * of_node_put() on it when done.
642 */
643 struct device_node *of_find_node_by_type(struct device_node *from,
644 const char *type)
645 {
646 struct device_node *np;
647 unsigned long flags;
648
649 raw_spin_lock_irqsave(&devtree_lock, flags);
650 np = from ? from->allnext : of_allnodes;
651 for (; np; np = np->allnext)
652 if (np->type && (of_node_cmp(np->type, type) == 0)
653 && of_node_get(np))
654 break;
655 of_node_put(from);
656 raw_spin_unlock_irqrestore(&devtree_lock, flags);
657 return np;
658 }
659 EXPORT_SYMBOL(of_find_node_by_type);
660
661 /**
662 * of_find_compatible_node - Find a node based on type and one of the
663 * tokens in its "compatible" property
664 * @from: The node to start searching from or NULL, the node
665 * you pass will not be searched, only the next one
666 * will; typically, you pass what the previous call
667 * returned. of_node_put() will be called on it
668 * @type: The type string to match "device_type" or NULL to ignore
669 * @compatible: The string to match to one of the tokens in the device
670 * "compatible" list.
671 *
672 * Returns a node pointer with refcount incremented, use
673 * of_node_put() on it when done.
674 */
675 struct device_node *of_find_compatible_node(struct device_node *from,
676 const char *type, const char *compatible)
677 {
678 struct device_node *np;
679 unsigned long flags;
680
681 raw_spin_lock_irqsave(&devtree_lock, flags);
682 np = from ? from->allnext : of_allnodes;
683 for (; np; np = np->allnext) {
684 if (type
685 && !(np->type && (of_node_cmp(np->type, type) == 0)))
686 continue;
687 if (__of_device_is_compatible(np, compatible) &&
688 of_node_get(np))
689 break;
690 }
691 of_node_put(from);
692 raw_spin_unlock_irqrestore(&devtree_lock, flags);
693 return np;
694 }
695 EXPORT_SYMBOL(of_find_compatible_node);
696
697 /**
698 * of_find_node_with_property - Find a node which has a property with
699 * the given name.
700 * @from: The node to start searching from or NULL, the node
701 * you pass will not be searched, only the next one
702 * will; typically, you pass what the previous call
703 * returned. of_node_put() will be called on it
704 * @prop_name: The name of the property to look for.
705 *
706 * Returns a node pointer with refcount incremented, use
707 * of_node_put() on it when done.
708 */
709 struct device_node *of_find_node_with_property(struct device_node *from,
710 const char *prop_name)
711 {
712 struct device_node *np;
713 struct property *pp;
714 unsigned long flags;
715
716 raw_spin_lock_irqsave(&devtree_lock, flags);
717 np = from ? from->allnext : of_allnodes;
718 for (; np; np = np->allnext) {
719 for (pp = np->properties; pp; pp = pp->next) {
720 if (of_prop_cmp(pp->name, prop_name) == 0) {
721 of_node_get(np);
722 goto out;
723 }
724 }
725 }
726 out:
727 of_node_put(from);
728 raw_spin_unlock_irqrestore(&devtree_lock, flags);
729 return np;
730 }
731 EXPORT_SYMBOL(of_find_node_with_property);
732
733 static const struct of_device_id *
734 of_match_compatible(const struct of_device_id *matches,
735 const struct device_node *node)
736 {
737 const char *cp;
738 int cplen, l;
739 const struct of_device_id *m;
740
741 cp = __of_get_property(node, "compatible", &cplen);
742 while (cp && (cplen > 0)) {
743 m = matches;
744 while (m->name[0] || m->type[0] || m->compatible[0]) {
745 /* Only match for the entries without type and name */
746 if (m->name[0] || m->type[0] ||
747 of_compat_cmp(m->compatible, cp,
748 strlen(m->compatible)))
749 m++;
750 else
751 return m;
752 }
753
754 /* Get node's next compatible string */
755 l = strlen(cp) + 1;
756 cp += l;
757 cplen -= l;
758 }
759
760 return NULL;
761 }
762
763 static
764 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
765 const struct device_node *node)
766 {
767 const struct of_device_id *m;
768
769 if (!matches)
770 return NULL;
771
772 m = of_match_compatible(matches, node);
773 if (m)
774 return m;
775
776 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
777 int match = 1;
778 if (matches->name[0])
779 match &= node->name
780 && !strcmp(matches->name, node->name);
781 if (matches->type[0])
782 match &= node->type
783 && !strcmp(matches->type, node->type);
784 if (matches->compatible[0])
785 match &= __of_device_is_compatible(node,
786 matches->compatible);
787 if (match)
788 return matches;
789 matches++;
790 }
791 return NULL;
792 }
793
794 /**
795 * of_match_node - Tell if an device_node has a matching of_match structure
796 * @matches: array of of device match structures to search in
797 * @node: the of device structure to match against
798 *
799 * Low level utility function used by device matching. We have two ways
800 * of matching:
801 * - Try to find the best compatible match by comparing each compatible
802 * string of device node with all the given matches respectively.
803 * - If the above method failed, then try to match the compatible by using
804 * __of_device_is_compatible() besides the match in type and name.
805 */
806 const struct of_device_id *of_match_node(const struct of_device_id *matches,
807 const struct device_node *node)
808 {
809 const struct of_device_id *match;
810 unsigned long flags;
811
812 raw_spin_lock_irqsave(&devtree_lock, flags);
813 match = __of_match_node(matches, node);
814 raw_spin_unlock_irqrestore(&devtree_lock, flags);
815 return match;
816 }
817 EXPORT_SYMBOL(of_match_node);
818
819 /**
820 * of_find_matching_node_and_match - Find a node based on an of_device_id
821 * match table.
822 * @from: The node to start searching from or NULL, the node
823 * you pass will not be searched, only the next one
824 * will; typically, you pass what the previous call
825 * returned. of_node_put() will be called on it
826 * @matches: array of of device match structures to search in
827 * @match Updated to point at the matches entry which matched
828 *
829 * Returns a node pointer with refcount incremented, use
830 * of_node_put() on it when done.
831 */
832 struct device_node *of_find_matching_node_and_match(struct device_node *from,
833 const struct of_device_id *matches,
834 const struct of_device_id **match)
835 {
836 struct device_node *np;
837 const struct of_device_id *m;
838 unsigned long flags;
839
840 if (match)
841 *match = NULL;
842
843 raw_spin_lock_irqsave(&devtree_lock, flags);
844 np = from ? from->allnext : of_allnodes;
845 for (; np; np = np->allnext) {
846 m = __of_match_node(matches, np);
847 if (m && of_node_get(np)) {
848 if (match)
849 *match = m;
850 break;
851 }
852 }
853 of_node_put(from);
854 raw_spin_unlock_irqrestore(&devtree_lock, flags);
855 return np;
856 }
857 EXPORT_SYMBOL(of_find_matching_node_and_match);
858
859 /**
860 * of_modalias_node - Lookup appropriate modalias for a device node
861 * @node: pointer to a device tree node
862 * @modalias: Pointer to buffer that modalias value will be copied into
863 * @len: Length of modalias value
864 *
865 * Based on the value of the compatible property, this routine will attempt
866 * to choose an appropriate modalias value for a particular device tree node.
867 * It does this by stripping the manufacturer prefix (as delimited by a ',')
868 * from the first entry in the compatible list property.
869 *
870 * This routine returns 0 on success, <0 on failure.
871 */
872 int of_modalias_node(struct device_node *node, char *modalias, int len)
873 {
874 const char *compatible, *p;
875 int cplen;
876
877 compatible = of_get_property(node, "compatible", &cplen);
878 if (!compatible || strlen(compatible) > cplen)
879 return -ENODEV;
880 p = strchr(compatible, ',');
881 strlcpy(modalias, p ? p + 1 : compatible, len);
882 return 0;
883 }
884 EXPORT_SYMBOL_GPL(of_modalias_node);
885
886 /**
887 * of_find_node_by_phandle - Find a node given a phandle
888 * @handle: phandle of the node to find
889 *
890 * Returns a node pointer with refcount incremented, use
891 * of_node_put() on it when done.
892 */
893 struct device_node *of_find_node_by_phandle(phandle handle)
894 {
895 struct device_node *np;
896 unsigned long flags;
897
898 raw_spin_lock_irqsave(&devtree_lock, flags);
899 for (np = of_allnodes; np; np = np->allnext)
900 if (np->phandle == handle)
901 break;
902 of_node_get(np);
903 raw_spin_unlock_irqrestore(&devtree_lock, flags);
904 return np;
905 }
906 EXPORT_SYMBOL(of_find_node_by_phandle);
907
908 /**
909 * of_find_property_value_of_size
910 *
911 * @np: device node from which the property value is to be read.
912 * @propname: name of the property to be searched.
913 * @len: requested length of property value
914 *
915 * Search for a property in a device node and valid the requested size.
916 * Returns the property value on success, -EINVAL if the property does not
917 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
918 * property data isn't large enough.
919 *
920 */
921 static void *of_find_property_value_of_size(const struct device_node *np,
922 const char *propname, u32 len)
923 {
924 struct property *prop = of_find_property(np, propname, NULL);
925
926 if (!prop)
927 return ERR_PTR(-EINVAL);
928 if (!prop->value)
929 return ERR_PTR(-ENODATA);
930 if (len > prop->length)
931 return ERR_PTR(-EOVERFLOW);
932
933 return prop->value;
934 }
935
936 /**
937 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
938 *
939 * @np: device node from which the property value is to be read.
940 * @propname: name of the property to be searched.
941 * @index: index of the u32 in the list of values
942 * @out_value: pointer to return value, modified only if no error.
943 *
944 * Search for a property in a device node and read nth 32-bit value from
945 * it. Returns 0 on success, -EINVAL if the property does not exist,
946 * -ENODATA if property does not have a value, and -EOVERFLOW if the
947 * property data isn't large enough.
948 *
949 * The out_value is modified only if a valid u32 value can be decoded.
950 */
951 int of_property_read_u32_index(const struct device_node *np,
952 const char *propname,
953 u32 index, u32 *out_value)
954 {
955 const u32 *val = of_find_property_value_of_size(np, propname,
956 ((index + 1) * sizeof(*out_value)));
957
958 if (IS_ERR(val))
959 return PTR_ERR(val);
960
961 *out_value = be32_to_cpup(((__be32 *)val) + index);
962 return 0;
963 }
964 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
965
966 /**
967 * of_property_read_u8_array - Find and read an array of u8 from a property.
968 *
969 * @np: device node from which the property value is to be read.
970 * @propname: name of the property to be searched.
971 * @out_values: pointer to return value, modified only if return value is 0.
972 * @sz: number of array elements to read
973 *
974 * Search for a property in a device node and read 8-bit value(s) from
975 * it. Returns 0 on success, -EINVAL if the property does not exist,
976 * -ENODATA if property does not have a value, and -EOVERFLOW if the
977 * property data isn't large enough.
978 *
979 * dts entry of array should be like:
980 * property = /bits/ 8 <0x50 0x60 0x70>;
981 *
982 * The out_values is modified only if a valid u8 value can be decoded.
983 */
984 int of_property_read_u8_array(const struct device_node *np,
985 const char *propname, u8 *out_values, size_t sz)
986 {
987 const u8 *val = of_find_property_value_of_size(np, propname,
988 (sz * sizeof(*out_values)));
989
990 if (IS_ERR(val))
991 return PTR_ERR(val);
992
993 while (sz--)
994 *out_values++ = *val++;
995 return 0;
996 }
997 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
998
999 /**
1000 * of_property_read_u16_array - Find and read an array of u16 from a property.
1001 *
1002 * @np: device node from which the property value is to be read.
1003 * @propname: name of the property to be searched.
1004 * @out_values: pointer to return value, modified only if return value is 0.
1005 * @sz: number of array elements to read
1006 *
1007 * Search for a property in a device node and read 16-bit value(s) from
1008 * it. Returns 0 on success, -EINVAL if the property does not exist,
1009 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1010 * property data isn't large enough.
1011 *
1012 * dts entry of array should be like:
1013 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1014 *
1015 * The out_values is modified only if a valid u16 value can be decoded.
1016 */
1017 int of_property_read_u16_array(const struct device_node *np,
1018 const char *propname, u16 *out_values, size_t sz)
1019 {
1020 const __be16 *val = of_find_property_value_of_size(np, propname,
1021 (sz * sizeof(*out_values)));
1022
1023 if (IS_ERR(val))
1024 return PTR_ERR(val);
1025
1026 while (sz--)
1027 *out_values++ = be16_to_cpup(val++);
1028 return 0;
1029 }
1030 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1031
1032 /**
1033 * of_property_read_u32_array - Find and read an array of 32 bit integers
1034 * from a property.
1035 *
1036 * @np: device node from which the property value is to be read.
1037 * @propname: name of the property to be searched.
1038 * @out_values: pointer to return value, modified only if return value is 0.
1039 * @sz: number of array elements to read
1040 *
1041 * Search for a property in a device node and read 32-bit value(s) from
1042 * it. Returns 0 on success, -EINVAL if the property does not exist,
1043 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1044 * property data isn't large enough.
1045 *
1046 * The out_values is modified only if a valid u32 value can be decoded.
1047 */
1048 int of_property_read_u32_array(const struct device_node *np,
1049 const char *propname, u32 *out_values,
1050 size_t sz)
1051 {
1052 const __be32 *val = of_find_property_value_of_size(np, propname,
1053 (sz * sizeof(*out_values)));
1054
1055 if (IS_ERR(val))
1056 return PTR_ERR(val);
1057
1058 while (sz--)
1059 *out_values++ = be32_to_cpup(val++);
1060 return 0;
1061 }
1062 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1063
1064 /**
1065 * of_property_read_u64 - Find and read a 64 bit integer from a property
1066 * @np: device node from which the property value is to be read.
1067 * @propname: name of the property to be searched.
1068 * @out_value: pointer to return value, modified only if return value is 0.
1069 *
1070 * Search for a property in a device node and read a 64-bit value from
1071 * it. Returns 0 on success, -EINVAL if the property does not exist,
1072 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1073 * property data isn't large enough.
1074 *
1075 * The out_value is modified only if a valid u64 value can be decoded.
1076 */
1077 int of_property_read_u64(const struct device_node *np, const char *propname,
1078 u64 *out_value)
1079 {
1080 const __be32 *val = of_find_property_value_of_size(np, propname,
1081 sizeof(*out_value));
1082
1083 if (IS_ERR(val))
1084 return PTR_ERR(val);
1085
1086 *out_value = of_read_number(val, 2);
1087 return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(of_property_read_u64);
1090
1091 /**
1092 * of_property_read_string - Find and read a string from a property
1093 * @np: device node from which the property value is to be read.
1094 * @propname: name of the property to be searched.
1095 * @out_string: pointer to null terminated return string, modified only if
1096 * return value is 0.
1097 *
1098 * Search for a property in a device tree node and retrieve a null
1099 * terminated string value (pointer to data, not a copy). Returns 0 on
1100 * success, -EINVAL if the property does not exist, -ENODATA if property
1101 * does not have a value, and -EILSEQ if the string is not null-terminated
1102 * within the length of the property data.
1103 *
1104 * The out_string pointer is modified only if a valid string can be decoded.
1105 */
1106 int of_property_read_string(struct device_node *np, const char *propname,
1107 const char **out_string)
1108 {
1109 struct property *prop = of_find_property(np, propname, NULL);
1110 if (!prop)
1111 return -EINVAL;
1112 if (!prop->value)
1113 return -ENODATA;
1114 if (strnlen(prop->value, prop->length) >= prop->length)
1115 return -EILSEQ;
1116 *out_string = prop->value;
1117 return 0;
1118 }
1119 EXPORT_SYMBOL_GPL(of_property_read_string);
1120
1121 /**
1122 * of_property_read_string_index - Find and read a string from a multiple
1123 * strings property.
1124 * @np: device node from which the property value is to be read.
1125 * @propname: name of the property to be searched.
1126 * @index: index of the string in the list of strings
1127 * @out_string: pointer to null terminated return string, modified only if
1128 * return value is 0.
1129 *
1130 * Search for a property in a device tree node and retrieve a null
1131 * terminated string value (pointer to data, not a copy) in the list of strings
1132 * contained in that property.
1133 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1134 * property does not have a value, and -EILSEQ if the string is not
1135 * null-terminated within the length of the property data.
1136 *
1137 * The out_string pointer is modified only if a valid string can be decoded.
1138 */
1139 int of_property_read_string_index(struct device_node *np, const char *propname,
1140 int index, const char **output)
1141 {
1142 struct property *prop = of_find_property(np, propname, NULL);
1143 int i = 0;
1144 size_t l = 0, total = 0;
1145 const char *p;
1146
1147 if (!prop)
1148 return -EINVAL;
1149 if (!prop->value)
1150 return -ENODATA;
1151 if (strnlen(prop->value, prop->length) >= prop->length)
1152 return -EILSEQ;
1153
1154 p = prop->value;
1155
1156 for (i = 0; total < prop->length; total += l, p += l) {
1157 l = strlen(p) + 1;
1158 if (i++ == index) {
1159 *output = p;
1160 return 0;
1161 }
1162 }
1163 return -ENODATA;
1164 }
1165 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1166
1167 /**
1168 * of_property_match_string() - Find string in a list and return index
1169 * @np: pointer to node containing string list property
1170 * @propname: string list property name
1171 * @string: pointer to string to search for in string list
1172 *
1173 * This function searches a string list property and returns the index
1174 * of a specific string value.
1175 */
1176 int of_property_match_string(struct device_node *np, const char *propname,
1177 const char *string)
1178 {
1179 struct property *prop = of_find_property(np, propname, NULL);
1180 size_t l;
1181 int i;
1182 const char *p, *end;
1183
1184 if (!prop)
1185 return -EINVAL;
1186 if (!prop->value)
1187 return -ENODATA;
1188
1189 p = prop->value;
1190 end = p + prop->length;
1191
1192 for (i = 0; p < end; i++, p += l) {
1193 l = strlen(p) + 1;
1194 if (p + l > end)
1195 return -EILSEQ;
1196 pr_debug("comparing %s with %s\n", string, p);
1197 if (strcmp(string, p) == 0)
1198 return i; /* Found it; return index */
1199 }
1200 return -ENODATA;
1201 }
1202 EXPORT_SYMBOL_GPL(of_property_match_string);
1203
1204 /**
1205 * of_property_count_strings - Find and return the number of strings from a
1206 * multiple strings property.
1207 * @np: device node from which the property value is to be read.
1208 * @propname: name of the property to be searched.
1209 *
1210 * Search for a property in a device tree node and retrieve the number of null
1211 * terminated string contain in it. Returns the number of strings on
1212 * success, -EINVAL if the property does not exist, -ENODATA if property
1213 * does not have a value, and -EILSEQ if the string is not null-terminated
1214 * within the length of the property data.
1215 */
1216 int of_property_count_strings(struct device_node *np, const char *propname)
1217 {
1218 struct property *prop = of_find_property(np, propname, NULL);
1219 int i = 0;
1220 size_t l = 0, total = 0;
1221 const char *p;
1222
1223 if (!prop)
1224 return -EINVAL;
1225 if (!prop->value)
1226 return -ENODATA;
1227 if (strnlen(prop->value, prop->length) >= prop->length)
1228 return -EILSEQ;
1229
1230 p = prop->value;
1231
1232 for (i = 0; total < prop->length; total += l, p += l, i++)
1233 l = strlen(p) + 1;
1234
1235 return i;
1236 }
1237 EXPORT_SYMBOL_GPL(of_property_count_strings);
1238
1239 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1240 {
1241 int i;
1242 printk("%s %s", msg, of_node_full_name(args->np));
1243 for (i = 0; i < args->args_count; i++)
1244 printk(i ? ",%08x" : ":%08x", args->args[i]);
1245 printk("\n");
1246 }
1247
1248 static int __of_parse_phandle_with_args(const struct device_node *np,
1249 const char *list_name,
1250 const char *cells_name,
1251 int cell_count, int index,
1252 struct of_phandle_args *out_args)
1253 {
1254 const __be32 *list, *list_end;
1255 int rc = 0, size, cur_index = 0;
1256 uint32_t count = 0;
1257 struct device_node *node = NULL;
1258 phandle phandle;
1259
1260 /* Retrieve the phandle list property */
1261 list = of_get_property(np, list_name, &size);
1262 if (!list)
1263 return -ENOENT;
1264 list_end = list + size / sizeof(*list);
1265
1266 /* Loop over the phandles until all the requested entry is found */
1267 while (list < list_end) {
1268 rc = -EINVAL;
1269 count = 0;
1270
1271 /*
1272 * If phandle is 0, then it is an empty entry with no
1273 * arguments. Skip forward to the next entry.
1274 */
1275 phandle = be32_to_cpup(list++);
1276 if (phandle) {
1277 /*
1278 * Find the provider node and parse the #*-cells
1279 * property to determine the argument length.
1280 *
1281 * This is not needed if the cell count is hard-coded
1282 * (i.e. cells_name not set, but cell_count is set),
1283 * except when we're going to return the found node
1284 * below.
1285 */
1286 if (cells_name || cur_index == index) {
1287 node = of_find_node_by_phandle(phandle);
1288 if (!node) {
1289 pr_err("%s: could not find phandle\n",
1290 np->full_name);
1291 goto err;
1292 }
1293 }
1294
1295 if (cells_name) {
1296 if (of_property_read_u32(node, cells_name,
1297 &count)) {
1298 pr_err("%s: could not get %s for %s\n",
1299 np->full_name, cells_name,
1300 node->full_name);
1301 goto err;
1302 }
1303 } else {
1304 count = cell_count;
1305 }
1306
1307 /*
1308 * Make sure that the arguments actually fit in the
1309 * remaining property data length
1310 */
1311 if (list + count > list_end) {
1312 pr_err("%s: arguments longer than property\n",
1313 np->full_name);
1314 goto err;
1315 }
1316 }
1317
1318 /*
1319 * All of the error cases above bail out of the loop, so at
1320 * this point, the parsing is successful. If the requested
1321 * index matches, then fill the out_args structure and return,
1322 * or return -ENOENT for an empty entry.
1323 */
1324 rc = -ENOENT;
1325 if (cur_index == index) {
1326 if (!phandle)
1327 goto err;
1328
1329 if (out_args) {
1330 int i;
1331 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1332 count = MAX_PHANDLE_ARGS;
1333 out_args->np = node;
1334 out_args->args_count = count;
1335 for (i = 0; i < count; i++)
1336 out_args->args[i] = be32_to_cpup(list++);
1337 } else {
1338 of_node_put(node);
1339 }
1340
1341 /* Found it! return success */
1342 return 0;
1343 }
1344
1345 of_node_put(node);
1346 node = NULL;
1347 list += count;
1348 cur_index++;
1349 }
1350
1351 /*
1352 * Unlock node before returning result; will be one of:
1353 * -ENOENT : index is for empty phandle
1354 * -EINVAL : parsing error on data
1355 * [1..n] : Number of phandle (count mode; when index = -1)
1356 */
1357 rc = index < 0 ? cur_index : -ENOENT;
1358 err:
1359 if (node)
1360 of_node_put(node);
1361 return rc;
1362 }
1363
1364 /**
1365 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1366 * @np: Pointer to device node holding phandle property
1367 * @phandle_name: Name of property holding a phandle value
1368 * @index: For properties holding a table of phandles, this is the index into
1369 * the table
1370 *
1371 * Returns the device_node pointer with refcount incremented. Use
1372 * of_node_put() on it when done.
1373 */
1374 struct device_node *of_parse_phandle(const struct device_node *np,
1375 const char *phandle_name, int index)
1376 {
1377 struct of_phandle_args args;
1378
1379 if (index < 0)
1380 return NULL;
1381
1382 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1383 index, &args))
1384 return NULL;
1385
1386 return args.np;
1387 }
1388 EXPORT_SYMBOL(of_parse_phandle);
1389
1390 /**
1391 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1392 * @np: pointer to a device tree node containing a list
1393 * @list_name: property name that contains a list
1394 * @cells_name: property name that specifies phandles' arguments count
1395 * @index: index of a phandle to parse out
1396 * @out_args: optional pointer to output arguments structure (will be filled)
1397 *
1398 * This function is useful to parse lists of phandles and their arguments.
1399 * Returns 0 on success and fills out_args, on error returns appropriate
1400 * errno value.
1401 *
1402 * Caller is responsible to call of_node_put() on the returned out_args->node
1403 * pointer.
1404 *
1405 * Example:
1406 *
1407 * phandle1: node1 {
1408 * #list-cells = <2>;
1409 * }
1410 *
1411 * phandle2: node2 {
1412 * #list-cells = <1>;
1413 * }
1414 *
1415 * node3 {
1416 * list = <&phandle1 1 2 &phandle2 3>;
1417 * }
1418 *
1419 * To get a device_node of the `node2' node you may call this:
1420 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1421 */
1422 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1423 const char *cells_name, int index,
1424 struct of_phandle_args *out_args)
1425 {
1426 if (index < 0)
1427 return -EINVAL;
1428 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1429 index, out_args);
1430 }
1431 EXPORT_SYMBOL(of_parse_phandle_with_args);
1432
1433 /**
1434 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1435 * @np: pointer to a device tree node containing a list
1436 * @list_name: property name that contains a list
1437 * @cell_count: number of argument cells following the phandle
1438 * @index: index of a phandle to parse out
1439 * @out_args: optional pointer to output arguments structure (will be filled)
1440 *
1441 * This function is useful to parse lists of phandles and their arguments.
1442 * Returns 0 on success and fills out_args, on error returns appropriate
1443 * errno value.
1444 *
1445 * Caller is responsible to call of_node_put() on the returned out_args->node
1446 * pointer.
1447 *
1448 * Example:
1449 *
1450 * phandle1: node1 {
1451 * }
1452 *
1453 * phandle2: node2 {
1454 * }
1455 *
1456 * node3 {
1457 * list = <&phandle1 0 2 &phandle2 2 3>;
1458 * }
1459 *
1460 * To get a device_node of the `node2' node you may call this:
1461 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1462 */
1463 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1464 const char *list_name, int cell_count,
1465 int index, struct of_phandle_args *out_args)
1466 {
1467 if (index < 0)
1468 return -EINVAL;
1469 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1470 index, out_args);
1471 }
1472 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1473
1474 /**
1475 * of_count_phandle_with_args() - Find the number of phandles references in a property
1476 * @np: pointer to a device tree node containing a list
1477 * @list_name: property name that contains a list
1478 * @cells_name: property name that specifies phandles' arguments count
1479 *
1480 * Returns the number of phandle + argument tuples within a property. It
1481 * is a typical pattern to encode a list of phandle and variable
1482 * arguments into a single property. The number of arguments is encoded
1483 * by a property in the phandle-target node. For example, a gpios
1484 * property would contain a list of GPIO specifies consisting of a
1485 * phandle and 1 or more arguments. The number of arguments are
1486 * determined by the #gpio-cells property in the node pointed to by the
1487 * phandle.
1488 */
1489 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1490 const char *cells_name)
1491 {
1492 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1493 NULL);
1494 }
1495 EXPORT_SYMBOL(of_count_phandle_with_args);
1496
1497 #if defined(CONFIG_OF_DYNAMIC)
1498 static int of_property_notify(int action, struct device_node *np,
1499 struct property *prop)
1500 {
1501 struct of_prop_reconfig pr;
1502
1503 pr.dn = np;
1504 pr.prop = prop;
1505 return of_reconfig_notify(action, &pr);
1506 }
1507 #else
1508 static int of_property_notify(int action, struct device_node *np,
1509 struct property *prop)
1510 {
1511 return 0;
1512 }
1513 #endif
1514
1515 /**
1516 * of_add_property - Add a property to a node
1517 */
1518 int of_add_property(struct device_node *np, struct property *prop)
1519 {
1520 struct property **next;
1521 unsigned long flags;
1522 int rc;
1523
1524 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1525 if (rc)
1526 return rc;
1527
1528 prop->next = NULL;
1529 raw_spin_lock_irqsave(&devtree_lock, flags);
1530 next = &np->properties;
1531 while (*next) {
1532 if (strcmp(prop->name, (*next)->name) == 0) {
1533 /* duplicate ! don't insert it */
1534 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1535 return -1;
1536 }
1537 next = &(*next)->next;
1538 }
1539 *next = prop;
1540 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1541
1542 #ifdef CONFIG_PROC_DEVICETREE
1543 /* try to add to proc as well if it was initialized */
1544 if (np->pde)
1545 proc_device_tree_add_prop(np->pde, prop);
1546 #endif /* CONFIG_PROC_DEVICETREE */
1547
1548 return 0;
1549 }
1550
1551 /**
1552 * of_remove_property - Remove a property from a node.
1553 *
1554 * Note that we don't actually remove it, since we have given out
1555 * who-knows-how-many pointers to the data using get-property.
1556 * Instead we just move the property to the "dead properties"
1557 * list, so it won't be found any more.
1558 */
1559 int of_remove_property(struct device_node *np, struct property *prop)
1560 {
1561 struct property **next;
1562 unsigned long flags;
1563 int found = 0;
1564 int rc;
1565
1566 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1567 if (rc)
1568 return rc;
1569
1570 raw_spin_lock_irqsave(&devtree_lock, flags);
1571 next = &np->properties;
1572 while (*next) {
1573 if (*next == prop) {
1574 /* found the node */
1575 *next = prop->next;
1576 prop->next = np->deadprops;
1577 np->deadprops = prop;
1578 found = 1;
1579 break;
1580 }
1581 next = &(*next)->next;
1582 }
1583 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1584
1585 if (!found)
1586 return -ENODEV;
1587
1588 #ifdef CONFIG_PROC_DEVICETREE
1589 /* try to remove the proc node as well */
1590 if (np->pde)
1591 proc_device_tree_remove_prop(np->pde, prop);
1592 #endif /* CONFIG_PROC_DEVICETREE */
1593
1594 return 0;
1595 }
1596
1597 /*
1598 * of_update_property - Update a property in a node, if the property does
1599 * not exist, add it.
1600 *
1601 * Note that we don't actually remove it, since we have given out
1602 * who-knows-how-many pointers to the data using get-property.
1603 * Instead we just move the property to the "dead properties" list,
1604 * and add the new property to the property list
1605 */
1606 int of_update_property(struct device_node *np, struct property *newprop)
1607 {
1608 struct property **next, *oldprop;
1609 unsigned long flags;
1610 int rc, found = 0;
1611
1612 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1613 if (rc)
1614 return rc;
1615
1616 if (!newprop->name)
1617 return -EINVAL;
1618
1619 oldprop = of_find_property(np, newprop->name, NULL);
1620 if (!oldprop)
1621 return of_add_property(np, newprop);
1622
1623 raw_spin_lock_irqsave(&devtree_lock, flags);
1624 next = &np->properties;
1625 while (*next) {
1626 if (*next == oldprop) {
1627 /* found the node */
1628 newprop->next = oldprop->next;
1629 *next = newprop;
1630 oldprop->next = np->deadprops;
1631 np->deadprops = oldprop;
1632 found = 1;
1633 break;
1634 }
1635 next = &(*next)->next;
1636 }
1637 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1638
1639 if (!found)
1640 return -ENODEV;
1641
1642 #ifdef CONFIG_PROC_DEVICETREE
1643 /* try to add to proc as well if it was initialized */
1644 if (np->pde)
1645 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1646 #endif /* CONFIG_PROC_DEVICETREE */
1647
1648 return 0;
1649 }
1650
1651 #if defined(CONFIG_OF_DYNAMIC)
1652 /*
1653 * Support for dynamic device trees.
1654 *
1655 * On some platforms, the device tree can be manipulated at runtime.
1656 * The routines in this section support adding, removing and changing
1657 * device tree nodes.
1658 */
1659
1660 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1661
1662 int of_reconfig_notifier_register(struct notifier_block *nb)
1663 {
1664 return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1665 }
1666 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1667
1668 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1669 {
1670 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1671 }
1672 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1673
1674 int of_reconfig_notify(unsigned long action, void *p)
1675 {
1676 int rc;
1677
1678 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1679 return notifier_to_errno(rc);
1680 }
1681
1682 #ifdef CONFIG_PROC_DEVICETREE
1683 static void of_add_proc_dt_entry(struct device_node *dn)
1684 {
1685 struct proc_dir_entry *ent;
1686
1687 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1688 if (ent)
1689 proc_device_tree_add_node(dn, ent);
1690 }
1691 #else
1692 static void of_add_proc_dt_entry(struct device_node *dn)
1693 {
1694 return;
1695 }
1696 #endif
1697
1698 /**
1699 * of_attach_node - Plug a device node into the tree and global list.
1700 */
1701 int of_attach_node(struct device_node *np)
1702 {
1703 unsigned long flags;
1704 int rc;
1705
1706 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1707 if (rc)
1708 return rc;
1709
1710 raw_spin_lock_irqsave(&devtree_lock, flags);
1711 np->sibling = np->parent->child;
1712 np->allnext = of_allnodes;
1713 np->parent->child = np;
1714 of_allnodes = np;
1715 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1716
1717 of_add_proc_dt_entry(np);
1718 return 0;
1719 }
1720
1721 #ifdef CONFIG_PROC_DEVICETREE
1722 static void of_remove_proc_dt_entry(struct device_node *dn)
1723 {
1724 proc_remove(dn->pde);
1725 }
1726 #else
1727 static void of_remove_proc_dt_entry(struct device_node *dn)
1728 {
1729 return;
1730 }
1731 #endif
1732
1733 /**
1734 * of_detach_node - "Unplug" a node from the device tree.
1735 *
1736 * The caller must hold a reference to the node. The memory associated with
1737 * the node is not freed until its refcount goes to zero.
1738 */
1739 int of_detach_node(struct device_node *np)
1740 {
1741 struct device_node *parent;
1742 unsigned long flags;
1743 int rc = 0;
1744
1745 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1746 if (rc)
1747 return rc;
1748
1749 raw_spin_lock_irqsave(&devtree_lock, flags);
1750
1751 if (of_node_check_flag(np, OF_DETACHED)) {
1752 /* someone already detached it */
1753 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1754 return rc;
1755 }
1756
1757 parent = np->parent;
1758 if (!parent) {
1759 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1760 return rc;
1761 }
1762
1763 if (of_allnodes == np)
1764 of_allnodes = np->allnext;
1765 else {
1766 struct device_node *prev;
1767 for (prev = of_allnodes;
1768 prev->allnext != np;
1769 prev = prev->allnext)
1770 ;
1771 prev->allnext = np->allnext;
1772 }
1773
1774 if (parent->child == np)
1775 parent->child = np->sibling;
1776 else {
1777 struct device_node *prevsib;
1778 for (prevsib = np->parent->child;
1779 prevsib->sibling != np;
1780 prevsib = prevsib->sibling)
1781 ;
1782 prevsib->sibling = np->sibling;
1783 }
1784
1785 of_node_set_flag(np, OF_DETACHED);
1786 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1787
1788 of_remove_proc_dt_entry(np);
1789 return rc;
1790 }
1791 #endif /* defined(CONFIG_OF_DYNAMIC) */
1792
1793 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1794 int id, const char *stem, int stem_len)
1795 {
1796 ap->np = np;
1797 ap->id = id;
1798 strncpy(ap->stem, stem, stem_len);
1799 ap->stem[stem_len] = 0;
1800 list_add_tail(&ap->link, &aliases_lookup);
1801 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1802 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1803 }
1804
1805 /**
1806 * of_alias_scan - Scan all properties of 'aliases' node
1807 *
1808 * The function scans all the properties of 'aliases' node and populate
1809 * the the global lookup table with the properties. It returns the
1810 * number of alias_prop found, or error code in error case.
1811 *
1812 * @dt_alloc: An allocator that provides a virtual address to memory
1813 * for the resulting tree
1814 */
1815 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1816 {
1817 struct property *pp;
1818
1819 of_chosen = of_find_node_by_path("/chosen");
1820 if (of_chosen == NULL)
1821 of_chosen = of_find_node_by_path("/chosen@0");
1822
1823 if (of_chosen) {
1824 const char *name;
1825
1826 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1827 if (name)
1828 of_stdout = of_find_node_by_path(name);
1829 }
1830
1831 of_aliases = of_find_node_by_path("/aliases");
1832 if (!of_aliases)
1833 return;
1834
1835 for_each_property_of_node(of_aliases, pp) {
1836 const char *start = pp->name;
1837 const char *end = start + strlen(start);
1838 struct device_node *np;
1839 struct alias_prop *ap;
1840 int id, len;
1841
1842 /* Skip those we do not want to proceed */
1843 if (!strcmp(pp->name, "name") ||
1844 !strcmp(pp->name, "phandle") ||
1845 !strcmp(pp->name, "linux,phandle"))
1846 continue;
1847
1848 np = of_find_node_by_path(pp->value);
1849 if (!np)
1850 continue;
1851
1852 /* walk the alias backwards to extract the id and work out
1853 * the 'stem' string */
1854 while (isdigit(*(end-1)) && end > start)
1855 end--;
1856 len = end - start;
1857
1858 if (kstrtoint(end, 10, &id) < 0)
1859 continue;
1860
1861 /* Allocate an alias_prop with enough space for the stem */
1862 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1863 if (!ap)
1864 continue;
1865 memset(ap, 0, sizeof(*ap) + len + 1);
1866 ap->alias = start;
1867 of_alias_add(ap, np, id, start, len);
1868 }
1869 }
1870
1871 /**
1872 * of_alias_get_id - Get alias id for the given device_node
1873 * @np: Pointer to the given device_node
1874 * @stem: Alias stem of the given device_node
1875 *
1876 * The function travels the lookup table to get alias id for the given
1877 * device_node and alias stem. It returns the alias id if find it.
1878 */
1879 int of_alias_get_id(struct device_node *np, const char *stem)
1880 {
1881 struct alias_prop *app;
1882 int id = -ENODEV;
1883
1884 mutex_lock(&of_aliases_mutex);
1885 list_for_each_entry(app, &aliases_lookup, link) {
1886 if (strcmp(app->stem, stem) != 0)
1887 continue;
1888
1889 if (np == app->np) {
1890 id = app->id;
1891 break;
1892 }
1893 }
1894 mutex_unlock(&of_aliases_mutex);
1895
1896 return id;
1897 }
1898 EXPORT_SYMBOL_GPL(of_alias_get_id);
1899
1900 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1901 u32 *pu)
1902 {
1903 const void *curv = cur;
1904
1905 if (!prop)
1906 return NULL;
1907
1908 if (!cur) {
1909 curv = prop->value;
1910 goto out_val;
1911 }
1912
1913 curv += sizeof(*cur);
1914 if (curv >= prop->value + prop->length)
1915 return NULL;
1916
1917 out_val:
1918 *pu = be32_to_cpup(curv);
1919 return curv;
1920 }
1921 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1922
1923 const char *of_prop_next_string(struct property *prop, const char *cur)
1924 {
1925 const void *curv = cur;
1926
1927 if (!prop)
1928 return NULL;
1929
1930 if (!cur)
1931 return prop->value;
1932
1933 curv += strlen(cur) + 1;
1934 if (curv >= prop->value + prop->length)
1935 return NULL;
1936
1937 return curv;
1938 }
1939 EXPORT_SYMBOL_GPL(of_prop_next_string);
1940
1941 /**
1942 * of_device_is_stdout_path - check if a device node matches the
1943 * linux,stdout-path property
1944 *
1945 * Check if this device node matches the linux,stdout-path property
1946 * in the chosen node. return true if yes, false otherwise.
1947 */
1948 int of_device_is_stdout_path(struct device_node *dn)
1949 {
1950 if (!of_stdout)
1951 return false;
1952
1953 return of_stdout == dn;
1954 }
1955 EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
1956
1957 /**
1958 * of_find_next_cache_node - Find a node's subsidiary cache
1959 * @np: node of type "cpu" or "cache"
1960 *
1961 * Returns a node pointer with refcount incremented, use
1962 * of_node_put() on it when done. Caller should hold a reference
1963 * to np.
1964 */
1965 struct device_node *of_find_next_cache_node(const struct device_node *np)
1966 {
1967 struct device_node *child;
1968 const phandle *handle;
1969
1970 handle = of_get_property(np, "l2-cache", NULL);
1971 if (!handle)
1972 handle = of_get_property(np, "next-level-cache", NULL);
1973
1974 if (handle)
1975 return of_find_node_by_phandle(be32_to_cpup(handle));
1976
1977 /* OF on pmac has nodes instead of properties named "l2-cache"
1978 * beneath CPU nodes.
1979 */
1980 if (!strcmp(np->type, "cpu"))
1981 for_each_child_of_node(np, child)
1982 if (!strcmp(child->type, "cache"))
1983 return child;
1984
1985 return NULL;
1986 }
This page took 0.076316 seconds and 5 git commands to generate.