Merge remote-tracking branch 'mkp-scsi/4.7/scsi-fixes' into fixes
[deliverable/linux.git] / drivers / of / fdt.c
1 /*
2 * Functions for working with the Flattened Device Tree data format
3 *
4 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
5 * benh@kernel.crashing.org
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28
29 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
30 #include <asm/page.h>
31
32 /*
33 * of_fdt_limit_memory - limit the number of regions in the /memory node
34 * @limit: maximum entries
35 *
36 * Adjust the flattened device tree to have at most 'limit' number of
37 * memory entries in the /memory node. This function may be called
38 * any time after initial_boot_param is set.
39 */
40 void of_fdt_limit_memory(int limit)
41 {
42 int memory;
43 int len;
44 const void *val;
45 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
46 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
47 const uint32_t *addr_prop;
48 const uint32_t *size_prop;
49 int root_offset;
50 int cell_size;
51
52 root_offset = fdt_path_offset(initial_boot_params, "/");
53 if (root_offset < 0)
54 return;
55
56 addr_prop = fdt_getprop(initial_boot_params, root_offset,
57 "#address-cells", NULL);
58 if (addr_prop)
59 nr_address_cells = fdt32_to_cpu(*addr_prop);
60
61 size_prop = fdt_getprop(initial_boot_params, root_offset,
62 "#size-cells", NULL);
63 if (size_prop)
64 nr_size_cells = fdt32_to_cpu(*size_prop);
65
66 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
67
68 memory = fdt_path_offset(initial_boot_params, "/memory");
69 if (memory > 0) {
70 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
71 if (len > limit*cell_size) {
72 len = limit*cell_size;
73 pr_debug("Limiting number of entries to %d\n", limit);
74 fdt_setprop(initial_boot_params, memory, "reg", val,
75 len);
76 }
77 }
78 }
79
80 /**
81 * of_fdt_is_compatible - Return true if given node from the given blob has
82 * compat in its compatible list
83 * @blob: A device tree blob
84 * @node: node to test
85 * @compat: compatible string to compare with compatible list.
86 *
87 * On match, returns a non-zero value with smaller values returned for more
88 * specific compatible values.
89 */
90 int of_fdt_is_compatible(const void *blob,
91 unsigned long node, const char *compat)
92 {
93 const char *cp;
94 int cplen;
95 unsigned long l, score = 0;
96
97 cp = fdt_getprop(blob, node, "compatible", &cplen);
98 if (cp == NULL)
99 return 0;
100 while (cplen > 0) {
101 score++;
102 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
103 return score;
104 l = strlen(cp) + 1;
105 cp += l;
106 cplen -= l;
107 }
108
109 return 0;
110 }
111
112 /**
113 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
114 * @blob: A device tree blob
115 * @node: node to test
116 *
117 * Returns true if the node has a "big-endian" property, or if the kernel
118 * was compiled for BE *and* the node has a "native-endian" property.
119 * Returns false otherwise.
120 */
121 bool of_fdt_is_big_endian(const void *blob, unsigned long node)
122 {
123 if (fdt_getprop(blob, node, "big-endian", NULL))
124 return true;
125 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
126 fdt_getprop(blob, node, "native-endian", NULL))
127 return true;
128 return false;
129 }
130
131 /**
132 * of_fdt_match - Return true if node matches a list of compatible values
133 */
134 int of_fdt_match(const void *blob, unsigned long node,
135 const char *const *compat)
136 {
137 unsigned int tmp, score = 0;
138
139 if (!compat)
140 return 0;
141
142 while (*compat) {
143 tmp = of_fdt_is_compatible(blob, node, *compat);
144 if (tmp && (score == 0 || (tmp < score)))
145 score = tmp;
146 compat++;
147 }
148
149 return score;
150 }
151
152 static void *unflatten_dt_alloc(void **mem, unsigned long size,
153 unsigned long align)
154 {
155 void *res;
156
157 *mem = PTR_ALIGN(*mem, align);
158 res = *mem;
159 *mem += size;
160
161 return res;
162 }
163
164 static void populate_properties(const void *blob,
165 int offset,
166 void **mem,
167 struct device_node *np,
168 const char *nodename,
169 bool dryrun)
170 {
171 struct property *pp, **pprev = NULL;
172 int cur;
173 bool has_name = false;
174
175 pprev = &np->properties;
176 for (cur = fdt_first_property_offset(blob, offset);
177 cur >= 0;
178 cur = fdt_next_property_offset(blob, cur)) {
179 const __be32 *val;
180 const char *pname;
181 u32 sz;
182
183 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
184 if (!val) {
185 pr_warn("%s: Cannot locate property at 0x%x\n",
186 __func__, cur);
187 continue;
188 }
189
190 if (!pname) {
191 pr_warn("%s: Cannot find property name at 0x%x\n",
192 __func__, cur);
193 continue;
194 }
195
196 if (!strcmp(pname, "name"))
197 has_name = true;
198
199 pp = unflatten_dt_alloc(mem, sizeof(struct property),
200 __alignof__(struct property));
201 if (dryrun)
202 continue;
203
204 /* We accept flattened tree phandles either in
205 * ePAPR-style "phandle" properties, or the
206 * legacy "linux,phandle" properties. If both
207 * appear and have different values, things
208 * will get weird. Don't do that.
209 */
210 if (!strcmp(pname, "phandle") ||
211 !strcmp(pname, "linux,phandle")) {
212 if (!np->phandle)
213 np->phandle = be32_to_cpup(val);
214 }
215
216 /* And we process the "ibm,phandle" property
217 * used in pSeries dynamic device tree
218 * stuff
219 */
220 if (!strcmp(pname, "ibm,phandle"))
221 np->phandle = be32_to_cpup(val);
222
223 pp->name = (char *)pname;
224 pp->length = sz;
225 pp->value = (__be32 *)val;
226 *pprev = pp;
227 pprev = &pp->next;
228 }
229
230 /* With version 0x10 we may not have the name property,
231 * recreate it here from the unit name if absent
232 */
233 if (!has_name) {
234 const char *p = nodename, *ps = p, *pa = NULL;
235 int len;
236
237 while (*p) {
238 if ((*p) == '@')
239 pa = p;
240 else if ((*p) == '/')
241 ps = p + 1;
242 p++;
243 }
244
245 if (pa < ps)
246 pa = p;
247 len = (pa - ps) + 1;
248 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
249 __alignof__(struct property));
250 if (!dryrun) {
251 pp->name = "name";
252 pp->length = len;
253 pp->value = pp + 1;
254 *pprev = pp;
255 pprev = &pp->next;
256 memcpy(pp->value, ps, len - 1);
257 ((char *)pp->value)[len - 1] = 0;
258 pr_debug("fixed up name for %s -> %s\n",
259 nodename, (char *)pp->value);
260 }
261 }
262
263 if (!dryrun)
264 *pprev = NULL;
265 }
266
267 static unsigned int populate_node(const void *blob,
268 int offset,
269 void **mem,
270 struct device_node *dad,
271 unsigned int fpsize,
272 struct device_node **pnp,
273 bool dryrun)
274 {
275 struct device_node *np;
276 const char *pathp;
277 unsigned int l, allocl;
278 int new_format = 0;
279
280 pathp = fdt_get_name(blob, offset, &l);
281 if (!pathp) {
282 *pnp = NULL;
283 return 0;
284 }
285
286 allocl = ++l;
287
288 /* version 0x10 has a more compact unit name here instead of the full
289 * path. we accumulate the full path size using "fpsize", we'll rebuild
290 * it later. We detect this because the first character of the name is
291 * not '/'.
292 */
293 if ((*pathp) != '/') {
294 new_format = 1;
295 if (fpsize == 0) {
296 /* root node: special case. fpsize accounts for path
297 * plus terminating zero. root node only has '/', so
298 * fpsize should be 2, but we want to avoid the first
299 * level nodes to have two '/' so we use fpsize 1 here
300 */
301 fpsize = 1;
302 allocl = 2;
303 l = 1;
304 pathp = "";
305 } else {
306 /* account for '/' and path size minus terminal 0
307 * already in 'l'
308 */
309 fpsize += l;
310 allocl = fpsize;
311 }
312 }
313
314 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
315 __alignof__(struct device_node));
316 if (!dryrun) {
317 char *fn;
318 of_node_init(np);
319 np->full_name = fn = ((char *)np) + sizeof(*np);
320 if (new_format) {
321 /* rebuild full path for new format */
322 if (dad && dad->parent) {
323 strcpy(fn, dad->full_name);
324 #ifdef DEBUG
325 if ((strlen(fn) + l + 1) != allocl) {
326 pr_debug("%s: p: %d, l: %d, a: %d\n",
327 pathp, (int)strlen(fn),
328 l, allocl);
329 }
330 #endif
331 fn += strlen(fn);
332 }
333 *(fn++) = '/';
334 }
335 memcpy(fn, pathp, l);
336
337 if (dad != NULL) {
338 np->parent = dad;
339 np->sibling = dad->child;
340 dad->child = np;
341 }
342 }
343
344 populate_properties(blob, offset, mem, np, pathp, dryrun);
345 if (!dryrun) {
346 np->name = of_get_property(np, "name", NULL);
347 np->type = of_get_property(np, "device_type", NULL);
348
349 if (!np->name)
350 np->name = "<NULL>";
351 if (!np->type)
352 np->type = "<NULL>";
353 }
354
355 *pnp = np;
356 return fpsize;
357 }
358
359 static void reverse_nodes(struct device_node *parent)
360 {
361 struct device_node *child, *next;
362
363 /* In-depth first */
364 child = parent->child;
365 while (child) {
366 reverse_nodes(child);
367
368 child = child->sibling;
369 }
370
371 /* Reverse the nodes in the child list */
372 child = parent->child;
373 parent->child = NULL;
374 while (child) {
375 next = child->sibling;
376
377 child->sibling = parent->child;
378 parent->child = child;
379 child = next;
380 }
381 }
382
383 /**
384 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
385 * @blob: The parent device tree blob
386 * @mem: Memory chunk to use for allocating device nodes and properties
387 * @dad: Parent struct device_node
388 * @nodepp: The device_node tree created by the call
389 *
390 * It returns the size of unflattened device tree or error code
391 */
392 static int unflatten_dt_nodes(const void *blob,
393 void *mem,
394 struct device_node *dad,
395 struct device_node **nodepp)
396 {
397 struct device_node *root;
398 int offset = 0, depth = 0;
399 #define FDT_MAX_DEPTH 64
400 unsigned int fpsizes[FDT_MAX_DEPTH];
401 struct device_node *nps[FDT_MAX_DEPTH];
402 void *base = mem;
403 bool dryrun = !base;
404
405 if (nodepp)
406 *nodepp = NULL;
407
408 root = dad;
409 fpsizes[depth] = dad ? strlen(of_node_full_name(dad)) : 0;
410 nps[depth] = dad;
411 for (offset = 0;
412 offset >= 0 && depth >= 0;
413 offset = fdt_next_node(blob, offset, &depth)) {
414 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
415 continue;
416
417 fpsizes[depth+1] = populate_node(blob, offset, &mem,
418 nps[depth],
419 fpsizes[depth],
420 &nps[depth+1], dryrun);
421 if (!fpsizes[depth+1])
422 return mem - base;
423
424 if (!dryrun && nodepp && !*nodepp)
425 *nodepp = nps[depth+1];
426 if (!dryrun && !root)
427 root = nps[depth+1];
428 }
429
430 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
431 pr_err("%s: Error %d processing FDT\n", __func__, offset);
432 return -EINVAL;
433 }
434
435 /*
436 * Reverse the child list. Some drivers assumes node order matches .dts
437 * node order
438 */
439 if (!dryrun)
440 reverse_nodes(root);
441
442 return mem - base;
443 }
444
445 /**
446 * __unflatten_device_tree - create tree of device_nodes from flat blob
447 *
448 * unflattens a device-tree, creating the
449 * tree of struct device_node. It also fills the "name" and "type"
450 * pointers of the nodes so the normal device-tree walking functions
451 * can be used.
452 * @blob: The blob to expand
453 * @dad: Parent device node
454 * @mynodes: The device_node tree created by the call
455 * @dt_alloc: An allocator that provides a virtual address to memory
456 * for the resulting tree
457 *
458 * Returns NULL on failure or the memory chunk containing the unflattened
459 * device tree on success.
460 */
461 static void *__unflatten_device_tree(const void *blob,
462 struct device_node *dad,
463 struct device_node **mynodes,
464 void *(*dt_alloc)(u64 size, u64 align))
465 {
466 int size;
467 void *mem;
468
469 pr_debug(" -> unflatten_device_tree()\n");
470
471 if (!blob) {
472 pr_debug("No device tree pointer\n");
473 return NULL;
474 }
475
476 pr_debug("Unflattening device tree:\n");
477 pr_debug("magic: %08x\n", fdt_magic(blob));
478 pr_debug("size: %08x\n", fdt_totalsize(blob));
479 pr_debug("version: %08x\n", fdt_version(blob));
480
481 if (fdt_check_header(blob)) {
482 pr_err("Invalid device tree blob header\n");
483 return NULL;
484 }
485
486 /* First pass, scan for size */
487 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
488 if (size < 0)
489 return NULL;
490
491 size = ALIGN(size, 4);
492 pr_debug(" size is %d, allocating...\n", size);
493
494 /* Allocate memory for the expanded device tree */
495 mem = dt_alloc(size + 4, __alignof__(struct device_node));
496 memset(mem, 0, size);
497
498 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
499
500 pr_debug(" unflattening %p...\n", mem);
501
502 /* Second pass, do actual unflattening */
503 unflatten_dt_nodes(blob, mem, dad, mynodes);
504 if (be32_to_cpup(mem + size) != 0xdeadbeef)
505 pr_warning("End of tree marker overwritten: %08x\n",
506 be32_to_cpup(mem + size));
507
508 pr_debug(" <- unflatten_device_tree()\n");
509 return mem;
510 }
511
512 static void *kernel_tree_alloc(u64 size, u64 align)
513 {
514 return kzalloc(size, GFP_KERNEL);
515 }
516
517 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
518
519 /**
520 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
521 * @blob: Flat device tree blob
522 * @dad: Parent device node
523 * @mynodes: The device tree created by the call
524 *
525 * unflattens the device-tree passed by the firmware, creating the
526 * tree of struct device_node. It also fills the "name" and "type"
527 * pointers of the nodes so the normal device-tree walking functions
528 * can be used.
529 *
530 * Returns NULL on failure or the memory chunk containing the unflattened
531 * device tree on success.
532 */
533 void *of_fdt_unflatten_tree(const unsigned long *blob,
534 struct device_node *dad,
535 struct device_node **mynodes)
536 {
537 void *mem;
538
539 mutex_lock(&of_fdt_unflatten_mutex);
540 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc);
541 mutex_unlock(&of_fdt_unflatten_mutex);
542
543 return mem;
544 }
545 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
546
547 /* Everything below here references initial_boot_params directly. */
548 int __initdata dt_root_addr_cells;
549 int __initdata dt_root_size_cells;
550
551 void *initial_boot_params;
552
553 #ifdef CONFIG_OF_EARLY_FLATTREE
554
555 static u32 of_fdt_crc32;
556
557 /**
558 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
559 */
560 static int __init __reserved_mem_reserve_reg(unsigned long node,
561 const char *uname)
562 {
563 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
564 phys_addr_t base, size;
565 int len;
566 const __be32 *prop;
567 int nomap, first = 1;
568
569 prop = of_get_flat_dt_prop(node, "reg", &len);
570 if (!prop)
571 return -ENOENT;
572
573 if (len && len % t_len != 0) {
574 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
575 uname);
576 return -EINVAL;
577 }
578
579 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
580
581 while (len >= t_len) {
582 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
583 size = dt_mem_next_cell(dt_root_size_cells, &prop);
584
585 if (size &&
586 early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
587 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
588 uname, &base, (unsigned long)size / SZ_1M);
589 else
590 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
591 uname, &base, (unsigned long)size / SZ_1M);
592
593 len -= t_len;
594 if (first) {
595 fdt_reserved_mem_save_node(node, uname, base, size);
596 first = 0;
597 }
598 }
599 return 0;
600 }
601
602 /**
603 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
604 * in /reserved-memory matches the values supported by the current implementation,
605 * also check if ranges property has been provided
606 */
607 static int __init __reserved_mem_check_root(unsigned long node)
608 {
609 const __be32 *prop;
610
611 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
612 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
613 return -EINVAL;
614
615 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
616 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
617 return -EINVAL;
618
619 prop = of_get_flat_dt_prop(node, "ranges", NULL);
620 if (!prop)
621 return -EINVAL;
622 return 0;
623 }
624
625 /**
626 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
627 */
628 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
629 int depth, void *data)
630 {
631 static int found;
632 const char *status;
633 int err;
634
635 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
636 if (__reserved_mem_check_root(node) != 0) {
637 pr_err("Reserved memory: unsupported node format, ignoring\n");
638 /* break scan */
639 return 1;
640 }
641 found = 1;
642 /* scan next node */
643 return 0;
644 } else if (!found) {
645 /* scan next node */
646 return 0;
647 } else if (found && depth < 2) {
648 /* scanning of /reserved-memory has been finished */
649 return 1;
650 }
651
652 status = of_get_flat_dt_prop(node, "status", NULL);
653 if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0)
654 return 0;
655
656 err = __reserved_mem_reserve_reg(node, uname);
657 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
658 fdt_reserved_mem_save_node(node, uname, 0, 0);
659
660 /* scan next node */
661 return 0;
662 }
663
664 /**
665 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
666 *
667 * This function grabs memory from early allocator for device exclusive use
668 * defined in device tree structures. It should be called by arch specific code
669 * once the early allocator (i.e. memblock) has been fully activated.
670 */
671 void __init early_init_fdt_scan_reserved_mem(void)
672 {
673 int n;
674 u64 base, size;
675
676 if (!initial_boot_params)
677 return;
678
679 /* Process header /memreserve/ fields */
680 for (n = 0; ; n++) {
681 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
682 if (!size)
683 break;
684 early_init_dt_reserve_memory_arch(base, size, 0);
685 }
686
687 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
688 fdt_init_reserved_mem();
689 }
690
691 /**
692 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
693 */
694 void __init early_init_fdt_reserve_self(void)
695 {
696 if (!initial_boot_params)
697 return;
698
699 /* Reserve the dtb region */
700 early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
701 fdt_totalsize(initial_boot_params),
702 0);
703 }
704
705 /**
706 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
707 * @it: callback function
708 * @data: context data pointer
709 *
710 * This function is used to scan the flattened device-tree, it is
711 * used to extract the memory information at boot before we can
712 * unflatten the tree
713 */
714 int __init of_scan_flat_dt(int (*it)(unsigned long node,
715 const char *uname, int depth,
716 void *data),
717 void *data)
718 {
719 const void *blob = initial_boot_params;
720 const char *pathp;
721 int offset, rc = 0, depth = -1;
722
723 for (offset = fdt_next_node(blob, -1, &depth);
724 offset >= 0 && depth >= 0 && !rc;
725 offset = fdt_next_node(blob, offset, &depth)) {
726
727 pathp = fdt_get_name(blob, offset, NULL);
728 if (*pathp == '/')
729 pathp = kbasename(pathp);
730 rc = it(offset, pathp, depth, data);
731 }
732 return rc;
733 }
734
735 /**
736 * of_get_flat_dt_root - find the root node in the flat blob
737 */
738 unsigned long __init of_get_flat_dt_root(void)
739 {
740 return 0;
741 }
742
743 /**
744 * of_get_flat_dt_size - Return the total size of the FDT
745 */
746 int __init of_get_flat_dt_size(void)
747 {
748 return fdt_totalsize(initial_boot_params);
749 }
750
751 /**
752 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
753 *
754 * This function can be used within scan_flattened_dt callback to get
755 * access to properties
756 */
757 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
758 int *size)
759 {
760 return fdt_getprop(initial_boot_params, node, name, size);
761 }
762
763 /**
764 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
765 * @node: node to test
766 * @compat: compatible string to compare with compatible list.
767 */
768 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
769 {
770 return of_fdt_is_compatible(initial_boot_params, node, compat);
771 }
772
773 /**
774 * of_flat_dt_match - Return true if node matches a list of compatible values
775 */
776 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
777 {
778 return of_fdt_match(initial_boot_params, node, compat);
779 }
780
781 struct fdt_scan_status {
782 const char *name;
783 int namelen;
784 int depth;
785 int found;
786 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
787 void *data;
788 };
789
790 const char * __init of_flat_dt_get_machine_name(void)
791 {
792 const char *name;
793 unsigned long dt_root = of_get_flat_dt_root();
794
795 name = of_get_flat_dt_prop(dt_root, "model", NULL);
796 if (!name)
797 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
798 return name;
799 }
800
801 /**
802 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
803 *
804 * @default_match: A machine specific ptr to return in case of no match.
805 * @get_next_compat: callback function to return next compatible match table.
806 *
807 * Iterate through machine match tables to find the best match for the machine
808 * compatible string in the FDT.
809 */
810 const void * __init of_flat_dt_match_machine(const void *default_match,
811 const void * (*get_next_compat)(const char * const**))
812 {
813 const void *data = NULL;
814 const void *best_data = default_match;
815 const char *const *compat;
816 unsigned long dt_root;
817 unsigned int best_score = ~1, score = 0;
818
819 dt_root = of_get_flat_dt_root();
820 while ((data = get_next_compat(&compat))) {
821 score = of_flat_dt_match(dt_root, compat);
822 if (score > 0 && score < best_score) {
823 best_data = data;
824 best_score = score;
825 }
826 }
827 if (!best_data) {
828 const char *prop;
829 int size;
830
831 pr_err("\n unrecognized device tree list:\n[ ");
832
833 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
834 if (prop) {
835 while (size > 0) {
836 printk("'%s' ", prop);
837 size -= strlen(prop) + 1;
838 prop += strlen(prop) + 1;
839 }
840 }
841 printk("]\n\n");
842 return NULL;
843 }
844
845 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
846
847 return best_data;
848 }
849
850 #ifdef CONFIG_BLK_DEV_INITRD
851 #ifndef __early_init_dt_declare_initrd
852 static void __early_init_dt_declare_initrd(unsigned long start,
853 unsigned long end)
854 {
855 initrd_start = (unsigned long)__va(start);
856 initrd_end = (unsigned long)__va(end);
857 initrd_below_start_ok = 1;
858 }
859 #endif
860
861 /**
862 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
863 * @node: reference to node containing initrd location ('chosen')
864 */
865 static void __init early_init_dt_check_for_initrd(unsigned long node)
866 {
867 u64 start, end;
868 int len;
869 const __be32 *prop;
870
871 pr_debug("Looking for initrd properties... ");
872
873 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
874 if (!prop)
875 return;
876 start = of_read_number(prop, len/4);
877
878 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
879 if (!prop)
880 return;
881 end = of_read_number(prop, len/4);
882
883 __early_init_dt_declare_initrd(start, end);
884
885 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
886 (unsigned long long)start, (unsigned long long)end);
887 }
888 #else
889 static inline void early_init_dt_check_for_initrd(unsigned long node)
890 {
891 }
892 #endif /* CONFIG_BLK_DEV_INITRD */
893
894 #ifdef CONFIG_SERIAL_EARLYCON
895
896 static int __init early_init_dt_scan_chosen_serial(void)
897 {
898 int offset;
899 const char *p, *q, *options = NULL;
900 int l;
901 const struct earlycon_id *match;
902 const void *fdt = initial_boot_params;
903
904 offset = fdt_path_offset(fdt, "/chosen");
905 if (offset < 0)
906 offset = fdt_path_offset(fdt, "/chosen@0");
907 if (offset < 0)
908 return -ENOENT;
909
910 p = fdt_getprop(fdt, offset, "stdout-path", &l);
911 if (!p)
912 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
913 if (!p || !l)
914 return -ENOENT;
915
916 q = strchrnul(p, ':');
917 if (*q != '\0')
918 options = q + 1;
919 l = q - p;
920
921 /* Get the node specified by stdout-path */
922 offset = fdt_path_offset_namelen(fdt, p, l);
923 if (offset < 0) {
924 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
925 return 0;
926 }
927
928 for (match = __earlycon_table; match < __earlycon_table_end; match++) {
929 if (!match->compatible[0])
930 continue;
931
932 if (fdt_node_check_compatible(fdt, offset, match->compatible))
933 continue;
934
935 of_setup_earlycon(match, offset, options);
936 return 0;
937 }
938 return -ENODEV;
939 }
940
941 static int __init setup_of_earlycon(char *buf)
942 {
943 if (buf)
944 return 0;
945
946 return early_init_dt_scan_chosen_serial();
947 }
948 early_param("earlycon", setup_of_earlycon);
949 #endif
950
951 /**
952 * early_init_dt_scan_root - fetch the top level address and size cells
953 */
954 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
955 int depth, void *data)
956 {
957 const __be32 *prop;
958
959 if (depth != 0)
960 return 0;
961
962 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
963 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
964
965 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
966 if (prop)
967 dt_root_size_cells = be32_to_cpup(prop);
968 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
969
970 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
971 if (prop)
972 dt_root_addr_cells = be32_to_cpup(prop);
973 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
974
975 /* break now */
976 return 1;
977 }
978
979 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
980 {
981 const __be32 *p = *cellp;
982
983 *cellp = p + s;
984 return of_read_number(p, s);
985 }
986
987 /**
988 * early_init_dt_scan_memory - Look for an parse memory nodes
989 */
990 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
991 int depth, void *data)
992 {
993 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
994 const __be32 *reg, *endp;
995 int l;
996
997 /* We are scanning "memory" nodes only */
998 if (type == NULL) {
999 /*
1000 * The longtrail doesn't have a device_type on the
1001 * /memory node, so look for the node called /memory@0.
1002 */
1003 if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1004 return 0;
1005 } else if (strcmp(type, "memory") != 0)
1006 return 0;
1007
1008 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1009 if (reg == NULL)
1010 reg = of_get_flat_dt_prop(node, "reg", &l);
1011 if (reg == NULL)
1012 return 0;
1013
1014 endp = reg + (l / sizeof(__be32));
1015
1016 pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1017
1018 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1019 u64 base, size;
1020
1021 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1022 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1023
1024 if (size == 0)
1025 continue;
1026 pr_debug(" - %llx , %llx\n", (unsigned long long)base,
1027 (unsigned long long)size);
1028
1029 early_init_dt_add_memory_arch(base, size);
1030 }
1031
1032 return 0;
1033 }
1034
1035 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1036 int depth, void *data)
1037 {
1038 int l;
1039 const char *p;
1040
1041 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1042
1043 if (depth != 1 || !data ||
1044 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1045 return 0;
1046
1047 early_init_dt_check_for_initrd(node);
1048
1049 /* Retrieve command line */
1050 p = of_get_flat_dt_prop(node, "bootargs", &l);
1051 if (p != NULL && l > 0)
1052 strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1053
1054 /*
1055 * CONFIG_CMDLINE is meant to be a default in case nothing else
1056 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1057 * is set in which case we override whatever was found earlier.
1058 */
1059 #ifdef CONFIG_CMDLINE
1060 #if defined(CONFIG_CMDLINE_EXTEND)
1061 strlcat(data, " ", COMMAND_LINE_SIZE);
1062 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1063 #elif defined(CONFIG_CMDLINE_FORCE)
1064 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1065 #else
1066 /* No arguments from boot loader, use kernel's cmdl*/
1067 if (!((char *)data)[0])
1068 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1069 #endif
1070 #endif /* CONFIG_CMDLINE */
1071
1072 pr_debug("Command line is: %s\n", (char*)data);
1073
1074 /* break now */
1075 return 1;
1076 }
1077
1078 #ifdef CONFIG_HAVE_MEMBLOCK
1079 #ifndef MIN_MEMBLOCK_ADDR
1080 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1081 #endif
1082 #ifndef MAX_MEMBLOCK_ADDR
1083 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1084 #endif
1085
1086 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1087 {
1088 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1089
1090 if (!PAGE_ALIGNED(base)) {
1091 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1092 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1093 base, base + size);
1094 return;
1095 }
1096 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1097 base = PAGE_ALIGN(base);
1098 }
1099 size &= PAGE_MASK;
1100
1101 if (base > MAX_MEMBLOCK_ADDR) {
1102 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1103 base, base + size);
1104 return;
1105 }
1106
1107 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1108 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1109 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1110 size = MAX_MEMBLOCK_ADDR - base + 1;
1111 }
1112
1113 if (base + size < phys_offset) {
1114 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1115 base, base + size);
1116 return;
1117 }
1118 if (base < phys_offset) {
1119 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1120 base, phys_offset);
1121 size -= phys_offset - base;
1122 base = phys_offset;
1123 }
1124 memblock_add(base, size);
1125 }
1126
1127 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1128 phys_addr_t size, bool nomap)
1129 {
1130 if (nomap)
1131 return memblock_remove(base, size);
1132 return memblock_reserve(base, size);
1133 }
1134
1135 /*
1136 * called from unflatten_device_tree() to bootstrap devicetree itself
1137 * Architectures can override this definition if memblock isn't used
1138 */
1139 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1140 {
1141 return __va(memblock_alloc(size, align));
1142 }
1143 #else
1144 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1145 {
1146 WARN_ON(1);
1147 }
1148
1149 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1150 phys_addr_t size, bool nomap)
1151 {
1152 pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1153 &base, &size, nomap ? " (nomap)" : "");
1154 return -ENOSYS;
1155 }
1156
1157 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1158 {
1159 WARN_ON(1);
1160 return NULL;
1161 }
1162 #endif
1163
1164 bool __init early_init_dt_verify(void *params)
1165 {
1166 if (!params)
1167 return false;
1168
1169 /* check device tree validity */
1170 if (fdt_check_header(params))
1171 return false;
1172
1173 /* Setup flat device-tree pointer */
1174 initial_boot_params = params;
1175 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1176 fdt_totalsize(initial_boot_params));
1177 return true;
1178 }
1179
1180
1181 void __init early_init_dt_scan_nodes(void)
1182 {
1183 /* Retrieve various information from the /chosen node */
1184 of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1185
1186 /* Initialize {size,address}-cells info */
1187 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1188
1189 /* Setup memory, calling early_init_dt_add_memory_arch */
1190 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1191 }
1192
1193 bool __init early_init_dt_scan(void *params)
1194 {
1195 bool status;
1196
1197 status = early_init_dt_verify(params);
1198 if (!status)
1199 return false;
1200
1201 early_init_dt_scan_nodes();
1202 return true;
1203 }
1204
1205 /**
1206 * unflatten_device_tree - create tree of device_nodes from flat blob
1207 *
1208 * unflattens the device-tree passed by the firmware, creating the
1209 * tree of struct device_node. It also fills the "name" and "type"
1210 * pointers of the nodes so the normal device-tree walking functions
1211 * can be used.
1212 */
1213 void __init unflatten_device_tree(void)
1214 {
1215 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1216 early_init_dt_alloc_memory_arch);
1217
1218 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1219 of_alias_scan(early_init_dt_alloc_memory_arch);
1220 }
1221
1222 /**
1223 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1224 *
1225 * Copies and unflattens the device-tree passed by the firmware, creating the
1226 * tree of struct device_node. It also fills the "name" and "type"
1227 * pointers of the nodes so the normal device-tree walking functions
1228 * can be used. This should only be used when the FDT memory has not been
1229 * reserved such is the case when the FDT is built-in to the kernel init
1230 * section. If the FDT memory is reserved already then unflatten_device_tree
1231 * should be used instead.
1232 */
1233 void __init unflatten_and_copy_device_tree(void)
1234 {
1235 int size;
1236 void *dt;
1237
1238 if (!initial_boot_params) {
1239 pr_warn("No valid device tree found, continuing without\n");
1240 return;
1241 }
1242
1243 size = fdt_totalsize(initial_boot_params);
1244 dt = early_init_dt_alloc_memory_arch(size,
1245 roundup_pow_of_two(FDT_V17_SIZE));
1246
1247 if (dt) {
1248 memcpy(dt, initial_boot_params, size);
1249 initial_boot_params = dt;
1250 }
1251 unflatten_device_tree();
1252 }
1253
1254 #ifdef CONFIG_SYSFS
1255 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1256 struct bin_attribute *bin_attr,
1257 char *buf, loff_t off, size_t count)
1258 {
1259 memcpy(buf, initial_boot_params + off, count);
1260 return count;
1261 }
1262
1263 static int __init of_fdt_raw_init(void)
1264 {
1265 static struct bin_attribute of_fdt_raw_attr =
1266 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1267
1268 if (!initial_boot_params)
1269 return 0;
1270
1271 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1272 fdt_totalsize(initial_boot_params))) {
1273 pr_warn("fdt: not creating '/sys/firmware/fdt': CRC check failed\n");
1274 return 0;
1275 }
1276 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1277 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1278 }
1279 late_initcall(of_fdt_raw_init);
1280 #endif
1281
1282 #endif /* CONFIG_OF_EARLY_FLATTREE */
This page took 0.05865 seconds and 5 git commands to generate.