of: fix incorrect return value of of_find_matching_node_and_match()
[deliverable/linux.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/ctype.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/proc_fs.h>
26
27 /**
28 * struct alias_prop - Alias property in 'aliases' node
29 * @link: List node to link the structure in aliases_lookup list
30 * @alias: Alias property name
31 * @np: Pointer to device_node that the alias stands for
32 * @id: Index value from end of alias name
33 * @stem: Alias string without the index
34 *
35 * The structure represents one alias property of 'aliases' node as
36 * an entry in aliases_lookup list.
37 */
38 struct alias_prop {
39 struct list_head link;
40 const char *alias;
41 struct device_node *np;
42 int id;
43 char stem[0];
44 };
45
46 static LIST_HEAD(aliases_lookup);
47
48 struct device_node *of_allnodes;
49 EXPORT_SYMBOL(of_allnodes);
50 struct device_node *of_chosen;
51 struct device_node *of_aliases;
52
53 static DEFINE_MUTEX(of_aliases_mutex);
54
55 /* use when traversing tree through the allnext, child, sibling,
56 * or parent members of struct device_node.
57 */
58 DEFINE_RWLOCK(devtree_lock);
59
60 int of_n_addr_cells(struct device_node *np)
61 {
62 const __be32 *ip;
63
64 do {
65 if (np->parent)
66 np = np->parent;
67 ip = of_get_property(np, "#address-cells", NULL);
68 if (ip)
69 return be32_to_cpup(ip);
70 } while (np->parent);
71 /* No #address-cells property for the root node */
72 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
73 }
74 EXPORT_SYMBOL(of_n_addr_cells);
75
76 int of_n_size_cells(struct device_node *np)
77 {
78 const __be32 *ip;
79
80 do {
81 if (np->parent)
82 np = np->parent;
83 ip = of_get_property(np, "#size-cells", NULL);
84 if (ip)
85 return be32_to_cpup(ip);
86 } while (np->parent);
87 /* No #size-cells property for the root node */
88 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
89 }
90 EXPORT_SYMBOL(of_n_size_cells);
91
92 #if defined(CONFIG_OF_DYNAMIC)
93 /**
94 * of_node_get - Increment refcount of a node
95 * @node: Node to inc refcount, NULL is supported to
96 * simplify writing of callers
97 *
98 * Returns node.
99 */
100 struct device_node *of_node_get(struct device_node *node)
101 {
102 if (node)
103 kref_get(&node->kref);
104 return node;
105 }
106 EXPORT_SYMBOL(of_node_get);
107
108 static inline struct device_node *kref_to_device_node(struct kref *kref)
109 {
110 return container_of(kref, struct device_node, kref);
111 }
112
113 /**
114 * of_node_release - release a dynamically allocated node
115 * @kref: kref element of the node to be released
116 *
117 * In of_node_put() this function is passed to kref_put()
118 * as the destructor.
119 */
120 static void of_node_release(struct kref *kref)
121 {
122 struct device_node *node = kref_to_device_node(kref);
123 struct property *prop = node->properties;
124
125 /* We should never be releasing nodes that haven't been detached. */
126 if (!of_node_check_flag(node, OF_DETACHED)) {
127 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
128 dump_stack();
129 kref_init(&node->kref);
130 return;
131 }
132
133 if (!of_node_check_flag(node, OF_DYNAMIC))
134 return;
135
136 while (prop) {
137 struct property *next = prop->next;
138 kfree(prop->name);
139 kfree(prop->value);
140 kfree(prop);
141 prop = next;
142
143 if (!prop) {
144 prop = node->deadprops;
145 node->deadprops = NULL;
146 }
147 }
148 kfree(node->full_name);
149 kfree(node->data);
150 kfree(node);
151 }
152
153 /**
154 * of_node_put - Decrement refcount of a node
155 * @node: Node to dec refcount, NULL is supported to
156 * simplify writing of callers
157 *
158 */
159 void of_node_put(struct device_node *node)
160 {
161 if (node)
162 kref_put(&node->kref, of_node_release);
163 }
164 EXPORT_SYMBOL(of_node_put);
165 #endif /* CONFIG_OF_DYNAMIC */
166
167 struct property *of_find_property(const struct device_node *np,
168 const char *name,
169 int *lenp)
170 {
171 struct property *pp;
172
173 if (!np)
174 return NULL;
175
176 read_lock(&devtree_lock);
177 for (pp = np->properties; pp; pp = pp->next) {
178 if (of_prop_cmp(pp->name, name) == 0) {
179 if (lenp)
180 *lenp = pp->length;
181 break;
182 }
183 }
184 read_unlock(&devtree_lock);
185
186 return pp;
187 }
188 EXPORT_SYMBOL(of_find_property);
189
190 /**
191 * of_find_all_nodes - Get next node in global list
192 * @prev: Previous node or NULL to start iteration
193 * of_node_put() will be called on it
194 *
195 * Returns a node pointer with refcount incremented, use
196 * of_node_put() on it when done.
197 */
198 struct device_node *of_find_all_nodes(struct device_node *prev)
199 {
200 struct device_node *np;
201
202 read_lock(&devtree_lock);
203 np = prev ? prev->allnext : of_allnodes;
204 for (; np != NULL; np = np->allnext)
205 if (of_node_get(np))
206 break;
207 of_node_put(prev);
208 read_unlock(&devtree_lock);
209 return np;
210 }
211 EXPORT_SYMBOL(of_find_all_nodes);
212
213 /*
214 * Find a property with a given name for a given node
215 * and return the value.
216 */
217 const void *of_get_property(const struct device_node *np, const char *name,
218 int *lenp)
219 {
220 struct property *pp = of_find_property(np, name, lenp);
221
222 return pp ? pp->value : NULL;
223 }
224 EXPORT_SYMBOL(of_get_property);
225
226 /** Checks if the given "compat" string matches one of the strings in
227 * the device's "compatible" property
228 */
229 int of_device_is_compatible(const struct device_node *device,
230 const char *compat)
231 {
232 const char* cp;
233 int cplen, l;
234
235 cp = of_get_property(device, "compatible", &cplen);
236 if (cp == NULL)
237 return 0;
238 while (cplen > 0) {
239 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
240 return 1;
241 l = strlen(cp) + 1;
242 cp += l;
243 cplen -= l;
244 }
245
246 return 0;
247 }
248 EXPORT_SYMBOL(of_device_is_compatible);
249
250 /**
251 * of_machine_is_compatible - Test root of device tree for a given compatible value
252 * @compat: compatible string to look for in root node's compatible property.
253 *
254 * Returns true if the root node has the given value in its
255 * compatible property.
256 */
257 int of_machine_is_compatible(const char *compat)
258 {
259 struct device_node *root;
260 int rc = 0;
261
262 root = of_find_node_by_path("/");
263 if (root) {
264 rc = of_device_is_compatible(root, compat);
265 of_node_put(root);
266 }
267 return rc;
268 }
269 EXPORT_SYMBOL(of_machine_is_compatible);
270
271 /**
272 * of_device_is_available - check if a device is available for use
273 *
274 * @device: Node to check for availability
275 *
276 * Returns 1 if the status property is absent or set to "okay" or "ok",
277 * 0 otherwise
278 */
279 int of_device_is_available(const struct device_node *device)
280 {
281 const char *status;
282 int statlen;
283
284 status = of_get_property(device, "status", &statlen);
285 if (status == NULL)
286 return 1;
287
288 if (statlen > 0) {
289 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
290 return 1;
291 }
292
293 return 0;
294 }
295 EXPORT_SYMBOL(of_device_is_available);
296
297 /**
298 * of_get_parent - Get a node's parent if any
299 * @node: Node to get parent
300 *
301 * Returns a node pointer with refcount incremented, use
302 * of_node_put() on it when done.
303 */
304 struct device_node *of_get_parent(const struct device_node *node)
305 {
306 struct device_node *np;
307
308 if (!node)
309 return NULL;
310
311 read_lock(&devtree_lock);
312 np = of_node_get(node->parent);
313 read_unlock(&devtree_lock);
314 return np;
315 }
316 EXPORT_SYMBOL(of_get_parent);
317
318 /**
319 * of_get_next_parent - Iterate to a node's parent
320 * @node: Node to get parent of
321 *
322 * This is like of_get_parent() except that it drops the
323 * refcount on the passed node, making it suitable for iterating
324 * through a node's parents.
325 *
326 * Returns a node pointer with refcount incremented, use
327 * of_node_put() on it when done.
328 */
329 struct device_node *of_get_next_parent(struct device_node *node)
330 {
331 struct device_node *parent;
332
333 if (!node)
334 return NULL;
335
336 read_lock(&devtree_lock);
337 parent = of_node_get(node->parent);
338 of_node_put(node);
339 read_unlock(&devtree_lock);
340 return parent;
341 }
342
343 /**
344 * of_get_next_child - Iterate a node childs
345 * @node: parent node
346 * @prev: previous child of the parent node, or NULL to get first
347 *
348 * Returns a node pointer with refcount incremented, use
349 * of_node_put() on it when done.
350 */
351 struct device_node *of_get_next_child(const struct device_node *node,
352 struct device_node *prev)
353 {
354 struct device_node *next;
355
356 read_lock(&devtree_lock);
357 next = prev ? prev->sibling : node->child;
358 for (; next; next = next->sibling)
359 if (of_node_get(next))
360 break;
361 of_node_put(prev);
362 read_unlock(&devtree_lock);
363 return next;
364 }
365 EXPORT_SYMBOL(of_get_next_child);
366
367 /**
368 * of_get_next_available_child - Find the next available child node
369 * @node: parent node
370 * @prev: previous child of the parent node, or NULL to get first
371 *
372 * This function is like of_get_next_child(), except that it
373 * automatically skips any disabled nodes (i.e. status = "disabled").
374 */
375 struct device_node *of_get_next_available_child(const struct device_node *node,
376 struct device_node *prev)
377 {
378 struct device_node *next;
379
380 read_lock(&devtree_lock);
381 next = prev ? prev->sibling : node->child;
382 for (; next; next = next->sibling) {
383 if (!of_device_is_available(next))
384 continue;
385 if (of_node_get(next))
386 break;
387 }
388 of_node_put(prev);
389 read_unlock(&devtree_lock);
390 return next;
391 }
392 EXPORT_SYMBOL(of_get_next_available_child);
393
394 /**
395 * of_get_child_by_name - Find the child node by name for a given parent
396 * @node: parent node
397 * @name: child name to look for.
398 *
399 * This function looks for child node for given matching name
400 *
401 * Returns a node pointer if found, with refcount incremented, use
402 * of_node_put() on it when done.
403 * Returns NULL if node is not found.
404 */
405 struct device_node *of_get_child_by_name(const struct device_node *node,
406 const char *name)
407 {
408 struct device_node *child;
409
410 for_each_child_of_node(node, child)
411 if (child->name && (of_node_cmp(child->name, name) == 0))
412 break;
413 return child;
414 }
415 EXPORT_SYMBOL(of_get_child_by_name);
416
417 /**
418 * of_find_node_by_path - Find a node matching a full OF path
419 * @path: The full path to match
420 *
421 * Returns a node pointer with refcount incremented, use
422 * of_node_put() on it when done.
423 */
424 struct device_node *of_find_node_by_path(const char *path)
425 {
426 struct device_node *np = of_allnodes;
427
428 read_lock(&devtree_lock);
429 for (; np; np = np->allnext) {
430 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
431 && of_node_get(np))
432 break;
433 }
434 read_unlock(&devtree_lock);
435 return np;
436 }
437 EXPORT_SYMBOL(of_find_node_by_path);
438
439 /**
440 * of_find_node_by_name - Find a node by its "name" property
441 * @from: The node to start searching from or NULL, the node
442 * you pass will not be searched, only the next one
443 * will; typically, you pass what the previous call
444 * returned. of_node_put() will be called on it
445 * @name: The name string to match against
446 *
447 * Returns a node pointer with refcount incremented, use
448 * of_node_put() on it when done.
449 */
450 struct device_node *of_find_node_by_name(struct device_node *from,
451 const char *name)
452 {
453 struct device_node *np;
454
455 read_lock(&devtree_lock);
456 np = from ? from->allnext : of_allnodes;
457 for (; np; np = np->allnext)
458 if (np->name && (of_node_cmp(np->name, name) == 0)
459 && of_node_get(np))
460 break;
461 of_node_put(from);
462 read_unlock(&devtree_lock);
463 return np;
464 }
465 EXPORT_SYMBOL(of_find_node_by_name);
466
467 /**
468 * of_find_node_by_type - Find a node by its "device_type" property
469 * @from: The node to start searching from, or NULL to start searching
470 * the entire device tree. The node you pass will not be
471 * searched, only the next one will; typically, you pass
472 * what the previous call returned. of_node_put() will be
473 * called on from for you.
474 * @type: The type string to match against
475 *
476 * Returns a node pointer with refcount incremented, use
477 * of_node_put() on it when done.
478 */
479 struct device_node *of_find_node_by_type(struct device_node *from,
480 const char *type)
481 {
482 struct device_node *np;
483
484 read_lock(&devtree_lock);
485 np = from ? from->allnext : of_allnodes;
486 for (; np; np = np->allnext)
487 if (np->type && (of_node_cmp(np->type, type) == 0)
488 && of_node_get(np))
489 break;
490 of_node_put(from);
491 read_unlock(&devtree_lock);
492 return np;
493 }
494 EXPORT_SYMBOL(of_find_node_by_type);
495
496 /**
497 * of_find_compatible_node - Find a node based on type and one of the
498 * tokens in its "compatible" property
499 * @from: The node to start searching from or NULL, the node
500 * you pass will not be searched, only the next one
501 * will; typically, you pass what the previous call
502 * returned. of_node_put() will be called on it
503 * @type: The type string to match "device_type" or NULL to ignore
504 * @compatible: The string to match to one of the tokens in the device
505 * "compatible" list.
506 *
507 * Returns a node pointer with refcount incremented, use
508 * of_node_put() on it when done.
509 */
510 struct device_node *of_find_compatible_node(struct device_node *from,
511 const char *type, const char *compatible)
512 {
513 struct device_node *np;
514
515 read_lock(&devtree_lock);
516 np = from ? from->allnext : of_allnodes;
517 for (; np; np = np->allnext) {
518 if (type
519 && !(np->type && (of_node_cmp(np->type, type) == 0)))
520 continue;
521 if (of_device_is_compatible(np, compatible) && of_node_get(np))
522 break;
523 }
524 of_node_put(from);
525 read_unlock(&devtree_lock);
526 return np;
527 }
528 EXPORT_SYMBOL(of_find_compatible_node);
529
530 /**
531 * of_find_node_with_property - Find a node which has a property with
532 * the given name.
533 * @from: The node to start searching from or NULL, the node
534 * you pass will not be searched, only the next one
535 * will; typically, you pass what the previous call
536 * returned. of_node_put() will be called on it
537 * @prop_name: The name of the property to look for.
538 *
539 * Returns a node pointer with refcount incremented, use
540 * of_node_put() on it when done.
541 */
542 struct device_node *of_find_node_with_property(struct device_node *from,
543 const char *prop_name)
544 {
545 struct device_node *np;
546 struct property *pp;
547
548 read_lock(&devtree_lock);
549 np = from ? from->allnext : of_allnodes;
550 for (; np; np = np->allnext) {
551 for (pp = np->properties; pp; pp = pp->next) {
552 if (of_prop_cmp(pp->name, prop_name) == 0) {
553 of_node_get(np);
554 goto out;
555 }
556 }
557 }
558 out:
559 of_node_put(from);
560 read_unlock(&devtree_lock);
561 return np;
562 }
563 EXPORT_SYMBOL(of_find_node_with_property);
564
565 /**
566 * of_match_node - Tell if an device_node has a matching of_match structure
567 * @matches: array of of device match structures to search in
568 * @node: the of device structure to match against
569 *
570 * Low level utility function used by device matching.
571 */
572 const struct of_device_id *of_match_node(const struct of_device_id *matches,
573 const struct device_node *node)
574 {
575 if (!matches)
576 return NULL;
577
578 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
579 int match = 1;
580 if (matches->name[0])
581 match &= node->name
582 && !strcmp(matches->name, node->name);
583 if (matches->type[0])
584 match &= node->type
585 && !strcmp(matches->type, node->type);
586 if (matches->compatible[0])
587 match &= of_device_is_compatible(node,
588 matches->compatible);
589 if (match)
590 return matches;
591 matches++;
592 }
593 return NULL;
594 }
595 EXPORT_SYMBOL(of_match_node);
596
597 /**
598 * of_find_matching_node_and_match - Find a node based on an of_device_id
599 * match table.
600 * @from: The node to start searching from or NULL, the node
601 * you pass will not be searched, only the next one
602 * will; typically, you pass what the previous call
603 * returned. of_node_put() will be called on it
604 * @matches: array of of device match structures to search in
605 * @match Updated to point at the matches entry which matched
606 *
607 * Returns a node pointer with refcount incremented, use
608 * of_node_put() on it when done.
609 */
610 struct device_node *of_find_matching_node_and_match(struct device_node *from,
611 const struct of_device_id *matches,
612 const struct of_device_id **match)
613 {
614 struct device_node *np;
615 const struct of_device_id *m;
616
617 if (match)
618 *match = NULL;
619
620 read_lock(&devtree_lock);
621 np = from ? from->allnext : of_allnodes;
622 for (; np; np = np->allnext) {
623 m = of_match_node(matches, np);
624 if (m && of_node_get(np)) {
625 if (match)
626 *match = m;
627 break;
628 }
629 }
630 of_node_put(from);
631 read_unlock(&devtree_lock);
632 return np;
633 }
634 EXPORT_SYMBOL(of_find_matching_node_and_match);
635
636 /**
637 * of_modalias_node - Lookup appropriate modalias for a device node
638 * @node: pointer to a device tree node
639 * @modalias: Pointer to buffer that modalias value will be copied into
640 * @len: Length of modalias value
641 *
642 * Based on the value of the compatible property, this routine will attempt
643 * to choose an appropriate modalias value for a particular device tree node.
644 * It does this by stripping the manufacturer prefix (as delimited by a ',')
645 * from the first entry in the compatible list property.
646 *
647 * This routine returns 0 on success, <0 on failure.
648 */
649 int of_modalias_node(struct device_node *node, char *modalias, int len)
650 {
651 const char *compatible, *p;
652 int cplen;
653
654 compatible = of_get_property(node, "compatible", &cplen);
655 if (!compatible || strlen(compatible) > cplen)
656 return -ENODEV;
657 p = strchr(compatible, ',');
658 strlcpy(modalias, p ? p + 1 : compatible, len);
659 return 0;
660 }
661 EXPORT_SYMBOL_GPL(of_modalias_node);
662
663 /**
664 * of_find_node_by_phandle - Find a node given a phandle
665 * @handle: phandle of the node to find
666 *
667 * Returns a node pointer with refcount incremented, use
668 * of_node_put() on it when done.
669 */
670 struct device_node *of_find_node_by_phandle(phandle handle)
671 {
672 struct device_node *np;
673
674 read_lock(&devtree_lock);
675 for (np = of_allnodes; np; np = np->allnext)
676 if (np->phandle == handle)
677 break;
678 of_node_get(np);
679 read_unlock(&devtree_lock);
680 return np;
681 }
682 EXPORT_SYMBOL(of_find_node_by_phandle);
683
684 /**
685 * of_property_read_u8_array - Find and read an array of u8 from a property.
686 *
687 * @np: device node from which the property value is to be read.
688 * @propname: name of the property to be searched.
689 * @out_value: pointer to return value, modified only if return value is 0.
690 * @sz: number of array elements to read
691 *
692 * Search for a property in a device node and read 8-bit value(s) from
693 * it. Returns 0 on success, -EINVAL if the property does not exist,
694 * -ENODATA if property does not have a value, and -EOVERFLOW if the
695 * property data isn't large enough.
696 *
697 * dts entry of array should be like:
698 * property = /bits/ 8 <0x50 0x60 0x70>;
699 *
700 * The out_value is modified only if a valid u8 value can be decoded.
701 */
702 int of_property_read_u8_array(const struct device_node *np,
703 const char *propname, u8 *out_values, size_t sz)
704 {
705 struct property *prop = of_find_property(np, propname, NULL);
706 const u8 *val;
707
708 if (!prop)
709 return -EINVAL;
710 if (!prop->value)
711 return -ENODATA;
712 if ((sz * sizeof(*out_values)) > prop->length)
713 return -EOVERFLOW;
714
715 val = prop->value;
716 while (sz--)
717 *out_values++ = *val++;
718 return 0;
719 }
720 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
721
722 /**
723 * of_property_read_u16_array - Find and read an array of u16 from a property.
724 *
725 * @np: device node from which the property value is to be read.
726 * @propname: name of the property to be searched.
727 * @out_value: pointer to return value, modified only if return value is 0.
728 * @sz: number of array elements to read
729 *
730 * Search for a property in a device node and read 16-bit value(s) from
731 * it. Returns 0 on success, -EINVAL if the property does not exist,
732 * -ENODATA if property does not have a value, and -EOVERFLOW if the
733 * property data isn't large enough.
734 *
735 * dts entry of array should be like:
736 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
737 *
738 * The out_value is modified only if a valid u16 value can be decoded.
739 */
740 int of_property_read_u16_array(const struct device_node *np,
741 const char *propname, u16 *out_values, size_t sz)
742 {
743 struct property *prop = of_find_property(np, propname, NULL);
744 const __be16 *val;
745
746 if (!prop)
747 return -EINVAL;
748 if (!prop->value)
749 return -ENODATA;
750 if ((sz * sizeof(*out_values)) > prop->length)
751 return -EOVERFLOW;
752
753 val = prop->value;
754 while (sz--)
755 *out_values++ = be16_to_cpup(val++);
756 return 0;
757 }
758 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
759
760 /**
761 * of_property_read_u32_array - Find and read an array of 32 bit integers
762 * from a property.
763 *
764 * @np: device node from which the property value is to be read.
765 * @propname: name of the property to be searched.
766 * @out_value: pointer to return value, modified only if return value is 0.
767 * @sz: number of array elements to read
768 *
769 * Search for a property in a device node and read 32-bit value(s) from
770 * it. Returns 0 on success, -EINVAL if the property does not exist,
771 * -ENODATA if property does not have a value, and -EOVERFLOW if the
772 * property data isn't large enough.
773 *
774 * The out_value is modified only if a valid u32 value can be decoded.
775 */
776 int of_property_read_u32_array(const struct device_node *np,
777 const char *propname, u32 *out_values,
778 size_t sz)
779 {
780 struct property *prop = of_find_property(np, propname, NULL);
781 const __be32 *val;
782
783 if (!prop)
784 return -EINVAL;
785 if (!prop->value)
786 return -ENODATA;
787 if ((sz * sizeof(*out_values)) > prop->length)
788 return -EOVERFLOW;
789
790 val = prop->value;
791 while (sz--)
792 *out_values++ = be32_to_cpup(val++);
793 return 0;
794 }
795 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
796
797 /**
798 * of_property_read_u64 - Find and read a 64 bit integer from a property
799 * @np: device node from which the property value is to be read.
800 * @propname: name of the property to be searched.
801 * @out_value: pointer to return value, modified only if return value is 0.
802 *
803 * Search for a property in a device node and read a 64-bit value from
804 * it. Returns 0 on success, -EINVAL if the property does not exist,
805 * -ENODATA if property does not have a value, and -EOVERFLOW if the
806 * property data isn't large enough.
807 *
808 * The out_value is modified only if a valid u64 value can be decoded.
809 */
810 int of_property_read_u64(const struct device_node *np, const char *propname,
811 u64 *out_value)
812 {
813 struct property *prop = of_find_property(np, propname, NULL);
814
815 if (!prop)
816 return -EINVAL;
817 if (!prop->value)
818 return -ENODATA;
819 if (sizeof(*out_value) > prop->length)
820 return -EOVERFLOW;
821 *out_value = of_read_number(prop->value, 2);
822 return 0;
823 }
824 EXPORT_SYMBOL_GPL(of_property_read_u64);
825
826 /**
827 * of_property_read_string - Find and read a string from a property
828 * @np: device node from which the property value is to be read.
829 * @propname: name of the property to be searched.
830 * @out_string: pointer to null terminated return string, modified only if
831 * return value is 0.
832 *
833 * Search for a property in a device tree node and retrieve a null
834 * terminated string value (pointer to data, not a copy). Returns 0 on
835 * success, -EINVAL if the property does not exist, -ENODATA if property
836 * does not have a value, and -EILSEQ if the string is not null-terminated
837 * within the length of the property data.
838 *
839 * The out_string pointer is modified only if a valid string can be decoded.
840 */
841 int of_property_read_string(struct device_node *np, const char *propname,
842 const char **out_string)
843 {
844 struct property *prop = of_find_property(np, propname, NULL);
845 if (!prop)
846 return -EINVAL;
847 if (!prop->value)
848 return -ENODATA;
849 if (strnlen(prop->value, prop->length) >= prop->length)
850 return -EILSEQ;
851 *out_string = prop->value;
852 return 0;
853 }
854 EXPORT_SYMBOL_GPL(of_property_read_string);
855
856 /**
857 * of_property_read_string_index - Find and read a string from a multiple
858 * strings property.
859 * @np: device node from which the property value is to be read.
860 * @propname: name of the property to be searched.
861 * @index: index of the string in the list of strings
862 * @out_string: pointer to null terminated return string, modified only if
863 * return value is 0.
864 *
865 * Search for a property in a device tree node and retrieve a null
866 * terminated string value (pointer to data, not a copy) in the list of strings
867 * contained in that property.
868 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
869 * property does not have a value, and -EILSEQ if the string is not
870 * null-terminated within the length of the property data.
871 *
872 * The out_string pointer is modified only if a valid string can be decoded.
873 */
874 int of_property_read_string_index(struct device_node *np, const char *propname,
875 int index, const char **output)
876 {
877 struct property *prop = of_find_property(np, propname, NULL);
878 int i = 0;
879 size_t l = 0, total = 0;
880 const char *p;
881
882 if (!prop)
883 return -EINVAL;
884 if (!prop->value)
885 return -ENODATA;
886 if (strnlen(prop->value, prop->length) >= prop->length)
887 return -EILSEQ;
888
889 p = prop->value;
890
891 for (i = 0; total < prop->length; total += l, p += l) {
892 l = strlen(p) + 1;
893 if (i++ == index) {
894 *output = p;
895 return 0;
896 }
897 }
898 return -ENODATA;
899 }
900 EXPORT_SYMBOL_GPL(of_property_read_string_index);
901
902 /**
903 * of_property_match_string() - Find string in a list and return index
904 * @np: pointer to node containing string list property
905 * @propname: string list property name
906 * @string: pointer to string to search for in string list
907 *
908 * This function searches a string list property and returns the index
909 * of a specific string value.
910 */
911 int of_property_match_string(struct device_node *np, const char *propname,
912 const char *string)
913 {
914 struct property *prop = of_find_property(np, propname, NULL);
915 size_t l;
916 int i;
917 const char *p, *end;
918
919 if (!prop)
920 return -EINVAL;
921 if (!prop->value)
922 return -ENODATA;
923
924 p = prop->value;
925 end = p + prop->length;
926
927 for (i = 0; p < end; i++, p += l) {
928 l = strlen(p) + 1;
929 if (p + l > end)
930 return -EILSEQ;
931 pr_debug("comparing %s with %s\n", string, p);
932 if (strcmp(string, p) == 0)
933 return i; /* Found it; return index */
934 }
935 return -ENODATA;
936 }
937 EXPORT_SYMBOL_GPL(of_property_match_string);
938
939 /**
940 * of_property_count_strings - Find and return the number of strings from a
941 * multiple strings property.
942 * @np: device node from which the property value is to be read.
943 * @propname: name of the property to be searched.
944 *
945 * Search for a property in a device tree node and retrieve the number of null
946 * terminated string contain in it. Returns the number of strings on
947 * success, -EINVAL if the property does not exist, -ENODATA if property
948 * does not have a value, and -EILSEQ if the string is not null-terminated
949 * within the length of the property data.
950 */
951 int of_property_count_strings(struct device_node *np, const char *propname)
952 {
953 struct property *prop = of_find_property(np, propname, NULL);
954 int i = 0;
955 size_t l = 0, total = 0;
956 const char *p;
957
958 if (!prop)
959 return -EINVAL;
960 if (!prop->value)
961 return -ENODATA;
962 if (strnlen(prop->value, prop->length) >= prop->length)
963 return -EILSEQ;
964
965 p = prop->value;
966
967 for (i = 0; total < prop->length; total += l, p += l, i++)
968 l = strlen(p) + 1;
969
970 return i;
971 }
972 EXPORT_SYMBOL_GPL(of_property_count_strings);
973
974 /**
975 * of_parse_phandle - Resolve a phandle property to a device_node pointer
976 * @np: Pointer to device node holding phandle property
977 * @phandle_name: Name of property holding a phandle value
978 * @index: For properties holding a table of phandles, this is the index into
979 * the table
980 *
981 * Returns the device_node pointer with refcount incremented. Use
982 * of_node_put() on it when done.
983 */
984 struct device_node *of_parse_phandle(const struct device_node *np,
985 const char *phandle_name, int index)
986 {
987 const __be32 *phandle;
988 int size;
989
990 phandle = of_get_property(np, phandle_name, &size);
991 if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
992 return NULL;
993
994 return of_find_node_by_phandle(be32_to_cpup(phandle + index));
995 }
996 EXPORT_SYMBOL(of_parse_phandle);
997
998 /**
999 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1000 * @np: pointer to a device tree node containing a list
1001 * @list_name: property name that contains a list
1002 * @cells_name: property name that specifies phandles' arguments count
1003 * @index: index of a phandle to parse out
1004 * @out_args: optional pointer to output arguments structure (will be filled)
1005 *
1006 * This function is useful to parse lists of phandles and their arguments.
1007 * Returns 0 on success and fills out_args, on error returns appropriate
1008 * errno value.
1009 *
1010 * Caller is responsible to call of_node_put() on the returned out_args->node
1011 * pointer.
1012 *
1013 * Example:
1014 *
1015 * phandle1: node1 {
1016 * #list-cells = <2>;
1017 * }
1018 *
1019 * phandle2: node2 {
1020 * #list-cells = <1>;
1021 * }
1022 *
1023 * node3 {
1024 * list = <&phandle1 1 2 &phandle2 3>;
1025 * }
1026 *
1027 * To get a device_node of the `node2' node you may call this:
1028 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1029 */
1030 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1031 const char *cells_name, int index,
1032 struct of_phandle_args *out_args)
1033 {
1034 const __be32 *list, *list_end;
1035 int size, cur_index = 0;
1036 uint32_t count = 0;
1037 struct device_node *node = NULL;
1038 phandle phandle;
1039
1040 /* Retrieve the phandle list property */
1041 list = of_get_property(np, list_name, &size);
1042 if (!list)
1043 return -ENOENT;
1044 list_end = list + size / sizeof(*list);
1045
1046 /* Loop over the phandles until all the requested entry is found */
1047 while (list < list_end) {
1048 count = 0;
1049
1050 /*
1051 * If phandle is 0, then it is an empty entry with no
1052 * arguments. Skip forward to the next entry.
1053 */
1054 phandle = be32_to_cpup(list++);
1055 if (phandle) {
1056 /*
1057 * Find the provider node and parse the #*-cells
1058 * property to determine the argument length
1059 */
1060 node = of_find_node_by_phandle(phandle);
1061 if (!node) {
1062 pr_err("%s: could not find phandle\n",
1063 np->full_name);
1064 break;
1065 }
1066 if (of_property_read_u32(node, cells_name, &count)) {
1067 pr_err("%s: could not get %s for %s\n",
1068 np->full_name, cells_name,
1069 node->full_name);
1070 break;
1071 }
1072
1073 /*
1074 * Make sure that the arguments actually fit in the
1075 * remaining property data length
1076 */
1077 if (list + count > list_end) {
1078 pr_err("%s: arguments longer than property\n",
1079 np->full_name);
1080 break;
1081 }
1082 }
1083
1084 /*
1085 * All of the error cases above bail out of the loop, so at
1086 * this point, the parsing is successful. If the requested
1087 * index matches, then fill the out_args structure and return,
1088 * or return -ENOENT for an empty entry.
1089 */
1090 if (cur_index == index) {
1091 if (!phandle)
1092 return -ENOENT;
1093
1094 if (out_args) {
1095 int i;
1096 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1097 count = MAX_PHANDLE_ARGS;
1098 out_args->np = node;
1099 out_args->args_count = count;
1100 for (i = 0; i < count; i++)
1101 out_args->args[i] = be32_to_cpup(list++);
1102 }
1103 return 0;
1104 }
1105
1106 of_node_put(node);
1107 node = NULL;
1108 list += count;
1109 cur_index++;
1110 }
1111
1112 /* Loop exited without finding a valid entry; return an error */
1113 if (node)
1114 of_node_put(node);
1115 return -EINVAL;
1116 }
1117 EXPORT_SYMBOL(of_parse_phandle_with_args);
1118
1119 #if defined(CONFIG_OF_DYNAMIC)
1120 static int of_property_notify(int action, struct device_node *np,
1121 struct property *prop)
1122 {
1123 struct of_prop_reconfig pr;
1124
1125 pr.dn = np;
1126 pr.prop = prop;
1127 return of_reconfig_notify(action, &pr);
1128 }
1129 #else
1130 static int of_property_notify(int action, struct device_node *np,
1131 struct property *prop)
1132 {
1133 return 0;
1134 }
1135 #endif
1136
1137 /**
1138 * of_add_property - Add a property to a node
1139 */
1140 int of_add_property(struct device_node *np, struct property *prop)
1141 {
1142 struct property **next;
1143 unsigned long flags;
1144 int rc;
1145
1146 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1147 if (rc)
1148 return rc;
1149
1150 prop->next = NULL;
1151 write_lock_irqsave(&devtree_lock, flags);
1152 next = &np->properties;
1153 while (*next) {
1154 if (strcmp(prop->name, (*next)->name) == 0) {
1155 /* duplicate ! don't insert it */
1156 write_unlock_irqrestore(&devtree_lock, flags);
1157 return -1;
1158 }
1159 next = &(*next)->next;
1160 }
1161 *next = prop;
1162 write_unlock_irqrestore(&devtree_lock, flags);
1163
1164 #ifdef CONFIG_PROC_DEVICETREE
1165 /* try to add to proc as well if it was initialized */
1166 if (np->pde)
1167 proc_device_tree_add_prop(np->pde, prop);
1168 #endif /* CONFIG_PROC_DEVICETREE */
1169
1170 return 0;
1171 }
1172
1173 /**
1174 * of_remove_property - Remove a property from a node.
1175 *
1176 * Note that we don't actually remove it, since we have given out
1177 * who-knows-how-many pointers to the data using get-property.
1178 * Instead we just move the property to the "dead properties"
1179 * list, so it won't be found any more.
1180 */
1181 int of_remove_property(struct device_node *np, struct property *prop)
1182 {
1183 struct property **next;
1184 unsigned long flags;
1185 int found = 0;
1186 int rc;
1187
1188 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1189 if (rc)
1190 return rc;
1191
1192 write_lock_irqsave(&devtree_lock, flags);
1193 next = &np->properties;
1194 while (*next) {
1195 if (*next == prop) {
1196 /* found the node */
1197 *next = prop->next;
1198 prop->next = np->deadprops;
1199 np->deadprops = prop;
1200 found = 1;
1201 break;
1202 }
1203 next = &(*next)->next;
1204 }
1205 write_unlock_irqrestore(&devtree_lock, flags);
1206
1207 if (!found)
1208 return -ENODEV;
1209
1210 #ifdef CONFIG_PROC_DEVICETREE
1211 /* try to remove the proc node as well */
1212 if (np->pde)
1213 proc_device_tree_remove_prop(np->pde, prop);
1214 #endif /* CONFIG_PROC_DEVICETREE */
1215
1216 return 0;
1217 }
1218
1219 /*
1220 * of_update_property - Update a property in a node, if the property does
1221 * not exist, add it.
1222 *
1223 * Note that we don't actually remove it, since we have given out
1224 * who-knows-how-many pointers to the data using get-property.
1225 * Instead we just move the property to the "dead properties" list,
1226 * and add the new property to the property list
1227 */
1228 int of_update_property(struct device_node *np, struct property *newprop)
1229 {
1230 struct property **next, *oldprop;
1231 unsigned long flags;
1232 int rc, found = 0;
1233
1234 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1235 if (rc)
1236 return rc;
1237
1238 if (!newprop->name)
1239 return -EINVAL;
1240
1241 oldprop = of_find_property(np, newprop->name, NULL);
1242 if (!oldprop)
1243 return of_add_property(np, newprop);
1244
1245 write_lock_irqsave(&devtree_lock, flags);
1246 next = &np->properties;
1247 while (*next) {
1248 if (*next == oldprop) {
1249 /* found the node */
1250 newprop->next = oldprop->next;
1251 *next = newprop;
1252 oldprop->next = np->deadprops;
1253 np->deadprops = oldprop;
1254 found = 1;
1255 break;
1256 }
1257 next = &(*next)->next;
1258 }
1259 write_unlock_irqrestore(&devtree_lock, flags);
1260
1261 if (!found)
1262 return -ENODEV;
1263
1264 #ifdef CONFIG_PROC_DEVICETREE
1265 /* try to add to proc as well if it was initialized */
1266 if (np->pde)
1267 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1268 #endif /* CONFIG_PROC_DEVICETREE */
1269
1270 return 0;
1271 }
1272
1273 #if defined(CONFIG_OF_DYNAMIC)
1274 /*
1275 * Support for dynamic device trees.
1276 *
1277 * On some platforms, the device tree can be manipulated at runtime.
1278 * The routines in this section support adding, removing and changing
1279 * device tree nodes.
1280 */
1281
1282 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1283
1284 int of_reconfig_notifier_register(struct notifier_block *nb)
1285 {
1286 return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1287 }
1288 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1289
1290 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1291 {
1292 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1293 }
1294 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1295
1296 int of_reconfig_notify(unsigned long action, void *p)
1297 {
1298 int rc;
1299
1300 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1301 return notifier_to_errno(rc);
1302 }
1303
1304 #ifdef CONFIG_PROC_DEVICETREE
1305 static void of_add_proc_dt_entry(struct device_node *dn)
1306 {
1307 struct proc_dir_entry *ent;
1308
1309 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1310 if (ent)
1311 proc_device_tree_add_node(dn, ent);
1312 }
1313 #else
1314 static void of_add_proc_dt_entry(struct device_node *dn)
1315 {
1316 return;
1317 }
1318 #endif
1319
1320 /**
1321 * of_attach_node - Plug a device node into the tree and global list.
1322 */
1323 int of_attach_node(struct device_node *np)
1324 {
1325 unsigned long flags;
1326 int rc;
1327
1328 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1329 if (rc)
1330 return rc;
1331
1332 write_lock_irqsave(&devtree_lock, flags);
1333 np->sibling = np->parent->child;
1334 np->allnext = of_allnodes;
1335 np->parent->child = np;
1336 of_allnodes = np;
1337 write_unlock_irqrestore(&devtree_lock, flags);
1338
1339 of_add_proc_dt_entry(np);
1340 return 0;
1341 }
1342
1343 #ifdef CONFIG_PROC_DEVICETREE
1344 static void of_remove_proc_dt_entry(struct device_node *dn)
1345 {
1346 struct device_node *parent = dn->parent;
1347 struct property *prop = dn->properties;
1348
1349 while (prop) {
1350 remove_proc_entry(prop->name, dn->pde);
1351 prop = prop->next;
1352 }
1353
1354 if (dn->pde)
1355 remove_proc_entry(dn->pde->name, parent->pde);
1356 }
1357 #else
1358 static void of_remove_proc_dt_entry(struct device_node *dn)
1359 {
1360 return;
1361 }
1362 #endif
1363
1364 /**
1365 * of_detach_node - "Unplug" a node from the device tree.
1366 *
1367 * The caller must hold a reference to the node. The memory associated with
1368 * the node is not freed until its refcount goes to zero.
1369 */
1370 int of_detach_node(struct device_node *np)
1371 {
1372 struct device_node *parent;
1373 unsigned long flags;
1374 int rc = 0;
1375
1376 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1377 if (rc)
1378 return rc;
1379
1380 write_lock_irqsave(&devtree_lock, flags);
1381
1382 if (of_node_check_flag(np, OF_DETACHED)) {
1383 /* someone already detached it */
1384 write_unlock_irqrestore(&devtree_lock, flags);
1385 return rc;
1386 }
1387
1388 parent = np->parent;
1389 if (!parent) {
1390 write_unlock_irqrestore(&devtree_lock, flags);
1391 return rc;
1392 }
1393
1394 if (of_allnodes == np)
1395 of_allnodes = np->allnext;
1396 else {
1397 struct device_node *prev;
1398 for (prev = of_allnodes;
1399 prev->allnext != np;
1400 prev = prev->allnext)
1401 ;
1402 prev->allnext = np->allnext;
1403 }
1404
1405 if (parent->child == np)
1406 parent->child = np->sibling;
1407 else {
1408 struct device_node *prevsib;
1409 for (prevsib = np->parent->child;
1410 prevsib->sibling != np;
1411 prevsib = prevsib->sibling)
1412 ;
1413 prevsib->sibling = np->sibling;
1414 }
1415
1416 of_node_set_flag(np, OF_DETACHED);
1417 write_unlock_irqrestore(&devtree_lock, flags);
1418
1419 of_remove_proc_dt_entry(np);
1420 return rc;
1421 }
1422 #endif /* defined(CONFIG_OF_DYNAMIC) */
1423
1424 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1425 int id, const char *stem, int stem_len)
1426 {
1427 ap->np = np;
1428 ap->id = id;
1429 strncpy(ap->stem, stem, stem_len);
1430 ap->stem[stem_len] = 0;
1431 list_add_tail(&ap->link, &aliases_lookup);
1432 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1433 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1434 }
1435
1436 /**
1437 * of_alias_scan - Scan all properties of 'aliases' node
1438 *
1439 * The function scans all the properties of 'aliases' node and populate
1440 * the the global lookup table with the properties. It returns the
1441 * number of alias_prop found, or error code in error case.
1442 *
1443 * @dt_alloc: An allocator that provides a virtual address to memory
1444 * for the resulting tree
1445 */
1446 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1447 {
1448 struct property *pp;
1449
1450 of_chosen = of_find_node_by_path("/chosen");
1451 if (of_chosen == NULL)
1452 of_chosen = of_find_node_by_path("/chosen@0");
1453 of_aliases = of_find_node_by_path("/aliases");
1454 if (!of_aliases)
1455 return;
1456
1457 for_each_property_of_node(of_aliases, pp) {
1458 const char *start = pp->name;
1459 const char *end = start + strlen(start);
1460 struct device_node *np;
1461 struct alias_prop *ap;
1462 int id, len;
1463
1464 /* Skip those we do not want to proceed */
1465 if (!strcmp(pp->name, "name") ||
1466 !strcmp(pp->name, "phandle") ||
1467 !strcmp(pp->name, "linux,phandle"))
1468 continue;
1469
1470 np = of_find_node_by_path(pp->value);
1471 if (!np)
1472 continue;
1473
1474 /* walk the alias backwards to extract the id and work out
1475 * the 'stem' string */
1476 while (isdigit(*(end-1)) && end > start)
1477 end--;
1478 len = end - start;
1479
1480 if (kstrtoint(end, 10, &id) < 0)
1481 continue;
1482
1483 /* Allocate an alias_prop with enough space for the stem */
1484 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1485 if (!ap)
1486 continue;
1487 ap->alias = start;
1488 of_alias_add(ap, np, id, start, len);
1489 }
1490 }
1491
1492 /**
1493 * of_alias_get_id - Get alias id for the given device_node
1494 * @np: Pointer to the given device_node
1495 * @stem: Alias stem of the given device_node
1496 *
1497 * The function travels the lookup table to get alias id for the given
1498 * device_node and alias stem. It returns the alias id if find it.
1499 */
1500 int of_alias_get_id(struct device_node *np, const char *stem)
1501 {
1502 struct alias_prop *app;
1503 int id = -ENODEV;
1504
1505 mutex_lock(&of_aliases_mutex);
1506 list_for_each_entry(app, &aliases_lookup, link) {
1507 if (strcmp(app->stem, stem) != 0)
1508 continue;
1509
1510 if (np == app->np) {
1511 id = app->id;
1512 break;
1513 }
1514 }
1515 mutex_unlock(&of_aliases_mutex);
1516
1517 return id;
1518 }
1519 EXPORT_SYMBOL_GPL(of_alias_get_id);
1520
1521 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1522 u32 *pu)
1523 {
1524 const void *curv = cur;
1525
1526 if (!prop)
1527 return NULL;
1528
1529 if (!cur) {
1530 curv = prop->value;
1531 goto out_val;
1532 }
1533
1534 curv += sizeof(*cur);
1535 if (curv >= prop->value + prop->length)
1536 return NULL;
1537
1538 out_val:
1539 *pu = be32_to_cpup(curv);
1540 return curv;
1541 }
1542 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1543
1544 const char *of_prop_next_string(struct property *prop, const char *cur)
1545 {
1546 const void *curv = cur;
1547
1548 if (!prop)
1549 return NULL;
1550
1551 if (!cur)
1552 return prop->value;
1553
1554 curv += strlen(cur) + 1;
1555 if (curv >= prop->value + prop->length)
1556 return NULL;
1557
1558 return curv;
1559 }
1560 EXPORT_SYMBOL_GPL(of_prop_next_string);
This page took 0.065395 seconds and 5 git commands to generate.