Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx
[deliverable/linux.git] / drivers / oprofile / cpu_buffer.c
1 /**
2 * @file cpu_buffer.c
3 *
4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf <barry.kasindorf@amd.com>
9 *
10 * Each CPU has a local buffer that stores PC value/event
11 * pairs. We also log context switches when we notice them.
12 * Eventually each CPU's buffer is processed into the global
13 * event buffer by sync_buffer().
14 *
15 * We use a local buffer for two reasons: an NMI or similar
16 * interrupt cannot synchronise, and high sampling rates
17 * would lead to catastrophic global synchronisation if
18 * a global buffer was used.
19 */
20
21 #include <linux/sched.h>
22 #include <linux/oprofile.h>
23 #include <linux/vmalloc.h>
24 #include <linux/errno.h>
25
26 #include "event_buffer.h"
27 #include "cpu_buffer.h"
28 #include "buffer_sync.h"
29 #include "oprof.h"
30
31 #define OP_BUFFER_FLAGS 0
32
33 /*
34 * Read and write access is using spin locking. Thus, writing to the
35 * buffer by NMI handler (x86) could occur also during critical
36 * sections when reading the buffer. To avoid this, there are 2
37 * buffers for independent read and write access. Read access is in
38 * process context only, write access only in the NMI handler. If the
39 * read buffer runs empty, both buffers are swapped atomically. There
40 * is potentially a small window during swapping where the buffers are
41 * disabled and samples could be lost.
42 *
43 * Using 2 buffers is a little bit overhead, but the solution is clear
44 * and does not require changes in the ring buffer implementation. It
45 * can be changed to a single buffer solution when the ring buffer
46 * access is implemented as non-locking atomic code.
47 */
48 struct ring_buffer *op_ring_buffer_read;
49 struct ring_buffer *op_ring_buffer_write;
50 DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
51
52 static void wq_sync_buffer(struct work_struct *work);
53
54 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
55 static int work_enabled;
56
57 void free_cpu_buffers(void)
58 {
59 if (op_ring_buffer_read)
60 ring_buffer_free(op_ring_buffer_read);
61 op_ring_buffer_read = NULL;
62 if (op_ring_buffer_write)
63 ring_buffer_free(op_ring_buffer_write);
64 op_ring_buffer_write = NULL;
65 }
66
67 unsigned long oprofile_get_cpu_buffer_size(void)
68 {
69 return fs_cpu_buffer_size;
70 }
71
72 void oprofile_cpu_buffer_inc_smpl_lost(void)
73 {
74 struct oprofile_cpu_buffer *cpu_buf
75 = &__get_cpu_var(cpu_buffer);
76
77 cpu_buf->sample_lost_overflow++;
78 }
79
80 int alloc_cpu_buffers(void)
81 {
82 int i;
83
84 unsigned long buffer_size = fs_cpu_buffer_size;
85
86 op_ring_buffer_read = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
87 if (!op_ring_buffer_read)
88 goto fail;
89 op_ring_buffer_write = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
90 if (!op_ring_buffer_write)
91 goto fail;
92
93 for_each_possible_cpu(i) {
94 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
95
96 b->last_task = NULL;
97 b->last_is_kernel = -1;
98 b->tracing = 0;
99 b->buffer_size = buffer_size;
100 b->tail_pos = 0;
101 b->head_pos = 0;
102 b->sample_received = 0;
103 b->sample_lost_overflow = 0;
104 b->backtrace_aborted = 0;
105 b->sample_invalid_eip = 0;
106 b->cpu = i;
107 INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
108 }
109 return 0;
110
111 fail:
112 free_cpu_buffers();
113 return -ENOMEM;
114 }
115
116 void start_cpu_work(void)
117 {
118 int i;
119
120 work_enabled = 1;
121
122 for_each_online_cpu(i) {
123 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
124
125 /*
126 * Spread the work by 1 jiffy per cpu so they dont all
127 * fire at once.
128 */
129 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
130 }
131 }
132
133 void end_cpu_work(void)
134 {
135 int i;
136
137 work_enabled = 0;
138
139 for_each_online_cpu(i) {
140 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
141
142 cancel_delayed_work(&b->work);
143 }
144
145 flush_scheduled_work();
146 }
147
148 static inline int
149 add_sample(struct oprofile_cpu_buffer *cpu_buf,
150 unsigned long pc, unsigned long event)
151 {
152 struct op_entry entry;
153 int ret;
154
155 ret = cpu_buffer_write_entry(&entry);
156 if (ret)
157 return ret;
158
159 entry.sample->eip = pc;
160 entry.sample->event = event;
161
162 ret = cpu_buffer_write_commit(&entry);
163 if (ret)
164 return ret;
165
166 return 0;
167 }
168
169 static inline int
170 add_code(struct oprofile_cpu_buffer *buffer, unsigned long value)
171 {
172 return add_sample(buffer, ESCAPE_CODE, value);
173 }
174
175 /* This must be safe from any context. It's safe writing here
176 * because of the head/tail separation of the writer and reader
177 * of the CPU buffer.
178 *
179 * is_kernel is needed because on some architectures you cannot
180 * tell if you are in kernel or user space simply by looking at
181 * pc. We tag this in the buffer by generating kernel enter/exit
182 * events whenever is_kernel changes
183 */
184 static int log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
185 int is_kernel, unsigned long event)
186 {
187 struct task_struct *task;
188
189 cpu_buf->sample_received++;
190
191 if (pc == ESCAPE_CODE) {
192 cpu_buf->sample_invalid_eip++;
193 return 0;
194 }
195
196 is_kernel = !!is_kernel;
197
198 task = current;
199
200 /* notice a switch from user->kernel or vice versa */
201 if (cpu_buf->last_is_kernel != is_kernel) {
202 cpu_buf->last_is_kernel = is_kernel;
203 if (add_code(cpu_buf, is_kernel))
204 goto fail;
205 }
206
207 /* notice a task switch */
208 if (cpu_buf->last_task != task) {
209 cpu_buf->last_task = task;
210 if (add_code(cpu_buf, (unsigned long)task))
211 goto fail;
212 }
213
214 if (add_sample(cpu_buf, pc, event))
215 goto fail;
216
217 return 1;
218
219 fail:
220 cpu_buf->sample_lost_overflow++;
221 return 0;
222 }
223
224 static int oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
225 {
226 add_code(cpu_buf, CPU_TRACE_BEGIN);
227 cpu_buf->tracing = 1;
228 return 1;
229 }
230
231 static void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
232 {
233 cpu_buf->tracing = 0;
234 }
235
236 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
237 unsigned long event, int is_kernel)
238 {
239 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
240
241 if (!backtrace_depth) {
242 log_sample(cpu_buf, pc, is_kernel, event);
243 return;
244 }
245
246 if (!oprofile_begin_trace(cpu_buf))
247 return;
248
249 /*
250 * if log_sample() fail we can't backtrace since we lost the
251 * source of this event
252 */
253 if (log_sample(cpu_buf, pc, is_kernel, event))
254 oprofile_ops.backtrace(regs, backtrace_depth);
255 oprofile_end_trace(cpu_buf);
256 }
257
258 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
259 {
260 int is_kernel = !user_mode(regs);
261 unsigned long pc = profile_pc(regs);
262
263 oprofile_add_ext_sample(pc, regs, event, is_kernel);
264 }
265
266 #ifdef CONFIG_OPROFILE_IBS
267
268 #define MAX_IBS_SAMPLE_SIZE 14
269
270 void oprofile_add_ibs_sample(struct pt_regs * const regs,
271 unsigned int * const ibs_sample, int ibs_code)
272 {
273 int is_kernel = !user_mode(regs);
274 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
275 struct task_struct *task;
276 int fail = 0;
277
278 cpu_buf->sample_received++;
279
280 /* notice a switch from user->kernel or vice versa */
281 if (cpu_buf->last_is_kernel != is_kernel) {
282 if (add_code(cpu_buf, is_kernel))
283 goto fail;
284 cpu_buf->last_is_kernel = is_kernel;
285 }
286
287 /* notice a task switch */
288 if (!is_kernel) {
289 task = current;
290 if (cpu_buf->last_task != task) {
291 if (add_code(cpu_buf, (unsigned long)task))
292 goto fail;
293 cpu_buf->last_task = task;
294 }
295 }
296
297 fail = fail || add_code(cpu_buf, ibs_code);
298 fail = fail || add_sample(cpu_buf, ibs_sample[0], ibs_sample[1]);
299 fail = fail || add_sample(cpu_buf, ibs_sample[2], ibs_sample[3]);
300 fail = fail || add_sample(cpu_buf, ibs_sample[4], ibs_sample[5]);
301
302 if (ibs_code == IBS_OP_BEGIN) {
303 fail = fail || add_sample(cpu_buf, ibs_sample[6], ibs_sample[7]);
304 fail = fail || add_sample(cpu_buf, ibs_sample[8], ibs_sample[9]);
305 fail = fail || add_sample(cpu_buf, ibs_sample[10], ibs_sample[11]);
306 }
307
308 if (fail)
309 goto fail;
310
311 if (backtrace_depth)
312 oprofile_ops.backtrace(regs, backtrace_depth);
313
314 return;
315
316 fail:
317 cpu_buf->sample_lost_overflow++;
318 return;
319 }
320
321 #endif
322
323 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
324 {
325 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
326 log_sample(cpu_buf, pc, is_kernel, event);
327 }
328
329 void oprofile_add_trace(unsigned long pc)
330 {
331 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
332
333 if (!cpu_buf->tracing)
334 return;
335
336 /*
337 * broken frame can give an eip with the same value as an
338 * escape code, abort the trace if we get it
339 */
340 if (pc == ESCAPE_CODE)
341 goto fail;
342
343 if (add_sample(cpu_buf, pc, 0))
344 goto fail;
345
346 return;
347 fail:
348 cpu_buf->tracing = 0;
349 cpu_buf->backtrace_aborted++;
350 return;
351 }
352
353 /*
354 * This serves to avoid cpu buffer overflow, and makes sure
355 * the task mortuary progresses
356 *
357 * By using schedule_delayed_work_on and then schedule_delayed_work
358 * we guarantee this will stay on the correct cpu
359 */
360 static void wq_sync_buffer(struct work_struct *work)
361 {
362 struct oprofile_cpu_buffer *b =
363 container_of(work, struct oprofile_cpu_buffer, work.work);
364 if (b->cpu != smp_processor_id()) {
365 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
366 smp_processor_id(), b->cpu);
367
368 if (!cpu_online(b->cpu)) {
369 cancel_delayed_work(&b->work);
370 return;
371 }
372 }
373 sync_buffer(b->cpu);
374
375 /* don't re-add the work if we're shutting down */
376 if (work_enabled)
377 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
378 }
This page took 0.038744 seconds and 5 git commands to generate.