Merge remote-tracking branch 'mkp-scsi/4.7/scsi-fixes' into fixes
[deliverable/linux.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30
31 #include "of_private.h"
32
33 LIST_HEAD(aliases_lookup);
34
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41
42 struct kset *of_kset;
43
44 /*
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
49 */
50 DEFINE_MUTEX(of_mutex);
51
52 /* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
54 */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56
57 int of_n_addr_cells(struct device_node *np)
58 {
59 const __be32 *ip;
60
61 do {
62 if (np->parent)
63 np = np->parent;
64 ip = of_get_property(np, "#address-cells", NULL);
65 if (ip)
66 return be32_to_cpup(ip);
67 } while (np->parent);
68 /* No #address-cells property for the root node */
69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70 }
71 EXPORT_SYMBOL(of_n_addr_cells);
72
73 int of_n_size_cells(struct device_node *np)
74 {
75 const __be32 *ip;
76
77 do {
78 if (np->parent)
79 np = np->parent;
80 ip = of_get_property(np, "#size-cells", NULL);
81 if (ip)
82 return be32_to_cpup(ip);
83 } while (np->parent);
84 /* No #size-cells property for the root node */
85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86 }
87 EXPORT_SYMBOL(of_n_size_cells);
88
89 #ifdef CONFIG_NUMA
90 int __weak of_node_to_nid(struct device_node *np)
91 {
92 return NUMA_NO_NODE;
93 }
94 #endif
95
96 #ifndef CONFIG_OF_DYNAMIC
97 static void of_node_release(struct kobject *kobj)
98 {
99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100 }
101 #endif /* CONFIG_OF_DYNAMIC */
102
103 struct kobj_type of_node_ktype = {
104 .release = of_node_release,
105 };
106
107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 struct bin_attribute *bin_attr, char *buf,
109 loff_t offset, size_t count)
110 {
111 struct property *pp = container_of(bin_attr, struct property, attr);
112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113 }
114
115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
116 {
117 const char *name = orig_name;
118 struct kernfs_node *kn;
119 int i = 0;
120
121 /* don't be a hero. After 16 tries give up */
122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 sysfs_put(kn);
124 if (name != orig_name)
125 kfree(name);
126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127 }
128
129 if (name != orig_name)
130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 kobject_name(kobj), name);
132 return name;
133 }
134
135 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
136 {
137 int rc;
138
139 /* Important: Don't leak passwords */
140 bool secure = strncmp(pp->name, "security-", 9) == 0;
141
142 if (!IS_ENABLED(CONFIG_SYSFS))
143 return 0;
144
145 if (!of_kset || !of_node_is_attached(np))
146 return 0;
147
148 sysfs_bin_attr_init(&pp->attr);
149 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 pp->attr.size = secure ? 0 : pp->length;
152 pp->attr.read = of_node_property_read;
153
154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156 return rc;
157 }
158
159 int __of_attach_node_sysfs(struct device_node *np)
160 {
161 const char *name;
162 struct property *pp;
163 int rc;
164
165 if (!IS_ENABLED(CONFIG_SYSFS))
166 return 0;
167
168 if (!of_kset)
169 return 0;
170
171 np->kobj.kset = of_kset;
172 if (!np->parent) {
173 /* Nodes without parents are new top level trees */
174 rc = kobject_add(&np->kobj, NULL, "%s",
175 safe_name(&of_kset->kobj, "base"));
176 } else {
177 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 if (!name || !name[0])
179 return -EINVAL;
180
181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
182 }
183 if (rc)
184 return rc;
185
186 for_each_property_of_node(np, pp)
187 __of_add_property_sysfs(np, pp);
188
189 return 0;
190 }
191
192 void __init of_core_init(void)
193 {
194 struct device_node *np;
195
196 /* Create the kset, and register existing nodes */
197 mutex_lock(&of_mutex);
198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199 if (!of_kset) {
200 mutex_unlock(&of_mutex);
201 pr_err("devicetree: failed to register existing nodes\n");
202 return;
203 }
204 for_each_of_allnodes(np)
205 __of_attach_node_sysfs(np);
206 mutex_unlock(&of_mutex);
207
208 /* Symlink in /proc as required by userspace ABI */
209 if (of_root)
210 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
211 }
212
213 static struct property *__of_find_property(const struct device_node *np,
214 const char *name, int *lenp)
215 {
216 struct property *pp;
217
218 if (!np)
219 return NULL;
220
221 for (pp = np->properties; pp; pp = pp->next) {
222 if (of_prop_cmp(pp->name, name) == 0) {
223 if (lenp)
224 *lenp = pp->length;
225 break;
226 }
227 }
228
229 return pp;
230 }
231
232 struct property *of_find_property(const struct device_node *np,
233 const char *name,
234 int *lenp)
235 {
236 struct property *pp;
237 unsigned long flags;
238
239 raw_spin_lock_irqsave(&devtree_lock, flags);
240 pp = __of_find_property(np, name, lenp);
241 raw_spin_unlock_irqrestore(&devtree_lock, flags);
242
243 return pp;
244 }
245 EXPORT_SYMBOL(of_find_property);
246
247 struct device_node *__of_find_all_nodes(struct device_node *prev)
248 {
249 struct device_node *np;
250 if (!prev) {
251 np = of_root;
252 } else if (prev->child) {
253 np = prev->child;
254 } else {
255 /* Walk back up looking for a sibling, or the end of the structure */
256 np = prev;
257 while (np->parent && !np->sibling)
258 np = np->parent;
259 np = np->sibling; /* Might be null at the end of the tree */
260 }
261 return np;
262 }
263
264 /**
265 * of_find_all_nodes - Get next node in global list
266 * @prev: Previous node or NULL to start iteration
267 * of_node_put() will be called on it
268 *
269 * Returns a node pointer with refcount incremented, use
270 * of_node_put() on it when done.
271 */
272 struct device_node *of_find_all_nodes(struct device_node *prev)
273 {
274 struct device_node *np;
275 unsigned long flags;
276
277 raw_spin_lock_irqsave(&devtree_lock, flags);
278 np = __of_find_all_nodes(prev);
279 of_node_get(np);
280 of_node_put(prev);
281 raw_spin_unlock_irqrestore(&devtree_lock, flags);
282 return np;
283 }
284 EXPORT_SYMBOL(of_find_all_nodes);
285
286 /*
287 * Find a property with a given name for a given node
288 * and return the value.
289 */
290 const void *__of_get_property(const struct device_node *np,
291 const char *name, int *lenp)
292 {
293 struct property *pp = __of_find_property(np, name, lenp);
294
295 return pp ? pp->value : NULL;
296 }
297
298 /*
299 * Find a property with a given name for a given node
300 * and return the value.
301 */
302 const void *of_get_property(const struct device_node *np, const char *name,
303 int *lenp)
304 {
305 struct property *pp = of_find_property(np, name, lenp);
306
307 return pp ? pp->value : NULL;
308 }
309 EXPORT_SYMBOL(of_get_property);
310
311 /*
312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
313 *
314 * @cpu: logical cpu index of a core/thread
315 * @phys_id: physical identifier of a core/thread
316 *
317 * CPU logical to physical index mapping is architecture specific.
318 * However this __weak function provides a default match of physical
319 * id to logical cpu index. phys_id provided here is usually values read
320 * from the device tree which must match the hardware internal registers.
321 *
322 * Returns true if the physical identifier and the logical cpu index
323 * correspond to the same core/thread, false otherwise.
324 */
325 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
326 {
327 return (u32)phys_id == cpu;
328 }
329
330 /**
331 * Checks if the given "prop_name" property holds the physical id of the
332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
333 * NULL, local thread number within the core is returned in it.
334 */
335 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
336 const char *prop_name, int cpu, unsigned int *thread)
337 {
338 const __be32 *cell;
339 int ac, prop_len, tid;
340 u64 hwid;
341
342 ac = of_n_addr_cells(cpun);
343 cell = of_get_property(cpun, prop_name, &prop_len);
344 if (!cell || !ac)
345 return false;
346 prop_len /= sizeof(*cell) * ac;
347 for (tid = 0; tid < prop_len; tid++) {
348 hwid = of_read_number(cell, ac);
349 if (arch_match_cpu_phys_id(cpu, hwid)) {
350 if (thread)
351 *thread = tid;
352 return true;
353 }
354 cell += ac;
355 }
356 return false;
357 }
358
359 /*
360 * arch_find_n_match_cpu_physical_id - See if the given device node is
361 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
362 * else false. If 'thread' is non-NULL, the local thread number within the
363 * core is returned in it.
364 */
365 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
366 int cpu, unsigned int *thread)
367 {
368 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
369 * for thread ids on PowerPC. If it doesn't exist fallback to
370 * standard "reg" property.
371 */
372 if (IS_ENABLED(CONFIG_PPC) &&
373 __of_find_n_match_cpu_property(cpun,
374 "ibm,ppc-interrupt-server#s",
375 cpu, thread))
376 return true;
377
378 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
379 }
380
381 /**
382 * of_get_cpu_node - Get device node associated with the given logical CPU
383 *
384 * @cpu: CPU number(logical index) for which device node is required
385 * @thread: if not NULL, local thread number within the physical core is
386 * returned
387 *
388 * The main purpose of this function is to retrieve the device node for the
389 * given logical CPU index. It should be used to initialize the of_node in
390 * cpu device. Once of_node in cpu device is populated, all the further
391 * references can use that instead.
392 *
393 * CPU logical to physical index mapping is architecture specific and is built
394 * before booting secondary cores. This function uses arch_match_cpu_phys_id
395 * which can be overridden by architecture specific implementation.
396 *
397 * Returns a node pointer for the logical cpu with refcount incremented, use
398 * of_node_put() on it when done. Returns NULL if not found.
399 */
400 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
401 {
402 struct device_node *cpun;
403
404 for_each_node_by_type(cpun, "cpu") {
405 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
406 return cpun;
407 }
408 return NULL;
409 }
410 EXPORT_SYMBOL(of_get_cpu_node);
411
412 /**
413 * __of_device_is_compatible() - Check if the node matches given constraints
414 * @device: pointer to node
415 * @compat: required compatible string, NULL or "" for any match
416 * @type: required device_type value, NULL or "" for any match
417 * @name: required node name, NULL or "" for any match
418 *
419 * Checks if the given @compat, @type and @name strings match the
420 * properties of the given @device. A constraints can be skipped by
421 * passing NULL or an empty string as the constraint.
422 *
423 * Returns 0 for no match, and a positive integer on match. The return
424 * value is a relative score with larger values indicating better
425 * matches. The score is weighted for the most specific compatible value
426 * to get the highest score. Matching type is next, followed by matching
427 * name. Practically speaking, this results in the following priority
428 * order for matches:
429 *
430 * 1. specific compatible && type && name
431 * 2. specific compatible && type
432 * 3. specific compatible && name
433 * 4. specific compatible
434 * 5. general compatible && type && name
435 * 6. general compatible && type
436 * 7. general compatible && name
437 * 8. general compatible
438 * 9. type && name
439 * 10. type
440 * 11. name
441 */
442 static int __of_device_is_compatible(const struct device_node *device,
443 const char *compat, const char *type, const char *name)
444 {
445 struct property *prop;
446 const char *cp;
447 int index = 0, score = 0;
448
449 /* Compatible match has highest priority */
450 if (compat && compat[0]) {
451 prop = __of_find_property(device, "compatible", NULL);
452 for (cp = of_prop_next_string(prop, NULL); cp;
453 cp = of_prop_next_string(prop, cp), index++) {
454 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
455 score = INT_MAX/2 - (index << 2);
456 break;
457 }
458 }
459 if (!score)
460 return 0;
461 }
462
463 /* Matching type is better than matching name */
464 if (type && type[0]) {
465 if (!device->type || of_node_cmp(type, device->type))
466 return 0;
467 score += 2;
468 }
469
470 /* Matching name is a bit better than not */
471 if (name && name[0]) {
472 if (!device->name || of_node_cmp(name, device->name))
473 return 0;
474 score++;
475 }
476
477 return score;
478 }
479
480 /** Checks if the given "compat" string matches one of the strings in
481 * the device's "compatible" property
482 */
483 int of_device_is_compatible(const struct device_node *device,
484 const char *compat)
485 {
486 unsigned long flags;
487 int res;
488
489 raw_spin_lock_irqsave(&devtree_lock, flags);
490 res = __of_device_is_compatible(device, compat, NULL, NULL);
491 raw_spin_unlock_irqrestore(&devtree_lock, flags);
492 return res;
493 }
494 EXPORT_SYMBOL(of_device_is_compatible);
495
496 /**
497 * of_machine_is_compatible - Test root of device tree for a given compatible value
498 * @compat: compatible string to look for in root node's compatible property.
499 *
500 * Returns a positive integer if the root node has the given value in its
501 * compatible property.
502 */
503 int of_machine_is_compatible(const char *compat)
504 {
505 struct device_node *root;
506 int rc = 0;
507
508 root = of_find_node_by_path("/");
509 if (root) {
510 rc = of_device_is_compatible(root, compat);
511 of_node_put(root);
512 }
513 return rc;
514 }
515 EXPORT_SYMBOL(of_machine_is_compatible);
516
517 /**
518 * __of_device_is_available - check if a device is available for use
519 *
520 * @device: Node to check for availability, with locks already held
521 *
522 * Returns true if the status property is absent or set to "okay" or "ok",
523 * false otherwise
524 */
525 static bool __of_device_is_available(const struct device_node *device)
526 {
527 const char *status;
528 int statlen;
529
530 if (!device)
531 return false;
532
533 status = __of_get_property(device, "status", &statlen);
534 if (status == NULL)
535 return true;
536
537 if (statlen > 0) {
538 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
539 return true;
540 }
541
542 return false;
543 }
544
545 /**
546 * of_device_is_available - check if a device is available for use
547 *
548 * @device: Node to check for availability
549 *
550 * Returns true if the status property is absent or set to "okay" or "ok",
551 * false otherwise
552 */
553 bool of_device_is_available(const struct device_node *device)
554 {
555 unsigned long flags;
556 bool res;
557
558 raw_spin_lock_irqsave(&devtree_lock, flags);
559 res = __of_device_is_available(device);
560 raw_spin_unlock_irqrestore(&devtree_lock, flags);
561 return res;
562
563 }
564 EXPORT_SYMBOL(of_device_is_available);
565
566 /**
567 * of_device_is_big_endian - check if a device has BE registers
568 *
569 * @device: Node to check for endianness
570 *
571 * Returns true if the device has a "big-endian" property, or if the kernel
572 * was compiled for BE *and* the device has a "native-endian" property.
573 * Returns false otherwise.
574 *
575 * Callers would nominally use ioread32be/iowrite32be if
576 * of_device_is_big_endian() == true, or readl/writel otherwise.
577 */
578 bool of_device_is_big_endian(const struct device_node *device)
579 {
580 if (of_property_read_bool(device, "big-endian"))
581 return true;
582 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
583 of_property_read_bool(device, "native-endian"))
584 return true;
585 return false;
586 }
587 EXPORT_SYMBOL(of_device_is_big_endian);
588
589 /**
590 * of_get_parent - Get a node's parent if any
591 * @node: Node to get parent
592 *
593 * Returns a node pointer with refcount incremented, use
594 * of_node_put() on it when done.
595 */
596 struct device_node *of_get_parent(const struct device_node *node)
597 {
598 struct device_node *np;
599 unsigned long flags;
600
601 if (!node)
602 return NULL;
603
604 raw_spin_lock_irqsave(&devtree_lock, flags);
605 np = of_node_get(node->parent);
606 raw_spin_unlock_irqrestore(&devtree_lock, flags);
607 return np;
608 }
609 EXPORT_SYMBOL(of_get_parent);
610
611 /**
612 * of_get_next_parent - Iterate to a node's parent
613 * @node: Node to get parent of
614 *
615 * This is like of_get_parent() except that it drops the
616 * refcount on the passed node, making it suitable for iterating
617 * through a node's parents.
618 *
619 * Returns a node pointer with refcount incremented, use
620 * of_node_put() on it when done.
621 */
622 struct device_node *of_get_next_parent(struct device_node *node)
623 {
624 struct device_node *parent;
625 unsigned long flags;
626
627 if (!node)
628 return NULL;
629
630 raw_spin_lock_irqsave(&devtree_lock, flags);
631 parent = of_node_get(node->parent);
632 of_node_put(node);
633 raw_spin_unlock_irqrestore(&devtree_lock, flags);
634 return parent;
635 }
636 EXPORT_SYMBOL(of_get_next_parent);
637
638 static struct device_node *__of_get_next_child(const struct device_node *node,
639 struct device_node *prev)
640 {
641 struct device_node *next;
642
643 if (!node)
644 return NULL;
645
646 next = prev ? prev->sibling : node->child;
647 for (; next; next = next->sibling)
648 if (of_node_get(next))
649 break;
650 of_node_put(prev);
651 return next;
652 }
653 #define __for_each_child_of_node(parent, child) \
654 for (child = __of_get_next_child(parent, NULL); child != NULL; \
655 child = __of_get_next_child(parent, child))
656
657 /**
658 * of_get_next_child - Iterate a node childs
659 * @node: parent node
660 * @prev: previous child of the parent node, or NULL to get first
661 *
662 * Returns a node pointer with refcount incremented, use of_node_put() on
663 * it when done. Returns NULL when prev is the last child. Decrements the
664 * refcount of prev.
665 */
666 struct device_node *of_get_next_child(const struct device_node *node,
667 struct device_node *prev)
668 {
669 struct device_node *next;
670 unsigned long flags;
671
672 raw_spin_lock_irqsave(&devtree_lock, flags);
673 next = __of_get_next_child(node, prev);
674 raw_spin_unlock_irqrestore(&devtree_lock, flags);
675 return next;
676 }
677 EXPORT_SYMBOL(of_get_next_child);
678
679 /**
680 * of_get_next_available_child - Find the next available child node
681 * @node: parent node
682 * @prev: previous child of the parent node, or NULL to get first
683 *
684 * This function is like of_get_next_child(), except that it
685 * automatically skips any disabled nodes (i.e. status = "disabled").
686 */
687 struct device_node *of_get_next_available_child(const struct device_node *node,
688 struct device_node *prev)
689 {
690 struct device_node *next;
691 unsigned long flags;
692
693 if (!node)
694 return NULL;
695
696 raw_spin_lock_irqsave(&devtree_lock, flags);
697 next = prev ? prev->sibling : node->child;
698 for (; next; next = next->sibling) {
699 if (!__of_device_is_available(next))
700 continue;
701 if (of_node_get(next))
702 break;
703 }
704 of_node_put(prev);
705 raw_spin_unlock_irqrestore(&devtree_lock, flags);
706 return next;
707 }
708 EXPORT_SYMBOL(of_get_next_available_child);
709
710 /**
711 * of_get_child_by_name - Find the child node by name for a given parent
712 * @node: parent node
713 * @name: child name to look for.
714 *
715 * This function looks for child node for given matching name
716 *
717 * Returns a node pointer if found, with refcount incremented, use
718 * of_node_put() on it when done.
719 * Returns NULL if node is not found.
720 */
721 struct device_node *of_get_child_by_name(const struct device_node *node,
722 const char *name)
723 {
724 struct device_node *child;
725
726 for_each_child_of_node(node, child)
727 if (child->name && (of_node_cmp(child->name, name) == 0))
728 break;
729 return child;
730 }
731 EXPORT_SYMBOL(of_get_child_by_name);
732
733 static struct device_node *__of_find_node_by_path(struct device_node *parent,
734 const char *path)
735 {
736 struct device_node *child;
737 int len;
738
739 len = strcspn(path, "/:");
740 if (!len)
741 return NULL;
742
743 __for_each_child_of_node(parent, child) {
744 const char *name = strrchr(child->full_name, '/');
745 if (WARN(!name, "malformed device_node %s\n", child->full_name))
746 continue;
747 name++;
748 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
749 return child;
750 }
751 return NULL;
752 }
753
754 /**
755 * of_find_node_opts_by_path - Find a node matching a full OF path
756 * @path: Either the full path to match, or if the path does not
757 * start with '/', the name of a property of the /aliases
758 * node (an alias). In the case of an alias, the node
759 * matching the alias' value will be returned.
760 * @opts: Address of a pointer into which to store the start of
761 * an options string appended to the end of the path with
762 * a ':' separator.
763 *
764 * Valid paths:
765 * /foo/bar Full path
766 * foo Valid alias
767 * foo/bar Valid alias + relative path
768 *
769 * Returns a node pointer with refcount incremented, use
770 * of_node_put() on it when done.
771 */
772 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
773 {
774 struct device_node *np = NULL;
775 struct property *pp;
776 unsigned long flags;
777 const char *separator = strchr(path, ':');
778
779 if (opts)
780 *opts = separator ? separator + 1 : NULL;
781
782 if (strcmp(path, "/") == 0)
783 return of_node_get(of_root);
784
785 /* The path could begin with an alias */
786 if (*path != '/') {
787 int len;
788 const char *p = separator;
789
790 if (!p)
791 p = strchrnul(path, '/');
792 len = p - path;
793
794 /* of_aliases must not be NULL */
795 if (!of_aliases)
796 return NULL;
797
798 for_each_property_of_node(of_aliases, pp) {
799 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
800 np = of_find_node_by_path(pp->value);
801 break;
802 }
803 }
804 if (!np)
805 return NULL;
806 path = p;
807 }
808
809 /* Step down the tree matching path components */
810 raw_spin_lock_irqsave(&devtree_lock, flags);
811 if (!np)
812 np = of_node_get(of_root);
813 while (np && *path == '/') {
814 path++; /* Increment past '/' delimiter */
815 np = __of_find_node_by_path(np, path);
816 path = strchrnul(path, '/');
817 if (separator && separator < path)
818 break;
819 }
820 raw_spin_unlock_irqrestore(&devtree_lock, flags);
821 return np;
822 }
823 EXPORT_SYMBOL(of_find_node_opts_by_path);
824
825 /**
826 * of_find_node_by_name - Find a node by its "name" property
827 * @from: The node to start searching from or NULL, the node
828 * you pass will not be searched, only the next one
829 * will; typically, you pass what the previous call
830 * returned. of_node_put() will be called on it
831 * @name: The name string to match against
832 *
833 * Returns a node pointer with refcount incremented, use
834 * of_node_put() on it when done.
835 */
836 struct device_node *of_find_node_by_name(struct device_node *from,
837 const char *name)
838 {
839 struct device_node *np;
840 unsigned long flags;
841
842 raw_spin_lock_irqsave(&devtree_lock, flags);
843 for_each_of_allnodes_from(from, np)
844 if (np->name && (of_node_cmp(np->name, name) == 0)
845 && of_node_get(np))
846 break;
847 of_node_put(from);
848 raw_spin_unlock_irqrestore(&devtree_lock, flags);
849 return np;
850 }
851 EXPORT_SYMBOL(of_find_node_by_name);
852
853 /**
854 * of_find_node_by_type - Find a node by its "device_type" property
855 * @from: The node to start searching from, or NULL to start searching
856 * the entire device tree. The node you pass will not be
857 * searched, only the next one will; typically, you pass
858 * what the previous call returned. of_node_put() will be
859 * called on from for you.
860 * @type: The type string to match against
861 *
862 * Returns a node pointer with refcount incremented, use
863 * of_node_put() on it when done.
864 */
865 struct device_node *of_find_node_by_type(struct device_node *from,
866 const char *type)
867 {
868 struct device_node *np;
869 unsigned long flags;
870
871 raw_spin_lock_irqsave(&devtree_lock, flags);
872 for_each_of_allnodes_from(from, np)
873 if (np->type && (of_node_cmp(np->type, type) == 0)
874 && of_node_get(np))
875 break;
876 of_node_put(from);
877 raw_spin_unlock_irqrestore(&devtree_lock, flags);
878 return np;
879 }
880 EXPORT_SYMBOL(of_find_node_by_type);
881
882 /**
883 * of_find_compatible_node - Find a node based on type and one of the
884 * tokens in its "compatible" property
885 * @from: The node to start searching from or NULL, the node
886 * you pass will not be searched, only the next one
887 * will; typically, you pass what the previous call
888 * returned. of_node_put() will be called on it
889 * @type: The type string to match "device_type" or NULL to ignore
890 * @compatible: The string to match to one of the tokens in the device
891 * "compatible" list.
892 *
893 * Returns a node pointer with refcount incremented, use
894 * of_node_put() on it when done.
895 */
896 struct device_node *of_find_compatible_node(struct device_node *from,
897 const char *type, const char *compatible)
898 {
899 struct device_node *np;
900 unsigned long flags;
901
902 raw_spin_lock_irqsave(&devtree_lock, flags);
903 for_each_of_allnodes_from(from, np)
904 if (__of_device_is_compatible(np, compatible, type, NULL) &&
905 of_node_get(np))
906 break;
907 of_node_put(from);
908 raw_spin_unlock_irqrestore(&devtree_lock, flags);
909 return np;
910 }
911 EXPORT_SYMBOL(of_find_compatible_node);
912
913 /**
914 * of_find_node_with_property - Find a node which has a property with
915 * the given name.
916 * @from: The node to start searching from or NULL, the node
917 * you pass will not be searched, only the next one
918 * will; typically, you pass what the previous call
919 * returned. of_node_put() will be called on it
920 * @prop_name: The name of the property to look for.
921 *
922 * Returns a node pointer with refcount incremented, use
923 * of_node_put() on it when done.
924 */
925 struct device_node *of_find_node_with_property(struct device_node *from,
926 const char *prop_name)
927 {
928 struct device_node *np;
929 struct property *pp;
930 unsigned long flags;
931
932 raw_spin_lock_irqsave(&devtree_lock, flags);
933 for_each_of_allnodes_from(from, np) {
934 for (pp = np->properties; pp; pp = pp->next) {
935 if (of_prop_cmp(pp->name, prop_name) == 0) {
936 of_node_get(np);
937 goto out;
938 }
939 }
940 }
941 out:
942 of_node_put(from);
943 raw_spin_unlock_irqrestore(&devtree_lock, flags);
944 return np;
945 }
946 EXPORT_SYMBOL(of_find_node_with_property);
947
948 static
949 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
950 const struct device_node *node)
951 {
952 const struct of_device_id *best_match = NULL;
953 int score, best_score = 0;
954
955 if (!matches)
956 return NULL;
957
958 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
959 score = __of_device_is_compatible(node, matches->compatible,
960 matches->type, matches->name);
961 if (score > best_score) {
962 best_match = matches;
963 best_score = score;
964 }
965 }
966
967 return best_match;
968 }
969
970 /**
971 * of_match_node - Tell if a device_node has a matching of_match structure
972 * @matches: array of of device match structures to search in
973 * @node: the of device structure to match against
974 *
975 * Low level utility function used by device matching.
976 */
977 const struct of_device_id *of_match_node(const struct of_device_id *matches,
978 const struct device_node *node)
979 {
980 const struct of_device_id *match;
981 unsigned long flags;
982
983 raw_spin_lock_irqsave(&devtree_lock, flags);
984 match = __of_match_node(matches, node);
985 raw_spin_unlock_irqrestore(&devtree_lock, flags);
986 return match;
987 }
988 EXPORT_SYMBOL(of_match_node);
989
990 /**
991 * of_find_matching_node_and_match - Find a node based on an of_device_id
992 * match table.
993 * @from: The node to start searching from or NULL, the node
994 * you pass will not be searched, only the next one
995 * will; typically, you pass what the previous call
996 * returned. of_node_put() will be called on it
997 * @matches: array of of device match structures to search in
998 * @match Updated to point at the matches entry which matched
999 *
1000 * Returns a node pointer with refcount incremented, use
1001 * of_node_put() on it when done.
1002 */
1003 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1004 const struct of_device_id *matches,
1005 const struct of_device_id **match)
1006 {
1007 struct device_node *np;
1008 const struct of_device_id *m;
1009 unsigned long flags;
1010
1011 if (match)
1012 *match = NULL;
1013
1014 raw_spin_lock_irqsave(&devtree_lock, flags);
1015 for_each_of_allnodes_from(from, np) {
1016 m = __of_match_node(matches, np);
1017 if (m && of_node_get(np)) {
1018 if (match)
1019 *match = m;
1020 break;
1021 }
1022 }
1023 of_node_put(from);
1024 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1025 return np;
1026 }
1027 EXPORT_SYMBOL(of_find_matching_node_and_match);
1028
1029 /**
1030 * of_modalias_node - Lookup appropriate modalias for a device node
1031 * @node: pointer to a device tree node
1032 * @modalias: Pointer to buffer that modalias value will be copied into
1033 * @len: Length of modalias value
1034 *
1035 * Based on the value of the compatible property, this routine will attempt
1036 * to choose an appropriate modalias value for a particular device tree node.
1037 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1038 * from the first entry in the compatible list property.
1039 *
1040 * This routine returns 0 on success, <0 on failure.
1041 */
1042 int of_modalias_node(struct device_node *node, char *modalias, int len)
1043 {
1044 const char *compatible, *p;
1045 int cplen;
1046
1047 compatible = of_get_property(node, "compatible", &cplen);
1048 if (!compatible || strlen(compatible) > cplen)
1049 return -ENODEV;
1050 p = strchr(compatible, ',');
1051 strlcpy(modalias, p ? p + 1 : compatible, len);
1052 return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(of_modalias_node);
1055
1056 /**
1057 * of_find_node_by_phandle - Find a node given a phandle
1058 * @handle: phandle of the node to find
1059 *
1060 * Returns a node pointer with refcount incremented, use
1061 * of_node_put() on it when done.
1062 */
1063 struct device_node *of_find_node_by_phandle(phandle handle)
1064 {
1065 struct device_node *np;
1066 unsigned long flags;
1067
1068 if (!handle)
1069 return NULL;
1070
1071 raw_spin_lock_irqsave(&devtree_lock, flags);
1072 for_each_of_allnodes(np)
1073 if (np->phandle == handle)
1074 break;
1075 of_node_get(np);
1076 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1077 return np;
1078 }
1079 EXPORT_SYMBOL(of_find_node_by_phandle);
1080
1081 /**
1082 * of_property_count_elems_of_size - Count the number of elements in a property
1083 *
1084 * @np: device node from which the property value is to be read.
1085 * @propname: name of the property to be searched.
1086 * @elem_size: size of the individual element
1087 *
1088 * Search for a property in a device node and count the number of elements of
1089 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1090 * property does not exist or its length does not match a multiple of elem_size
1091 * and -ENODATA if the property does not have a value.
1092 */
1093 int of_property_count_elems_of_size(const struct device_node *np,
1094 const char *propname, int elem_size)
1095 {
1096 struct property *prop = of_find_property(np, propname, NULL);
1097
1098 if (!prop)
1099 return -EINVAL;
1100 if (!prop->value)
1101 return -ENODATA;
1102
1103 if (prop->length % elem_size != 0) {
1104 pr_err("size of %s in node %s is not a multiple of %d\n",
1105 propname, np->full_name, elem_size);
1106 return -EINVAL;
1107 }
1108
1109 return prop->length / elem_size;
1110 }
1111 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1112
1113 /**
1114 * of_find_property_value_of_size
1115 *
1116 * @np: device node from which the property value is to be read.
1117 * @propname: name of the property to be searched.
1118 * @len: requested length of property value
1119 *
1120 * Search for a property in a device node and valid the requested size.
1121 * Returns the property value on success, -EINVAL if the property does not
1122 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1123 * property data isn't large enough.
1124 *
1125 */
1126 static void *of_find_property_value_of_size(const struct device_node *np,
1127 const char *propname, u32 len)
1128 {
1129 struct property *prop = of_find_property(np, propname, NULL);
1130
1131 if (!prop)
1132 return ERR_PTR(-EINVAL);
1133 if (!prop->value)
1134 return ERR_PTR(-ENODATA);
1135 if (len > prop->length)
1136 return ERR_PTR(-EOVERFLOW);
1137
1138 return prop->value;
1139 }
1140
1141 /**
1142 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1143 *
1144 * @np: device node from which the property value is to be read.
1145 * @propname: name of the property to be searched.
1146 * @index: index of the u32 in the list of values
1147 * @out_value: pointer to return value, modified only if no error.
1148 *
1149 * Search for a property in a device node and read nth 32-bit value from
1150 * it. Returns 0 on success, -EINVAL if the property does not exist,
1151 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1152 * property data isn't large enough.
1153 *
1154 * The out_value is modified only if a valid u32 value can be decoded.
1155 */
1156 int of_property_read_u32_index(const struct device_node *np,
1157 const char *propname,
1158 u32 index, u32 *out_value)
1159 {
1160 const u32 *val = of_find_property_value_of_size(np, propname,
1161 ((index + 1) * sizeof(*out_value)));
1162
1163 if (IS_ERR(val))
1164 return PTR_ERR(val);
1165
1166 *out_value = be32_to_cpup(((__be32 *)val) + index);
1167 return 0;
1168 }
1169 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1170
1171 /**
1172 * of_property_read_u8_array - Find and read an array of u8 from a property.
1173 *
1174 * @np: device node from which the property value is to be read.
1175 * @propname: name of the property to be searched.
1176 * @out_values: pointer to return value, modified only if return value is 0.
1177 * @sz: number of array elements to read
1178 *
1179 * Search for a property in a device node and read 8-bit value(s) from
1180 * it. Returns 0 on success, -EINVAL if the property does not exist,
1181 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1182 * property data isn't large enough.
1183 *
1184 * dts entry of array should be like:
1185 * property = /bits/ 8 <0x50 0x60 0x70>;
1186 *
1187 * The out_values is modified only if a valid u8 value can be decoded.
1188 */
1189 int of_property_read_u8_array(const struct device_node *np,
1190 const char *propname, u8 *out_values, size_t sz)
1191 {
1192 const u8 *val = of_find_property_value_of_size(np, propname,
1193 (sz * sizeof(*out_values)));
1194
1195 if (IS_ERR(val))
1196 return PTR_ERR(val);
1197
1198 while (sz--)
1199 *out_values++ = *val++;
1200 return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1203
1204 /**
1205 * of_property_read_u16_array - Find and read an array of u16 from a property.
1206 *
1207 * @np: device node from which the property value is to be read.
1208 * @propname: name of the property to be searched.
1209 * @out_values: pointer to return value, modified only if return value is 0.
1210 * @sz: number of array elements to read
1211 *
1212 * Search for a property in a device node and read 16-bit value(s) from
1213 * it. Returns 0 on success, -EINVAL if the property does not exist,
1214 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1215 * property data isn't large enough.
1216 *
1217 * dts entry of array should be like:
1218 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1219 *
1220 * The out_values is modified only if a valid u16 value can be decoded.
1221 */
1222 int of_property_read_u16_array(const struct device_node *np,
1223 const char *propname, u16 *out_values, size_t sz)
1224 {
1225 const __be16 *val = of_find_property_value_of_size(np, propname,
1226 (sz * sizeof(*out_values)));
1227
1228 if (IS_ERR(val))
1229 return PTR_ERR(val);
1230
1231 while (sz--)
1232 *out_values++ = be16_to_cpup(val++);
1233 return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1236
1237 /**
1238 * of_property_read_u32_array - Find and read an array of 32 bit integers
1239 * from a property.
1240 *
1241 * @np: device node from which the property value is to be read.
1242 * @propname: name of the property to be searched.
1243 * @out_values: pointer to return value, modified only if return value is 0.
1244 * @sz: number of array elements to read
1245 *
1246 * Search for a property in a device node and read 32-bit value(s) from
1247 * it. Returns 0 on success, -EINVAL if the property does not exist,
1248 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1249 * property data isn't large enough.
1250 *
1251 * The out_values is modified only if a valid u32 value can be decoded.
1252 */
1253 int of_property_read_u32_array(const struct device_node *np,
1254 const char *propname, u32 *out_values,
1255 size_t sz)
1256 {
1257 const __be32 *val = of_find_property_value_of_size(np, propname,
1258 (sz * sizeof(*out_values)));
1259
1260 if (IS_ERR(val))
1261 return PTR_ERR(val);
1262
1263 while (sz--)
1264 *out_values++ = be32_to_cpup(val++);
1265 return 0;
1266 }
1267 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1268
1269 /**
1270 * of_property_read_u64 - Find and read a 64 bit integer from a property
1271 * @np: device node from which the property value is to be read.
1272 * @propname: name of the property to be searched.
1273 * @out_value: pointer to return value, modified only if return value is 0.
1274 *
1275 * Search for a property in a device node and read a 64-bit value from
1276 * it. Returns 0 on success, -EINVAL if the property does not exist,
1277 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1278 * property data isn't large enough.
1279 *
1280 * The out_value is modified only if a valid u64 value can be decoded.
1281 */
1282 int of_property_read_u64(const struct device_node *np, const char *propname,
1283 u64 *out_value)
1284 {
1285 const __be32 *val = of_find_property_value_of_size(np, propname,
1286 sizeof(*out_value));
1287
1288 if (IS_ERR(val))
1289 return PTR_ERR(val);
1290
1291 *out_value = of_read_number(val, 2);
1292 return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(of_property_read_u64);
1295
1296 /**
1297 * of_property_read_u64_array - Find and read an array of 64 bit integers
1298 * from a property.
1299 *
1300 * @np: device node from which the property value is to be read.
1301 * @propname: name of the property to be searched.
1302 * @out_values: pointer to return value, modified only if return value is 0.
1303 * @sz: number of array elements to read
1304 *
1305 * Search for a property in a device node and read 64-bit value(s) from
1306 * it. Returns 0 on success, -EINVAL if the property does not exist,
1307 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1308 * property data isn't large enough.
1309 *
1310 * The out_values is modified only if a valid u64 value can be decoded.
1311 */
1312 int of_property_read_u64_array(const struct device_node *np,
1313 const char *propname, u64 *out_values,
1314 size_t sz)
1315 {
1316 const __be32 *val = of_find_property_value_of_size(np, propname,
1317 (sz * sizeof(*out_values)));
1318
1319 if (IS_ERR(val))
1320 return PTR_ERR(val);
1321
1322 while (sz--) {
1323 *out_values++ = of_read_number(val, 2);
1324 val += 2;
1325 }
1326 return 0;
1327 }
1328 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1329
1330 /**
1331 * of_property_read_string - Find and read a string from a property
1332 * @np: device node from which the property value is to be read.
1333 * @propname: name of the property to be searched.
1334 * @out_string: pointer to null terminated return string, modified only if
1335 * return value is 0.
1336 *
1337 * Search for a property in a device tree node and retrieve a null
1338 * terminated string value (pointer to data, not a copy). Returns 0 on
1339 * success, -EINVAL if the property does not exist, -ENODATA if property
1340 * does not have a value, and -EILSEQ if the string is not null-terminated
1341 * within the length of the property data.
1342 *
1343 * The out_string pointer is modified only if a valid string can be decoded.
1344 */
1345 int of_property_read_string(const struct device_node *np, const char *propname,
1346 const char **out_string)
1347 {
1348 const struct property *prop = of_find_property(np, propname, NULL);
1349 if (!prop)
1350 return -EINVAL;
1351 if (!prop->value)
1352 return -ENODATA;
1353 if (strnlen(prop->value, prop->length) >= prop->length)
1354 return -EILSEQ;
1355 *out_string = prop->value;
1356 return 0;
1357 }
1358 EXPORT_SYMBOL_GPL(of_property_read_string);
1359
1360 /**
1361 * of_property_match_string() - Find string in a list and return index
1362 * @np: pointer to node containing string list property
1363 * @propname: string list property name
1364 * @string: pointer to string to search for in string list
1365 *
1366 * This function searches a string list property and returns the index
1367 * of a specific string value.
1368 */
1369 int of_property_match_string(const struct device_node *np, const char *propname,
1370 const char *string)
1371 {
1372 const struct property *prop = of_find_property(np, propname, NULL);
1373 size_t l;
1374 int i;
1375 const char *p, *end;
1376
1377 if (!prop)
1378 return -EINVAL;
1379 if (!prop->value)
1380 return -ENODATA;
1381
1382 p = prop->value;
1383 end = p + prop->length;
1384
1385 for (i = 0; p < end; i++, p += l) {
1386 l = strnlen(p, end - p) + 1;
1387 if (p + l > end)
1388 return -EILSEQ;
1389 pr_debug("comparing %s with %s\n", string, p);
1390 if (strcmp(string, p) == 0)
1391 return i; /* Found it; return index */
1392 }
1393 return -ENODATA;
1394 }
1395 EXPORT_SYMBOL_GPL(of_property_match_string);
1396
1397 /**
1398 * of_property_read_string_helper() - Utility helper for parsing string properties
1399 * @np: device node from which the property value is to be read.
1400 * @propname: name of the property to be searched.
1401 * @out_strs: output array of string pointers.
1402 * @sz: number of array elements to read.
1403 * @skip: Number of strings to skip over at beginning of list.
1404 *
1405 * Don't call this function directly. It is a utility helper for the
1406 * of_property_read_string*() family of functions.
1407 */
1408 int of_property_read_string_helper(const struct device_node *np,
1409 const char *propname, const char **out_strs,
1410 size_t sz, int skip)
1411 {
1412 const struct property *prop = of_find_property(np, propname, NULL);
1413 int l = 0, i = 0;
1414 const char *p, *end;
1415
1416 if (!prop)
1417 return -EINVAL;
1418 if (!prop->value)
1419 return -ENODATA;
1420 p = prop->value;
1421 end = p + prop->length;
1422
1423 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1424 l = strnlen(p, end - p) + 1;
1425 if (p + l > end)
1426 return -EILSEQ;
1427 if (out_strs && i >= skip)
1428 *out_strs++ = p;
1429 }
1430 i -= skip;
1431 return i <= 0 ? -ENODATA : i;
1432 }
1433 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1434
1435 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1436 {
1437 int i;
1438 printk("%s %s", msg, of_node_full_name(args->np));
1439 for (i = 0; i < args->args_count; i++)
1440 printk(i ? ",%08x" : ":%08x", args->args[i]);
1441 printk("\n");
1442 }
1443
1444 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1445 const struct device_node *np,
1446 const char *list_name,
1447 const char *cells_name,
1448 int cell_count)
1449 {
1450 const __be32 *list;
1451 int size;
1452
1453 memset(it, 0, sizeof(*it));
1454
1455 list = of_get_property(np, list_name, &size);
1456 if (!list)
1457 return -ENOENT;
1458
1459 it->cells_name = cells_name;
1460 it->cell_count = cell_count;
1461 it->parent = np;
1462 it->list_end = list + size / sizeof(*list);
1463 it->phandle_end = list;
1464 it->cur = list;
1465
1466 return 0;
1467 }
1468
1469 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1470 {
1471 uint32_t count = 0;
1472
1473 if (it->node) {
1474 of_node_put(it->node);
1475 it->node = NULL;
1476 }
1477
1478 if (!it->cur || it->phandle_end >= it->list_end)
1479 return -ENOENT;
1480
1481 it->cur = it->phandle_end;
1482
1483 /* If phandle is 0, then it is an empty entry with no arguments. */
1484 it->phandle = be32_to_cpup(it->cur++);
1485
1486 if (it->phandle) {
1487
1488 /*
1489 * Find the provider node and parse the #*-cells property to
1490 * determine the argument length.
1491 */
1492 it->node = of_find_node_by_phandle(it->phandle);
1493
1494 if (it->cells_name) {
1495 if (!it->node) {
1496 pr_err("%s: could not find phandle\n",
1497 it->parent->full_name);
1498 goto err;
1499 }
1500
1501 if (of_property_read_u32(it->node, it->cells_name,
1502 &count)) {
1503 pr_err("%s: could not get %s for %s\n",
1504 it->parent->full_name,
1505 it->cells_name,
1506 it->node->full_name);
1507 goto err;
1508 }
1509 } else {
1510 count = it->cell_count;
1511 }
1512
1513 /*
1514 * Make sure that the arguments actually fit in the remaining
1515 * property data length
1516 */
1517 if (it->cur + count > it->list_end) {
1518 pr_err("%s: arguments longer than property\n",
1519 it->parent->full_name);
1520 goto err;
1521 }
1522 }
1523
1524 it->phandle_end = it->cur + count;
1525 it->cur_count = count;
1526
1527 return 0;
1528
1529 err:
1530 if (it->node) {
1531 of_node_put(it->node);
1532 it->node = NULL;
1533 }
1534
1535 return -EINVAL;
1536 }
1537
1538 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1539 uint32_t *args,
1540 int size)
1541 {
1542 int i, count;
1543
1544 count = it->cur_count;
1545
1546 if (WARN_ON(size < count))
1547 count = size;
1548
1549 for (i = 0; i < count; i++)
1550 args[i] = be32_to_cpup(it->cur++);
1551
1552 return count;
1553 }
1554
1555 static int __of_parse_phandle_with_args(const struct device_node *np,
1556 const char *list_name,
1557 const char *cells_name,
1558 int cell_count, int index,
1559 struct of_phandle_args *out_args)
1560 {
1561 struct of_phandle_iterator it;
1562 int rc, cur_index = 0;
1563
1564 /* Loop over the phandles until all the requested entry is found */
1565 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1566 /*
1567 * All of the error cases bail out of the loop, so at
1568 * this point, the parsing is successful. If the requested
1569 * index matches, then fill the out_args structure and return,
1570 * or return -ENOENT for an empty entry.
1571 */
1572 rc = -ENOENT;
1573 if (cur_index == index) {
1574 if (!it.phandle)
1575 goto err;
1576
1577 if (out_args) {
1578 int c;
1579
1580 c = of_phandle_iterator_args(&it,
1581 out_args->args,
1582 MAX_PHANDLE_ARGS);
1583 out_args->np = it.node;
1584 out_args->args_count = c;
1585 } else {
1586 of_node_put(it.node);
1587 }
1588
1589 /* Found it! return success */
1590 return 0;
1591 }
1592
1593 cur_index++;
1594 }
1595
1596 /*
1597 * Unlock node before returning result; will be one of:
1598 * -ENOENT : index is for empty phandle
1599 * -EINVAL : parsing error on data
1600 */
1601
1602 err:
1603 if (it.node)
1604 of_node_put(it.node);
1605 return rc;
1606 }
1607
1608 /**
1609 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1610 * @np: Pointer to device node holding phandle property
1611 * @phandle_name: Name of property holding a phandle value
1612 * @index: For properties holding a table of phandles, this is the index into
1613 * the table
1614 *
1615 * Returns the device_node pointer with refcount incremented. Use
1616 * of_node_put() on it when done.
1617 */
1618 struct device_node *of_parse_phandle(const struct device_node *np,
1619 const char *phandle_name, int index)
1620 {
1621 struct of_phandle_args args;
1622
1623 if (index < 0)
1624 return NULL;
1625
1626 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1627 index, &args))
1628 return NULL;
1629
1630 return args.np;
1631 }
1632 EXPORT_SYMBOL(of_parse_phandle);
1633
1634 /**
1635 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1636 * @np: pointer to a device tree node containing a list
1637 * @list_name: property name that contains a list
1638 * @cells_name: property name that specifies phandles' arguments count
1639 * @index: index of a phandle to parse out
1640 * @out_args: optional pointer to output arguments structure (will be filled)
1641 *
1642 * This function is useful to parse lists of phandles and their arguments.
1643 * Returns 0 on success and fills out_args, on error returns appropriate
1644 * errno value.
1645 *
1646 * Caller is responsible to call of_node_put() on the returned out_args->np
1647 * pointer.
1648 *
1649 * Example:
1650 *
1651 * phandle1: node1 {
1652 * #list-cells = <2>;
1653 * }
1654 *
1655 * phandle2: node2 {
1656 * #list-cells = <1>;
1657 * }
1658 *
1659 * node3 {
1660 * list = <&phandle1 1 2 &phandle2 3>;
1661 * }
1662 *
1663 * To get a device_node of the `node2' node you may call this:
1664 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1665 */
1666 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1667 const char *cells_name, int index,
1668 struct of_phandle_args *out_args)
1669 {
1670 if (index < 0)
1671 return -EINVAL;
1672 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1673 index, out_args);
1674 }
1675 EXPORT_SYMBOL(of_parse_phandle_with_args);
1676
1677 /**
1678 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1679 * @np: pointer to a device tree node containing a list
1680 * @list_name: property name that contains a list
1681 * @cell_count: number of argument cells following the phandle
1682 * @index: index of a phandle to parse out
1683 * @out_args: optional pointer to output arguments structure (will be filled)
1684 *
1685 * This function is useful to parse lists of phandles and their arguments.
1686 * Returns 0 on success and fills out_args, on error returns appropriate
1687 * errno value.
1688 *
1689 * Caller is responsible to call of_node_put() on the returned out_args->np
1690 * pointer.
1691 *
1692 * Example:
1693 *
1694 * phandle1: node1 {
1695 * }
1696 *
1697 * phandle2: node2 {
1698 * }
1699 *
1700 * node3 {
1701 * list = <&phandle1 0 2 &phandle2 2 3>;
1702 * }
1703 *
1704 * To get a device_node of the `node2' node you may call this:
1705 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1706 */
1707 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1708 const char *list_name, int cell_count,
1709 int index, struct of_phandle_args *out_args)
1710 {
1711 if (index < 0)
1712 return -EINVAL;
1713 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1714 index, out_args);
1715 }
1716 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1717
1718 /**
1719 * of_count_phandle_with_args() - Find the number of phandles references in a property
1720 * @np: pointer to a device tree node containing a list
1721 * @list_name: property name that contains a list
1722 * @cells_name: property name that specifies phandles' arguments count
1723 *
1724 * Returns the number of phandle + argument tuples within a property. It
1725 * is a typical pattern to encode a list of phandle and variable
1726 * arguments into a single property. The number of arguments is encoded
1727 * by a property in the phandle-target node. For example, a gpios
1728 * property would contain a list of GPIO specifies consisting of a
1729 * phandle and 1 or more arguments. The number of arguments are
1730 * determined by the #gpio-cells property in the node pointed to by the
1731 * phandle.
1732 */
1733 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1734 const char *cells_name)
1735 {
1736 struct of_phandle_iterator it;
1737 int rc, cur_index = 0;
1738
1739 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1740 if (rc)
1741 return rc;
1742
1743 while ((rc = of_phandle_iterator_next(&it)) == 0)
1744 cur_index += 1;
1745
1746 if (rc != -ENOENT)
1747 return rc;
1748
1749 return cur_index;
1750 }
1751 EXPORT_SYMBOL(of_count_phandle_with_args);
1752
1753 /**
1754 * __of_add_property - Add a property to a node without lock operations
1755 */
1756 int __of_add_property(struct device_node *np, struct property *prop)
1757 {
1758 struct property **next;
1759
1760 prop->next = NULL;
1761 next = &np->properties;
1762 while (*next) {
1763 if (strcmp(prop->name, (*next)->name) == 0)
1764 /* duplicate ! don't insert it */
1765 return -EEXIST;
1766
1767 next = &(*next)->next;
1768 }
1769 *next = prop;
1770
1771 return 0;
1772 }
1773
1774 /**
1775 * of_add_property - Add a property to a node
1776 */
1777 int of_add_property(struct device_node *np, struct property *prop)
1778 {
1779 unsigned long flags;
1780 int rc;
1781
1782 mutex_lock(&of_mutex);
1783
1784 raw_spin_lock_irqsave(&devtree_lock, flags);
1785 rc = __of_add_property(np, prop);
1786 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1787
1788 if (!rc)
1789 __of_add_property_sysfs(np, prop);
1790
1791 mutex_unlock(&of_mutex);
1792
1793 if (!rc)
1794 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1795
1796 return rc;
1797 }
1798
1799 int __of_remove_property(struct device_node *np, struct property *prop)
1800 {
1801 struct property **next;
1802
1803 for (next = &np->properties; *next; next = &(*next)->next) {
1804 if (*next == prop)
1805 break;
1806 }
1807 if (*next == NULL)
1808 return -ENODEV;
1809
1810 /* found the node */
1811 *next = prop->next;
1812 prop->next = np->deadprops;
1813 np->deadprops = prop;
1814
1815 return 0;
1816 }
1817
1818 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1819 {
1820 if (!IS_ENABLED(CONFIG_SYSFS))
1821 return;
1822
1823 /* at early boot, bail here and defer setup to of_init() */
1824 if (of_kset && of_node_is_attached(np))
1825 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1826 }
1827
1828 /**
1829 * of_remove_property - Remove a property from a node.
1830 *
1831 * Note that we don't actually remove it, since we have given out
1832 * who-knows-how-many pointers to the data using get-property.
1833 * Instead we just move the property to the "dead properties"
1834 * list, so it won't be found any more.
1835 */
1836 int of_remove_property(struct device_node *np, struct property *prop)
1837 {
1838 unsigned long flags;
1839 int rc;
1840
1841 if (!prop)
1842 return -ENODEV;
1843
1844 mutex_lock(&of_mutex);
1845
1846 raw_spin_lock_irqsave(&devtree_lock, flags);
1847 rc = __of_remove_property(np, prop);
1848 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1849
1850 if (!rc)
1851 __of_remove_property_sysfs(np, prop);
1852
1853 mutex_unlock(&of_mutex);
1854
1855 if (!rc)
1856 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1857
1858 return rc;
1859 }
1860
1861 int __of_update_property(struct device_node *np, struct property *newprop,
1862 struct property **oldpropp)
1863 {
1864 struct property **next, *oldprop;
1865
1866 for (next = &np->properties; *next; next = &(*next)->next) {
1867 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1868 break;
1869 }
1870 *oldpropp = oldprop = *next;
1871
1872 if (oldprop) {
1873 /* replace the node */
1874 newprop->next = oldprop->next;
1875 *next = newprop;
1876 oldprop->next = np->deadprops;
1877 np->deadprops = oldprop;
1878 } else {
1879 /* new node */
1880 newprop->next = NULL;
1881 *next = newprop;
1882 }
1883
1884 return 0;
1885 }
1886
1887 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1888 struct property *oldprop)
1889 {
1890 if (!IS_ENABLED(CONFIG_SYSFS))
1891 return;
1892
1893 /* At early boot, bail out and defer setup to of_init() */
1894 if (!of_kset)
1895 return;
1896
1897 if (oldprop)
1898 sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1899 __of_add_property_sysfs(np, newprop);
1900 }
1901
1902 /*
1903 * of_update_property - Update a property in a node, if the property does
1904 * not exist, add it.
1905 *
1906 * Note that we don't actually remove it, since we have given out
1907 * who-knows-how-many pointers to the data using get-property.
1908 * Instead we just move the property to the "dead properties" list,
1909 * and add the new property to the property list
1910 */
1911 int of_update_property(struct device_node *np, struct property *newprop)
1912 {
1913 struct property *oldprop;
1914 unsigned long flags;
1915 int rc;
1916
1917 if (!newprop->name)
1918 return -EINVAL;
1919
1920 mutex_lock(&of_mutex);
1921
1922 raw_spin_lock_irqsave(&devtree_lock, flags);
1923 rc = __of_update_property(np, newprop, &oldprop);
1924 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1925
1926 if (!rc)
1927 __of_update_property_sysfs(np, newprop, oldprop);
1928
1929 mutex_unlock(&of_mutex);
1930
1931 if (!rc)
1932 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1933
1934 return rc;
1935 }
1936
1937 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1938 int id, const char *stem, int stem_len)
1939 {
1940 ap->np = np;
1941 ap->id = id;
1942 strncpy(ap->stem, stem, stem_len);
1943 ap->stem[stem_len] = 0;
1944 list_add_tail(&ap->link, &aliases_lookup);
1945 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1946 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1947 }
1948
1949 /**
1950 * of_alias_scan - Scan all properties of the 'aliases' node
1951 *
1952 * The function scans all the properties of the 'aliases' node and populates
1953 * the global lookup table with the properties. It returns the
1954 * number of alias properties found, or an error code in case of failure.
1955 *
1956 * @dt_alloc: An allocator that provides a virtual address to memory
1957 * for storing the resulting tree
1958 */
1959 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1960 {
1961 struct property *pp;
1962
1963 of_aliases = of_find_node_by_path("/aliases");
1964 of_chosen = of_find_node_by_path("/chosen");
1965 if (of_chosen == NULL)
1966 of_chosen = of_find_node_by_path("/chosen@0");
1967
1968 if (of_chosen) {
1969 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1970 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1971 if (!name)
1972 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1973 if (IS_ENABLED(CONFIG_PPC) && !name)
1974 name = of_get_property(of_aliases, "stdout", NULL);
1975 if (name)
1976 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1977 }
1978
1979 if (!of_aliases)
1980 return;
1981
1982 for_each_property_of_node(of_aliases, pp) {
1983 const char *start = pp->name;
1984 const char *end = start + strlen(start);
1985 struct device_node *np;
1986 struct alias_prop *ap;
1987 int id, len;
1988
1989 /* Skip those we do not want to proceed */
1990 if (!strcmp(pp->name, "name") ||
1991 !strcmp(pp->name, "phandle") ||
1992 !strcmp(pp->name, "linux,phandle"))
1993 continue;
1994
1995 np = of_find_node_by_path(pp->value);
1996 if (!np)
1997 continue;
1998
1999 /* walk the alias backwards to extract the id and work out
2000 * the 'stem' string */
2001 while (isdigit(*(end-1)) && end > start)
2002 end--;
2003 len = end - start;
2004
2005 if (kstrtoint(end, 10, &id) < 0)
2006 continue;
2007
2008 /* Allocate an alias_prop with enough space for the stem */
2009 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
2010 if (!ap)
2011 continue;
2012 memset(ap, 0, sizeof(*ap) + len + 1);
2013 ap->alias = start;
2014 of_alias_add(ap, np, id, start, len);
2015 }
2016 }
2017
2018 /**
2019 * of_alias_get_id - Get alias id for the given device_node
2020 * @np: Pointer to the given device_node
2021 * @stem: Alias stem of the given device_node
2022 *
2023 * The function travels the lookup table to get the alias id for the given
2024 * device_node and alias stem. It returns the alias id if found.
2025 */
2026 int of_alias_get_id(struct device_node *np, const char *stem)
2027 {
2028 struct alias_prop *app;
2029 int id = -ENODEV;
2030
2031 mutex_lock(&of_mutex);
2032 list_for_each_entry(app, &aliases_lookup, link) {
2033 if (strcmp(app->stem, stem) != 0)
2034 continue;
2035
2036 if (np == app->np) {
2037 id = app->id;
2038 break;
2039 }
2040 }
2041 mutex_unlock(&of_mutex);
2042
2043 return id;
2044 }
2045 EXPORT_SYMBOL_GPL(of_alias_get_id);
2046
2047 /**
2048 * of_alias_get_highest_id - Get highest alias id for the given stem
2049 * @stem: Alias stem to be examined
2050 *
2051 * The function travels the lookup table to get the highest alias id for the
2052 * given alias stem. It returns the alias id if found.
2053 */
2054 int of_alias_get_highest_id(const char *stem)
2055 {
2056 struct alias_prop *app;
2057 int id = -ENODEV;
2058
2059 mutex_lock(&of_mutex);
2060 list_for_each_entry(app, &aliases_lookup, link) {
2061 if (strcmp(app->stem, stem) != 0)
2062 continue;
2063
2064 if (app->id > id)
2065 id = app->id;
2066 }
2067 mutex_unlock(&of_mutex);
2068
2069 return id;
2070 }
2071 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2072
2073 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2074 u32 *pu)
2075 {
2076 const void *curv = cur;
2077
2078 if (!prop)
2079 return NULL;
2080
2081 if (!cur) {
2082 curv = prop->value;
2083 goto out_val;
2084 }
2085
2086 curv += sizeof(*cur);
2087 if (curv >= prop->value + prop->length)
2088 return NULL;
2089
2090 out_val:
2091 *pu = be32_to_cpup(curv);
2092 return curv;
2093 }
2094 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2095
2096 const char *of_prop_next_string(struct property *prop, const char *cur)
2097 {
2098 const void *curv = cur;
2099
2100 if (!prop)
2101 return NULL;
2102
2103 if (!cur)
2104 return prop->value;
2105
2106 curv += strlen(cur) + 1;
2107 if (curv >= prop->value + prop->length)
2108 return NULL;
2109
2110 return curv;
2111 }
2112 EXPORT_SYMBOL_GPL(of_prop_next_string);
2113
2114 /**
2115 * of_console_check() - Test and setup console for DT setup
2116 * @dn - Pointer to device node
2117 * @name - Name to use for preferred console without index. ex. "ttyS"
2118 * @index - Index to use for preferred console.
2119 *
2120 * Check if the given device node matches the stdout-path property in the
2121 * /chosen node. If it does then register it as the preferred console and return
2122 * TRUE. Otherwise return FALSE.
2123 */
2124 bool of_console_check(struct device_node *dn, char *name, int index)
2125 {
2126 if (!dn || dn != of_stdout || console_set_on_cmdline)
2127 return false;
2128 return !add_preferred_console(name, index,
2129 kstrdup(of_stdout_options, GFP_KERNEL));
2130 }
2131 EXPORT_SYMBOL_GPL(of_console_check);
2132
2133 /**
2134 * of_find_next_cache_node - Find a node's subsidiary cache
2135 * @np: node of type "cpu" or "cache"
2136 *
2137 * Returns a node pointer with refcount incremented, use
2138 * of_node_put() on it when done. Caller should hold a reference
2139 * to np.
2140 */
2141 struct device_node *of_find_next_cache_node(const struct device_node *np)
2142 {
2143 struct device_node *child;
2144 const phandle *handle;
2145
2146 handle = of_get_property(np, "l2-cache", NULL);
2147 if (!handle)
2148 handle = of_get_property(np, "next-level-cache", NULL);
2149
2150 if (handle)
2151 return of_find_node_by_phandle(be32_to_cpup(handle));
2152
2153 /* OF on pmac has nodes instead of properties named "l2-cache"
2154 * beneath CPU nodes.
2155 */
2156 if (!strcmp(np->type, "cpu"))
2157 for_each_child_of_node(np, child)
2158 if (!strcmp(child->type, "cache"))
2159 return child;
2160
2161 return NULL;
2162 }
2163
2164 /**
2165 * of_graph_parse_endpoint() - parse common endpoint node properties
2166 * @node: pointer to endpoint device_node
2167 * @endpoint: pointer to the OF endpoint data structure
2168 *
2169 * The caller should hold a reference to @node.
2170 */
2171 int of_graph_parse_endpoint(const struct device_node *node,
2172 struct of_endpoint *endpoint)
2173 {
2174 struct device_node *port_node = of_get_parent(node);
2175
2176 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2177 __func__, node->full_name);
2178
2179 memset(endpoint, 0, sizeof(*endpoint));
2180
2181 endpoint->local_node = node;
2182 /*
2183 * It doesn't matter whether the two calls below succeed.
2184 * If they don't then the default value 0 is used.
2185 */
2186 of_property_read_u32(port_node, "reg", &endpoint->port);
2187 of_property_read_u32(node, "reg", &endpoint->id);
2188
2189 of_node_put(port_node);
2190
2191 return 0;
2192 }
2193 EXPORT_SYMBOL(of_graph_parse_endpoint);
2194
2195 /**
2196 * of_graph_get_port_by_id() - get the port matching a given id
2197 * @parent: pointer to the parent device node
2198 * @id: id of the port
2199 *
2200 * Return: A 'port' node pointer with refcount incremented. The caller
2201 * has to use of_node_put() on it when done.
2202 */
2203 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2204 {
2205 struct device_node *node, *port;
2206
2207 node = of_get_child_by_name(parent, "ports");
2208 if (node)
2209 parent = node;
2210
2211 for_each_child_of_node(parent, port) {
2212 u32 port_id = 0;
2213
2214 if (of_node_cmp(port->name, "port") != 0)
2215 continue;
2216 of_property_read_u32(port, "reg", &port_id);
2217 if (id == port_id)
2218 break;
2219 }
2220
2221 of_node_put(node);
2222
2223 return port;
2224 }
2225 EXPORT_SYMBOL(of_graph_get_port_by_id);
2226
2227 /**
2228 * of_graph_get_next_endpoint() - get next endpoint node
2229 * @parent: pointer to the parent device node
2230 * @prev: previous endpoint node, or NULL to get first
2231 *
2232 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2233 * of the passed @prev node is decremented.
2234 */
2235 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2236 struct device_node *prev)
2237 {
2238 struct device_node *endpoint;
2239 struct device_node *port;
2240
2241 if (!parent)
2242 return NULL;
2243
2244 /*
2245 * Start by locating the port node. If no previous endpoint is specified
2246 * search for the first port node, otherwise get the previous endpoint
2247 * parent port node.
2248 */
2249 if (!prev) {
2250 struct device_node *node;
2251
2252 node = of_get_child_by_name(parent, "ports");
2253 if (node)
2254 parent = node;
2255
2256 port = of_get_child_by_name(parent, "port");
2257 of_node_put(node);
2258
2259 if (!port) {
2260 pr_err("%s(): no port node found in %s\n",
2261 __func__, parent->full_name);
2262 return NULL;
2263 }
2264 } else {
2265 port = of_get_parent(prev);
2266 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2267 __func__, prev->full_name))
2268 return NULL;
2269 }
2270
2271 while (1) {
2272 /*
2273 * Now that we have a port node, get the next endpoint by
2274 * getting the next child. If the previous endpoint is NULL this
2275 * will return the first child.
2276 */
2277 endpoint = of_get_next_child(port, prev);
2278 if (endpoint) {
2279 of_node_put(port);
2280 return endpoint;
2281 }
2282
2283 /* No more endpoints under this port, try the next one. */
2284 prev = NULL;
2285
2286 do {
2287 port = of_get_next_child(parent, port);
2288 if (!port)
2289 return NULL;
2290 } while (of_node_cmp(port->name, "port"));
2291 }
2292 }
2293 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2294
2295 /**
2296 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2297 * @parent: pointer to the parent device node
2298 * @port_reg: identifier (value of reg property) of the parent port node
2299 * @reg: identifier (value of reg property) of the endpoint node
2300 *
2301 * Return: An 'endpoint' node pointer which is identified by reg and at the same
2302 * is the child of a port node identified by port_reg. reg and port_reg are
2303 * ignored when they are -1.
2304 */
2305 struct device_node *of_graph_get_endpoint_by_regs(
2306 const struct device_node *parent, int port_reg, int reg)
2307 {
2308 struct of_endpoint endpoint;
2309 struct device_node *node, *prev_node = NULL;
2310
2311 while (1) {
2312 node = of_graph_get_next_endpoint(parent, prev_node);
2313 of_node_put(prev_node);
2314 if (!node)
2315 break;
2316
2317 of_graph_parse_endpoint(node, &endpoint);
2318 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2319 ((reg == -1) || (endpoint.id == reg)))
2320 return node;
2321
2322 prev_node = node;
2323 }
2324
2325 return NULL;
2326 }
2327 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2328
2329 /**
2330 * of_graph_get_remote_port_parent() - get remote port's parent node
2331 * @node: pointer to a local endpoint device_node
2332 *
2333 * Return: Remote device node associated with remote endpoint node linked
2334 * to @node. Use of_node_put() on it when done.
2335 */
2336 struct device_node *of_graph_get_remote_port_parent(
2337 const struct device_node *node)
2338 {
2339 struct device_node *np;
2340 unsigned int depth;
2341
2342 /* Get remote endpoint node. */
2343 np = of_parse_phandle(node, "remote-endpoint", 0);
2344
2345 /* Walk 3 levels up only if there is 'ports' node. */
2346 for (depth = 3; depth && np; depth--) {
2347 np = of_get_next_parent(np);
2348 if (depth == 2 && of_node_cmp(np->name, "ports"))
2349 break;
2350 }
2351 return np;
2352 }
2353 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2354
2355 /**
2356 * of_graph_get_remote_port() - get remote port node
2357 * @node: pointer to a local endpoint device_node
2358 *
2359 * Return: Remote port node associated with remote endpoint node linked
2360 * to @node. Use of_node_put() on it when done.
2361 */
2362 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2363 {
2364 struct device_node *np;
2365
2366 /* Get remote endpoint node. */
2367 np = of_parse_phandle(node, "remote-endpoint", 0);
2368 if (!np)
2369 return NULL;
2370 return of_get_next_parent(np);
2371 }
2372 EXPORT_SYMBOL(of_graph_get_remote_port);
This page took 0.107705 seconds and 5 git commands to generate.